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Abstract

A new working set selection method for se-
quential minimal optimization (SMO) is pro-
posed in this paper. Instead of the method
adopted in the current version of LIBSVM,
which uses the second order information of
the objective function to choose the violat-
ing pairs, we suggest a new method where
a higher order information is considered. It
includes the descent degree of the objective
function and the stride of variables update.
Many experimental results show, in contrast
to LIBSVM, the number of iterations ob-
tained by the proposed method is less in the
vast majority of cases and the training of
support vector machines (SVMs) is sped up.
Meanwhile, the convergence of the proposed
approach can be guaranteed and its accuracy
is at the same level as LIBSVM’s.

1 Introduction

Support vector machine (SVM) is one of the most
popular machine learning algorithms, which has been
widely used in many areas including image classifica-
tion [1], disease detection [2, 3], malware classifica-
tion [4], and so on. Furthermore, the models that are
composed of deep learning and SVM [5–9] often show
more significant performance than the deep learning
models where softmax layer is connected in the last
layer. However, despite the advantages of SVM, it
takes much more time to solve large and complex prob-
lems.
There is a lot of work proposed to improve the per-
formance of SVMs [10–13]. We have also proposed
parallel sequential minimal optimization (SMO) algo-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

rithms in the previous work [14, 15], which improve
the efficiency by updating several violating pairs syn-
chronously at each iteration. Non-convergence can be
avoided by calculating the impact of pre-selection on
the remaining working set.
We focus on studying a better approach of working
set selection to shorten the time in training phase in
this paper. One of the classic working set selection
algorithms is called maximal violating pair (MVP)
method, which is to choose the violating pairs accord-
ing to the degree of violation of the Karush-Kuhn-
Tucker (KKT) condition [16]. Fan et al. [17] pro-
posed an improved method where the reduction of the
objective function is considered and second order in-
formation is used. Their experimental results showed
that it can reduce the number of iterations to achieve
faster convergence and better performance. As a fa-
mous library for SVMs, LIBSVM also adopts second-
order information approach since version 2.8.
In this paper, we propose a new working set selection
method, which incorporates the merits of previous al-
gorithms. To optimize the object function, we focus on
not only the reduction of the objective value but also
more information. Besides, we introduce a relaxation
factor λ to limit the choice of working set. The factor
guarantees that the selected working sets can satisfy
the violation of the KKT condition rigorously. From
the results of our experiments, we can see whether in
the number of iterations or the training time, the pro-
posed algorithm is better than LIBSVM with second
order information algorithm.
This paper is organized as follows. Section 2 intro-
duces SVM and SMO algorithms. Several typical
working set selection methods are mentioned in Sec-
tion 3. The proposed new working set selection algo-
rithm is introduced in Section 4, and the specific ex-
periments can be found in Section 5. Finally, Section
6 gives a conclusion.

2 Sequential Minimal Optimization

SVM was proposed by Vapnik and Corinna Cortes [18,
19]. Given a training set {(xi, yi)}li=1, where xi is an
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instance of the input vector x and yi ∈ {−1, 1} is the
label of xi, l is the number of training samples. A
general form of quadratic programming (QP) problem
in SVM is to minimize

W (α) =
1

2

l∑
i=1

l∑
j=1

αiαjQi,j −
l∑

i=1

αi, (1)

subject to the constraints

l∑
i=1

αiyi = 0,

0 ≤αi ≤ C, i = 1, 2, . . . , l,

where Qi,j = yiyjK(xi,xj). K(xi,xj) is the kernal
function and C is the penalty parameter. A decision
function can be deduced as follows:

f(x) =

l∑
i=1

α∗i yiK(xi,x) + b∗,

where α∗ is the optimal solution of Eq. (1), and b∗ is
the optimum value of the bias b that could be calcu-
lated by α∗. In other words, after getting the value of
α∗, we could get a perfect decision function.
Several algorithms[20, 21] have been proposed to solve
this optimization problem. However, the number of
variables in Eq. (1) is equal to the number of train-
ing samples, and these algorithms are inefficient when
the number of training samples is large. SMO[22] was
proposed by Platt in 1998 accordingly, which only con-
tains two variables as its working set. Assume these
two variables to be α1, α2, and other variables are
fixed, the subproblem is to minimize

D(α1, α2) =
1

2
K11α

2
1 +

1

2
K22α

2
2 + y1y2K12α1α2

−(α1 + α2) + y1α1A1 + y2α2A2 + δ (2)

subject to the constraints

α1y1 + α2y2 = −
l∑

i=3

αiyi = ρ, (3)

0 ≤ αi ≤ C, i = 1, 2, . . . , l,

where Kij = K(xi,xj), Ai =
∑l

j=3 yjαjKij , i = 1, 2,
and δ,ρ are constants. δ is a constant term omitted
in above subproblem. Therefore, there is only one free
variable in Eq. (2) through Eq. (3).
The remaining question is how to choose a violating
pair to be a working set. According to KKT condition,
the optimality condition can be expressed as:

min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α)

where

Fi(α) = yi
∂W (α)

∂αi
= yi(

l∑
j=1

yiyjαjKij − 1),

and

Iup(α) = {i : αi ≤ C, yi = 1} ∪ {i : αi ≥ 0, yi = −1},
Ilow(α) = {i : αi ≤ C, yi = −1} ∪ {i : αi ≥ 0, yi = 1}.

A pair of indices (i, j) is said to be a violating pair if
the following condition hold:

i ∈ Iup(α), j ∈ Ilow(α), −Fi(α) ≥ −Fj(α) + λ,

where λ is a relaxation factor to generalize the model.
Hash has proved the following theorem [23]:

Theorem 1 Q is assumed to be a positive semi-
definite matrix. If and only if the working set B is a
violating pair, SMO can ensure the objective function
Eq. (1) to be a strictly monotone decreasing function,
ie. ∀k, Q(α)k+1 ≤ Q(α)k.

3 Traditional Working Set Selection

In process of SMO, only one violating pair (i, j) is
chosen to be a working set (αi, αj) in each iteration.
After updating this violating pair, another is been cho-
sen and repeat the above steps. Therefore, studying
approaches of working set selection is necessary.
Maximal violating pair is a classic working set selec-
tion algorithm, which was proposed by Keerthi et al.
in 2001 and was used in the earlier LIBSVM tools [16].
MVP selects a pair (i, j) according to the following
conditions:

i ∈ arg max
t
{−Ft(α)|t ∈ Iup(α)},

j ∈ arg min
t
{−Ft(α)|t ∈ Ilow(α)}.

MVP algorithm chooses violating pairs through the
degree of violation of the KKT condition, which is re-
lated to first order approximation of W (α).
Working set selection algorithm using second order in-
formation, which was has been applied in the LIBSVM
tools [17, 23, 24] since version 2.8 has emerged, pro-
posed by Fan et al. in 2005. Assume dT = [dTB ,0

T
N ] is

the update vector of Lagrange multipliers and B is a
working set, and consider the reduction of the objec-
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tive value:

W (αk + d)−W (αk)

=∇W (αk)Td+
1

2
dT∇2W (αk)d

=∇W (αk)TBdB +
1

2
dTB∇2W (αk)BBdB

=
[
∇W (αk

i )∇W (αk
j )
][di
dj

]
+

1

2

[
di dj

][QiiQij

QjiQjj

][
di
dj

]
=(−Fi(α

k) + Fj(α
k))d

′

j+
1

2
(Kii +Kjj − 2Kij)d

′2
j (4)

where k means the k−th iteration and d
′

i = yidi. Ac-

cording to Eq. (3), we can conclude d
′

i + d
′

j = 0. Ob-

viously, the minimum of Eq. (4) is −b2ij/2aij , which is

taken at d
′

j = −bij/aij < 0,

aij = Kii +Kjj − 2Kij > 0 (5)

and

bij = −Fi(α
k) + Fj(α

k) > 0. (6)

In summary, the second order information algorithm
is as follows:

Algorithm 1 Working set selection using second or-
der information.
Step 1. Select i ∈ arg maxt{−Ft(α) | t ∈ Iup(α)},
Step 2. Select

j ∈ arg mint{− b2it
ait
| t ∈ Ilow(α),−Fi(α) ≥ −Ft(α)}.

Step 3. Return B = i, j.

In the previous two algorithms, compared to MVP,
the second order information algorithm has fewer
iterations and spends less time according to experi-
mental results. The possible explanation may be that
MVP uses first order information and is equivalent to
the method of steepest gradient descent. The second
order contains more information than the first order
so it can converge faster.
However, second order information algorithm is
similar to the greedy algorithm. It only guarantees
that the current pair can reduce the object value
maximally in the current iteration, but in the next
iteration the reduction of the object value may be
extremely little.

4 A New Working Set Selection
Algorithm

In this section, we propose a new working set selection
algorithm. The solution of the greedy algorithm in

each iteration is the locally optimal solution, so is sec-
ond order information algorithm. To solve this prob-
lem, we construct a new optimization function which
is not only focus on the objective function. Thus, the
violating pairs obtained by this method could avoid lo-
cally optimal solutions. We name this algorithm multi-
order information algorithm.
First of all, we hope this method can also focus on
the update step size of the multiplier in some ex-
tent. In order to tie the update step size of the
multiplier d

′

j with the decrease of the objective value

(W (αk +d)−W (αk)), we construct the optimization
function as follows:

minH = (W (αk + d)−W (αk))
∣∣∣d′

j

∣∣∣ . (7)

By multiplying the update step size of the multiplier
and the decrease of the objective value, SMO avoids
focusing only on minimizing Eq. (4) when selecting
a working set. For removing the calculation of the
absolute value in the above expression and simplifying
the calculation, we construct an equivalent function G
as follows:

maxG = H2 = (W (αk + d)−W (αk))2(d′j)
2. (8)

We can substitute (W (αk + d) −W (αk)) in Eq. (8)
with Eq. (4):

maxG = (bijd
′
j +

1

2
aijd

′
j
2
)2(d′j)

2. (9)

Take partial derivative of Eq. (9) with respect to d
′

j :

∂G

∂d
′
j

=2(bijd
′
j +

1

2
aijd

′
j
2
)(bij + aijd

′
j)(d

′
j)

2

+ 2(bijd
′
j +

1

2
aijd

′
j
2
)2(d′j)

=(d′j)
3(

3

2
a2ijd

′
j
2

+ 5aijbijd
′
j + 4b2ij).

The optimal solutions of d′j are as follow:
d′j1 = −2bij/aij ,

d′j2 = −4bij/3aij ,

d′j3 = 0.

Eq. (9) get the maximum, at

d′j = − 4bij
3aij

.

At this time, Eq. (7) gets the minimum value:

H = −
16b3ij
27a2ij

.
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Therefore, d′j , the update step size of the multiplier, is
equal to −4bij/3aij . And the decrease of the objective
value can be deduced from the formula below:

W (αk + d)−W (αk)

=(−Fi(α
k) + Fj(α

k))d
′

j+
1

2
(Kii +Kjj − 2Kij)d

′2
j

=bij(−
4bij
3aij

) +
1

2
aij(−

4bij
3aij

)2

=−
4b2ij
9aij

.

Some differences between multi-order information al-
gorithm and second order information algorithm can
be discovered from the outcome of these formulas.
From the perspective of the update step size of the
multiplier, the former one descends by 4bij/3aij while
the latter one declines by bij/aij . From the aspect
of the decrease of the objective value, the former one
descends by 4b2ij/9aij while the latter one declines by

b2ij/2aij . Although these two results are estimated val-
ues, they still give us important directions. The conse-
quences hints that multi-order information algorithm
sacrifices some of the reduced value of the objective
function in exchange for a bigger update step size of
the multiplier. In other words, our algorithm avoids
focusing only on the objective function.
Moreover, in order to take into account the degree of
violation of the KKT condition of the multiplier, we
add relaxation factor λ to our algorithm as a filter for
j. Thus, the selection range of j is limited for the same
i.
Thus the new working set selection select is shown as
follows:

i ∈ arg max
t
{−Ft(α) | t ∈ Iup(α)},

j ∈ arg min
t
{− b

3
it

a2it
| t ∈ Ilow(α),−Fi(α) ≥ −Ft(α) + λ}.

In a word, after the relaxation factor is added to the
constraint of j, B(= i, j) will not be selected if it does
not reach the required degree of violation of the KKT
condition.
Another problem needs to be solved is that if a Gaus-
sian kernel is regarded as a kernel function, aij will
always greater than 0. In contrast, if the kernel func-
tion is a linear kernel or other types of kernel functions,
aij may be equal to 0 or even less than 0. We solve
the problem by the method provided by Chen et al.,
adding an additional term τ to Eq. (2). Then, the
optimal objective value is −b3ij/τ2.
Therefore, the description of a generalized SMO-type
decomposition algorithm using multi-order informa-
tion for the working set selection can be expressed as
follows:

Algorithm 2 An SMO-type decomposition algorithm
using new working set selection method.
Given a data set T = {xi, yi}li=1, a penalty parameter
C and a hyperparameter g in RBF. xi is the eigenvec-
tor of the sample, and yi ∈ {−1,+1} is the label.
Step 1. Find α0 = 0 as the initial feasible solution.
Set k = 0.
Step 2. If ait ≤ 0, set ait = τ ( where τ is a small
positive number ).
Step 3. Select
i ∈ arg maxt{−Ft(α) | t ∈ Iup(α)},
j ∈ arg mint{− b3it

a2
it
| t ∈ Ilow(α),−Fi(α) ≥ −Ft(α) +

λ}.
Step 4. Select two variables, αk

i and αk
j , and fix other

variables, for the optimization problem Eq. (2), find
the optimal solution αk+1

i , αk+1
j . αk is updated to

αk+1.
Step 5. If there is any variable violation of the KKT
condition in αk+1, set k = k + 1, go to 2.
Step 6. Get the solution αk+1.

In the above algorithm, the parameters C and g can
be cross-validated to obtain the optimal value. In our
experiments, we find that using this algorithm will ef-
fectively reduce the number of iterations of selecting
violating pairs in most cases. In next section, we would
like to show the result of our experiments.

5 Experiments

In this section, we show some experimental results for
comparing the proposed multi-order information with
second order information, which is currently the most
common working set selection algorithm. LIBSVM,
widely used in scientific research and industrial pro-
duction, is an integrated software proposed by Chang
et al. [24], which has been using second order infor-
mation algorithm as its working set selection algorithm
since version 2.8. To be fair, we only modify the part
of the working set selection algorithm of LIBSVM. We
use LIBSVM to represent second order information al-
gorithm in the following paragraphs.
Shrinking and cache are two optimization tools in LIB-
SVM. The experiments prove that the value of αi will
not change when the αi reaches the boundary posi-
tion (αi = 0 or αi = C) during the training process.
Under this condition, LIBSVM will remove these mul-
tipliers from the working set. The application of cache
in LIBSVM greatly reduces training time. The cache
can cache the majority of Qi,j used recently, which
can be read directly by LIBSVM instead of complex
calculation. However, a large amount of memory will
be occupied by matrix Q when the training set con-
tains many instances, which is not suitable for prac-
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tical applications. Cached Qi,j elements can be de-
duced by LIBSVM through the Least Recently Used
(LRU) algorithm. In addition, the shrinking technol-
ogy can also help to improve the hit rate of cache since
αi at the boundary location has been removed. In
a word, shrinking can affect the number of iterations
while cache can not.
All data sets chose are available at the web site of
LIBSVM [25]. In order to make the comparison more
intuitive, several data sets used in the [17] have been
selected. In addition, the data sets used by our ex-
periments also contain numbers of different features
and sizes. Besides, the large problems used in [17] are
also covered to verify the validity of our algorithm.
These data sets are shown in Table 1. In the follow-
ing paragraphs, we use MOI to represent multi-order
information for the working set selection.
Different kernel functions will cause different perfor-
mance in the same data set. The most commonly used
RBF has been considered as the kernel function to pro-
cess our experiments. Under RBF, we determined the
C (in (1)) and kernel parameters g by 10-fold cross val-
idation. We set up several cases of comparison exper-
iments, including the case of no shrinking and cache,
the case of using shrinking and 100k cache and the case
of using shrinking and 40M cache, which is still con-
sistent with [17]. The training time and the number
of iterations are calculated by averaging the results of
experiments, which has been performed three times.
We define Ratio to measure the quality of MOI and
LIBSVM:

Ratio =
MOI

LIBSVM
− 1

As is shown in the Fig. 1, the number of iterations
of almost all data sets has dropped. Some of them
have a dramatic decline. For example, heart.txt and
svmguide1.txt and w1a.txt are decreased by 17.93%,
13.89% and 27.36% respectively.
However, in Fig. 2, the decline in the respect of time
used is not as obvious as in the aspect of the num-
ber of iterations. We have found that MOI algorithm
has a lower hit rate of cache than LIBSVM through
analyzing the record obtained from running the pro-
gram. One of the reasons is that the number of iter-
ations of MOI is generally lower. Another reason is
that there is almost no cache shortage in the program
running. Besides, MOI algorithm consumes more time
on computing Qi,j than LIBSVM in some data sets,
like svmguide1.txt and w1a.txt. After our analysis,
we find that this phenomenon is related to the hit
rate of cache under shrinking. Due to the existence of
shrinking, the same ”violating pair” requires different
amounts of Qi,j elements in different shrinking stages,
and shrinking makes the actual training scale smaller,

Table 1: The data sets used in our experiments

SMALL PROBLEMS SIZE FEATURE

a1a.txt 1,605 123
a2a.txt 2,265 123
a3a.txt 3,185 123
a4a.txt 4,781 123
australian.txt 690 14
diabetes.txt 768 8
fourclass.txt 862 2
german.numer.txt 1,000 24
gisette 6,000 5,000
heart.txt 270 13
letter.scale 15,000 16
mushrooms.txt 8124 112
splice.txt 1,000 60
svmguide1.txt 3,089 4
w1a.txt 2,477 300
w2a.txt 3,470 300
w3a.txt 4,912 300
w4a.txt 7,366 300

LARGE PROBLEMS SIZE FEATURE

a9a.txt 32,561 123
connect-4 67,557 126
covtype.libsvm.binary.scale 581,012 54
ijcnn1 49,990 22
real-sim 72,309 20,958
skin nonskin 245,057 3
w8a.txt 49,749 300

Figure 1: MOI vs. LIBSVM(Ratio(iters))
with shrinking



Multi-Order Information for Working Set Selection of Sequential Minimal Optimization

Figure 2: MOI vs. LIBSVM(Ratio(time))
with shrinking and 40M cache

thus time-consuming of calculating is also getting less.
We have analyzed several data sets and found that the
problem is mainly caused by the first phase of shrink-
ing. Because the hit rate of cache of the first phase of
shrinking is lower than LIBSVM, MOI will calculate
more Qi,j elements. At other phases, the impact is
smaller.
From Fig. 3 (the size of cache does not affect the
number of iterations, so the number of iterations is
still referred to Fig. 1), the data can be used to ini-
tially verify our previous conjecture. In the 100k cache,
due to insufficient cache, each data set has a situation
where the cache loads new content. Due to the load-
ing of caches, the number of iterations increases and
the likelihood of recalculating Qi,j elements increases.
Compared with the 40M cache, MOI shows a greater
advantage.
To better compare the performance of MOI and LIB-
SVM under different cache size, we have also done ex-
periments with 100M cache. As shown in Fig. 4, MOI
is still more efficient than LIBSVM in most cases.
Besides, MOI has almost shown an overwhelming ad-
vantage (Fig. 5 and Fig. 6) without the use of shrink-
ing and cache. Regardless of the number of iterations
or the consuming of time, on almost all data sets, MOI
can significantly reduce the number of iterations and
training time. This also confirms our previous infer-
ence: MOI has a fewer number of iterations than LIB-
SVM in almost all cases.
Therefore, through the previous experiments and anal-
ysis, we can conclude that the overall performance of
MOI is better than LIBSVM in that MOI can signif-
icantly reduces the number of iterations. The utiliza-

Figure 3: MOI vs. LIBSVM(Ratio(time))
with shrinking and 100k cache

tion of shrinking and cache is not as good as that of
LIBSVM. The smaller the cache is, the more obvious
the advantage is. When cache is large enough, MOI
still performs well in most data sets.
Next, we will do an experiment to solve large problems
with a similar procedure. We still choose RBF as the
kernel function and use 20% of the training set to ob-
tain the optimal parameters by a similar method as be-
fore. The contrast is set between shrinking+cache and
non-shrinking+non-cache. Cache size is set to 800M
for connect-4, covtype, and skin nonskin, 350M for the
rest. The results are shown in Table 2, Table 3, Ta-
ble 4, and Table 5 respectively. The validity of our
previous conclusions is further validated by these ex-
perimental results.
In addition, the models trained by different working
set selections are tested on their accuracy. According
to almost the same accuracy, it is shown that our algo-
rithm can effectively speed up the SVM and ensuring
accuracy.

6 Conclusion

A novel working set selection algorithm is presented
in this paper. Not only the descent value of the
objective function, but also the update step size of the
multipliers and the degree of violation of ”violating
pairs” are used to select working set. MOI algorithm
is based on the combination of these elements. The
experimental results show the overall performance of
MOI algorithm is better than that of LIBSVM.
The advantage is even more significant in the case
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Figure 4: MOI vs. LIBSVM(Ratio(time))
with shrinking and 100M cache

Figure 5: MOI vs. LIBSVM(Ratio(iters))
no shrinking or cache

of insufficient cache. There has been an evidently
improvement in the decrease of the number of itera-
tions on many data sets. If the problem of hit rate of
cache is solved, it is anticipated that the performance
of MOI will be improved more. In addition, we
also expect that the combination of MOI and our
previous parallel SMO algorithm will lead to greater
improvement.
The big data era brings huge computational challenges
to machine learning. It is very necessary to study

Figure 6: MOI vs. LIBSVM(Ratio(time))
no shrinking or cache

Table 2: Ratio(iters)∗ between MOI and LIBSVM
MOI LIBSVM RATIO

a9a.txt 166,053 182,170 -8.85%
connect-4 514,333 620,017 -17.05%
covtype 124,114 128,524 -3.43%
ijcnn1 28,957 33,050 -12.38%
real-sim 32,893 32,642 0.77%
skin nonskin 6,180 8,027 -23.01%
w8a.txt 18,679 22,152 -15.68%

∗With shrinking and cache.

Table 3: Ratio(time)∗ between MOI and LIBSVM
MOI LIBSVM RATIO

a9a.txt 205.712342 215.283361 -4.45%
connect-4 2046.773589 2311.639732 -11.46%
covtype 3039.733288 2947.665176 3.12%
ijcnn1 42.05839 41.988279 0.17%
real-sim 855.686756 857.788728 -0.25%
skin nonskin 24.732979 25.466065 -2.88%
w8a.txt 40.337401 44.246501 -8.83%

∗With shrinking and cache.

the speedup of SVM, since SVM is a particularly
effective algorithm for pattern recognition in dealing
with nonlinear and high-dimensional features. More
importantly, the working set selection algorithm can
be used not only in SVM algorithm, but also in some
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Table 4: Ratio(iters)∗ between MOI and LIBSVM
MOI LIBSVM RATIO

a9a.txt 163,300 182,988 -10.76%
connect-4 513,794 616,542 -16.67%
covtype 121,999 124,138 -1.72%
ijcnn1 27,589 32,490 -15.08%
real-sim 32,543 32,779 -0.72%
skin nonskin 6,506 7,758 -16.14%
w8a.txt 18,355 21,937 -16.33%

∗No shrinking or cache.

Table 5: Ratio(time)∗ between MOI and LIBSVM
MOI LIBSVM RATIO

a9a.txt 3133.660363 3521.985043 -11.03%
connect-4 22861.17247 27523.58663 -16.94%
covtype 8606.373334 9177.976153 -6.23%
ijcnn1 621.445731 730.09983 -14.88%
real-sim 3301.891496 3312.284518 -0.31%
skin nonskin 478.026983 566.385271 -15.60%
w8a.txt 468.012072 563.566522 -16.96%

∗No shrinking or cache.

of other algorithms where gradient descent optimiza-
tion is used. We would like to try to apply MOI to
other machine learning algorithms in our future works.
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