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Abstract

Thompson sampling (TS) is a class of al-
gorithms for sequential decision making, in
which a posterior distribution is maintained
over a reward model. However, calculating
exact posterior distributions is intractable for
all but the simplest models. Development of
computationally-efficiently approximate meth-
ods for the posterior distribution is conse-
quently a crucial problem for scalable TS
with complex models, such as neural networks.
In this paper, we use distribution optimiza-
tion techniques to approximate the posterior
distribution, solved via Wasserstein gradient
flows. Based on the framework, a principled
particle-optimization algorithm is developed
for TS to approximate the posterior efficiently.
Our approach is scalable and does not make
explicit distribution assumptions on poste-
rior approximations. Extensive experiments
on both synthetic and real large-scale data
demonstrate the superior performance of the
proposed methods.

1 Introduction

In many online sequential decision-making problems,
such as contextual bandits [Bubeck et al., 2012] and
reinforcement learning [Sutton and Barto, 1998], an
agent learns to take a sequence of actions to maximize
its expected cumulative reward, while repeatedly inter-
acting with an unknown environment. Moreover, since
in such problems the agent’s actions affect both its
rewards and its observations, it faces the well-known
exploration-exploitation tradeoff. Consequently, the
exploration strategy is crucial for a learning algorithm:

⇤
Work performed at Adobe Research. Proceedings of the

22
nd

International Conference on Artificial Intelligence and

Statistics (AISTATS) 2019, Naha, Okinawa, Japan. PMLR:

Volume 89. Copyright 2019 by the author(s).

under-exploration will typically yield a sub-optimal
strategy, while over-exploration tends to incur a signif-
icant exploration cost.

Various exploration strategies have been proposed, in-
cluding ✏-greedy (EG), Boltzmann exploration [Sut-
ton, 1990, Cesa-Bianchi et al., 2017], upper-confidence-
bound (UCB) [Agrawal, 1995, Auer, 2002] type explo-
ration, and Thompson sampling (TS). Among them,
TS [Thompson, 1933, Russo et al., 2018], which is also
known as posterior sampling or probability matching, is
a widely used exploration strategy with good practical
performance [Li et al., 2010, Chapelle and Li, 2011]
and theoretical guarantees [Russo and Van Roy, 2016,
Agrawal and Goyal, 2012, Russo et al., 2018]. For con-
textual bandits, the vanilla version of TS maintains
a posterior distribution over all the plausible models.
During each round of interacting with the environment,
it (i) first samples a model from the current poste-
rior; (ii) then chooses an action that is optimal under
the sampled model, and receives a reward; and finally
it (iii) updates the posterior based on its action and
reward in this round of interaction.

Vanilla TS is computationally efficient when a closed-
form posterior is available, such as for Bernoulli or
Gaussian rewards. For cases without a closed-form
posterior, computational variants of TS have also been
developed. Some of them are based on approximate
posteriors, such as Gaussian TS for linear bandits with
non-Gaussian rewards [Agrawal and Goyal, 2013], or
TS with Laplace approximation for contextual ban-
dits with a logistic regression model [Chapelle and Li,
2011]. However, most such TS algorithms cannot be ex-
tended in a computationally efficient manner to cases
with complex generalization models, such as neural
networks.

Posterior approximations have also been widely studied
in the field of approximate inference. Variational infer-
ence is a common method for approximating the poste-
rior, but the explicit-form assumption usually leads to
underestimation of uncertainty. This idea leads to TS
via variational inference, which has been explored in
[Urteaga and Wiggins, 2018]. Alternatively, posterior
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sampling has been achieved by particle-optimization-
based sampling methods, which show significant advan-
tages without assumptions on the form of the posterior
distribution.

In this paper, adopting ideas from the Wasserstein-
gradient-flow literature, we propose a general particle-
based distribution optimization framework for TS. Our
framework improves the recently proposed particle-
based framework for TS [Lu and Van Roy, 2017]. Specif-
ically, our framework employs a set of particles inter-
acting with each other to approximate the posterior
distribution. The proposed method is called particle-
interactive Thompson sampling, or ⇡-TS, distinct from
[Lu and Van Roy, 2017] which treats particles inde-
pendently. In our proposed framework, the posterior
can be efficiently updated with new observations via
gradient-descent-based methods, thus drawing samples
from the approximate posterior distribution is fast.

Specifically, we optimize the posterior distribution in
TS based on the Wasserstein-gradient-flow framework.
In this setting, Bayesian sampling in TS becomes a
convex optimization problem on the space of probability

measures, thus the optimality of the learned distribu-
tion could be guaranteed. For tractability, the posterior
distribution in TS is approximated by a set of particles
(a.k.a. samples). We test our framework on a num-
ber of applications, first in simulated scenarios and
then on large-scale real-world datasets. In all cases,
our proposed particle-interactive Thompson sampling
significantly outperforms other baselines.

2 Large-scale Contextual Bandits

2.1 Contextual Bandits

We consider a contextual bandit characterized by triple
(X ,A, P ), where X ✓ <

d is a context (state) space
with dimension d, A = {1, 2, . . . ,K} is a finite action
space, and P encodes the reward distributions at all
the context-action pairs. Specifically, for all context-
action pairs (x,a) 2 X ⇥A, if an agent chooses action
a for context x, then it receives a stochastic reward
r that is drawn conditionally independent from Px,a.
We also use r̄(x,a) to denote the mean of the reward
distribution Px,a.

In the contextual bandit setting, the agent is assumed
to know X and A, but not P . The agent repeatedly
interacts with the contextual bandit for T rounds. At
each round t = 1, . . . , T , the agent first observes a
context xt 2 X , which is independently chosen by the
environment. The agent then adaptively chooses an
action at 2 A, based on the current context xt and the
agent’s past observations. Finally, the agent observes
and receives a reward rt, which is drawn conditionally

independently from the reward distribution Pxt,at . By
definition, E [rt|xt,at] = r̄(xt,at).

The agent’s objective is to learn to maximize its ex-
pected cumulative reward E

hPT
t=1 rt

i
in the first T

rounds, or equivalently, to minimize its expected cumu-
lative regret in the first T rounds:

R(T ) =
TX

t=1

E

max
a2A

[r̄(xt,a)]� rt

�
. (1)

2.2 Reward Generalization

Many practical online decision-making problems that
fit in the framework of a contextual bandit have in-
tractably large scale. Specifically, in such problems, at
least one of X or A has unmanageably large cardinal-
ity (if it is discrete) or dimension (if it is continuous).
One standard approach for developing scalable learning
algorithms for such large-scale problems is to exploit
generalization models.

Specifically, in this paper we assume that the agent
has access to a generalization model m(x,a;✓) for the
mean reward function r̄(x,a), where ✓ is a vector en-
coding the model parameters. We assume that the
generalization model m is “appropriate” in the sense
that there exists a specific model parameter vector ✓⇤

s.t.

m(x,a;✓⇤) ⇡ r̄(x,a) 8(x,a) 2 X ⇥A.

We say m is a perfect generalization model if exact
equality holds in the above equation. Note that m
is a function of the context-action pair (x,a) and the
parameter vector ✓. We further assume that the agent
knows the function m, but not ✓⇤. Consequently, by
exploiting this generalization model, it is sufficient to
learn ✓⇤ to choose near-optimal actions.

One example of the above-mentioned generalization
model is a neural network. In this case m represents
the topology and activation functions of the neural
network, (x,a) is the input to the neural network, and
✓ encodes all the edge weights. Notice that simpler
generalization models, such as linear regression models
and logistic regression models, can be viewed as special
cases of neural networks.

2.3 Thompson Sampling

Thompson sampling (TS) [Thompson, 1933] is a widely
used class of algorithms for bandits, contextual bandits,
and reinforcement learning. For contextual bandits
with reward generalization considered in Section 2.1
and 2.2, assuming the reward generalization is per-
fect, the vanilla version of TS maintains a posterior
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distribution pt over ✓⇤, which is initialized as a prior
distribution p0. At each time t, TS first samples a
parameter vector ✓̂t from the current posterior pt�1;
it then chooses action at 2 argmaxa m(xt,a; ✓̂t) and
receives reward rt; finally, it updates the posterior
based on Bayes rule. The pseudocode of the vanilla TS
algorithm is provided in Algorithm 1.

Algorithm 1 Thompson Sampling (Vanilla Version)
Require: prior distribution p0
1: for t = 1, 2, . . . , T do
2: Observe context xt

3: Draw ✓̂t from the posterior pt�1

4: Select at 2 argmaxa m(xt,a; ✓̂t)
5: Observe and receive reward rt
6: Update posterior pt(✓) pt�1(✓|(xt,at, rt)).
7: end for

Though various regret bounds have been developed for
the vanilla TS, it has two major limitations. First, it
typically requires the reward generalization model m to
be perfect; otherwise, it is very complicated to define
the posterior. Second, for many generalization models
such as a neural network, it is computationally infeasi-
ble to update and sample from the exact posterior. In
this paper, we develop a novel and scalable version of
TS based on optimal transport (Wasserstein gradient
flows), which overcomes these limitations.

3 Wasserstein Gradient Flows

We first review Wasserstein gradient flows (WGF),
which corresponds to gradient descent on the space of
probability measures. For ease of understanding, we
first motivate from gradient flows on the Euclidean
space.

Gradient flows on the Euclidean space For a
smooth function⇤ F : Rd

! R, and a starting point
✓0 2 Rd, the gradient flow of F (✓) is defined as the
solution of the differential equation: d✓

d⌧ = �rF (✓(⌧)),
for time ⌧ > 0 and initial condition ✓(0) = ✓0. This
is a standard Cauchy problem [Rulla, 1996], endowed
with a unique solution if rF is Lipschitz continuous.
When F is non-differentiable, the gradient is replaced
with its subgradient, which gives a similar definition,
omitted here for simplicity.

Gradient flows on the probability measure
space WGF is a generalization of gradient flows on
Euclidean space by lifting the differential equation
above onto the space of probability measures, denoted

⇤
We will focus on the convex case, since this is the

case for many gradient flows on the space of probability

measures, as detailed subsequently.

P(⌦) with ⌦ ⇢ Rd. Formally, we first endow a Rieman-
nian geometry [Carmo, 1992] on P(⌦). The geometry is
characterized by the length between two elements (two
distributions), defined by the second-order Wasserstein
distance:

W 2
2 (µ, ⌫) , inf

�

⇢Z

⌦⇥⌦

k✓ � ✓0k22d�(✓,✓0) : � 2 �(µ, ⌫)

�
,

where �(µ, ⌫) is the set of joint distributions over (✓,✓0)
such that the two marginals equal µ and ⌫, respectively.
The Wasserstein distance defines an optimal-transport
problem, where one wants to transform µ to ⌫ with
minimum cost [Villani, 2008]. Thus the term k✓� ✓0

k
2
2

represents the cost to transport ✓ in µ to ✓0 in ⌫, and
can be replaced by a general metric c(✓,✓0) in a metric
space. If µ is absolutely continuous w.r.t. the Lebesgue
measure, there is a unique optimal transport plan from
µ to ⌫, i.e., a mapping T : Rd

! Rd pushing µ onto ⌫
satisfying T#µ = ⌫. Here T#µ denotes the pushforward
measure [Villani, 2008] of µ. The Wasserstein distance
thus can be equivalently reformulated as

W 2
2 (µ, ⌫) , inf

T

⇢Z

⌦

k✓ � T (✓)k22dµ(✓)
�

, (2)

Consider P(⌦) with a Riemannian geometry endowed
by the second-order Wasserstein metric. Let {µ⌧}⌧2[0,1]

be an absolutely continuous curve in P(⌦) with distance
between µ⌧ and µ⌧+h measured by W 2

2 (µ⌧ , µ⌧+h). We
overload the definition of T to denote the underlying
transformation from µ⌧ to µ⌧+h as ✓⌧+h = Th(✓⌧ ).
Motivated by the Euclidean-space case, if we define
v⌧ (✓) , limh!0

Th(✓⌧ )�✓⌧

h as the velocity of the particle,
a gradient flow can be defined on P(⌦) correspondingly
in Lemma 1 [Ambrosio et al., 2005].
Lemma 1 Let {µ⌧}⌧2[0,1] be an absolutely-continuous

curve in P(⌦) with finite second-order moments. Then

for a.e. ⌧ 2 [0, 1], the above vector field v⌧ defines

a gradient flow on P(⌦) as @⌧µ⌧ + r✓ · (v⌧ µ⌧ ) = 0,
where r✓ · a , r>

✓ a for a vector a.

Function F in Section 3 is lifted to be a functional in
the space of probability measures, mapping a probabil-
ity measure µ to a real value, i.e., F : P(⌦)! R. F is
the energy functional of a gradient flow on P(⌦). Con-
sequently, it can be shown that v⌧ in Lemma 1 has the
form v⌧ = �rx

�F
�µ⌧

(µ⌧ ) [Ambrosio et al., 2005], where
�F
�µ⌧

is called the first variation of F at µ⌧ [Dougan
and Nochetto]. Based on this, gradient flows on P(⌦)
can be written in a form of partial differential equation
(PDE) as

@⌧µ⌧ = �r✓ · (v⌧ µ⌧ ) = r✓ ·
✓
µ⌧r✓(

�F
�µ⌧

(µ⌧ ))

◆
. (3)

Intuitively, an energy functional F characterizes the
landscape structure of the corresponding manifold, and
the gradient flow (3) defines a solution path on this
manifold. Usually, by choosing appropriate F , the
landscape is convex, e.g., the Itó-diffusion case [Chen
et al., 2018]. This provides a theoretical guarantee of
optimal convergence of a gradient flow.
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Remark 1 WGF provides an alternative means of

performing Bayesian sampling: If the WGF (3) is

designed such that the stationary distribution equals our

target distribution, sampling from the target distribution

is equivalent to solving the WGF (3).

4 Thompson Sampling via Optimal

Transport

This section describes our proposed Particle-Interactive
Thompson sampling (⇡-TS) framework. We first in-
terpret Thompson sampling as a WGF problem, then
propose a specific energy function to design a WGF,
and finally propose particle-approximation methods to
solve the ⇡-TS problem.

4.1 Thompson Sampling via Wasserstein
gradient flows

In Thompson sampling, we describe model uncertainty
by imposing distributions on parameters. The optimal
parameter distribution (posterior distribution) thus can
be solved via a WGF defined on the parameter distribu-
tion. Specifically, given a prior distribution p0(✓) on the
model parameters ✓ and the set of past observations
Dt , {(xi,ai, ri)}

t�1
i=1, Thompson sampling [Thomp-

son, 1933] maintains a posterior distribution of ✓ as
p✓ , p(✓| Dt�1) / eU(✓), where the potential energy is
defined as

U(✓) , log p(D|✓) + log p0(✓) (4)

=
tX

i=1

✓
log p(ri|xi,ai,✓) +

1

t
log p0(✓)

◆
,

where, and µ(·) is a neural network. To apply WGFs
for posterior approximation in Thompson sampling, a
variational (posterior) distribution for ✓, denoted as
µ(✓), is learned by solving an appropriate gradient-flow
problem. To make the stationary distribution of the
WGF consistent with the target posterior distribution,
we define an energy functional characterizing the simi-
larity between the current variational distribution and
the true distribution p✓ induced by the rewards as:

F (µ) , �
Z

U(✓)µ(✓)d✓
| {z }

E1

+

Z
µ(✓) logµ(✓)d✓

| {z }
E2

= KL (µkp✓) .

(5)

Note E2 is the energy functional of a pure Brownian
motion (e.g., U(✓) = 0 in (5)). According to (3), the
first variation of functional E1 and E2 can be calculated
as:

�E1

�µ
= �U,

�E2

�µ
= logµ+ 1 . (6)

Substituting (6) into (3) yields the specific PDE form
of the WGF for Thompson sampling. The energy
functional F (µ) defines a landscape determined by the
rewards, whose minimum is obtained at µ = p✓.

Proposition 2 For the gradient flow with energy func-

tional defined in (5), µ converges to p✓ in the infinite-

time limit.

4.2 Particle Approximation for Thompson
Sampling

To solve the above WGF problem (3), following meth-
ods such as those in [Chen et al., 2018], we proposed
to use particles, approximating µ with M particles
{✓i

}
M
i=1 as

µ(h)
⇡

1

M

MX

i=1

�✓i . (7)

where �✓k is a delta function with a spike at ✓k. Con-
sequently, solving for the optimal µ is equivalent to
updating the particles. We investigate two numerical
methods to solve (3), with the discrete-gradient-flow
(DGF) method and the blob method.

Discrete gradient flow method Discrete gradient
flows (DGFs) approximate (3) by discretizing the con-
tinuous curve µt into a piece-wise linear curve, leading
to an iterative optimization problem to solve the in-
termediate points denoted as {µh

k}k, where k denotes
the discrete points, and h is referred to as the stepsize
parameter. The iterative optimization problem is also
known as the Jordan-Kinderleher-Otto (JKO) scheme
[Jordan et al., 1998], where for iteration k, µ(h)

k+1 is ob-
tained by solving the following optimization problem:

µ(h)
k+1 = argmin

µ
KL (µkp✓) +

W 2
2 (µ, µ

(h)
k )

2h
. (8)

With particles approximating the µ in (7), the evolution
of distributions described by (3) can be approximated
with gradient ascent on particles. Specifically, the two
terms in (8) can be decomposed as:

F1 , �Eµ[log p(✓|D)] + �1Eµ[logµ]

F2 , �2Eµ[logµ] +
1

2h
W 2

2 (µ, µ
(h)
k ), (9)

where �1 + �2 = 1. According to Liu and Wang [2016],
the gradient of the first term can be easily approximated
as:

@F1

@✓i
k

=
MX

j=1

h
�(✓j

k,✓
i
k)r✓i

k
U(✓i

k) +r✓j
k
(✓j

k,✓
i
k)
i
,
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where  is the kernel function, which typically is the
radial basis function (RBF) kernel defined as (✓,✓0) =
exp(�k✓ � ✓0

k
2
2/h). For the second term F2, we can

solve the entropy-regularized Wasserstein distance by
introducing Lagrangian multipliers as:

@F2

@✓i
k

⇡ �

P
j uivjcije

� cij
�2

@✓i
k

(10)

=
X

j

2uivj

✓
cij
�2
� 1

◆
exp�

cij
�2 (✓i

k � ✓j
k�1) .

where cij , k✓i
� ✓j

k
2
2. Theoretically, we need to

adaptively update Lagrangian multipliers {ui, vj} to
ensure the constraints in (10). In practice, however, we
use a fixed scaling factor � to approximate uivj for the
sake of simplicity. The entropy-regularized Wasserstein
term F2 works as a complex force between particles
in two ways: i) When cij

� > 1, ✓i
k is pulled close to

previous particles {✓j
k�1}, with force proportional to

( cij� �1)e
�cij/�; ii) when ✓i is close enough to a previous

particle ✓j
k, i.e., cij

� < 1, ✓i
k is pushed away, preventing

it from collapsing to ✓j
k. Formally, in the k-th iteration,

the particles are updated with:

✓i
k+1 = ✓i

k+
h
M

MX

j=1

h
�(✓j

k,✓
i
k)r✓i

k
U(✓i

k) +r
✓j
k
(✓j

k,✓
i
k)
i

+
h
M

MX

j=1

✓
cij
�2

� 1

◆
exp

�
cij
�2 (✓i

k � ✓j
k�1), (11)

Blob method Discrete gradient flows apply particle
approximation on the discretization form (8). In blob
methods, particle approximation is applied directly
on the original PDE of the WGF (3). According to
[Carrillo et al., 2017], if we define vt(✓) = r✓

�(F1+F2)
�µ ,

(8) directly reduces to the following differential equation
system for the particles {✓i

}:

d✓i = vt(✓
i)dt . (12)

Here vt can be interpreted as the velocity of a particle in
the gradient flow. Consequently, the blob method corre-
sponds to solving (12) numerically with a time-spacing
h following the velocity vt. Under a H-Wasserstein
distance metric defined by [Liu, 2017], the velocity vt
can be calculated as:

vt(✓) = E✓0⇠µ̃

⇥
�(✓0,✓)r✓0U(✓0) +r✓0(✓0,✓)

⇤
, (13)

where µ̃ is the empirical particle distribution, i.e.,
µ̃(·) = 1

M

PM
i=1 �✓i(·). By inspecting the represen-

tation of vt in (13), the last term acts as a repulsive
force. Formally, in the k-th iteration, the particles are
updated with:

✓i
k+1 = ✓i

k +
h
M

MX

j=1

h
�(✓j

k,✓
i
k)r✓j

k
U(✓j

k) +r
✓j
k
(✓j

k,✓
i
k)
i
,

(14)

4.3 Particle-Interactive Thompson Sampling

By applying the above methods to solve the WGF
for Thompson sampling, we arrive at the Particle-
Interactive Thompson Sampling (⇡-TS) framework.
The pseudocode of ⇡-TS is described in Algorithm
2. In ⇡-TS, the initial particles are drawn from the
model prior p0(✓), and then are updated iteratively
via either discrete gradient flow or the blob method to
approximate the posterior distributions.

Algorithm 2 Particle-Interactive Thompson Sampling
Require: D0 = ;; initialize particles ⇥0 = {✓i

0}
M
i=1;

1: for t = 1, 2, . . . , T do
2: Observe context xt

3: Draw ✓̂t uniformly from ⇥t

4: Select at 2 argmaxa m(xt,a; ✓̂t)
5: Observe and receive reward rt
6: Dt+1 = Dt [ (xt,at, rt)
7: Update ⇥t+1, according to (11) or (14)
8: end for

In theory, use of more particles leads to better per-
formance. However, maintaining a large number of
particles is computationally expensive. A balance be-
tween performance and computational cost is achieved
by choosing a reasonable number of particles. This is
investigated in Section 5.2. In contrast with vanilla
Thompson sampling, one approximate posterior sample
is randomly selected from the particle set ⇥t in each it-
eration of ⇡-TS to make decisions at time t. Intuitively,
the continuous-time flow of posterior distributions gov-
erned by (3) describes the evolution of posterior distri-
butions. By discretizing this continuous-time flow, we
can iteratively update the posterior distribution. With
particle approximation, the distribution evolution is
described by evolving particles, which can be updated
efficiently by stochastic gradient descent.

5 Experiments

We consider the performance of our proposed ⇡-TS
framework in both static scenarios and contextual-
bandit problems. Specifically, in Section 5.1 we consider
a static scenario, and verify the ability of our frame-
work to sample from multi-mode distributions. We
then consider in Section 5.2 contextual bandits with
a linear or sparse linear reward function. Finally, we
evaluate ⇡-TS on standard real-world benchmarks in
Section 5.3. Our implementation is in TensorFlow. All
computations were run on a single Tesla P100 GPU,
and all results are averaged over 50 realizations. Code
for our experiments is available from https://www.
github.com/zhangry868/pi_Thompson_Sampling.
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5.1 Multi-mode Distributions

To provide insight into the representation power of
the proposed methods, we demonstrate experimental
results in static scenarios for multi-mode distribution
sampling. We implement the WGF-based methods,
i.e., DGF and Blob methods, for sampling from four
complex 2D-distributions with unnormalized densities
p(z) / exp [U(z)]. The detailed functional forms of
U(z) are provided in Section A.1. We use 2000 parti-
cles to approximate the target distributions, with final
results shown in Figure 1. It can be seen that WGF-
based algorithms successfully find all the modes and fit
the distributions well, demonstrating the advantages of
using WGF-based methods for uncertainty estimation.

Figure 1: Illustration of different algorithms on toy
distributions with 2000 particles. Each column is a
distribution case. 1st row: Ground Truth; 2nd row:
DGF; 3rd row: Blob.

5.2 Linear and Sparse Linear Contextual
Bandits

We consider a contextual bandit scenario where un-
certainty estimation is driven by sequential decision
making. This is more challenging because in this case
the observations D are no longer i.i.d., leading to larger
accumulative error as time proceeds. Poor uncertainty
estimation, such as mode-seeking or covering only one
of the modes, will lead to approximation error with
high regret. This usually happens when the approxi-
mated policy keeps selecting a sub-optimal action. We
test the proposed method in two reward settings: one
with linear rewards and the other with sparse linear re-
wards [Riquelme et al., 2018]. We compare our method
with VI-TS [Urteaga and Wiggins, 2018], neural lin-
ear [Riquelme et al., 2018] and Linear-TS [Agrawal
and Goyal, 2013] and normalize the cumulative regrets
relative to that of the uniform action selection.

Linear Rewards We consider a contextual bandit
with k = 8 arms and d = 20 dimensional context. For

a given context X ⇠ N (µ,⌃), the reward obtained by
pulling arm i follows a linear model ri,X = XT�i + ✏
with ✏ ⇠ N (0,�2

i ), where �2
i = 0.01i The posterior dis-

tribution over �i 2 Rd can be computed exactly using
the standard Bayesian linear regression formula, de-
noted as Linear-TS. We set the prior of � ⇠ N (0,� Id),
with � = 0.1. The results in terms of both regret and
normalized regret are plotted in Figure 2. The pro-
posed methods, ⇡-TS-Blob and ⇡-TS-DGF, perform
almost as well as Linear-TS, the exact model, whereas
other methods such as Neural-Linear and VI-TS receive
much larger regret. The gap is primarily caused by the
approximation error between the exact posterior and
approximate posterior. VI-TS shows a higher regret
variance. Furthermore, ⇡-TS-Blob and ⇡-TS-DGF are
found to perform similarly.

Figure 2: Normalized regret comparison among five
methods on linear cases.

Effects of Numbers of Particles

Figure 3: Impact of particle number.

We investigate
the influence
of the number
of particles
used on the
performance.
We consider
M = 1, 5, 20, 50
particles, where
the case of a
single particle
corresponds to the greedy setting. We use the same
model as the above experiments. We here use larger
noise �2

i = 0.1, and pull each arm two times at the
initial stage. Figure 3 shows accumulated regret as a
function of the number of particles. As expected, the
best performance is achieved with the largest number
of particles. The performance keeps improving with an
increasing number of particles, but the gain becomes
insignificant considering the increased computational
costs.

Sparse Linear Rewards In this case, the weight
vector �s

i 2 Rd is sparse. Specifically, �s
i is more

sparse than the standard � used above. The reward
obtained by pulling arm i follows a sparse linear model
is ri,X = XT�s

i + ✏, where �2
i = 0.01i. The results are

plotted in Figure 4; much less regret is achieved by
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⇡-TS-DGF and ⇡-TS-Blob, which are comparable to
Linear-TS.

Figure 4: Normalized regret comparison among five
methods on sparse linear cases.

5.3 Deep Contextual Bandits

Following the settings of [Riquelme et al., 2018], we
evaluate the algorithms on a range of bandit problems
created from real-world data: the Statlog, Covertype,
Adult, Census, Financial, and Mushroom datasets.
These datasets exhibit a broad range of properties:
from small to large data sizes, from one dominating ac-
tion to more homogeneous optimality, and from stochas-
tic to deterministic rewards. Details on the datasets
are provided in Table 1. We normalize the cumulative
regrets relative to that of the uniform action selection,
and plot the box-plot of the final normalized regrets
in Figure 6. In Figure 5 we provide the mean (dark
curves) and standard derivation (light areas) of regret,
along with number of pulls, over 50 realizations.

Table 1: Description of datasets

Dataset Contexts Actions

Mushroom 22 2
Statlog 16 7
Covertype 54 7
Financial 21 8
Census 389 9
Adult 94 14

In summary, ⇡-TS outperforms other methods; the per-
formance of Linear-TS is not as good due to its poor
representation. Especially with more data observed, it
becomes more and more difficult to approximate the
exact posterior with the Linear-TS. With features ex-
tracted by a neural network, the neural linear approach
improves the performance and generally outperforms
Linear-TS. Nevertheless, there are some cases where
valid features cannot be well extracted by neural net-
works, leading to poor performance of Neural Linear.
Furthermore, VI-TS [Urteaga and Wiggins, 2018] con-
sistently performs poorly, with very high variance. The
main cause might be that the underestimated uncer-
tainty leads to poor exploration. Our proposed ⇡-TS
outperforms other methods, since it can provide better
uncertainty estimation than VI-TS, and endows more

Figure 5: Normalized regret comparison on real-world
datasets.

representation power than Linear-TS. Specifically, the
performance of ⇡-TS for relatively large datasets is
much better than that of other methods.

5.4 Online Response Selection of Dialogue

We consider the response-selection task in the dialog
problem, under the contextual bandit framework. We
use the Ubuntu Dialogue Corpus (UDC) [Lowe et al.,
2015] dataset, a multi-turn-based dialog corpus con-
structed from Ubuntu chat logs. The dataset contains
dialog context-response pairs from real chat logs and
each data sample contains three components: the di-
alog context, ten candidate responses, and their la-
bels (match or non-match). We perform standard
pre-processing by replacing named entities with corre-
sponding tags. We use Recall@k for evaluation (k=1,
2, 5). Recall@k measures whether the ranking is con-
sidered correct if the matched response is among the
top k selections of the 10 candidate responses.

We use a bidirectional LSTM [Schuster and Paliwal,
1997] to encode dialog context and response, where the
LSTM state size and output size are both set to 256,
and the word-embeddings size is 150. In this setting,
the candidate responses are regarded as actions. We
use the RMSProp optimizer in the contextual-bandit
based response selection model training with a learning
rate of 0.001. The bidirectional LSTM encoder is pre-
trained using data from the UDC training set as an
encoder-decoder model. Online bandit learning and
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Figure 6: Normalized cumulative regret on real-world datasets.

evaluation is performed using data sampled from the
test set.

In each dialog interaction, a context is randomly se-
lected from the UDC test set and provided to the agent.
Given the context and candidate responses, the agent
returns its best predicted response to the user. The
user then provides the agent with feedback to help im-
prove the performance of the agent. If a good response
is selected for the contexts, the agent will receive a
reward of 1; otherwise, a reward of 0 will be given.

Similar to the setting of [Liu et al., 2017], 2000 context-
response pairs are held in the test set for evaluation Liu
and Wang [2016], and the rest are used in the online
learning by the agent. The results are shown in Table
2.
Table 2: Recall@k evaluation results for the online response

selection with k=1, 2 and 5.

1 in 10 R@1 1 in 10 R@2 1 in 10 R@5

VI-TS 11.5% 21.5% 52.5%
Neural Linear 17.5% 29.5% 63.5%
⇡-TS-Blob 23.5% 33.5% 66.0%
⇡-TS-DGF 26.0% 36.5% 70.5%

It is observed that ⇡-TS outperforms other methods;
Linear-TS is not applicable in this dataset, and thus it
is excluded from the baselines. Moreover, the perfor-
mance of ⇡-TS-Blob is slightly worse than ⇡-TS-DGF.

6 Related Work

It is difficult in general to calculate exact posteriors
in Thompson sampling. Thus it is necessary to effi-
ciently approximate a posterior distribution to make
TS scalable for complex models. [Blundell et al., 2015]
first used standard variational inference to approxi-
mate the posterior of neural networks, i.e., Bayesian
neural networks, which were then incorporated into
Thompson sampling. Further, [Osband et al., 2016]
proposed to use different heads for a deep Q-network
to approximate posterior with bootstrap. Inspired by
[Osband et al., 2016], Lu and Van Roy [2017] pro-
posed ensemble sampling, which uses a set of parti-
cles to approximate a posterior distribution. These

particles are updated independently with stochastic
gradient descent, without a convergence guarantee, in
terms of posterior-approximation convergence. Simi-
larly, weighted bootstrap [Vaswani et al., 2018] uses ran-
dom weights performed on the likelihood to mimic the
bootstrap, which is connected to TS. [Riquelme et al.,
2018] built a benchmark to evaluate deep Bayesian
bandits, and especially recommended the neural linear
method, which uses a deep neural network to extract
features and perform linear Thompson sampling based
on these features. Similar to neural linear, [Azizzade-
nesheli et al., 2018] replaced the final layer of a deep
neural network with Bayesian logistic regression for
deep Q-networks, which greatly boosted the perfor-
mance on Atari benchmarks. Zhang et al. [2018b]
firstly investigate particle-based Thompson sampling
in contextual bandits settings. Zhang et al. [2018a]
places policy optimization into the space of probability
measures, and interpret it as Wasserstein gradient flows.
In this work, we provide a distribution optimization
perspective to understand the posterior approximation,
and propose efficient algorithms to approximate pos-
terior distributions in Thompson sampling. This work
can be regarded as the counterpart of [Zhang et al.,
2018b] for value-based methods.

7 Conclusion

We have proposed a scalable Thompson sampling frame-
work, ⇡-TS, for posterior estimation in Thompson
sampling. We approximate the posterior distribution
without an explicit-form variational distribution as-
sumption, which leverages more powerful uncertainty
estimation. Importantly, our methods can be applied
on large-scale problems with complex models, such as
neural networks. Specifically, ⇡-TS approximates a
distribution by defining gradient flows on the space of
probability measures, and uses particles for approxi-
mation. Extensive experiments are conducted, demon-
strating the effectiveness and efficiency of our proposed
⇡-TS framework. Interesting future work includes de-
signing more practically efficient variants of ⇡-TS, and
developing theory to study general regret bounds of
the algorithms, as was done in [Lu and Van Roy, 2017].
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