
Extreme Stochastic Variational Inference: Distributed Inference for Large Scale Mixture Models

A Proof of Theorem 1

Proof We prove that z̃
⇤
i is a stationary point by

checking the KKT conditions for (16). Let h (z̃i) =�P
k2K z̃i,k

�
� C and gk (z̃i) = �zi,k. It is clear that

z̃
⇤
i satisfies the primal feasibility. Now consider KKT

multipliers:

� = log
CP

k02K exp (ui,k0)
, and µk = 0.

We have

rkLK (z̃⇤i) = ui,k � log(z̃⇤i,k)� 1

= ui,k �
✓
ui,k + log

CP
k02K exp(ui,k0)

◆

= log
CP

k02K exp(ui,k0)

�rkh(z̃
⇤
i) = log

CP
k02K exp(ui,k0)

µkrkgk0(z̃⇤i) = 0.

Then it is easy to verify that rkLK(z̃⇤i) = � =
�rkh(z̃⇤i). Thus, z̃

⇤
i satisfies the stationarity condi-

tion:

rLK(z̃
⇤
i) = �rh(z̃⇤i) +

KX

k=1

µkrgk(z̃
⇤
i).

Due to choice of µk = 0, complementary slackness
and dual feasibility are also satisfied. Thus, z̃⇤i is the
optimal solution to (16).

B Access Patterns

In this section, we outline the access patterns of VI
and SVI in Figure 9 and Figure 10 respectively.

z̃ x

⇡̃
✓̃

(a) ⇡̃ update

z̃ x

⇡̃
✓̃

(b) ✓̃ update

z̃ x

⇡̃
✓̃

(c) z̃ update

Figure 9: Access pattern of variables during Variational
Inference (VI) updates. Green indicates that the vari-
able or data point is being read, while red indicates
that the variable is being updated.

Bottleneck to Model Parallelism: The local vari-
able z̃i needs to be normalized in order to be maintained
on the k-dimensional simplex �k after the update (12).

z̃ x

⇡̃
✓̃

(a) ⇡̃ update

z̃ x

⇡̃
✓̃

(b) ✓̃ update

z̃ x

⇡̃
✓̃

(c) z̃ update

Figure 10: Access pattern of variables during Stochastic
Variational Inference (SVI) updates. Green indicates
that the variable or data point is being read, while red
indicates that the variable is being updated.

This is the primary bottleneck to model parallelism in
both VI and SVI, since this requires access to all K
components. In ESVI, we propose a novel way to over-
come this barrier, leading to completely independent
local and global variable updates.

C ESVI-LDA

In this section, we show how to apply ESVI to Latent
Dirichlet Allocation (LDA). Recall the standard LDA
model by Blei et al.[2]. Each topic �k, k 2 [K] is a
distribution over the vocabulary with size V and each
document is a combination of K topics. The generative
process is:

• Draw topic weights �k ⇠ Dirichlet(⌘), k = 1 . . .K

• For every document di 2 {d1, d2 . . . dD}:

– Draw ✓i ⇠ Dirichlet(↵)
– For each word n 2 [N]:

⇤ Draw topic assignment zin ⇠ Multi(✓i)
⇤ Draw word win ⇠ Multi(�zin)

where ↵ 2 RK and ⌘ 2 RV are symmetric Dirichlet
priors. The inference task for LDA is to characterize
the posterior distribution p(�, ✓, z|w). While the pos-
terior is intractable to compute, many methods have
been developed to approximate the posterior. Here we
use the idea in previous sections to develop extreme
stochastic variational inference for LDA.

We denote the assignment of word n in document di

as zin where zi 2 RK . Also win denotes the n-th
word in i-th document. Thus in LDA, the local hidden
variables for a word is the word assignment vector zin

and local hidden variable for a document is zi and the
topic mixture ✓i. The global hidden variable are the
topics �k. Given these, we can formulate the complete

Jiong Zhang*, Parameswaran Raman*, Shihao Ji, Hsiang-Fu Yu, S.V.N. Vishwanathan, Inderjit Dhillon

conditional of the topics �k ✓i and zin as:

p(�k|z, w) = Dirichlet(⌘ +
DX

i=1

NX

n=1

z
k
inwin)

p(✓i|zi) = Dirichlet(↵+
NX

n=1

zin)

p(zkin = 1|✓i,�1:K , win) / exp (log ✓ik + log �win
k)

We denote multinomial parameter for z
k
in as �

k
in,

Dirichlet parameter for �k and ✓i as �k and �i. The
update rules for these three variational parameters are:

�i = ↵+
NX

n=1

zin

�k = ⌘ +
DX

i=1

NX

n=1

z
k
inwin,

�
k
in / exp

 (�ki) + (�

win
k)� (

VX

v=1

�
v
k)

!

where is the digamma function and we denote
⇡k =

PV
v=1 �

v
k. Traditional VI algorithms infer all

the local variables ✓, z and then update the global
variable �. This is very inefficient and not scalable.
Notice that when updating �kin we only need to access
�
k
i , �win

k and ⇡k. And similarly, once �kin is modified,
the parameters that need to be updated are �ki , �win

k
and ⇡k. Therefore, as long as ⇡k can be accessed, the
updates to these parameters can be parallelized. Based
on the ideas we introduced in Section 4, we propose an
asynchronous distributed method ESVI-LDA, which is
outlined in Algorithm 5. Besides working threads, each
machine also has a sender thread and a receiver thread,
which enables the non-locking send/recv of parame-
ters. One key issue here is how to keep ⇡1:K up-to-date
across multiple processors. For this, we follow [18],
who present a scheme for keeping a slowly changing K

dimensional vector, approximately synchronized across
multiple machines. Succinctly, the idea is to commu-
nicate the changes in ⇡ using a round robin fashion.
Since ⇡ does not change rapidly, one can tolerate some
staleness without adversely affecting convergence.

In order to update �kin we need only to access �ki �
win
k

and ⇡k. And similarly, once �kin is modified, only param-
eters �ki , �win

k and ⇡k need to be updated. Following
that, for each word token, these parameters can be
updated independently. In our setting, each machine
loads its own chunk of the data, and also has local
model parameters � and �. Each machine maintains
a local job queue that stores global parameters � that
is now owned by this machine. After updating with
each �

v
1:K , the machine sends it to another machine

Algorithm 5 ESVI-LDA Algorithm
Load {d1 . . . dD} into P machines
Initialize �, �, � using priors ↵, ⌘
Initialize job queue Q: distribute �1:V in P machines
Initialize sender queue qs

for every machine asynchronously do
if receiver thread then

while receive �v do
push (Qt,�

v) for some t

end while
end if
if sender thread then

while not qs.empty () do
send qs.pop() to next random machine

end while
end if
if worker thread t then

pop from Qt: �v,
for all local word token s.t. wdn = v do

for k = 1 . . .K do
�
k
dn / exp

�

�
�
k
d

�
+ (�wdn

k)� (
P

v �
v
k)
�

end for
for k = 1 . . .K do
�
k
d+ = �

k
dn � �

k
dn(old)

�
wdn
k + = �

k
dn � �

k
dn(old)

end for
Update global

P
v �

v
k

end for
qs.push (�v)

end if
end for

while pushing v into the job queue of that machine.
This leads to a fully asynchronous and non-locking
distributed algorithm.

D ESVI-GMM

Since the distribution of computation in ESVI-GMM
method also works in a similar manner as ESVI-LDA
Algorithm 5 (only the local and global updates need to
be replaced), in this section, we only present the update
rules for the local and global variational parameters
for Gaussian Mixture Models (GMM).

D.1 VI updates for GMM

The generative process for this model assumes that
data x = (x1, . . . , xN) is generated by a mixture of K
gaussian distributions whose mean and precision are
given by µ = {µk} and ⇤ = {⇤k}. ⇡ 2 �k denotes
the mixing coefficient, where �k is defined to be the
K-dimensional simplex. These are the global variables.
As usual, z = (z1, . . . , zN) , zi 2 �k denotes the latent

Extreme Stochastic Variational Inference: Distributed Inference for Large Scale Mixture Models

variable to keep track of the component assignments
to the data points. These are the local variables.

The conditional distributions for the data x and z

(likelihood) can be written as:

p (x|z, µ,⇤) =
NY

i=1

KY

k=1

N
�
xi|µk,⇤

�1
k

�zik

p (z|⇡) =
NY

i=1

KY

k=1

⇡
zik
k

We now introduce the following conjugate priors to
simplify the bayesian inference.

p (⇡) = Dirichlet (⇡|↵0)

p (µ,⇤) = p (µ|⇤) · p (⇤)

=
KY

k=1

N
⇣
µk|m0, (�0⇤k)

�1 W (⇤k|W0, ⌫0)
⌘

| {z }
Gaussian-Wishart

where, m0,↵0,�0, ⌫0,W0 are hyper-parameters that
can be initialized to some suitable value.

Given this setup, we can express the joint distribution
of all our random variables as:

p (x, z,⇡, µ,⇤) = p (x|z, µ,⇤) · p (µ,⇤)| {z }
conjugate pair

· p (z|⇡) · p (⇡)| {z }
conjugate pair

Clearly, the corresponding posterior distribution
p (z,⇡, µ,⇤|x) involves computing expensive high-
dimensional integrals and therefore a simpler varia-
tional distribution q is used as an approximation:

q (z,⇡, µ,⇤) = q (z) · q (⇡) ·
KY

k=1

q (µk,⇤k)

= q (z) · q (⇡|↵)| {z }
Dirichlet

·
KY

k=1

q

⇣
µk|mk, (�k⇤k)

�1
⌘

| {z }
Gaussian

· q (⇤k|Wk, ⌫k)| {z }
Wishart

Optimizing the ELBO, leads to the following local and
global variable updates.

Update rules for local variables:

⇢i,k = exp

0

B@E [log ⇡k]| {z }
t1

+
1

2
E [log |⇤k|]| {z }

t2

�D

2
log 2⇡ � 1

2
Eµk,⇤k

h
(xi � µk)

> ⇤k (xi � µk)
i

| {z }
t3

1

CCA

where, the terms t1, t2 and t3 are given by:

t1 = (↵k)�

KX

k=1

↵k

!

t2 =
DX

j=1

✓
⌫k + 1� j

2

◆
+D log 2 + log |Wk|

t3 = D�k
�1 + ⌫k (xi � µk)

>
Wk (xi � µk)

Using these, the local updates can be written as:

z̃i,k =
⇢i,kPK

k0=1 ⇢i,k0

Update rules for global variables:
For these, first we define some intermediate quantities
that are used in the global updates.

Nk =
NX

i=1

z̃i,k

x̄k =
1

Nk

NX

i=1

z̃i,k · xi

Sk =
1

Nk

NX

i=1

z̃i,k (xi � x̄k) (xi � x̄k)
>

Using these, the global updates can be written as:

q (⇤k) ⇠ W (⇤k|Wk, ⌫k)

q (µk|⇤k) ⇠ N
⇣
µk| (�k⇤k)

�1
⌘

q (⇡|↵) ⇠ Dirichlet (⇡|↵)

where the above parameters are given by:

�k = �0 +Nk

mk =
1

�k
(�0 ·m0 +Nk · x̄k)

W
�1
k = W0

�1 +Nk · Sk +
�0Nk

�0 +Nk
(x̄k �m0) (x̄k)�m

>
0

⌫k = ⌫0 +Nk

D.2 Scaling to large dimensions

When the dimensions D are large, GMM becomes com-
putationally heavy since it involves the storage and
inversion of a large O(D ⇥ D) matrix. To overcome
this problem, we make the assumption of diagonal co-
variance matrix ⌃k = diag

�
�
2
1 , . . . ,�

2
D

�
for each com-

ponent k, which intuitively means that the dimensions
are independent within each mixture component. This
lets us run ESVI-GMM on larger datasets.

Jiong Zhang*, Parameswaran Raman*, Shihao Ji, Hsiang-Fu Yu, S.V.N. Vishwanathan, Inderjit Dhillon

E Parameter Settings used in the
empirical study

We used the following hyper-parameter settings:

• In Gaussian Mixture Models (GMM) experiments,
we used ↵0 = 5, �0 = 1, m0 = 0. ⌫0 and W0

were turned per dataset based on the best perfor-
mance. We set {⌫0,W0} as {300000, 0.1} for TOY,
{300000, 0.1} for AP-DATA, {500000, 0.5} for
NIPS and {500000, 0.5} for NYTIMES datasets.

• For the SVI methods, we used a batch size of 100
(we tried various batch sizes and picked the value
we found to provide the best results). The step-size
in SVI was decayed following the recommendation
in [7], namely, ⌘t = ⌘0

(1+t) , where ⌘0 was carefully
tuned and set to 0.1. Here, t denotes the iteration
index.

