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Abstract

Point processes provide a powerful framework
for modeling the distribution and interactions
of events in time or space. Their flexibility
has given rise to a variety of sophisticated
models in statistics and machine learning, yet
model diagnostic and criticism techniques re-
main underdeveloped. In this work, we pro-
pose a general Stein operator for point pro-
cesses based on the Papangelou conditional
intensity function. We then establish a kernel
goodness-of-fit test by defining a Stein dis-
crepancy measure for general point processes.
Notably, our test also applies to non-Poisson
point processes whose intensity functions con-
tain intractable normalization constants due
to the presence of complex interactions among
points. We apply our proposed test to sev-
eral point process models, and show that it
outperforms a two-sample test based on the
maximum mean discrepancy.

1 INTRODUCTION

Point pattern data, consisting of the locations of objects
in some ambient space, occur widely in the physical, bi-
ological, and social sciences. Point process models have
been applied to describe stars and galaxies [2], trees in
a forest [15], earthquakes and aftershocks [33], neurons
in the brain [29], and the dynamics of crime [28]. Point
processes have also been the subject of much recent
activity in statistics and machine learning, and a spate
of sophisticated probabilistic and deep neural network
models have been developed [16, 28, 34, 42, 44].

While the complexity of such point process models has
grown at a rapid pace, corresponding tools for model di-
agnostics, evaluation, and criticism have lagged behind,
restricted mostly to the spatial statistics literature.
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Beyond Poisson-type processes [9, 13], and residual-
based analysis and diagnostic plots for some spatial
processes [4], rigorous statistical tests to assess how well
a point process model fits the observed data remains
an important and under-studied topic [12].

In this work, we investigate an important class of sta-
tistical tests—the goodness-of-fit test—for point pro-
cesses. Goodness-of-fit testing is a fundamental topic in
statistics [27], but for point processes, well-established
goodness-of-fit tests are only available under the sim-
plest scenarios—such as when the null model is a Pois-
son process. For more general point processes, the
construction of such tests typically rely on pseudo-
likelihood approximations [40] which introduce biases
and errors that are hard to quantify, or heuristic sum-
mary statistics (such as Ripley’s K-function [35]) which
could only capture certain aspects of the observed data
and may lead to a considerable loss of statistical power.

A major hurdle preventing the construction of rigorous
statistical tests (such as those based on the likelihood-
ratio statistic) for more sophisticated point processes is
the presence of intractable normalization constants in
the density/intensity functions. For many widely used
models that capture pairwise or higher-order depen-
dencies between points, these functions can often be
evaluated only up to a normalization constant, because
summing over all possible configurations leads to an in-
tractable infinite-dimensional integral. This precludes
the use of classical tests (such as the likelihood-ratio
test) which require the fully specified model density.

Recently, much progress have been made in develop-
ing nonparametric statistical tests which work directly
with unnormalized probability distributions [11, 18,
19, 24, 30, 31, 43]. Central to these tests is a Stein
operator [39] Ap such that, for functions f in some
family, the expectation E [Apf ] equals zero only under
the distribution of interest p. All the aforementioned
works have considered distributions over fixed-length
(d-dimensional) vectors residing in a space X that is
either the Euclidean space Rd (for continuous distri-
butions) or X d where X is a finite set (for discrete
distributions). These works have shown how to con-
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struct Stein operators (and goodness-of-fit tests) which
only require unnormalized probability densities. On
the other hand, a realization of a point process is a set
containing an arbitrary number of points, and forms an
element of an infinite-dimensional space. Constructing
a Stein operator for this setting does not follow easily
from previous work, and requires a new set of tools.

A primary contribution of our work is in identifying
a suitable Stein operator for general point processes.
While such constructions have been well-studied for
Poisson process approximations in the probability lit-
erature [7, 8], constructions for general point processes
have been largely unexplored. Our key technical tool in
constructing a general Stein operator is the Papangelou
conditional intensity of a point process (see Section 2).
Importantly, any (intractable) normalization constant
in the density or intensity function of the point process
cancels out when evaluating the Papangelou conditional
intensity. Using our proposed Stein operator, along
with a suitable kernel function on the space of point
configurations, we proceed to define a kernelized Stein
discrepancy measure between distributions, following a
similar strategy pioneered by [11, 30]. This allows us
to develop a computationally feasible, nonparametric
goodness-of-fit test for general point processes, includ-
ing those with intractable normalization constants (e.g.,
the Gibbs process). We apply our proposed goodness-of-
fit test to the Poisson process, as well as two processes
with inter-point interactions: the Hawkes process [21]
exhibiting self-excitation, and the Strauss process [41]
featuring repulsion. Our experiments show that the
proposed test outperforms a two-sample test based on
the maximum mean discrepancy [20] in terms of power
while maintaining control on false-positive rate.

2 POINT PROCESSES

Notation. Let X be a locally compact metric space
with BX its Borel σ-algebra. We will refer to X as the
ground space, and consider point processes with points
lying in this space. In practice, X is usually a compact
subset of the d-dimensional Euclidean space Rd.

A configuration or realization of a point process on X
is a locally finite counting measure on (X,BX). We
shall be primarily concerned with finite configurations
in this work; these form finite integer-valued measures
on (X,BX). Let us denote the space of finite configu-
rations on X by NX. While a configuration is formally
defined as a counting measure, we shall also identify
it as a (locally) finite set of points, and describe it
using set-theoretic notations. Conversely, any (locally)
finite set of points φ ⊆ X also defines the configuration
with set A having measure φ(A) := |φ ∩A|, ∀A ∈ BX,
where | · | denotes the cardinality of a set. For a point
x ∈ X, let δx denote the Dirac measure centered at x.

Given a point configuration φ ∈ NX, the configurations
φ+ δx and φ− δx correspond to the point-sets φ∪ {x}
and φ\{x}, respectively, and we shall use the measure-
theoretic and set-theoretic notations interchangeably.

Point process. Formally, a point process Φ on X is a
random point configuration on X. Define its intensity
measure µ as

µ(A) := E [Φ(A)] , ∀A ∈ BX.

When X ⊆ Rd, the intensity measure is typically given
in terms of a positive function λ(·) on X, called the
rate or intensity function: µ(A) =

∫
A
λ(x) dx.

When d = 1, the underlying space X ⊆ R+ typically
indexes time, and the process is called a temporal point
process. When d > 1, the process is often termed a
spatial point process (one typically considers d = 2 or
d = 3 in applications). A crucial distinction between
d = 1 and d > 1 is the existence of a natural ordering
among the elements in R, which is absent in Rd (d > 1).

We now describe a few point processes and introduce
some important theoretical tools along the way.

Poisson process. A point process Φ with intensity
measure µ is called a Poisson process if (i) the counting
measure Φ is completely random, i.e., for any disjoint
measurable subsets A1, A2, . . . , Ak ∈ BX, the point
counts Φ(A1),Φ(A2), . . . ,Φ(Ak) are independent ran-
dom variables; and (ii) for any set A ∈ BX, Φ(A)
follows a Poisson distribution with mean µ(A). A Pois-
son process is said to be homogeneous if its intensity
function λ is constant, and inhomogeneous otherwise.

The following result, known as the Mecke formula, char-
acterizes the Poisson process through the expectation
of integrals (sums) with respect to a Poisson process,
where the integrand depends on both the point process
and a location in the ground space.

Theorem 1 (Mecke formula [26]). Let µ be an s-finite
measure and Φ be a point process on X. Then Φ is a
Poisson process with intensity measure µ if and only if

E
[∫

X
h(x,Φ)Φ(dx)

]
=

∫
X
E [h(x,Φ + δx)]µ(dx).

for all measurable functions h : X×NX → R.

More complicated point processes relax the assumption
of complete randomness. We consider two examples,
the Hawkes process [21] and the Gibbs processes [13].

Hawkes process. Consider a temporal point process
Φ defined on the non-negative real line R+. For any
t ≥ 0, let N(t) := Φ([0, t)) denote the number of
points in the time interval [0, t). Let Ht := {N(s)}s<t
denote the history of the point process prior to time t.
We define the conditional intensity function as the
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instantaneous arrival rate of the point process given the
history Ht. Formally, a Hawkes process is a temporal
point process with conditional intensity

λ(t|Ht) = γ +

∫ t

0

g(t− s) Φ(ds), (1)

where γ is the base-rate, and g(·) is a triggering function
that characterizes the excitatory effect that a past event
has on the current event rate. For example, one could
set g(t) := βe−t/τ , t ≥ 0, implying that an event has
an excitatory boost of magnitude β ≥ 0, which decays
exponentially with a time-scale τ > 0.

Gibbs processes. These are a general class of point
processes that model inter-point interactions in higher-
dimensional spaces. The probability density of a Gibbs
process (with respect to the unit-rate Poisson process
on X) takes the form [5, 36]:

f(φ) =
1

Z
exp

−
|φ|∑
k=1

∑
ω⊆φ, |ω|=k

vk(ω)

 ,

where vk : X→ R is called the k-th order interaction
potential, and Z is a normalization constant. Note that
this normalization constant involves summing over all
possible configurations φ ∈ NX, an infinite-dimensional
integral which is intractable in all but the simplest
situations (e.g., the Poisson process, which is a Gibbs
process with vk ≡ 0, ∀k > 1).

Papangelou conditional intensity. The key challenge in
generalizing the conditional intensity to spatial point
processes is the lack of a natural ordering in Rd when
d > 1: the ‘history’ of the process is not defined. For a
point process Φ with density f , we follow [4] and define
its Papangelou conditional intensity as

ρ(x|φ) =

{
f(φ ∪ {x}) / f(φ) , if x 6∈ φ ;

f(φ) / f(φ\{x}) , if x ∈ φ ,
(2)

for x ∈ X and φ ∈ NX. We set ρ(x|φ) = 0 if f(φ) = 0.
Informally, ρ(x|φ) dx represents the relative probability
of there being a point of Φ lying within an infinitesimal
region of area dx containing x, given that the rest of
the point process Φ coincides with φ [4]. Thus, the
Papangelou conditional intensity provides an intuitive
characterization of a point process.

For a Poisson process, its complete randomness ensures
that its Papangelou conditional intensity is equivalent
to its intensity: ρ(x|φ) ≡ λ(x), ∀x ∈ X, φ ∈ NX.

For a Hawkes process, the density function is given by

f({ti}ni=1) = e−Λ(0,T )
n∏
i=1

λ(ti|Hti),

where Λ(t) :=
∫ T

0
λ(t) dt is the integrated intensity.

Thus, we have the Papangelou conditional intensity:

ρ(x|{ti}ni=1) = e−
∫ T−x
0

g(s) ds ·
[
γ +

∑
k: tk<x

g(x− tk)
]

×
∏

i: ti>x

γ +
∑
k: tk<ti

g(ti − tk) + g(ti − x)

γ +
∑
k: tk<ti

g(ti − tk)
.

Notice that the Papangelou conditional intensity is
different from the conditional intensity function λ(t|Ht)
which conditions only on events prior to t.

For a Gibbs process, although its density f and inten-
sity function λ are both intractable, the normalization
constant Z cancels out when evaluating Eq. (2), and
the Papangelou conditional intensity is fully available:

ρ(x|φ) = exp

−
|φ|∑
k=1

∑
ω⊆φ, |ω|=k−1

vk({x} ∪ ω)

 . (3)

An illustrative instance of Gibbs processes is the Strauss
process [41], a popular repulsive point process.

Strauss process. The Strauss process is a spatial
point process on X ⊆ Rd with conditional intensity

ρ(x|φ) = βγtr(x,φ), (4)

where β > 0, γ ∈ [0, 1], and tr(x, φ) :=
∑
y∈φ I{‖x −

y‖2 ≤ r} counts the number of points in φ that lie
within a distance r > 0 of the location x. Notice
that Eq. (4) can be recovered from Eq. (3) by setting
v1({x}) ≡ −β, v2({x, y}) = −(log γ) · I{‖x− y‖2 ≤ r},
and vk(ω) ≡ 0, ∀k > 2. While the conditional intensity
of the Strauss process takes the simple form of Eq. (4),
we note that its density and intensity functions are
generally computationally intractable for d ≥ 2.

We conclude this section by reviewing an important
identity that generalizes the Mecke formula (Theorem 1)
to any finite point process. This identity will serve as
an essential tool in our subsequent development of a
Stein operator for general point processes.

Theorem 2 (Georgii–Nguyen–Zessin (GNZ) for-
mula [13]). Let Φ be a finite point process on X with
Papangelou conditional intensity ρ. For any measurable
function h : X×NX → R,

E
[∫

X
h(x,Φ\{x}) Φ(dx)

]
= E

[∫
X
h(x,Φ) ρ(x|Φ) dx

]
.

3 STEIN OPERATORS FOR POINT
PROCESSES

At a high level, Stein’s method involves identifying an
operator A that satisfies Stein’s identity [39]: a random
variable Φ is distributed according to the probability
measure µ if and only if Eµ[Aµh(Φ)] = 0 for all func-
tions h in some class H. When Φ is real-valued, A can
be characterized through a simple differential operator
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(the Langevin Stein operator [18, 31]), with Stein’s iden-
tity following easily from integration-by-parts. When φ
is discrete-valued, an alternative Stein operator using
partial differences was provided in [43]. However, when
φ is a point process—a random variable taking values
in an infinite-dimensional space NX—we will require a
new set of tools, based on the generator method of [7].

We begin by reviewing the Stein operator for the Pois-
son process, and then propose a general Stein operator
for arbitrary finite point processes. Our proposed Stein
operator can be easily evaluated for point processes
whose intensity functions contain intractable normal-
ization constants, such as the Gibbs process.

3.1 Stein Operator for the Poisson Process

Stein’s method for Poisson process approximation was
pioneered by [8], using the generator method of [7]. For
a Poisson process Φµ on X with mean measure µ, [8]
considered an immigration-death process on X with
immigration intensity µ and unit per-capita death rate.
This process has stationary distribution Φµ, and in-
finitesimal generator Aµ given by

(Aµh)(φ) =

∫
X

[h(φ+ δx)− h(φ)]µ(dx)

+

∫
X

[h(φ− δx)− h(φ)]φ(dx) (5)

for any configuration φ ∈ NX. Notably, the infinitesi-
mal generator Aµ characterizes the Poisson process Φµ,
as demonstrated by the following result:

Theorem 3 (Stein identity for the Poisson process;
Barbour and Brown, 1992; see also Decreusefond and
Vasseur, 2018). Let Aµ be the infinitesimal generator
defined in Eq. (5). A point process Φ on X is a Poisson
process with intensity measure µ if and only if for any
measurable and bounded function h : NX → R,

E [Aµh(Φ)] = 0. (6)

In the literature on Stein’s method [39], an operator
A that characterizes the distribution of Φ is called a
Stein operator, and Eq. (6) a Stein identity.

Although [7] derived the expression of A using the
generator method, Theorem 3 can actually be viewed as
a direct consequence of the Mecke formula (Theorem 1).
This hints at a possible generalization of the Stein
operator for Poisson processes in Eq. (5) to general
(finite) point processes, which we discuss next.

3.2 The Stein–Papangelou Operator

Stein’s method for Poisson process approximation has
been extensively studied since [8], yet few works have
considered more general point processes such as Hawkes
processes and Gibbs processes (with the exceptions of

[14, 38]). Here, we propose a generalization of the Stein
operator in Eq. (5) to general (finite) point processes
on X. Our key insight is the analogy between the Mecke
formula (Theorem 1) for Poisson processes and the GNZ
formula (Theorem 2) for general point processes.

We begin by providing an interpretation of the right-
hand side of Eq. (5). From the complete randomness
of the Poisson process, µ(dx) = λ(x) dx gives the con-
ditional intensity of an event at location x given the
rest of the Poisson process realization φ. Then, the
first integral equals the expected change in the value of
the function h if a new event were added to the point
process realization. Similarly, the second term gives the
average change in h if one of the events were removed
from φ. For a point process model with interactions,
the conditional intensity at location x will depend on
the rest of the point process realization; indeed, this
is exactly the Papangelou conditional intensity ρ(x|φ).
Thus, it is natural to consider substituting the intensity
function λ(x) with the Papangelou conditional intensity
ρ(x|φ). Somewhat surprisingly, we can show that the
resulting expression still gives a valid Stein operator
for the associated point process.

To simplify presentation, let us define the ‘inclusion’
and ‘exclusion’ functionals D+

x ,D−x at a point x ∈ X as

(D+
x h)(φ) := h(φ+ δx)− h(φ);

(D−x h)(φ) := h(φ)− h(φ− δx),

for any measurable and bounded function h : NX → R
and (finite) point configuration φ ∈ NX. Using these
notations, we have the following definition:

Definition 1 (Stein–Papangelou operator for finite
point processes). Let ρ : X×NX → R be the Papangelou
conditional intensity of a finite point process on X.
Define the Stein–Papangelou operator Aρ via

(Aρh)(φ) =

∫
X
(D+

x h)(φ)ρ(x|φ) dx−
∫
X

(D−x h)(φ)φ(dx)

=

∫
X
[h(φ+ δx)− h(φ)] ρ(x|φ) dx

+
∑
x∈φ

[h(φ− δx)− h(φ)] (7)

for any function h : NX → R and configuration φ ∈ NX.

Notice that Eq. (7) reduces to Eq. (5) for a Poisson pro-
cess, since its Papangelou conditional intensity equals
its intensity function: ρ(x|φ) dx = λ(x) dx = µ(dx).
A crucial advantage of Eq. (7) is that the Stein opera-
torAρ now depends only on the Papangelou conditional
intensity ρ of the point process, which is usually easy
to obtain even when the point process likelihood itself
is computationally intractable.
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We conclude this section by showing that Eq. (7) indeed
defines a valid Stein operator for general (finite) point
processes—i.e., that it satisfies a Stein identity.

Theorem 4 (Stein identity for finite point processes).
Let Φ be a finite point process on X with Papangelou
conditional intensity ρ : X × NX → R, and let Aρ be
the operator defined via Eq. (7). Then, we have

E [Aρh(Φ)] = 0 (8)

for all measurable and bounded functions h : NX → R.

Proof. To prove Eq. (8), it suffices to show that

E
[∫

X
(D+

x h)(Φ) ρ(x|Φ) dx

]
= E

[∑
x∈Φ

(D−x h)(Φ)

]
for any function h : NX → R and configuration φ ∈ NX.
Notice that for any x ∈ φ, (D−x h)(φ) = h(φ)− h(φ−
δx) = h(φ − δx + δx) − h(φ − δx) = (D+

x h)(φ − δx).
Thus, applying the GNZ formula (Theorem 2) with
h(x,Φ) := (D+

x h)(Φ) gives the desired result.

A similar idea, but under a different context, has also
been proposed in the probability literature [38].

4 STEIN DISCREPANCY AND
GOODNESS-OF-FIT TESTING

Equipped with a proper Stein operator, we are now
ready to define a notion of discrepancy between two
point processes with different intensity measures.

4.1 (Kernelized) Stein Discrepancy

Following a central observation made by [18] under the
context of continuous distributions with smooth den-
sities, we note that since the Stein identity of Eq. (8)
holds when the point process Φ has Papangelou condi-
tional intensity ρ (denoted Φ ∼ ρ), one could consider
the maximum violation of Eq. (8) when Φ ∼ η 6= ρ by
choosing test functions within a function class F . This
leads to the following definition:1

Definition 2 (Stein discrepancy for point processes).
Let Φ be a finite point process on X with Papangelou
conditional intensity ρ : X × NX → R, and let Aρ be
the Stein operator defined via Eq. (7). For a family F
of functions h : NX → R, define the Stein discrepancy
between Papangelou conditional intensities η and ρ as

DF (η ‖ ρ) := sup
h∈F

EΦ∼η [Aρh(Φ)] . (9)

Clearly, DF (η ‖ ρ) = 0 when η ≡ ρ. While in principle
the Stein discrepancy can be defined with respect to
any family of functions F , in practice we need to choose
a function space that is both rich enough to ensure
that the resulting Stein discrepancy has sufficient dis-
criminative power, yet also suitably tractable such that
Eq. (9) can be efficiently computed.

1As Eq. (7) reduces to Eq. (5) for Poisson processes, we
present all results using the Stein–Papangelou operator.

Toward this end, we follow [11, 30] and take F to be the
unit-ball in a reproducing kernel Hilbert space (RKHS).
Specifically, let k : NX × NX → R be a positive defi-
nite (p.d.) kernel on the space of finite point configu-
rations NX (Section 4.3 discusses various choices of k),
and let Hk be its associated RKHS (consisting of func-
tions h : NX → R). We have the following definition:

Definition 3. The kernelized Stein discrepancy (KSD)
between finite point processes with Papangelou condi-
tional intensities η and ρ is

DHk(η ‖ ρ) := sup
h∈Hk, ‖h‖Hk≤1

EΦ∼η [Aρh(Φ)] , (10)

where Hk is the RKHS of a p.d. kernel k(·, ·) on NX.

Using the reproducing property of Hk, our next result
shows that Eq. (10) can actually be evaluated in closed-
form. This follows directly from [30]; due to space
constraints, we defer its proof to the Appendix.

Theorem 5. The squared-KSD can be expressed as

D2
Hk(η ‖ ρ) = EΦ,Ψ∼η [κρ(Φ,Ψ)] , (11)

where κρ(φ, ψ) := AψµAφµk(φ, ψ) is a kernel function on
NX obtained by applying the Stein operator A twice on
each argument of the reproducing kernel k(·, ·) of Hk.
Its expression is shown in Eq. (12) on the next page.

To evaluate κρ(φ, ψ) for a pair of configurations (φ, ψ)
using Eq. (12), we need to compute one double integral
and two single integrals over the domain X ⊆ Rd as
well as summations over the points in both φ and ψ.2

Evaluating these integrals could require numerical inte-
gration techniques, but observe that we have reduced
the problem of evaluating a normalization constant for
a distribution on NX (an infinite-dimensional integral)
to a finite-dimensional one. For most applications, d
is small (d = 1 for temporal point processes and typi-
cally d = 2 for spatial point processes), and standard
numerical quadrature methods should suffice.

While Theorem 4 implies that DHk(η ‖ ρ) = 0 for η ≡ ρ,
we note that for non-Poisson processes, DHk(η ‖ ρ) = 0
may not be sufficient to guarantee that η ≡ ρ. This is
due to the fact that while the Mecke formula fully char-
acterizes a Poisson process, the GNZ formula (which
was crucial in establishing our Stein operator) provides
only a necessary condition for a point process to have
a specific Papangelou conditional intensity.

4.2 Goodness-of-Fit Testing via KSD

We now apply the kernelized Stein discrepancy measure
of Definition 3 to construct a goodness-of-fit test for
general (finite) point processes, including those with
computationally intractable intensity functions.

2For concreteness, we provide example Python code for
implementing Eq. (12) in the appendix.
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κρ(φ, ψ) =

∫
X

∫
X

[
k(φ+ δu, ψ + δv)− k(φ, ψ + δv)− k(φ+ δu, ψ) + k(φ, ψ)

]
ρ(u|φ) ρ(v|ψ) dudv

+

∫
X

[∑
x∈φ

[
k(φ− δx, ψ + δv)− k(φ− δx, ψ)

]
− |φ| ·

[
k(φ, ψ + δv)− k(φ, ψ)

]]
ρ(v|ψ) dv

+

∫
X

[∑
y∈ψ

[
k(φ+ δu, ψ − δy)− k(φ, ψ − δy)

]
− |ψ| ·

[
k(φ+ δu, ψ)− k(φ, ψ)

]]
ρ(u|φ) du

+

[∑
x∈φ

∑
y∈ψ

k(φ− δx, ψ − δy)− |φ| ·
∑
y∈ψ

k(φ, ψ − δy)− |ψ| ·
∑
x∈φ

k(φ− δx, ψ) + |φ| · |ψ| · k(φ, ψ)

]
. (12)

Suppose we observe samples {Xi}mi=1 from a point pro-
cess with unknown Papangelou conditional intensity η,
where each Xi := {xk}nik=1 ⊆ X is a collection of points
in X (note that the cardinalities ni would vary). Given
a statistical model which posits that the observed sam-
ples arose from a point process with (known) Papan-
gelou conditional intensity ρ, we would like to quantify
the ‘goodness-of-fit’ of the model ρ to the data {Xi}mi=1.
(Often we have only a single realization X of a point
process, rather than many realizations of the process.
In this case, it suffices to partition the space into a
collection of blocks with equal volume, and treat the
restriction of X to block i as the i-th realization Xi.)

Formally, we perform the hypothesis test H0 : ρ = η vs.
H1 : ρ 6= η using kernelized Stein discrepancy (KSD).
For convenience, we omit the dependency on Hk and
denote S (η ‖ ρ) := D2

Hk(η ‖ ρ). Given observed sam-
ples {Xi}mi=1 from a point process with (unknown) Pa-
pangelou conditional intensity η, by Eq. (12) we can
estimate S (η ‖ ρ) via a U -statistic [22] which gives a
minimum-variance unbiased estimator:

Ŝ (η ‖ ρ) =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

κρ(Xi,Xj), (13)

where the expression for κρ(φ, ψ) is shown in Eq. (12).3

By standard asymptotic results on U -statistics (see
Theorem 7 in the Appendix for details), the U -statistic

Ŝ (η ‖ ρ) is asymptotically normally distributed under
the alternative hypothesis H1 : ρ 6= η, but becomes
degenerate under the null hypothesis H0 : ρ = η.

Since the asymptotic distribution of Ŝ (η ‖ ρ) under H0

is not available in closed-form, we follow [30] and adopt
the generalized bootstrap method for degenerate U -
statistics [1, 23] to approximate the distribution. To
obtain a bootstrap sample, we draw random multino-
mial weights w1, . . . , wm ∼ Mult(m; 1/m, . . . , 1/m), set
w̃i = (wi − 1)/m, and compute

Ŝ∗(η ‖ ρ) =

m∑
i=1

m∑
j 6=i

w̃iw̃jκp(Xi,Xj). (14)

Upon repeating this procedure m̃ times, we calculate
the critical value of the test by taking the (1− α)-th

3When evaluating Eq. (12), recall that φ+ δx and φ− δx
are equivalent to φ ∪ {x} and φ\{x}, respectively.

quantile of the bootstrapped statistics {Ŝ∗b}m̃b=1. We

reject the null hypothesis H0 if Ŝ (η ‖ ρ) > γ1−α. The
overall goodness-of-fit testing procedure is summarized
in Algorithm 1 of the Appendix.

As noted at the end of Section 4.1, S (η ‖ ρ) = 0 may
be insufficient to guarantee that η ≡ ρ. Thus, the KSD
goodness-of-fit test may fail to reject H0 even when
the observed data arose from a point process with a
Papangelou conditional intensity different from that
specified by the null model, yielding Type-II errors. To
the best of our knowledge, no necessary-and-sufficient
condition for characterizing general (non-Poisson) point
processes is known in the literature, and existing ap-
proaches [5, 12] also only guarantee Type-I error control,
and suffer from the same loss of power.

Computational complexity. Calculating the test statis-
tic Ŝ (η ‖ ρ) in Eq. (13) requires O(m2) evaluations of
κρ(Xi,Xj), where m is the number of data samples.
Once the kernel matrix [κρ(Xi,Xj)]mi,j=1 is cached, the

bootstrapping procedure takes O(m̃ ·m2) time, where
m̃ is the number of bootstrap samples.

To be more precise, recall that a sample Xi consists
of ni := |Xi| points in X. Evaluating κρ(Xi,Xj) for
each pair of samples (Xi,Xj) using Eq. (12) requires
numerical integration. Assuming q quadrature points
per dimension, the time complexity for a single evalua-
tion of κρ(Xi,Xj) is given by O((q2d + 2 qdn̄ + |n̄|2) ·
tk + 2 qdtρ) = O((qd + |n̄|)2 · n̄2). Here, n̄ is the aver-
age cardinality of the observed samples, tk is the time
required to evaluate the kernel function k(·, ·) for a
pair of samples with size n̄, and tρ is the time needed
for a single evaluation of the Papangelou conditonal
intensity (typically, tk, tρ = O(n̄2) in the worst case).
Putting everything together, the overall time complex-
ity of Algorithm 1 is O(m2 · (qd + |n̄|)2 · n̄2 + m̃ ·m2).
Note that when d is large, one could apply Monte Carlo
integration in lieu of numerical quadrature to avoid
the curse of dimensionality, and the qd term would be
replaced by c, the number of Monte Carlo points.

4.3 Kernel Functions for Point Processes

Our theoretical development so far hold generally for
any positive definite kernel on the space of finite count-
ing measures NX. There has been work on set kernels
or multi-instance kernels [17], where the similarity of
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two sets is measured by their average pairwise point
similarities, as well as kernels which make parametric as-
sumptions on the distributions of the points [3, 10, 25].

We argue that a proper kernel function k(X ,Y) between
two point configurations X ,Y ⊆ X should capture their
similarities with regard to their extrinsic and/or intrin-
sic characteristics as needed. Extrinsic characteristics
refer to inhomogeneities in intensity, resulting in differ-
ent expected counts for different point processes in the
same parts of the X-space. Intrinsic characteristics per-
tain to point interactions within a point process—i.e.,
whether the points exhibit attraction or repulsiveness.
Any prior knowledge regarding the nature of deviations
from the null model could accordingly be incorporated
into the kernel function. One simple approach would be
to map each point configuration into a feature-vector,
with components including e.g., the number of points
in different regions of the space, the number of points
within some distance r of each other, the average dis-
tance from a point to their k-th nearest neighbor, etc.

As a flexible nonparametric alternative that takes
both extrinsic and intrinsic features into considera-
tion, we propose to use the maximum mean discrep-
ancy (MMD) [20] between two counting measures to
define a p.d. kernel. Specifically, we have the following:

Proposition 6. Given a positive definite kernel kX(·, ·)
on the ground space X, define the M-kernel:

kM(φ, ψ) := exp{−d̂2(φ, ψ)}, (15)

where d̂2(φ, ψ) denotes the V -statistic estimate of the
squared-MMD between configurations φ, ψ ∈ NX:

d̂2(φ, ψ) :=
1

|φ|2
∑
x∈φ

∑
x′∈φ

kX(x, x′) +
1

|ψ|2
∑
y∈ψ

∑
y′∈ψ

kX(y, y′)

− 2

|φ| · |ψ|
∑
x∈φ

∑
y∈ψ

kX(x, y). (16)

Then, kM(·, ·) is a positive definite kernel on NX.4

Proof. By [37], to prove that kM(·, ·) is a p.d. kernel,

it suffices to show that d̂2 is a conditionally negative
definite function; see the Appendix for details.

5 RELATED WORK
Classical diagnostic measures for point processes have
largely been restricted to temporal point processes.
For spatial point processes, traditional approaches [15]
primarily rely on heuristic summary statistics (e.g., the
‘K-function’ of [35]) to test for specific properties of
the data, such as complete randomness or clustering.

Related to our work, and also motivated by the GNZ
formula, [4] defined the h-weighted residual measure
for a parametric model ρ̂ fitted to an observed configu-
ration φ on a bounded domain B ⊆ X:

4If either φ or ψ is an empty configuration, we define
k(φ, ψ) = 1 if both are empty and k(φ, ψ) = 0 otherwise.

γ(B, h, ρ̂) :=
∑

x∈φ∩B

h(x, φ\{x})−
∫
B

h(u, φ)ρ̂(u|φ) du,

where h is a user-specified weight function. Informally,
our proposed KSD goodness-of-fit test statistic could
be viewed as a kernelization of the h-weighted residuals,
where we take the supremum over all test functions h
in an RKHS. In doing so, we obtain a parsimonious
and more powerful test capturing various aspects of
the model intensity that would have been difficult for
any specific h to fully cover. In addition, the KSD test
allows users the flexibility to emphasize specific aspects
of interest through the design of the kernel function.

6 EMPIRICAL EVALUATION

We apply the kernelized Stein discrepancy (KSD) test
to the point process models described in Section 2. We
also compare with a test based on the maximum mean
discrepancy (MMD) [20], which draws samples from the
null model, and performs a two-sample test between the
drawn samples and the observed data. Note that here
we are computing the MMD test statistic between two
collections of point configurations in NX, as opposed to
Eq. (16) which estimates the MMD between two sets of
points in X. Given samples {Xi}mi=1, {Yj}mj=1 from two
point processes ρ and η, we compute the U -statistic
estimate of MMD2(ρ, η):

M̂MD2(ρ, η) :=
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(Xi,Xj)

+
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(Yi,Yj)−
2

m2

m∑
i=1

n∑
j=1

k(Xi,Yj).

The critical value of the MMD test is calculated by
bootstrapping on the aggregated data.

Setup. We adopt a common experiment setup used
in [30, 43]. Denote the Papangelou intensities for the
null and the alternative point process models by ρ and η,
respectively. For KSD, we draw m i.i.d. samples (point
configurations) from η; for MMD, we draw m samples
from η and another m samples from ρ. For the kernel
function k(·, ·) on NX (used in both KSD and MMD),
we utilize the M-kernel defined via Eqs. (15) and (16),
where the ground kernel kX(·, ·) in Eq. (16) is set to a
Gaussian RBF kernel. To ensure fair comparison, we
set the bandwidth of the RBF kernel for both KSD
and MMD to the median pairwise distance [20] of the
aggregated points in the samples drawn from η. We
use m̃ = 10, 000 bootstrap samples for both methods.

For each model, we choose a single parameter, fix its
value for the null model ρ, and draw samples for η
under different values of that parameter. For each
value of the chosen parameter and sample size m, we
conduct 500 independent trials. In each trial, we flip
a fair coin to decide whether the alternative model η
will be set to the same as ρ or with a different value
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Figure 1: Top row: KSD and MMD testing error rate vs. varying parameter (the vertical dotted lines indicate
the value of the parameter under H0). Bottom row: KSD and MMD testing error rate vs. sample size.

of the chosen parameter (in the former case, the null
hypothesis H0 : ρ = η should not be rejected, and in
the latter case it should be). We conduct the hypothesis
test H0 : ρ = η vs. H1 : ρ 6= η under significance level
α = 0.01, and evaluate the performance of KSD and
MMD in terms of their false-positive rate (FPR; Type-I
error) and false-negative rate (FNR; Type-II error).

Poisson process. We consider a Poisson process on
the unit-square [0, 1]2 with intensity function λ(x) =
γ + ε sin(2π(x + y)), where γ is a base-rate, and ε
represents the perturbation magnitude. We fix γ = 50
throughout, vary the perturbation magnitude ε, and
test the hypotheses H0 : ε = 0 vs. H1 : ε 6= 0.

Hawkes process. We consider a Hawkes process on [0, 1]
with intensity function given in Eq. (1) and set g(t) =
βe−t/τ . We fix γ = 20 and β = 2 throughout, vary the
time-scale parameter τ , and test the hypotheses H0 :
τ = 0.1 vs. H1 : τ 6= 0.1. To simulate from a Hawkes
process, we employ Ogata’s thinning algorithm [32].

Strauss process. We consider Strauss processes on [0, 1]d

(d = 1 or 2) with conditional intensity given in Eq. (4).
We fix β = 20 and γ = 0.8 (d = 1) or 0.9 (d = 2), vary
the interaction radius r and test the hypotheses H0 :
r = r0 vs. H1 : r 6= r0 with r0 = 0.2 or 0.3. To simulate
from a 1-D Strauss process, we apply rejection sampling
to realizations of a Poisson process with intensity β. To
simulate from a 2-D Strauss process, we use the MCMC
sampler provided in the R package spatstat [5, 6].

Results. In Figure 1, the top row plots the testing er-
ror rate vs. different values of the parameter we chose to
vary for η, under a given sample size. The bottom row
plots the error rate vs. sample size for a specific value of
the chosen parameter. We observe that both methods
generally maintain a false-positive rate (Type-I error)
around the significance level, while KSD consistently

achieves lower false-negative rate (Type-II error) than
MMD across different parameter settings as well as
sample sizes.5 This indicates that KSD, by utilizing
information from the Papangelou conditional intensity
ρ of the null model, gives rise to a more powerful test.
We emphasize that the MMD two-sample test requires
generating exact samples from the null model, which
could be computationally costly or intractable. Finally,
we note that the statistical power of both methods
could be improved by using more sophisticated con-
structions of kernel functions on the space of counting
measures, which we leave for future work.

7 CONCLUSION
We have introduced a general Stein operator based
on the Papangelou conditional intensity for point pro-
cesses which can be evaluated even when the intensity
function contains an intractable normalization constant.
Using the proposed Stein operator, we have developed
a kernelized Stein discrepancy test for measuring the
goodness-of-fit of a point process model. We have ap-
plied the proposed test to several point process models,
and showed that it outperforms a two-sample test based
on the maximum mean discrepancy, which assumes the
availability of exact samples from the null model.
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5In Figure 1d, the Type-I error for KSD appears slightly
higher than the nominal significance level 0.01. We found
that this was due to numerical quadrature error involved
in evaluating Eq. (12) under limited computational budget
(since the double-integral over X is now four-dimensional).
This issue could be alleviated using Monte Carlo integration
techniques, which shall be investigated in future work.
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