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A Proofs

Lemma 4. Let g(S) =
P

x2Q(S) f(x), where Q(S) is defined in Eq. (3.3). If 8x, f(x) � 0, then g is monotone

supermodular.

Proof. Let ` 2 [L], and j 2 C(`) be any constraint at site `. For S ✓ C\{j}, define �g(j | S) =
P

x2Q(S[{j}) f(x)�P
x2Q(S) f(x) to be the gain of adding j to the set S.

By definition of Q(S), we have Q(S) =
QL
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Then,

�g(j | S) =
X

x2Q(S[{j})

f(x) �
X

x2Q(S)

f(x)
Eq. (A.1)

=
X

x2{j}⇥
Q

k 6=` S(k)

f(x)

Now let us consider S 0 such that S ✓ S 0 ✓ C \{j}. Clearly 8k 2 [L], S(k) ✓ S 0(k). Therefore, �g(j | S 0)��g(j |
S) =

P
x2{j}⇥

Q
k 6=`(S0(k)\S(k)) f(x) � 0 and hence g is supermodular.

A.1 Proof of Lemma 2

We now show that Algorithm 3 leads to a polynomial algorithm for constructing a lower bound on Eq. (4.2),
and hence on constructing a DS-decomposition of the surrogate objective function F̂ (Eq. (3.2)).

Proof of Lemma 2. Let g(S) =
P

x2Q(S) f(x). By definition we have

F̂ (S) = g(S)
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= F̂1(S) � F̂2(S)

We know from Lemma 4 that F̂1 is supermodular. Let j 2 C and S ✓ C \ {j}. The gain of j on F̂1, denote by
�1(j | S), is monotone decreasing.

Let �2(j | S) = F̂2(S [ {j}) � F̂2(S). Our goal is to find a lower bound on
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Therefore, it su�ces to find a lower bound �2(j | S) � �2(j | S 0). The gain of j on F̂2 is

�2(j | S) = F̂2(S [ {j}) � F̂2(S)

=
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Let r(S) =
⇣
1 � 1

|Q(S)|

⌘n
. Then, the above equation can be simplified as

�2(j | S) = F̂2(S [ {j}) � F̂2(S)

=
X

x2Q(S[{j})\Q(S)

f(x)r(S [ {j})
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+
X
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f(x) (r(S [ {j}) � r(S))

| {z }
T2(S)

It is easy to verify that T1(S) is monotone increasing function of S. Let us consider S 0 such that S ✓ S 0 ✓ C\{j}.
We have

�2(j | S 0) � �2(j | S) � T2(S 0) � T2(S)

T2�0
� �g(S)(r(S [ {j}) � r(S))

Therefore, it su�ces to find a lower bound on �g(S)(r(S [ {j}) � r(S)). Further notice that

0  g(S)  max
T :|T ||Q(S)|

X
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and it is not hard to verify that
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Therefore, combining term (A.3) with (A.4), we get a lower bound on �:

� � � max
s2{1,...,|Q(C)|}

0

BBBB@

✓✓
1 � 1

s

◆n

�
✓

1 � 1

2s

◆n◆
max

T :|T |s

X

x2T
f(x)

| {z }
Term 2

1

CCCCA
(A.5)

Note that term 2 is a modular function and can be optimized greedily. Therefore, computing the RHS of Eq. A.5
can be e�ciently done in polynomial time w.r.t. |Q(C)|.

A.2 Proof of Lemma 3: Di↵erence of Convex Construction of DS Decomposition

Lemma 5. Let g : 2C ! R�0 be a non-negative, non-decreasing supermodular function, and u : R ! R be a

non-decreasing convex function. For S ✓ C, define h(S) = g(S) · u(|S|). Then h is supermodular.

Proof. Let j 2 C and S ✓ C \ {j}. The gain of j is

�h(j | S) = h(S [ {j}) � h(S)

= g(S [ {j}) · u(|S [ {j}|) � g(S) · u(|S|)
= (g(S [ {j}) � g(S)) · u(|S [ {j}|) + g(S) (u(|S [ {j}|) � u(|S|))
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Let us consider S 0 such that S ✓ S 0 ✓ C \ {j}. We have

�h(j | S) = (g(S [ {j}) � g(S)) · u(|S [ {j}|) + g(S) (u(|S [ {j}|) � u(|S|))
(a)
 (g(S 0 [ {j}) � g(S 0)) · u(|S 0 [ {j}|) + g(S) (u(|S [ {j}|) � u(|S|))
(b)
 (g(S 0 [ {j}) � g(S 0)) · u(|S 0 [ {j}|) + g(S 0) (u(|S 0 [ {j}|) � u(|S 0|))
= �h(j | S 0)

where step (a) is due to g being monotone supermodular (i.e., g(S 0 [ {j}) � g(S 0) � g(S [ {j}) � g(S) � 0)
and u being monotone (i.e., u(|S 0 [ {j}|) � u(|S [ {j}|)); step (b) is due to g being non-negative monotone
(i.e., g(S 0) � g(S) � 0) and u being convex (i.e., u(|S 0 [ {j}|) � u(|S 0|) � u(|S [ {j}|) � u(|S|)). Therefore h is
supermodular.

Lemma 6. Let w : R ! R be a convex function and u : R ! R a convex non-decreasing function, then u � w is

convex. Furthermore, if w is non-decreasing, then the composition is also non-decreasing.

Proof. By convexity of w:

w(↵x + (1 � ↵)y)  ↵w(x) + (1 � ↵)w(y).

Therefore, we get

u(w(↵x + (1 � ↵)y))
(a)
 u (↵w(x) + (1 � ↵)w(y))

(b)
 ↵u(w(x)) + (1 � ↵)u(w(y)).

Here, step (a) is due to the fact that u is non-decreasing, and step (b) is due to the convexity of u. Therefore
u�w is convex. If w is non-decreasing, it is clear that u�w is also non-decreasing, hence completes the proof.

Lemma 7 (Horst & Thoai (1999)). Let r : R ! R be a non-decreasing, twice continuously di↵erentiable function.

Then r can be represented as the di↵erence between two non-decreasing convex functions.

Proof. Let u : R ! R be a non-decreasing, strictly convex function, and ↵ = minx u00(x); clearly, ↵ > 0.

Let � = |minx r00(x)|. Define

v(x) = r(x) +
�

↵
u(x) (A.6)

It is easy to verify that

v00(x) = r00(x) +
�

↵
u00(x) � r00(x) + � � 0.

Hence, v(x) is convex. Furthermore, since both r and u are non-decreasing, v is also non-decreasing. Therefore,
r(x) = v(x) � �

↵u(x) is the di↵erence between two non-decreasing convex functions.

Lemma 8. Let r : R ! R be a non-decreasing, twice continuously di↵erentiable function, and w : R ! R a

convex non-decreasing function, then r�w can be represented as the di↵erence between two non-decreasing convex

functions.

Proof. By Lemma 7, we can represent r(x) = v(x)� �
↵u(x), where u, v are non-decreasing convex functions, and

↵, � are as defined in Eq. (A.6). Therefore,

r � w(x) = v � w(x) � �

↵
· u � w(x)

By Lemma 6, v � w and u � w are both non-decreasing convex, which completes the proof.
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Now we are ready to prove Lemma 3.

Proof of Lemma 3. Let g(S) =
P

x2Q(S) f(x). By definition we have

F̂ (S) = g(S)

✓
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|Q(S)|

◆n◆
= g(S) � g(S)

✓
1 � 1
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Let r(x) =
�
1 � 1

x

�n
, and w : R ! R be a convex function, such that w(|S|) = |Q(S)|. Note that such function

w exists, because the set function h(S) := |Q(S)| is supermodular. Therefore, we have

F̂ (S) = g(S) � g(S) · r � w(|S|)

Furthermore, note that r is non-decreasing, twice continuously di↵erentiable at [1, 1). By Lemma 8, we get

F̂ (S) = g(S) � g(S) ·
✓

v � w(|S|) � �

↵
· u � w(|S|)

◆

= g(S)

✓
1 +

�

↵
· u � w(|S|)

◆
� g(S) · (v � w(|S|)) , (A.7)

where u : R ! R can be any non-decreasing, strictly convex function, ↵ = minx u00(x), � = |minx�1 r00(x)|, and
v(x) = r(x) + �

↵u(x).

We know from Lemma 4 that g is supermodular. Since both 1 + �
↵ · u � w(x) and v � w(x) are convex, then by

Lemma 5, we know that both terms on the R.H.S. of Eq. (A.7) are supermodular, and hence we obtain a DS
decomposition of function F̂ .
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B Supplemental Figures

Figure S1: The cell values for the synthetic dataset with L = 2 and |C(`)| = 26 8` 2 {1, 2}.

(a) F̂ vs. F for GB1 (b) F̂ vs. F for PhoQ

Figure S2: Comparing F̂ (Eq. (3.2)) against the Monte Carlo estimates of F (Eq. (3.1)). Error bars are standard
errors for the Monte Carlo estimates. The approximate objective correlates well with Monte Carlo estimates of
the exact objective.
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