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Supplementary Material for
Parallel Asynchronous Stochastic Coordinate Descent with Auxiliary Variables

A Parallelize Second-Order Methods by AUX-PCD

Second-order methods are known to enjoy faster convergence than first-order methods such as CD or stochastic gradient
descent in terms of iteration complexity. However, the cost per iteration of second-order methods is usually much higher
as it requires n? entries in the Hessian to construct a quadratic approximation and obtain a Newton direction s*.
Exploiting the structure of the Hessian matrix, some recent works successfully apply CD to solve the quadratic
approximation with the explicit construction of Hessian matrix, such as GLMNET for ¢;-regularized logistic
regression [27] and QUIC for /1 -regularized Gaussian graphical model learning [8].

In this section we demonstrate that AUX-PCD can be embedded into a second-order method for the family of problems
defined in (1). Let f(2) := >, fi(2;) and d(z) := D(Qz). Thus, we have F(z) = f(z) + d(z). We assume that
di(-) is twice differentiable and f; can be a non-smooth convex function. To apply a second-order method (e.g., Newton
or proximal Newton) to minimize F'(z) requires obtaining the Newton direction s* by minimizing the following
quadratic approximation Q(s) = F(z + s) — F(z):

s* = argmin Q(s) := f(z +s) + Vd(z) s + %STVQJ(z)s. (14)

By the definition of d(z), we know that
V3d(z) = QTHQ

where ' is the k-th row of ), and H is a diagonal matrix with Hy, = V3, D(q) z), Vk. Note that Vd(z) and H can be
pre-computed and stored as they do not change as s changes. We can maintain an auxiliary variable » = H()s such that
we can efficiently apply AUX-PCD to minimize (14) as each single variable subproblem becomes

_ THa;
min  f;(z; +u) + (Vz-d(z) + q;r)u + %ua
which requires only O(m) operations to construct the subproblem and obtain the optimal solution u*. We can see that
AUX-PCD can be easily applied to parallelize a second-order method. In Section 5, we will apply this approach to
parallelize a second-order method for ¢, -regularized logistic regression.

B Proof for the Linear Convergence for AUX-PCD with Smooth f;

Theorem 5. Assume a function F(z) in the family defined by (1) admits a global error bound from the beginning. We
further assume that F(z) is a Ly,q.-smooth functions. If the upper bound of the staleness T is small enough such that the
following two conditions hold:

B(r+1)%eM)/v/n <1, (15)
2LnazCo
— <1 16
0'(1 — 200) -7 (16)
Y —17 p2 > M?0c ?L?R2 _¢° . . . .
where M = o~ LR, .. +2LMR.,, and cy = —maz— then Algorithm 2 with atomic operations has a
global linear convergence rate in expectation, that is,
E[F (7] — F(z*) <n(E[F(27)] - F(z")), (17)

where z* is the optimal solution and

o 2Lmach
=1- 1-— . 1
g 2nk2L s < o(1— 200)) (18)
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B.1 Notations and Propositions
B.1.1 Notations
e Forall? = 1,...,n, we have the following definitions:

Ti(r,s) i=argmin  fi(u) + D(r + (u — 5)q,),

where 7 € R? and s € R. For convergence, we define T'(7, s) as an n-dimension vector with T}(r, s) = T;(r, s;) as
the ¢-th element.
e Let {27} and {77} be the sequence generated/maintained by Algorithm 2 using

LIt Tt(f’jaZ{) ift =i(j),
' 2 if ¢ # (),

where i(j) is the index selected at j-th iteration. For convenience, we define
_ I+l J
Azj = ZiG) ~ Fi):
e Let {27} be the sequence defined by
H =Ty, 2) vi=1,...,n.

zJ+1 _ _j+1
Note that ZiGy = i) -

o Let# =" | 2/q; be the “true” auxiliary variables corresponding to z7. Thus,
Tt(’l:j, ZZ(J)) = T(Zj),

where T'(+) is the operator defined in Eq. (7).
o Let {y’}, {9’} be the sequences defined by

yit = T;(Fj,z{) ift =i(j),
' 7 if ¢ £ i(j),

gngl = Tt(fj,z{) Vi=1,...,n.

Note that gf(j)l = yfa)l and g7t = T(z7), where T(-) is the operator defined in Eq. (7).
e Let g/ (u) be the univariate function considered at the j-th iteration:
g’ (u) = F(zj + (u— Zg(j)) ’ei(j)>

= fig(w) + D(r + (u - zf(j)qi(j)>) + constant

Thus, yfa)l =Ty (7, zf(j)) is the minimizer for g7 (u).

B.1.2 Propositions

Proposition 1.

, , 1. . , A ‘ 1. . ‘
Eig (271 = 27)1%) = EHZJH -2 B (127 - 2|) = ﬁ”zﬁl — 2|, (19)
, , 1. . , . . 1. . ,
Eigy(ly”™" = 271%) = ~ll5""" = 212, Eigy (v = 27[)) = — 97" = 7). (20)
Proof. Based on the assumption that i(j) is uniformly random selected from {1,...,n}, the above two identities follow

from the definition of z and y. O
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Proposition 2.

j—1
|77 = || < Rpnaa 1Az, (21)

t=j—1

Proof.

|7 —#|| = || Z (Az)qiyrexl
(t,k)eZi\ui

i1 i1
< 3 182090l < Rmax Y 182

t=j—7 t=j—7
O
Proposition 3. For any r1,72 € R™ and s1, 52 € R,
|Ti(r1, 51) = Ti(ra, s2)| < o ' Lilgil|[r1 — 72| + o~ Lllgi]|*[s1 = sal, (22)
Thus, for any r1,79 € R™ and s1, 82 € R",
IT(r1,81) = T(ra,82)|| < 0 ' LM |1 — 72| + 07 LR7 o, [ls1 — s2])-
Proof. Consider the following two problems
G(u) = fi(u) + D(r1 — 51q; + uq;) (23)
G(u) = fi(u) + D(ry — 52q; + uq;) (24)
(25)

Let u*, %" be the optimizers for G(u) and G(u), respectively. Thus, we have 0 € OG(u*) and 0 € OG(@*). Based on the
strong convex assumption and the non-expansiveness of sub-gradient, for all g € 9G(u*), we have

* — % - * — % * — % 1 -
(= a")(0—g) > o(u" —u")* = Ju" —a’| < ~|g]. (26)

Let’s bound the size of the sub-gradient g.

0 € 9G(u*) = 0fi(a*) + q; VD(ry — s2q; + 0" q;)
g€ 0G(u*) =of;(a*) + q VD(ry — s1q; + u*q;)

As a result, there exists a sub-gradient g such that

G=q; (VD(ry — s1q; + 0" q;) — VD(r2 — s2q; + 1" q;))

S

M-

Qi (dyy (11 — $1¢ik + W i) — dip(rog — S2qik + U qik))

>
Il

1

By the Lipschitz continuity, we can bound |g| as follows.

m
9] < Z Llgik||(r1k — rax + (51 — 52)qix)|
k=1

m m

<> Llgallrie — raxl + Y Lls1 — sallqi]? 27)
k=1 k=1

< Lligillllry = r2ll + Lis1 — saflla:]1*
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Combining (26), we obtain the following result
| Ti(r1,81) = Ti(ra, s2)| < o 'Ll gilllr1 — vall + 0 Ll gil[s1 — s2f

Consider the difference of the two operators A = T'(r1, 81) =T (72, 82), as |A;| < o7 L||q;]|||r1 — 72|+~ L||g;||*|s1:—

JAIl < 0 LM |ry — rol| + 07 LR, 81 — o]

O
Proposition 4. Let M := o *(LR%,,, + 2LMRyaz) > 1, ¢ = W p=0+q?>and 0 = S|_ p/% If
q(t+1) <1, then p(T+1)/2 < e, and
2+2M +2M6
p*l <1-— ; (28)
Vn
Proof. By the definition of p and the condition ¢(7 4+ 1) < 1, we have
1/q q(T+1)
p(r+1)/2 _ ((p1/2) )
1/ q(T+1) (r+1)
= ((+q7) < et < e,
By the definition of ¢, we know that
v 1/2
d= V71— B(r+ DeM _ 3 _ Valp2=1)
Vn 2 2( +1eM -~
We can derive
3 _ V(' -1)
2 21+ 1)eM
Vn(pt/? — 1) _ /2 <
2(7- + l)p(r-i-l)/QM . >
\/ﬁ(pl/2 —1) - t/2
NVNAE ) 140 = / < 1 /2
<sasvopa Lt ;p <(r+1)p
_ Va(l—p7'?)
21+ 6)M
< M . 'p_1/2 <1
- 2(1+0)M ' -
Combining the condition that M >1and 1+ 6 > 1, we have
vil—p ) -2 vn(l-pH) 1,
21+ 6)M - 21+ 0)M 2 =7
which leads to
20+ 0)M < n—+/np~' =2
bl 2+2M+2M9.
vn
O
Proposition 5. For all j > 0, we have
. . o . .
F(7) = Py’ + 5l -y (29)

j 1 Lmaa: 1 i
F(z) < Fy/™) + =5= 127 g7 (30)
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Proof. First, two properties of g’ (u) are stated as follows.

e the strong convexity of g’ (u): according to the assumption, g/ (u) is o-strongly convex.
e the Lipschitz assumption of ¢/ (u): according to the global it follows from the smooth assumption on F'

j+1

With the above two properties of g7 (u) and the fact that u* := Y;(;) 1s the minimizer of 9’ (u) (which implies that

Vg’ (u*) = 0), we have the following inequalities:

o Rt o j+1
9 () 29" (i) + 3z —vip I?

(by strong convexity),

+1 +1 ma +1 +1
9 Gigy) <9 i) + =5 I=G) — v I°

(by Lipschitz continuity).
By the definitions of g7, 27, 271, and y*!, we know that

92, —d ) = F(z7) = Fy'™),
12} ;) — vl 17 = 1127 =71,
FER) — WG = F(EH) = Py,
12255 = wlly 17 = 1127 — o,

which imply (29) and (30).

B.2 Lemma 1

To prove the convergence of asynchronous algorithms, we first show that the expected step size does not increase

super-linearly by the following Lemma 1.

Lemma 1. If 7 is small enough such that (1) holds (i.e.,)
(3(r +1)%eM)/Vn <1,
then {zj } generated by Algorithm 2 with atomic operations satisfies the following inequality:
B2 = 2|°) < pE(|27 — 27H?),

where p = (1 + L\/QEMF and M = o~ (LRZ,,, + 2LM Ry05 ).

Proof. Similar to [15], we prove Eq. (31) by induction. First, we know that for any two vectors a and b, we have
lall* = 11]1* < 2[lal[|b - a-
See [15] for a proof for the above inequality. Thus, for all 5 , we have

e e -

<92t - F |20 — FH iy

€29

(32)
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The second factor in the r.h.s of (32) is bounded as follows:

||zj Y P b T 2]“
<& = 2T+ T, 27) = T, 2771
<27 = 227 4o LM |7 — #7407 LRE,

,am”zj‘grzjilu

<40 'LRZ 2T — 277+ o LM || — Y
<A+ 'LRZ )Z -2+ o T LM (|| — 7 T — I T )
<+ 'LR2 )2 — 277 + o' LM |7 — # | + o T LM ||A — || + o TP LM || AT — 20|

j—1 j—2
<S(A+07'LR,,, + 0 LMRipaa) |27 = 277 | + 0T 'LM Ry | > Azl + Y Az

t=j—71 t=j—71—1

j—2

<(+0'LR,,, +20 ' LMRyas) |2/ — 277+ 20 ' LMRypaw > || Az

t=j—7—1

j—2
=1+ M)z =277+ 20 'LMRyna Y [|Az] (33)
t=5—7—1

Now we prove (31) by induction.

Induction Hypothesis. Using Proposition 1, we prove the following equivalent statement. For all 7,

E(|771 = 2|*) < pE(I27 - 27717, 34

Induction Basis. When j = 1, -
||z1 — 22420 ilH <(1+ J\J)Hz1 — zOH.

Taking the expectation of (32), we have

Blllz° - 2'[1"] - Ell=" - 22|

<2B[|]2" - 2'll|2" - 2* - 2" + 2]
<201+ M)E(|2° - 2'[12° - 2.
P =

From (19) in Proposition 1, we have E[||2° — 2z L1120 — 2|2, Also, by AM-GM inequality, for any 11, 12 > 0

and any ¢ > 0, we have

1 _
ppe < 5opt + ¢ p3). (35)

Therefore, we have

Blllz° - 2'[12° — 2]

%E[nl/QHzo L i z0||2}
SB[ 220~ P 422 =20 by (19)
= 220~ 7).

IN

Therefore, ~
2 (1 + M )

NG

Bl||2° - 2'P°] - Blll="' - 2°|°] < Bl|lz° - 2",

which implies
1_ z22 1 =22

— Pl = 217 < pBll=" - 2217, (36)
Vn

where the last inequality is based on Proposition 4 and the fact §(M + 1) > 1.

1
Ellz° - 2% <
1—
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Induction Step. By the induction hypothesis, we assume
Bz = 2" < pE[llz" = 27] ve<j—1. (37)
The goal is to show
B[~ = 27|17 < pB[l|2" — 27F1|?).
First, we show that for all ¢t < j,

_ g i1y _ .
B[llz — 241127 - )] < B[l - #7|] (38)
Jn
By (35) with ¢ = n'/?y, where v = p(t+179)/2,

Bzt - 21277 - ]

IA

1 _ _ - o
§E[nl/27||zt_zt+1”2+n 12, L|zi-1 _Zg||2]

1 _ _ - o
— §E[n1/27E[Hzt _ zt+1||2] +n 1/2,)/ 1||Z_] 1 _ zj|‘2i|
1

— Lp[n /2yt - 2R 2y ]

(by Proposition 1)

IN

1 ) . . . .
1 e e e e

(by Eq. (37))

1 . _ . _
< SE[n7 27 T = P 2
(by the definition of )
(j-1-t)/2 ) )
< B[l - )]
NG
Let = Y";_, p'/? and recall that M = o~ (LR2,,, + 2LM Ry,4 ). We have
E[||27~" = 2% - B[||27 — 27
j—1
< E[2||zf—1 ~F| @+ I)F — 2 420 LMBues Y. 2 -2 } by (32), (33)
t=j—71—1
= (24 2M)E(||27" — 2/||||2 — 2771))
j—1
+40 ' LMRyar Y E{uzﬂ’—l — H||||2t — zt_1||}
t=j—71—1
< (24 2M)n"Y2E[|27 — 27717
j—2
+ 407 LM Rypaon ™ PE[||271 = Z|P] Y pUTITD/2 0 by (38)
t=j—1—7
< (24 2M)n"Y2E[)|27 — 277 + 46 ' LM Rypoen™ Y 20E[|| 2771 — 27|
2+ 2M +2M6 ) .
< T Bl - 2
n
which implies that
R 1 -
B+ = £91P) < — g Bl - #41P
Vi

< pB[|l27 - 2+,

where the last inequality is based on Proposition 4. O
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Lemma 2. Let {zj } be the sequence generated by Algorithm 2 with atomic operations. Assume the conditions in Lemma 1

hold and let

(TaflLMRm(me) 2
Co = n )

we have
E[“ Gt 2j+1|‘2]] < COE[[H%‘H _ ZJHQ]]

B[l|2 - 2] < 20 - 2e0) " B]||#* - 2]

Proof. We prove (39) by the following derivation.
Efllg " — 2777

—E HZ (Ty(#, 2]) — Ty(#, 4‘))2“
t=1
< o ?L*M?E[||#’ — #’||*)] By Proposition 3
) .
j—1
< M?*0%L*R?,,,E Z |2 — 2 By Proposition 2
t=j—1

o
< M?c?L?R2, K |7 Z 28T — 2 By Cauchy Schwarz

L t=j—1
<TtM?*c % L*R?, | ﬂ (Z P27 — zj+1||2>u By Lemma 1
t=1
M2 —2L2R2 T ) )
<=9 - maz Zpt E[||z7*" — 27||*)] By Proposition 1
t=1

2012 ~—272 P2
< T°M“0" "L Rma$pTE[||£j+1 _zj||2]]

n
Proposition 4 implies p("t1)/2 < ¢, which further implies p” < e? because p > 1. Thus,

T2 M?02L2R2, ¢

Blg - 2+ P] £ T I e p st —si] - o, B - o)

To prove (40), we applying triangle inequality and Cauchy-Schwarz Inequality as follows
B[l - 27|
— E[[ngﬂ gt gt = zj||2]]
<B[([|#7 g7 + |57+ — 2/[)°] By wiangle inequality
<B|(12+12) (&7 = g7 * + [|l37"* - #'|")| By Cauchy-Schwarz inequality

2472 - —272P2 2
< TN L nas® gl )] 4 2kl - 2] By G9)

n

Thus, we have

27072, —272p2 2\ !
E[[ngﬂ _ZjHQH < 2<1 _ 2 Mo nL Rzt ) EI[HQJ'H —zj||2ﬂ

= 2(1 - 2¢0) "B [lg7 - 2|°].

(39)

(40)
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B.3 Proof of Theorem 5
Next, we bound the decrease of objective function value by
F(27) = F(2'™)
= (F(7) = Fly'*)) + (Fy'™) - F(z"™))
> (f”zj _ yj+1H2) _ (Lmaf”yjﬂ _ zj+1||2>
—\2 2
by Proposition 5

g ; ; Lmaa: j j
> (G0 - ) - (Bt - o)

V

So
E[F(z7)] - E[F(z71")]

. ) Linas » » ..

> ZE[lg - 2/)?] - 22 B[t - 2742 by Proposition |

Lmaz 72M20_2L2R3n
2n

a:ce

2
> ZE[lg -] - B[ -2 2] by(9)

o : : 2Lpmar T2M202L2R2,, 2 272M202L?R2,,,®\ : :
>k ~i+1 _ _7112T _ max max 1— max E ~i+1 _ _j112 b 40
> 5By -2 - — - " [I77 ™ = 27| by (40)
2Lmman 272 M20—2 L2 R2 2\ "t 22212 R2 2 ] )
> a(l _ (1 2T o maz€ ) <T o maz€ ) E[[ng-l,-l _Z]||2ﬂ 41)
2n o n n
_ -1 _
Letb = & (1 — 2 (1 _ Mo 1L2R?””€2) (T2M2U 2521%?”“52)) and combining the above inequality with
Eq (7) we have

E[F(z))] - B[F(z/*")] = bE[||5"* - 2'|[’]

—bE||[T(z/) = 2/||"] by the definition in Appendix B.1.1

b - N
> SE[|2 - psz))"]  byEa.
b .
> PL E[F(z’) — F*], by the smooth assumption on F

where F* is the global minimum of F'(z). Therefore, we have

E[F (/)] - F*

=E[F(z)] - (B[F(z)] -E[F(")]) - F*
< (1= ) E[FE)] - )
<n(B[F(=")] - F),

b

wheren =1 — Py -
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C Proof for the Linear Convergence for AUX-PCD with Non-smooth f;

C.1 Notations and Propositions
C.1.1 Propositions

Proposition 6. Let M := 0~ (LR, + 2LM Rypay) > 1, g = 200N 514 g and§ =37 pt. Ifq(r+1) < 1,

then p\™t1) < e, and

1+ 1M + 1M
- .

pr<1- (42)

Proof. The proof is similar to the one for Proposition 4. We include here for completeness. By the definition of p and the
condition (7 + 1) < 1, we have

P = ((ﬁ)l/q‘) ar+l)

= (a+ q)l/q)q(ul) < el <,
By the definition of g, we know that
2 1eM p—1
s 2Dl n(p)
n (T4 1)eM
We can derive
_ o np-1)
(t+1)eM
’I’L(ﬁ — 1) .. S(m+1)
T (r+1)ptHM o =¢
n(p—1) n . —t =
— 1460 = < 1)p"
= U ropi + tﬂp._ﬁ+ )P
_n(l-p")
1+ 0M

Combining the condition that M > 1 and 1 + 6 > 1, we have

nl=p -1 _nl-p")

_ > r_J_1>1,
(1+60)M 1+6)M
which leads to
14+0)M<n—-np ' -1
1+ M+ MO

pr<1-—
n

O
Proposition 7. With the L-Lipschitz continuous assumption on fi, we have the following results. For all j > 0, we have

F(zi+1 J+1 Il o d+1 j+1 LR?naac j+1 41112
(2771 < Py’ + 2L — g/ | 4 = |2 — g7 (43)

Furthermore, for any given y € R", we have:

2

. _ i} LM
Fy) < F(z") +2Llly — 27, + ——

*

— 2" (44)

ly

where z* is the optimal solution.
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Proof. Let d(u) = D(7 + (u — s)q;), where i = i(j) is the index selected at the j-th iterate and s = zJ. Thus, we have
g7 (u) = fi(u) + d(u). We first establish the Lipschitz smoothness for d(u) as follows.

|d'(u1) = d'(u2)| = |@ (VD(F + (ur — s)ai)) — @ (VD(7 + (uz — 5)gi))]

< \qill|| | d}.(Fr + (w1 — 8)qir) — d} (T + (u2 — $)qix)

< \lgill|| | LI (w1 — u2)qik] by L-smoothness assumption of dy(r) for all &

< lgillllg: || Lluy — gl
< R?

maleul - U2|

Let u* be the optimal solution for the single variable problem, we have the following result based on the optimality
condition.

0 € of;(u*) +d (u*)
= —d (u*) € 0f;(u*)
= |J’(u*)} <L by the L-Lipschitz continuity assumption of f;.
Thus, we have
9 () = ¢’ (u*) = fi(u) = fi(u") + d(u) — d(u*)
- 1
o] 8 () = ) 4 5 B L — )’

IN
wll

_ - 1
< Llu—u*| + |d' (u)|Ju — u*| + inmmL(u —u*)?
- 1
S 2L|U - u*| + iRgnaxL(u - U*)2
By the definitions of g7, 271, and y7*!, we know that u* = yZ(J;)l and

95 - P Wi = F(Z7) = Fy'™h),
j+1 j+1 ‘ j
|28 — g2 = (29— g2,
which implies (43). To derive (44), we first define d(z) = D(Qz) and derive the smoothness of d(z) as follows

[Vd(z1) = Vd(z2)|| = |QT(VD(Qz1) - Q" (VD(Qz))

< 1QI| | k(@ 21) — d} (@) z2) where G, is the k-th row of Q

< 1QIII Lllz1 — z2|l1Gx |l by L-smoothness assumption of dy(r) for all k

< QRN LIz — 22|
2
< [QIpLllz1 — =] LRl < 1Rl s

By the optimality condition of z* on F'(z) = Y"1, fi(2i) + d(2), we know that
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Thus, we have

n

F(z) = F(z") =Y (fi(z) = fiz))) + d(z) — d=*

i=1

- T * - T * ||QH2L * (12
<N Llz -2+ Y Vid(z )z — =)+ ==z =27
i=1 i=1

- o 1QIIEL 2
< L|z; — 2} Vid(2%) ||z — 2 — 2"
< ;,1 |2 Zz|+i§71| (2)[l2s — 2| + 5 Iz =27
s ey IQUEL, s
< 2Lz — 27|y + I 2 — 27,
which implies (44). O

C.2 Lemma 3 and Lemma 4

To prove the convergence of asynchronous algorithms for non-smooth f;, we first show that the expected step size does
not increase super-linearly by the following Lemma 3.

Lemma 3. If 7 is small enough such that (45) holds (i.e.,)
(r+1eM/n <1, (45)
then {zj } generated by Algorithm 2 with atomic operations satisfies the following inequality:
B[/~ - 2/|[] < FE[|= - 27|, (46)

where p = (1 + %), and M = o' (LR?

max

+ 2LM Ripas).

Proof. The proof is similar to Lemma 1. We prove Eq. (46) by induction. First, by triangle inequality we know that for
any two vectors a and b, we have

| —al =1 = bl <[b—a.

Letb=2/ — 2itlanda = 2/~! — 27. By (33), we have

||zj71 _ 2]” _ ||zj _ 2j+1|| < ||zj Y R NP b EJH
j—2
<@+ M)z =277+ 207 ' LMRinas, Y | Az (47)
S S T

Now we prove (46) by induction.

Induction Hypothesis. Using Proposition 1, we prove the following equivalent statement. For all 7,
Efl" =2/ < pE[l]z" - 2], (48)
Induction Basis. When j = 1,
Hzo - 21” - ||z1 - 22H <2t =224 20— 2 < A2t - 20

Taking the expectation of the above equation we have

B[ - ]| - )= - 2] < B[ — 2°|] = 2 E[|5 - 2|
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Thus, we have

(1= A/mE[||]2" - 2H]] < E[[HZ - 52||]]
B[jl=" - 2] < (1 - B[fl=" - 2]
B[||z" - 2] < (- (1+M)/” ) E[l=" - 2]
E[||z° - 2'|]] <pE[||z" — 2%|] by Proposition 6

Induction Step. By the induction hypothesis, we assume
Efll"=" = 2] < pB[ll" 2] ve<j-1,

which implies

1
) e | I of [ Ee |

g%pﬂ’*lffE[[||zj*1—2J’||}] vt <j—1. (49)
Then, we have
B[l = 2/ [[] - E[l]z" - 2] < B[] -2 - 2771 + 2] (50)
j—2
<SAB[|Z7 2]+ B >0 B[] -]
t=j—7—1
A j—1 j - G-1-t) 1 j—1 j
<—E||z"" -Z||+B oV T —E| |z — 27 by (49)
~E]| Il t:j;ilp SE[ I by
A i—1 —a Bé i—1 ~a .. = . o .
< pos [[sz —z-7||]] —l——E[[Hz] —z-7|H] See definition of # in Proposition 6
<n '(A+BO)E[||z/ " - Z||] (51)

Thus, we have
B[z — 2] < (1—n"'(A+ BO)) 'E[||z7 — 2]
<(1=n" (14 M+ (207 LM Rpnor)0)) " E[||z7 — 27H]
<(1-n'(1+M+ (o flLRf,m +20 ' LM Rypoz)8)) " E[||27 — 2]
(1-n"'(1+ M+ M0))" E[[sz —ZH]
pE[|z" — 2] by Proposition 6.
O

Lemmad. Let {zj } be the sequence generated by Algorithm 2 with atomic operations. Assume the conditions in Lemma 3
hold and let

-1 _ _
c1 = o ZACltmas L]\feRmM and p=(14+c)(1- cl)_1 (1 + 1+ M+ Mo Mn+ M9)7
we have
E[lg""" - 277 < ca B[|[27* = 27]] (52)
E[lg"" - 2] < @ +e) B[] - 27[] (53)
B[] - 27|] < @ —e) T B[f|57 - 2] (54)

E[|T) =[] < pB[|| 7" ==~ (55)
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Proof. Note that T'(27) = /! and (27~ 1) = §7. We first prove (52) as follows.

“1LMR
To maz€ o

Efflg™" - 2] < [z = =]

n

B[|5#+ - 5]

< Eﬂz T, 2]) = Th(#, 2]) ﬂ by [I-llz < [I-lly

< U—fZL E[||# —#|[] by Proposition 3

<0 'LMRpqx ji E[||z"" —2*||] by Proposition 2
t=j—r

< o'*lLMmecX:I[D[[ﬁtnzjjr1 — sz] by Lemma 3
t=1

<o 'LMRaqen™ ! <Z ﬁt> IE[[H%jH — sz]] by Proposition 1
t=1

<0 'LMRyaumn” ' pT E[||Z T =2 op
<0 'LMRyamn e B[|| 27T = 27||] - p” < p7T" < e by Proposition 6

To prove (53), we apply the triangle inequality as follows:
B[||g7+! — 27| = B[||g7+! — 27+ + 2741 — 29|
<E[fg - 2] + B2 - 2]

-1
< <1 i TO L]T\meaxe) E[[Hij+1 _ sz]] by (52)

To prove (54), we applying the triangle inequality again as follows:
Bl|#+ — 2] = B[]+ — 57 + 57 - 2|
< B2 -] + B[]l - 2]
< (Ta_lLMRmme

n

)EM?“—ﬂM+EM¢“—ﬂM by (52)
Thus, we have

—1 -1
B[z - 27||] < <1 - M‘meare> E[f|g+ - 27|[].

To prove (55), it suffices to bound the R.H.S. of (53). Based on the triangle inequality ||a| — ||b]| < |la@ — b|| with
a=2z —Z*rand b= 2z/"1 — 27, we have

R R e B e

B

where the expectation of the R.H.S of the above inequality is exactly the same as the R.H.S. of (50). Thus the (51) is also
an upper bound of the L.H.S of the above inequality as follows

B[]z - 2/||] —E[[|# — 22 !|] < (v (A+ BA) E[||#7 — 2]

Thus, we have
B[z 2] < (1 + 1+M+M€> Bz - 22|]

<

( 1—|—M+M9> 1_7'0_1LMRmaxe
n

-1
) E|g’ -2 by (54)
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C.3 Proof of Theorem 1

Theorem 1. Assume a function F (z)in the family defined by (1) admits a global error bound from the beginning. Assume
there is a constant L such that all f; are L-Lipschitz continuous. If the upper bound of the staleness T is small enough such
that the following two conditions hold:

2LM?2c,

B+ D%l VAS T and GRS,

(56)

_ 2 2 _—2r2p2 2
where M = o= (LR2, ., + 2LM Rynqz), and co = ~ Mo nL Rmaz® then Algorithm 2 with atomic operations has a

global linear convergence rate in expectation, that is, there is a constant co and n < 1 such that

E[F(ZT") = F* + o||T(27) — 27||]] < n(E[F(z7) — F* + co||T(z"~") = 2771|]]), (57)
where F* is the minimum of F(z).

First, based on Proposition 7 and the generalized error bound (7), for all 27, we have

) 2 ) _ ) )
|2 = 2*|" = 7 {F@E) — F* —2Lval|2 - Ps(z))]}
> ﬁ{F(zj) — F* —2xLy/n||27 — T(27)]|}. (58)

Next, we bound the decrease of objective function value by
F(z7) = F(z7M)
= (F(z7) = Fy'*)) + (Fy'*) — F(z7™))
oy 112 It ; LM? i1 102 - ..
> (—sz —y’ H ) — 2LHy7 —2J H1 + THyJ — 27 H by Proposition 5 and Proposition 7

2
> (§l -9 7) = (2L 2yt = 2] 4 = 2P < A

By taking the expectation, we have

E[F(z7) — F(zth)]
T 2
> Zg[lg - 2] - %E[[ng“ ~ ] - S Blg7 - #F] by Proposition
T 2
> % IE|[HQj+1 — zj||2]] — 25%1 E[[H%j'H — sz]] — % E[[H%j'H — szQ]] by Lemma 2 and Lemma 4
. - 2Lci1(1—¢p)? . . LM?2¢y(1 — 2¢p) " iy .
> 2E[lg+ - 2] - ZAC e - )] - S0 R g )]

by Lemma 2 and Lemma 4

LM?co(1 —2¢y)~ ! , , 2Lci (1 —¢q)7t » ,
> (o - el Z20 Y g e - o] - 222 g - o))

n vn
1 (o0 LM?c(1—2c)? , 2 2Lci(1—¢p)7t . ;
R L GO e (P 10
> aE[F(2)) - F*] = E||T(z7) — 27| by (58), (59)
where
B 2 o LM?c(1 —2¢p) 7t
T T2 \2n n ’

2E01(1 — Cl)_l

by = 2&05E\/ﬁ +
NG
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Now let
o bop
2 1— ap — [3’

where f is the constant defined in Lemma 4. The definition of ¢, implies
(bo + ¢2)p = (1 — ag)ca. (60)
Thus, we have
E[F(z7M) — F* + oo||T(27) — 27||]
=E[F(27)] - E[F(z)) — F(z7™)] = F* + E[e||T(27) — 27][]

<E[F(27) - F*] - {ao(B[F(2)) - F*] = bo|T(z") = 2/} } + E[ea| T(27) - 2/|] by (59)
<(1—ao)E[F(27) = F*] + (bo + c2)E[||T(27) — 27|[]

<(1—ao)B[F(27) = F*] + (bo + o) pB[||T(z" 1) — 227 Y]] by (55)

=(1—ao)E[F(2’) = F* + || T(z" ") — 2/ 71]] by (60)

D Convergence for AUX-PCD with Wild Updates

D.1 Modeling the Wild updates
In the wild process, at each iteration j, some of the writes to 7 is missing. Therefore, we define the r vector to be
7“{“ = 7’{ + Qtﬂ-(j)Azjég Vt,
where 5{ is a random variable with

o — {1 with probability 1—0
0  with probability 6
where 0 < # < 1 is the missing rate for the writes to 7 vector.
We define the set Z7 to be all the updates that are not missing until step j:
27 ={(t,k) |t <j, k€ N(i(t)), &}, = 1},

where N (i) is the nonzero elements in g;. The set U7 is the updates in the observed auxiliary vector # at iteration j, so

'f'J = ’I"0 + Z Qk,i(t)AZtek
(t,k)euUs

="+ Y QrinAzuer.
(tk)EZd

We assume that the delay of the writes is smaller than 7, so
ZimTCcul C 2.
Since there are missing updates,
o= Qzl — €,
where

Ej:Z Z Qi Azi(r) 0 ek

t<j kEN(i(t))
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Note that most of the 4, are 0 because the missing rate 6 < 1.

To model the behavior of the algorithm, we define the “shifted” objective function at the j-th iteration:

Fi(z) zz—i—de z—€)p)

M: i M:

filz) + de(ri) where 7/ = Qz7 — €

1 k=1

.
Il

Clearly, F7(z) satisfies all the condition for the F function listed in the paper, so all the previous results hold for all
Fi(z).

At the j-th iteration, the algorithm updates the coordinate i(j) by
LI+ _ T;@”Jﬁ) ift =i(j)
! 2] ift #i(j).
And the update using the real 7/ is

Jit = {T;(rﬂy ) ift=i())
2 ift £ i(j).
It is easy to verify the following equality:
Ty(r’, ) = argmuinft(u) + D(r + dqy)
= argmin f;(u) + D(Qz’ — € +4q;)
= arg muin Fi(z + (u— z)e;)
So at the j-th iteration, the update T} (7, z{ ) is actually trying to minimize F”(z) by one step of coordinate descent.

Therefore, Theorem 5 holds if the assumptions in Theorem 5 hold. Instead of using the final result for Theorem 5, we are
going to use the following inequalities from (41):

B[F(27)] — E[F7 (27*1)] 2 bE[|lg7*" — 27||°),

where b = U<1 2L max (1 272M20~2L2R?, e 2)—1(T Mo L[R2, e 2)>
— 2n .

Our goal is to show
E[FIH (274 — prU)] < nE[FI (27) — F*0)]
with some 77 < 1 under certain condition, where F*(/) is the optimal solution for F. This will imply:

1. E[Fi(x7) — F*W)] < (FO(2°) — F*(©), 5o the error converges linearly.
2. The program stop if we set the stopping condition such as ||77(z7)|| < 10~3.
3. The total missing updates e converges linearly to a bounded value.

D.2 Lemmas and Proof of Theorem

Lemma 5. Assume z*U) is the optimal solution of F9, then

1 _ gt 2] < 2000 = 260) 7T B iy i 2

E[ll2+ - 1] < 0|1 (=) - #|°] (1
, 2 2 2 i (i j (2
+1 _ _x(9) & -1 4 4 _

s+ - =0 ] < 260 (R 4 MOE[ 1) - )] ©
) . 27 2(1—260)_1 _ j (53 |12
«(7) _ x(G+1) 2\l = 2C) 1 2 —
EH’Z 9 _ U H < - (ko' LMRypay ) 0R2, ,, F [[HTJ(,ZJ) || ]] (63)
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Proof. The derivation for (61):

B[l -]
S%E[[Hin T ||2]] by Proposition 1
. 1
SMEHng“ —2/|"]  by(39)and 40) in Lemma 2

n

<l e - ]

The derivation for (62):

=
—

S z*(j)”

. 112
<-B||||g"" — 20 H by Proposition 1
T NP
<ZB|||T7(27) — 2*) H ﬂ by definition
T . N2 _ . :
<—E|||T77(27) - TJ(Z*(]))” ﬂ by L+ — T](z*(j))
: , o : . L2
—E|||T(Qz" — €,27) — T(Qz*9) — EJ7Z*(J))H ﬂ

IN
=

{(o_lLM)Hsz - Qz*(j)H + (c7'LR2,..) ‘zj - z*(j)H}Qﬂ by Proposition 3

IA
=

{(U’ILMQ)HZj _ Z*(J‘)H + (gflLanax)sz - z*(j)H}Qﬂ by M = [|Q||

IN
=

—2{(0_—1Ln[2)“zj _ z*(J)H}2 + 2{(0.—1LR2 )Hz] _ Z*(])H}2:|] b 2 2 2
max y (a+b) < 2a +2b
2:|]

+MYE[|19 () - 2|°] by ()

27— 20)

IA

(c7'L)* (Rh o + M4)]E|“

S 3w 3~ 3= 3= 3= 3= 3= 3|+

A

(ko 'L)* (R, ..
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The derivation for (63):

e

<K’ [ Tj+1(z*(j)) _ Z*(j)Hz]] by (7)
< y

40 rG+D) HZH

<Kk’FE _ T+ (2*0)) — Tj(z*(j))HQ]] by 2*0) = 79 (2*0))

2B ||| Tz — 1,20y _ 1z ) — ¢, z*(j))HQH
(k0 LM Rypar) B[ = ¢/|”] by Proposition 3

< (k0 LM Ripnas) "E | Y (1= 6])Qp (52 A2

—

Lk
< (HO’ilLMRma:c)20R3naxE [[||zj+1 - zj ||2]]

< (k0T LM Rinaa) "B | S (1 = 6)) Qa2 A22
k=1 J

< (KUﬁlLMRmaz)QeR?narE [[sz+1 - zj ||2]]

<% (mo_lLMRmM)29anwIE HH%jH — 27 H2H by Proposition 1

— 71 y ]
A2 (0 LM R 0B, B[l — 2] by G9)inLemma 2

_ —1 L .
202 20) 7 (o MR, ,) R, E [Tz - 2]

n

D.3 Main Theorems for AUX-PCD with Wild Updates

We first prove that if {€7 } is bounded and convergent, then a limit point of {27} is the exact solution of a perturbed
problem as follows:

Theorem 2. If €’ converges to €, and z is a limit point of {27}, then we have the following properties:

e Z is a minimizer of the following “perturbed” problem:

argmin { Z fi(z:) + D(Qz — €°)} := F>(z)
Z i=1
e Furthermore, the distance between real and computed solution can be bounded by

12 = Ps(2)I| < ko~ LM||e>]],

where Pg(-) is the projection on to the set of optimal solution of the original objective function F.

Proof. Taking j — oo, we can easily see that F/ — F>°. Combining this with Theorem 3, we can conclude

lim F(zF) = F>(2*()),

k—o0

where z*(°°) is the optimal solution of F'*°, which concludes the first result.
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For 2., we can easily derive as follows:

Iz* = 2| < KI|IT(2) - 2|
= k|T(2) - T(2)]|
= k| T(Qz,2) — T(Qz — €, 2)|

< ko YLM||e>|| (Proposition 3)
O

Theorem 3. Let z*UtV) 2*() be the optimal solution for FIT' FJ respectively. Assume F is Luyqz-smooth and the
conditions in Theorem 5 hold. The sequence {27} generated by the wild algorithm satisfies

E[[Fj“(zi“) 7Fj+1(z*(j+1>)]] < ﬁIE[[Fj(zj) 7Fj(z*(j))]]7

where
1 = o + 0¢a,
co = %(co(l —2¢0) '+ (ko L) (R o + M4))
= Sl 1) (o MRS, ,,).

co and b are the constants defined in Theorem 5, which depends on the bounded delay parameter T. This implies the
algorithm converges linearly when

o + 065 < 1, (64)

which can be satisfied when 0 is small enough.

Proof. Based on Lemma 5 and the smoothness of F’, we can derive the results as follows:
, 4 , . L 4 4 2
E[[FJ+1(ZJ+1) _ Fj+1(z*(j+l)):|:| < WQLazE|[sz+1 _z*(j+1)H ﬂ

3Lmal‘ ] 1 3Lma1} ] x(1 2 3Lma1}
:TE[[HZJH - y]HHQ]] + 2E|[Hyj+1 -z (”H ﬂ + 2]E|“ z

SL’ITL(ZJJ

£G) _ Gt Hzﬂ

<

(00(1 — 200)_1 + (na_lL)Q(anaw + M4) +6(1— 200)_1(50_1LMRmM)2R727m) ]E[[HTj(zj) — szQ]]

=C
<b 'CE[F/(2) - F/(Z™)] by @)

=b"'CE [[Fj(zj) — Fi(z*@)) 4 i (z0)) — Fj(zjﬂ)]]
<b ' CB[Fi(z7) - Fi(z0)] by F(z"0)) < F(z7H),

By plugging the definition of b into the above equation, it is not hard to see that there are two constants ¢y, o such that
7 =b"'C = & + 0¢,. Aslong as &y + 08¢, < 1, we have linear convergence. O

Theorem 4. With Theorem 3, we can show that {€’} converges, and

Be™ ] < 0R e/ F) = F (=) 5.

where 7 € (0,1) is the linear convergence rate in Theorem 3.
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Proof. Since each f;(z) is o-strongly convex, we let g be the single variable function, and z be the current zi , U
arg min, g(u), then

9(2) 2 glw’) + (Vglu'), 2 — ") + 2 (u" = 2)?
2
Sfut — 2| < \[f\/@(z) —g(w)).

Thus, we have

Effe*l < E Z let — €|

<E Z9Hy3“ 2|lll gy
j=1

Jj=1

2
<€E FJ ] F*() Rma:r -
: Ev - Vo

O *
< Ry |2V F
g




