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A.1 Performance of Multi-Branch Architecture
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Figure 1: Test accuracy of using VGG-9 as the
sub-networks in the multi-branch architecture.

In this section, we test the classification accuracy of the multi-
branch architecture on the CIFAR-10 dataset. We use a 9-layer
VGG network [4] as our sub-network in each branch, which
is memory-efficient for practitioners to fit many branches into
GPU memory simultaneously. The detailed network setup of
VGG-9 is in Table 1, where the width of VGG-9 is either 16 or
32. We test the performance of varying numbers of branches
in the overall architecture from 4 to 32, with cross-entropy
loss. Figure 1 presents the test accuracy on CIFAR-10 as the
number of branches increases. It shows that the test accuracy
improves monotonously with the increasing number of parallel
branches/paths.

Table 1: Network architecture of VGG-9. Here w is the width of the network, which controls the number of filters
in each convolution layer. All convolution layers have a kernel of size 3, and zero padding of size 1. All layers
followed by the batch normalization have no bias term. All max pooling layers have a stride of 2.

Layer Weight Activation Input size Output size
Input N / A N / A N / A 3× 32× 32
Conv1 3× 3× 3× w BN + ReLU 3× 32× 32 w × 32× 32
Conv2 3× 3× w × w BN + ReLU w × 32× 32 w × 32× 32

MaxPool N / A N / A w × 32× 32 w × 16× 16
Conv3 3× 3× w × 2w BN + ReLU w × 16× 16 2w × 16× 16
Conv4 3× 3× 2w × 2w BN + ReLU 2w × 16× 16 2w × 16× 16

MaxPool N / A N / A 2w × 16× 16 2w × 8× 8
Conv5 3× 3× 2w × 4w BN + ReLU 2w × 8× 8 4w × 8× 8
Conv6 3× 3× 4w × 4w BN + ReLU 4w × 8× 8 4w × 8× 8
Conv7 3× 3× 4w × 4w BN + ReLU 4w × 8× 8 4w × 8× 8

MaxPool N / A N / A 4w × 8× 8 4w × 4× 4
Flatten N / A N / A 4w × 4× 4 64w
FC1 64w × 4w BN + ReLU 64w 4w
FC2 4w × 10 Softmax 4w 10
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A.2 Strong Duality of Deep Linear Neural Networks

We compare the optima of primal problem (4) and dual problem (5) by numerical experiments for three-layer
linear neural networks (H = 3). The data are generated as follows. We construct the output matrix Y ∈ R100×100

by drawing the entries of Y from i.i.d. standard Gaussian distribution and the input matrix X ∈ R100×100 by the
identity matrix. The dmin varies from 5 to 50. Both primal and dual problems are solved by numerical algorithms.
Given the non-convex nature of primal problem, we rerun the algorithm by multiple initializations and choose the
best solution that we obtain. The results are shown in Figure 2. We can easily see that the optima of primal and
dual problems almost match. The small gap is due to the numerical inaccuracy.

dmin

5 10 15 20 25 30 35 40 45 50

O
pt

im
a

500

1000

1500

2000

2500

3000

3500

4000

4500
Primal Problem
Dual Problem

Figure 2: Comparison of optima between primal and dual problems.

We also compare the `2 distance between the solution W∗
HW∗

H−1 . . .W
∗
1 of primal problem and the solution

svddmin
(Ỹ −Λ∗) of dual problem in Table 2. We see that the solutions are close to each other.

Table 2: Comparison of the `2 distance between the solutions of primal and dual problems.

dmin 5 10 15 20 25 30 35 40 45 50
`2 distance (×10−10) 1.95 1.26 7.89 3.80 3.14 1.92 1.04 3.92 6.53 8.00

B Proofs of Theorem 1: Duality Gap of Multi-Branch Neural Networks

The lower bound 0 ≤ inf(P)−sup(D)
∆worst

is obvious by the weak duality. So we only need to prove the upper bound
inf(P)−sup(D)

∆worst
≤ 2

I .

Consider the subset of R2:

Yi :=

{
yi ∈ R2 : yi =

1

I

[
hi(w(i)),E(x,y)∼P

(
1−

y · fi(w(i); x)

τ

)]
,w(i) ∈ Wi

}
, i ∈ [I].

Define the vector summation
Y := Y1 + Y2 + ...+ YI .

Since fi(w(i); x) and hi(w(i)) are continuous w.r.t. w(i) and Wi’s are compact, the set

{(w(i), hi(w(i)), fi(w(i); x)) : w(i) ∈ Wi}

is compact as well. So Y , conv(Y), Yi, and conv(Yi), i ∈ [I] are all compact sets. According to the definition of Y
and the standard duality argument [3], we have

inf(P) = min {w : there exists (r, w) ∈ Y such that r ≤ K} ,
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and
sup(D) = min {w : there exists (r, w) ∈ conv (Y) such that r ≤ K} .

Technique (a): Shapley-Folkman Lemma. We are going to apply the following Shapley-Folkman lemma.
Lemma 1 (Shapley-Folkman, [5]). Let Yi, i ∈ [I] be a collection of subsets of Rm. Then for every y ∈
conv(

∑I
i=1 Yi), there is a subset I(y) ⊆ [I] of size at most m such that

y ∈

 ∑
i 6∈I(y)

Yi +
∑
i∈I(y)

conv(Yi)

 .
We apply Lemma 1 to prove Theorem 1 with m = 2. Let (r, w) ∈ conv(Y) be such that

r ≤ K, and w = sup(D).

Applying the above Shapley-Folkman lemma to the set Y =
∑I
i=1 Yi, we have that there are a subset I ⊆ [I] of

size 2 and vectors
(ri, wi) ∈ conv(Yi), i ∈ I and w(i) ∈ Wi, i 6∈ I,

such that
1

I

∑
i6∈I

hi(w(i)) +
∑
i∈I

ri = r ≤ K, (1)

1

I

∑
i6∈I

E(x,y)∼P

(
1−

y · fi(w(i); x)

τ

)
+
∑
i∈I

wi = sup(D). (2)

Representing elements of the convex hull of Yi ⊆ R2 by Carathéodory theorem, we have that for each i ∈ I, there
are vectors w1

(i),w
2
(i),w

3
(i) ∈ Wi and scalars a1

i , a
2
i , a

3
i ∈ R such that

3∑
j=1

aji = 1, aji ≥ 0, j = 1, 2, 3,

ri =
1

I

3∑
j=1

ajihi(w
j
(i)), wi =

1

I

3∑
j=1

ajiE(x,y)∼P

(
1−

y · fi(wj
(i); x)

τ

)
.

Recall that we define

f̂i(w̃) := inf
w(i)∈Wi

{
E(x,y)∼P

(
1−

y · fi(w(i); x)

τ

)
: hi(w(i)) ≤ hi(w̃)

}
, (3)

f̃i(w̃) := inf
aj ,wj

(i)
∈Wi


pi+2∑
j=1

ajE(x,y)∼P

(
1−

y · fi(wj
(i); x)

τ

)
: w̃ =

pi+2∑
j=1

ajwj
(i),

pi+2∑
j=1

aj = 1, aj ≥ 0

 ,

and ∆i := supw∈Wi

{
f̂i(w)− f̃i(w)

}
≥ 0. We have for i ∈ I,

ri ≥
1

I
hi

 3∑
j=1

ajiw
j
(i)

 , (because hi(·) is convex) (4)

and

wi ≥
1

I
f̃i

 3∑
j=1

ajiw
j
(i)

 (by the definition of f̃i(·))

≥ 1

I
f̂i

 3∑
j=1

ajiw
j
(i)

− 1

I
∆i. (by the definition of ∆i)

(5)
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Thus, by Eqns. (1) and (4), we have

1

I

∑
i 6∈I

hi(w(i)) +
1

I

∑
i∈I

hi

 3∑
j=1

ajiw
j
(i)

 ≤ K, (6)

and by Eqns. (2) and (5), we have

E(x,y)∼P

1

I

∑
i6∈I

(
1−

y · fi(w(i); x)

τ

)+
1

I

∑
i∈I

f̂i

 3∑
j=1

ajiw
j
(i)

 ≤ sup(D) +
1

I

∑
i∈I

∆i. (7)

Given any ε > 0 and i ∈ I, we can find a vector w(i) ∈ Wi such that

hi(w(i)) ≤ hi

 3∑
j=1

ajiw
j
(i)

 and E(x,y)∼P

(
1−

y · fi(w(i); x)

τ

)
≤ f̂i

 3∑
j=1

ajiw
j
(i)

+ ε, (8)

where the first inequality holds because Wi is convex and the second inequality holds by the definition (3) of f̂i(·).
Therefore, Eqns. (6) and (8) impliy that

1

I

I∑
i=1

hi(w(i)) ≤ K.

Namely, (w(1), ...,w(I)) is a feasible solution of problem (2). Also, Eqns. (7) and (8) yield

inf(P) ≤ E(x,y)∼P

[
1

I

I∑
i=1

(
1−

y · fi(w(i); x)

τ

)]

≤ sup(D) +
1

I

∑
i∈I

(∆i + ε)

≤ sup(D) +
2

I
∆worst + 2ε,

where the last inequality holds because |I| = 2. Finally, letting ε→ 0 leads to the desired result.

C Proofs of Theorem 2: Strong Duality of Deep Linear Neural Networks

Let Ỹ = YX†X. We note that by Pythagorean theorem, for every Y,

1

2
‖Y −WH · · ·W1X‖2F =

1

2
‖Ỹ −WH · · ·W1X‖2F +

1

2
‖Y − Ỹ‖2F︸ ︷︷ ︸

independent of W1,...,WH

.

So we can focus on the following optimization problem instead of problem (4):

min
W1,...,WH

1

2
‖Ỹ −WH ...W1X‖2F +

γ

H

[
‖W1X‖HSH +

H∑
i=2

‖Wi‖HSH

]
. (9)

Technique (b): Variational Form. Our work is inspired by a variational form of problem (9) given by the
following lemma.

Lemma 2. If (W∗
1, . . . ,W

∗
H) is optimal to problem

min
W1,...,WH

F (W1, . . . ,WH) :=
1

2
‖Ỹ −WH · · ·W1X‖2F + γ‖WH · · ·W1X‖∗, (10)

then (W∗∗
1 , . . . ,W∗∗

H ) is optimal to problem (9), where UΣVT is the skinny SVD of W∗
HW∗

H−1 · · ·W∗
1X, W∗∗

i =

[Σ1/H ,0; 0,0] ∈ Rdi×di−1 for i = 2, 3, ...,H − 1, W∗∗
H = [UΣ1/H ,0] ∈ RdH×dH−2 and W∗∗

1 = [Σ1/HVT ; 0]X† ∈
Rd1×d0 . Furthermore, problems (9) and (10) have the same optimal objective function value.
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Proof of Lemma 2. Let UΣVT be the skinny SVD of matrix WHWH−1 · · ·W1X =: Z. We notice that

‖Z‖∗ = ‖WHWH−1 · · ·W1X‖∗

≤ ‖W1X‖SH
H∏
i=2

‖Wi‖SH (by the generalized Hölder’s inequality)

≤ 1

H

[
‖W1X‖HSH +

H∑
i=2

‖Wi‖HSH

]
. (by the inequality of mean)

Hence, on one hand, for every (W1, . . . ,WH),

min
W1,...,WH

F (W1, . . . ,WH) ≤ 1

2
‖Ỹ −WH · · ·W1X‖2F + γ‖WHWH−1 · · ·W1X‖∗

≤ 1

2
‖Ỹ −WH · · ·W1X‖2F +

γ

H

[
‖W1X‖HSH +

H∑
i=2

‖Wi‖HSH

]
,

which yields

min
W1,...,WH

F (W1, . . . ,WH) ≤ min
W1,...,WH

1

2
‖Ỹ −WH · · ·W1X‖2F +

γ

H

[
‖W1X‖HSH +

H∑
i=2

‖Wi‖HSH

]
.

On the other hand, suppose (W∗
1, . . . ,W

∗
H) is optimal to problem (10), and let UΣVT be the skinny SVD of

matrix W∗
HW∗

H−1 · · ·W∗
1X. We choose (W∗∗

1 , . . . ,W∗∗
H ) such that

W∗∗
H = [UΣ

1
H ,0], W∗∗

1 X = [Σ
1
H VT ; 0], W∗∗

i = [Σ
1
H ,0; 0,0], i = 2, . . . ,H − 1.

We pad 0 around W∗∗
i so as to adapt to the dimensionality of each W∗∗

i . Notice that

‖W∗
HW∗

H−1 · · ·W∗
1X‖∗ = ‖W∗∗

H W∗∗
H−1 · · ·W∗∗

1 X‖∗

=
1

H

[
‖W∗∗

1 X‖HSH +

H∑
i=2

‖W∗∗
i ‖HSH

]
.

Since W∗
HW∗

H−1 · · ·W∗
1X = W∗∗

H W∗∗
H−1 · · ·W∗∗

1 X, for every Ỹ,

‖Ỹ −W∗
HW∗

H−1 · · ·W∗
1X‖F = ‖Ỹ −W∗∗

H W∗∗
H−1 · · ·W∗∗

1 X‖F .

Hence

min
W1,...,WH

F (W1, . . . ,WH) = F (W∗
1, . . . ,W

∗
H) = F (W∗∗

1 , . . . ,W∗∗
H )

=
1

2
‖Ỹ −W∗∗

H · · ·W∗∗
1 X‖2F +

γ

H

[
‖W∗∗

1 X‖HSH +

H∑
i=2

‖W∗∗
i ‖HSH

]

≥ min
W1,...,WH

1

2
‖Ỹ −WH · · ·W1X‖2F +

γ

H

[
‖W1X‖HSH +

H∑
i=2

‖Wi‖HSH

]
,

which yields the other direction of the inequality and hence completes the proof.

Technique (c): Reduction to Low-Rank Approximation. We now reduce problem (10) to the classic
problem of low-rank approximation of the form minW1,...,WH

1
2‖Ŷ −WH · · ·W1X‖2F , which has the following

nice properties.

Lemma 3. For any Ŷ ∈ Row(X), every global minimum (W∗
1, . . . ,W

∗
H) of function

f(W1, . . . ,WH) =
1

2
‖Ŷ −WH · · ·W1X‖2F

obeys W∗
H · · ·W∗

1X = svddmin
(Ŷ). Here Ŷ ∈ Row(X) means the row vectors of Ŷ belongs to the row space of X.
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Proof of Lemma 3. Note that the optimal solution to minWH ,...,W1

1
2‖Ŷ−WH · · ·W1X‖2F is equal to the optimal

solution to the low-rank approximation problem minrank(Z)≤dmin

1
2‖Ŷ − Z‖2F when Ŷ ∈ Row(X), which has a

closed-form solution svddmin(Ŷ).1

We now reduce F (W1, . . . ,WH) to the form of 1
2‖Ŷ −WH · · ·W1X‖2F for some Ŷ plus an extra additive term

that is independent of (W1, . . . ,WH). To see this, denote by K(·) = γ‖ · ‖∗. We have

F (W1, . . . ,WH) =
1

2
‖Ỹ −WH · · ·W1X‖2F +K∗∗(WH · · ·W1X)

= max
Λ

1

2
‖Ỹ −WH · · ·W1X‖2F + 〈Λ,WH · · ·W1X〉 −K∗(Λ)

= max
Λ

1

2
‖Ỹ −Λ−WH · · ·W1X‖2F −

1

2
‖Λ‖2F −K∗(Λ) + 〈Ỹ,Λ〉

=: max
Λ

L(W1, . . . ,WH ,Λ),

where we define L(W1, . . . ,WH ,Λ) := 1
2‖Ỹ−Λ−WH · · ·W1X‖2F − 1

2‖Λ‖
2
F −K∗(Λ)+〈Ỹ,Λ〉 as the Lagrangian

of problem (10). The first equality holds because K(·) is closed and convex w.r.t. the argument WH · · ·W1X
so K(·) = K∗∗(·), and the second equality is by the definition of conjugate function. One can check that
L(W1, . . . ,WH ,Λ) = minM L′(W1, . . . ,WH ,M,Λ), where L′(W1, . . . ,WH ,M,Λ) is the Lagrangian of the
constraint optimization problem minW1,...,WH ,M

1
2‖Ỹ−WH · · ·W1X‖2F +K(M), s.t. M = WH · · ·W1X. With

a little abuse of notation, we call L(A,B,Λ) the Lagrangian of the unconstrained problem (10) as well.

The remaining analysis is to choose a proper Λ∗ ∈ Row(X) such that (W∗
1, . . . ,W

∗
H ,Λ

∗) is a primal-dual saddle
point of L(W1, . . . ,WH ,Λ), so that the problem minW1,...,WH

L(W1, . . . ,WH ,Λ
∗) and problem (10) have the

same optimal solution (W∗
1, . . . ,W

∗
H). For this, we introduce the following condition, and later we will show that

the condition holds.

Condition 1. For a solution (W∗
1, . . . ,W

∗
H) to optimization problem (10), there exists an

Λ∗ ∈ ∂ZK(Z)|Z=W∗
H ···W∗

1X ∩ Row(X)

such that

W∗T
i+1 · · ·W∗T

H (W∗
H · · ·W∗

1X + Λ∗ − Ỹ)XTW∗T
1 · · ·W∗T

i−1 = 0, i = 2, . . . ,H − 1,

W∗T
2 · · ·W∗T

H (W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ)XT = 0,

(W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ)XTW∗T

1 · · ·W∗T
H−1 = 0.

(11)

We note that if we set Λ to be the Λ∗ in (11), then ∇WiL(W∗
1, . . . ,W

∗
H ,Λ

∗) = 0 for every i. So (W∗
1, . . . ,W

∗
H)

is either a saddle point, a local minimizer, or a global minimizer of L(W1, . . . ,WH ,Λ
∗) as a function of

(W1, . . . ,WH) for the fixed Λ∗. The following lemma states that if it is a global minimizer, then strong duality
holds.

Lemma 4. Let (W∗
1, . . . ,W

∗
H) be a global minimizer of F (W1, . . . ,WH). If there exists a dual certificate Λ∗

satisfying Condition 1 and the pair (W∗
1, . . . ,W

∗
H) is a global minimizer of L(W1, . . . ,WH ,Λ

∗) for the fixed Λ∗,
then strong duality holds. Moreover, we have the relation W∗

H · · ·W∗
1X = svddmin(Ỹ −Λ∗).

Proof of Lemma 4. By the assumption of the lemma, (W∗
1, . . . ,W

∗
H) is a global minimizer of

L(W1, . . . ,WH ,Λ
∗) =

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2F + c(Λ∗),

where c(Λ∗) is a function of Λ∗ that is independent of Wi for all i’s. Namely, (W∗
1, . . . ,W

∗
H) glob-

ally minimizes L(W1, . . . ,WH ,Λ) when Λ is fixed to Λ∗. Furthermore, Λ∗ ∈ ∂ZK(Z)|Z=W∗
H ...W

∗
1X

1Note that the low-rank approximation problem might have non-unique solution. However, we will use in this paper
the abuse of language svddmin(Ŷ) as the non-uniqueness issue does not lead to any issue in our developments.
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implies that W∗
HW∗

H−1 · · ·W∗
1X ∈ ∂ΛK

∗(Λ)|Λ=Λ∗ by the convexity of function K(·), meaning that
0 ∈ ∂ΛL(W∗

1, . . . ,W
∗
H ,Λ). So Λ∗ = argmaxΛ L(W∗

1, . . . ,W
∗
H ,Λ) due to the concavity of func-

tion L(W∗
1, . . . ,W

∗
H ,Λ) w.r.t. variable Λ. Thus (W∗

1, . . . ,W
∗
H ,Λ

∗) is a primal-dual saddle point of
L(W1, . . . ,WH ,Λ).

We now prove the strong duality. By the fact that F (W∗
1, . . . ,W

∗
H) = maxΛ L(W∗

1, . . . ,W
∗
H ,Λ) and that

Λ∗ = argmaxΛ L(W∗
1, . . . ,W

∗
H ,Λ), for every W1, . . . ,WH , we have

F (W∗
1, . . . ,W

∗
H) = L(W∗

1, . . . ,W
∗
H ,Λ

∗) ≤ L(W1, . . . ,WH ,Λ
∗),

where the inequality holds because (W∗
1, . . . ,W

∗
H ,Λ

∗) is a primal-dual saddle point of L. Notice that we also
have

min
W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) = F (W∗
1, . . .W

∗
H)

≤ min
W1,...,WH

L(W1, . . . ,WH ,Λ
∗)

≤ max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ).

On the other hand, by weak duality,

min
W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) ≥ max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ).

Therefore,
min

W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) = max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ),

i.e., strong duality holds. Hence,

W∗
HW∗

H−1 · · ·W∗
1 = argmin

WHWH−1...W1

L(W1, . . . ,WH ,Λ
∗)

= argmin
WHWH−1···W1

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2F −

1

2
‖Λ∗‖2F −K∗(Λ∗) + 〈Ỹ,Λ∗〉

= argmin
WHWH−1···W1

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2F

= svddmin
(Ỹ −Λ∗).

The proof of Lemma 4 is completed.

Technique (d): Dual Certificate. We now construct dual certificate Λ∗ such that all of conditions in Lemma
4 hold. We note that Λ∗ should satisfy the followings by Lemma 4:

(a) Λ∗ ∈ ∂K(W∗
HW∗

H−1 · · ·W∗
1X) ∩ Row(X); (by Condition 1)

(b) Equations (11); (by Condition 1)

(c) W∗
HW∗

H−1 · · ·W∗
1X = svddmin

(Ỹ −Λ∗). (by the global optimality and Lemma 3)

(12)

Before proceeding, we denote by Ã := W∗
H · · ·W∗

min +1, B̃ := W∗
min · · ·W∗

1X, where W∗
min is a matrix among

{W∗
i }
H−1
i=1 which has dmin rows, and let

T := {ÃCT
1 + C2B̃ : C1 ∈ Rn×dmin , C2 ∈ RdH×dmin}

be a matrix space. Denote by U the left singular space of ÃB̃ and V the right singular space. Then the linear
space T can be equivalently represented as T = U +V . Therefore, T ⊥ = (U +V)⊥ = U⊥∩V⊥. With this, we note
that: (b) W∗

HW∗
H−1 · · ·W∗

1X + Λ∗ − Ỹ ∈ Null(ÃT ) = Col(Ã)⊥ and W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ ∈ Row(B̃)⊥

(so W∗
HW∗

H−1 · · ·W∗
1X+Λ∗− Ỹ ∈ T ⊥) imply Equations (11) since either W∗T

i+1 · · ·W∗T
H (W∗

HW∗
H−1 · · ·W∗

1X+

Λ∗ − Ỹ) = 0 or (W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ)XTW∗T

1 · · ·W∗T
i−1 = 0 for all i’s. And (c) for an orthogonal

decomposition Ỹ −Λ∗ = W∗
HW∗

H−1 · · ·W∗
1X + E where W∗

HW∗
H−1 · · ·W∗

1X ∈ T and E ∈ T ⊥, we have that

‖E‖ ≤ σdmin
(W∗

HW∗
H−1 · · ·W∗

1X)
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and condition (b) together imply W∗
HW∗

H−1 · · ·W∗
1X = svddmin(Ỹ − Λ∗) by Lemma 3. Therefore, the dual

conditions in (12) are implied by

(1) Λ∗ ∈ ∂K(W∗
HW∗

H−1 · · ·W∗
1X) ∩ Row(X);

(2) PT (Ỹ −Λ∗) = W∗
HW∗

H−1 · · ·W∗
1X;

(3) ‖PT ⊥(Ỹ −Λ∗)‖ ≤ σdmin
(W∗

HW∗
H−1 · · ·W∗

1X).

It thus suffices to construct a dual certificate Λ∗ such that conditions (1), (2) and (3) hold, because conditions
(1), (2) and (3) are stronger than conditions (a), (b) and (c). Let r = rank(Ỹ) and r̄ = min{r, dmin}. To proceed,
we need the following lemma.

Lemma 5 ([6]). Suppose Ỹ ∈ Row(X). Let (W∗
1, . . . ,W

∗
H) be the solution to problem (10) and let

Udiag(σ1(Ỹ), . . . , σr(Ỹ))VT denote the skinny SVD of Ỹ ∈ Row(X). We have W∗
HW∗

H−1 · · ·W∗
1X =

Udiag((σ1(Ỹ)− γ)+, . . . , (σr̄(Ỹ)− γ)+, 0, . . . , 0)VT .

Recall that the sub-differential of the nuclear norm of a matrix Z is

∂Z‖Z‖∗ = {UZVT
Z + TZ : TZ ∈ T ⊥, ‖TZ‖ ≤ 1},

where UZΣZVT
Z is the skinny SVD of the matrix Z. So with Lemma 5, the sub-differential of (scaled) nuclear

norm at optimizer W∗
HW∗

H−1 · · ·W∗
1X is given by

∂(γ‖W∗
HW∗

H−1 · · ·W∗
1X‖∗) = {γU:,1:r̄V

T
:,1:r̄ + T : T ∈ T ⊥, ‖T‖ ≤ γ}. (13)

To construct the dual certificate, we set

Λ∗ = γU:,1:r̄V
T
:,1:r̄︸ ︷︷ ︸

Component in space T

+ U:,(r̄+1):rdiag(γ, . . . , γ)VT
:,(r̄+1):r︸ ︷︷ ︸

Component T in space T ⊥ with ‖T‖≤γ

∈ Row(X),

where Λ∗ ∈ Row(X) because VT ∈ Row(X) (This is because VT is the right singular matrix of Ỹ and
Ỹ ∈ Row(X)). So condition (1) is satisfied according to (13). To see condition (2), PT (Ỹ − Λ∗) = PT Ỹ −
γU:,1:r̄V

T
:,1:r̄ = Udiag((σ1(Ỹ) − γ)+, . . . , (σr̄(Ỹ) − γ)+, 0, 0, . . . , 0)VT = W∗

HW∗
H−1 . . .W

∗
1X, where the last

equality is by Lemma 5 and the assumption σmin(Ỹ) > γ. As for condition (3), note that

∥∥∥PT ⊥(Ỹ −Λ∗)
∥∥∥ =

∥∥∥U:,(r̄+1):rdiag(σr̄+1(Ỹ)− γ, . . . , σr(Ỹ)− γ)VT
:,(r̄+1):r

∥∥∥
=

{
0, if r̄ = r,

σdmin+1(Ỹ)− γ, otherwise.

By Lemma 5, σdmin(W∗
HW∗

H−1 · · ·W∗
1X) ≥ ‖PT ⊥(Ỹ −Λ∗)‖. So the proof of strong duality is completed, where

the dual problem is given in Section D.

To see the relation between the solutions of primal and dual problems, it is a direct result of Lemmas 2 and 4.

D Dual Problem of Deep Linear Neural Network

In this section, we derive the dual problem of non-convex program (4). Denote by G(W1, . . . ,WH) the objective
function of problem (4). Let K(·) = γ‖ · ‖∗, and let Ỹ = YX†X be the projection of Y on the row span of X.
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We note that

min
W1,...,WH

G(W1, . . . ,WH)− 1

2
‖Y − Ỹ‖2F

= min
W1,...,WH

1

2
‖Y −WH · · ·W1X‖2F −

1

2
‖Y − Ỹ‖2F +K(WH · · ·W1X)

= min
W1,...,WH

1

2
‖Ỹ −WH · · ·W1X‖2F +K∗∗(WH · · ·W1X)

= min
W1,...,WH

max
Row(Λ)⊆Row(X)

1

2
‖Ỹ −WH · · ·W1X‖2F + 〈Λ,WH · · ·W1X〉 −K∗(Λ)

= min
W1,··· ,WH

max
Row(Λ)⊆Row(X)

1

2
‖Ỹ −Λ−WH · · ·W1X‖2F −

1

2
‖Λ‖2F −K∗(Λ) + 〈Ỹ,Λ〉,

where the second equality holds since K(·) is closed and convex w.r.t. the argument WHWH−1 · · ·W1X and the
third equality is by the definition of conjugate function of nuclear norm. Therefore, the dual problem is given by

max
Row(Λ)⊆Row(X)

min
W1,...,WH

1

2
‖Ỹ−Λ−WH ...W1X‖2F −

1

2
‖Λ‖2F −K∗(Λ) + 〈Ỹ,Λ〉+

1

2
‖Y − Ỹ‖2F

= max
Row(Λ)⊆Row(X)

1

2

min{dH ,n}∑
i=dmin+1

σ2
i (Ỹ −Λ)− 1

2
‖Ỹ −Λ‖2F −K∗(Λ) +

1

2
‖Y‖2F

= max
Row(Λ)⊆Row(X)

−1

2
‖Ỹ −Λ‖2dmin

−K∗(Λ) +
1

2
‖Y‖2F ,

where ‖ · ‖2dmin
=
∑dmin

i=1 σ2
i (·). We note that

K∗(Λ) =

{
0, ‖Λ‖ ≤ γ;

+∞, ‖Λ‖ > γ.

So the dual problem is given by

max
Row(Λ)⊆Row(X)

−1

2
‖Ỹ −Λ‖2dmin

+
1

2
‖Y‖2F , s.t. ‖Λ‖ ≤ γ. (14)

Problem (14) can be solved efficiently due to their convexity. In particular, Grussler et al. [1] provided a

computationally efficient algorithm to compute the proximal operators of functions
1

2
‖ · ‖2r. Hence, the Douglas-

Rachford algorithm can find the global minimum up to an ε error in function value in time poly(1/ε) [2].
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