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Abstract

Several recently proposed architectures of
neural networks such as ResNeXt, Inception,
Xception, SqueezeNet and Wide ResNet are
based on the designing idea of having multi-
ple branches and have demonstrated improved
performance in many applications. We show
that one cause for such success is due to the
fact that the multi-branch architecture is in-
trinsically less non-convex in terms of duality
gap. The duality gap measures the degree
of intrinsic non-convexity of an optimization
problem: smaller gap in relative value implies
lower degree of intrinsic non-convexity. The
challenge is to quantitatively measure the du-
ality gap of highly non-convex problems such
as deep neural networks. In this work, we pro-
vide strong guarantees of this quantity for two
classes of network architectures. For the neu-
ral networks with arbitrary activation func-
tions, multi-branch architecture and a variant
of hinge loss, we show that the duality gap of
both population and empirical risks shrinks
to zero as the number of branches increases.
This result sheds light on better understand-
ing the power of over-parametrization where
increasing the number of branches tends to
make the loss surface less non-convex. For the
neural networks with linear activation func-
tion and /5 loss, we show that the duality
gap of empirical risk is zero. Our two results
work for arbitrary depths, while the analytical
techniques might be of independent interest
to non-convex optimization more broadly. Ex-
periments on both synthetic and real-world
datasets validate our results.
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1 Introduction

Deep neural networks are a central object of study in
machine learning, computer vision, and many other
domains. They have substantially improved over con-
ventional learning algorithms in many areas, including
speech recognition, object detection, and natural lan-
guage processing [28]. The focus of this work is to
investigate the duality gap of deep neural networks.
The duality gap is the discrepancy between the opti-
mal values of primal and dual problems. While it has
been well understood for convex optimization, little
is known for non-convex problems. A smaller duality
gap in relative value typically implies that the problem
itself is less non-convex intrinsically, and thus is easier
to optimizeE] Our results establish that: Deep neu-
ral networks with multi-branch architecture have small
duality gap in relative value.

Our study is motivated by the computational difficul-
ties of deep neural networks due to its non-convex
nature. While many works have witnessed the power
of local search algorithms for deep neural networks [16],
these algorithms typically converge to a suboptimal
solution in the worst cases according to various em-
pirical observations [52, 28]. It is reported that for a
single-hidden-layer neural network, when the number of
hidden units is small, stochastic gradient descent may
get easily stuck at the poor local minima [27] [49]. Fur-
thermore, there is significant evidence indicating that
when the networks are deep enough, bad saddle points
do exist [I] and might be hard to escape [15] 211 [10] ].

Given the computational obstacles, several efforts have
been devoted to designing new architectures to alleviate
the above issues, including over-parametrization [I7]
53, 23, 41, 2, 45] and multi-branch architectures [64,
56, 18, [61), 33, 68]. Empirically, increasing the num-
ber of hidden units of a single-hidden-layer network

Throughout the paper, we discuss the duality gap w.r.t.
the Lagrangian function, rather than the augmented La-
grangian function as in Chapter 11 of [48] where the duality
gap is always zero.
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(d) I = 1,000.

Figure 1: The loss surface of one-hidden-layer ReLU network projected onto a 2-d plane, which is spanned by three points
to which the SGD algorithm converges according to three different initialization seeds. It shows that as the number of
hidden neurons I increases, the landscape becomes less non-convex.

encourages the first-order methods to converge to a
global solution, which probably supports the folklore
that the loss surface of a wider network looks more
“convex” (see Figure . Furthermore, several recently
proposed architectures, including ResNeXt [61], Incep-
tion [56], Xception [18], SqueezeNet [33] and Wide
ResNet [62] are based on having multiple branches and
have demonstrated substantial improvement over many
of the existing models in many applications. In this
work, we show that one cause for such success is due
to the fact that the loss of multi-branch network is less
non-convex in terms of duality gap.

Why is duality gap a measure of intrinsic non-
convexity? Although some highly non-convex prob-
lems such as PCA and quadratic programming may
have small/zero duality gap, we argue that the du-
ality gap is a measure of intrinsic non-convexity of
an optimization problem. There are two reasons for
such an argument. a) The optimal value of the dual
problem is equal to the optimal value of the convex
relaxation of the primal problem. Hereby, the convex
relaxation is the problem arising by replacing the non-
convex objective with its convex closure and replacing
the non-convex feasible set with its closed convex hull.
Therefore, the duality gap measures the discrepancy
between the optimal values of primal problem and its
convex relaxation (Taking convex problems as an ex-
ample, the duality gap is zero in most cases). When
the duality gap is small, one can solve the convex relax-
ation problem whose solution is guaranteed to being
close to the solution of primal problem. b) We show in
our main result that the duality gap is a lower bound
of the discrepancy between objective and its convex
relaxationf| (see Theorem [1] for the case of I = 1). So a
smaller duality gap implies a possibly smaller discrep-
ancy between objective and its convex relaxation.

2Note that the convex relaxation of objective is different
from the convex relaxation of primal non-convex problem
which requires convexification operation on both objective
and constraint.

Our Contributions. This paper provides both theo-
retical and experimental results for the population and
empirical risks of deep neural networks by estimating
the duality gap.

e We study the duality gap of deep neural networks
with arbitrary activation functions, any data dis-
tribution, and multi-branch architecture (see The-
orem . The multi-branch architecture is gen-
eral, which includes the classic one-hidden-layer
architecture as a special case (see Figure . By
Shapley-Folkman lemma, we show that the duality
gap of both population and empirical risks shrinks
to zero as the number of branches increases.

e We prove that the strong duality (a.k.a. zero dual-
ity gap) holds for the empirical risk of deep linear
neural networks (see Theorem . To this end, we
develop multiple new proof techniques, including
reduction to low-rank approzimation and construc-
tion of dual certificate (see Section, which might
be of independent interest to other non-convex
problems.

e We empirically study the loss surface of multi-
branch neural networks. Our experiments verify
our theoretical findings.

Notation. We will use bold capital letter to represent
matrix and lower-case letter to represent scalar. Specif-
ically, let I be the identity matrix and denote by O the
all-zero matrix. Let {W; € R%*di-1 .4 =12 . H}
be a set of network parameters, each of which represents
the connection weights between the i-th and (i + 1)-th
layers of neural network. We use W, ; € R™ X1 to
indicate the ¢t-th column of W. We will use o;(W) to
represent the i-th largest singular value of matrix W.
Given skinny SVD UXV7” of matrix W, we denote
by svd,. (W) = U:,lzrzlmmVﬂ:r the truncated SVD
of W to the first r singular values. For matrix norms,
denote by |[Wlls, = (X, UZH(W))l/H the matrix
Schatten-H norm. Nuclear norm and Frobenius norm
are special cases of Schatten-H norm: |[W]||, = ||[W||s,
and |[W|r = ||W]|ls,.- We use ||[W]| to represent the
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matrix operator norm, i.e., ||W|| = o1(W), and denote
by rank(W) the rank of matrix W. Denote by Row(W)
the span of rows of W. Let WT be the Moore-Penrose
pseudo-inverse of W.

For convex matrix function K(-), we denote by
K*(A) = maxp (A, M) — K(M) the conjugate func-
tion of K(-) and OK(-) the sub-differential. We use
diag(oy, ...,0,) to represent a r x r diagonal matrix
with diagonal entries oy, ...,0.. Let dyin = min{d; :
1=1,2,..,H — 1}, and [I] = {1,2,...,I}. For any two
matrices A and B of matching dimensions, we denote
by [A, B] the concatenation of A and B along the row
and [A;B] the concatenation of two matrices along the
column.

2 Duality Gap of Multi-Branch
Neural Networks

We first study the duality gap of neural networks in
a classification setting. We show that the wider the
network is, the smaller the duality gap becomes.

Network Setup. The output of our network follows
from a multi-branch architecture (see Figure [2)):

I
f(w;x) = }i_zlfi(w(iﬁx)» w() €W,

where W, is a convex set, w is the concatenation of
all network parameters {W(i)}iI:D x € R% is the in-
put instance, {W;}/_, is the parameter space, and
fi(W(iy; ) represents an R% — R continuous mapping
by a sub-network which is allowed to have arbitrary
architecture such as convolutional and recurrent neural
networks. As an example, f;(W;;-) can be in the form
of a H;-layer feed-forward sub-network:

Filwiiy;x) = W] ou, (Wi (Wx)) € R,
W) = [wi;vec(ng)); ~-~;VeC(ng)] c RP:.

Hereby, the functions ¥ (-),k = 1,2, ..., H; are allowed
to encode arbitrary form of continuous element-wise
non-linearity (and linearity) after each matrix multipli-
cation, such as sigmoid, rectification, convolution, while
the number of layers H; in each sub-network can be
arbitrary as well. When H; =1 and dg, =1, i.e., each
sub-network in Figure [2] represents one hidden unit,
the architecture f(w;x) reduces to a one-hidden-layer
network. We apply the so-called 7-hinge loss [4l, [7] on
the top of network output for label y € {—1,+1}:

(- (W;x,y) := max (071 - yf(TW’X)> 70
(1)

The 7-hinge loss has been widely applied in active
learning of classifiers and margin based learning [4l [7].

Hinge Loss

Output Layer

-

[Sub—network] [Sub-network]
Hidden Layers

[Sub-network

Input Layer

Figure 2: Multi-branch architecture, where the sub-
networks are allowed to have arbitrary architectures, depths,
and continuous activation functions. Hereby, I represents
the number of branches. In the extreme case when the sub-
network is chosen to have a single neuron, the multi-branch
architecture reduces to a single-hidden-layer neural network
and the I represents the network width.

When 7 = 1, it reduces to the classic hinge loss [43] [I7]
38].

We make the following assumption on the margin pa-
rameter 7, which states that the parameter 7 is suffi-
ciently large.

Assumption 1 (Parameter 7). For sample (x,y)
drawn from distribution P, we have T > y - f(w;X)
for all w € Wy x Wy X ... x Wy with probability mea-
sure 1.

We further empirically observe that using smaller values
of the parameter 7 and other loss functions support our
theoretical result as well (see experiments in Section .
It is an interesting open question to extend our theory
to more general losses in the future.

To study how close these generic neural network archi-
tectures approach the family of convex functions, we
analyze the duality gap of minimizing the risk w.r.t.
the loss with an extra regularization constraint.
The normalized duality gap is a measure of intrinsic
non-convexity of a given function [I3]: the gap is zero
when the given function itself is convex, and is large
when the loss surface is far from the convexity intrin-
sically. Typically, the closer the network approaches
to the family of convex functions, the easier we can
optimize the network.

Multi-Branch Architecture. Our analysis of multi-
branch neural networks is built upon tools from non-
convex geometric analysis — Shapley—Folkman lemma.
Basically, the Shapley—Folkman lemma states that the
sum of constrained non-convex functions is close to
being convex. A neural network is an ideal target to
apply this lemma to: the width of network is associated
with the number of summand functions. So intuitively,
the wider the neural network is, the smaller the duality
gap will be. In particular, we study the following non-
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convex problem concerning the population risk:

min
WEW X...xW

I
1
S.t. T ;h,(W(z)) < K,

, E(x,y)w?’ [g‘r (W; X, il/)]7
(2)

where h;(-),4 € [I] are convex regularization functions,
e.g., the weight decay, and K can be arbitrary such
that the problem is feasible. Correspondingly, the dual
problem of problem (2)) is a one-dimensional convex
optimization problem{’|

max Q(\) —

\K,
A>0

’\4\>/

I
Z W( ) .
B

Q) :=_inf  Ex pyupllr(W;x,y)]

WEWL X...XW.

Before proceeding, we first define some notations to be
used in our main results. For w € W;, denote by

pi+2 () -
~ y-fz(w(i),x)
fi(w) := B yyp |1 — ———2"
( ) ad w(Z)GW Z W)~P T
pit+2 pit2

_ i - ,
w = ZaJw(),ZaJ—LaJ > 0.
j=1 j=1

This represents the convex relaxation of the i-th sum-
mand term E y~p[l —y - fi(-;x)/7] in the objective,
because the epigraph of ﬁ is exactly the convex hull of
epigraph of E(y ,)~p[1 —y- fi(-;x)/7] by the definition
of ﬁ For w € W;, we also define

fi(w) ::w(lznefw E(x,y)~P (1

Y- filwey; X))
T

This is a “restricted” version of the i-th summand term
E(x y)Np[ Y- f,(w( x)/7] to the hard constraint

Our main results for multi-branch neural networks are
as follows:

Theorem 1. Denote by inf(P) the minimum of primal
problem and sup(D) the mazimum of dual problem

@B). Let A; = supyep, ﬁ(w) fﬁ(w)} > 0 and
Ayorst = max;e(r) A;. Suppose W;’s are compact and
both fi(wy;x) and hi(w;)) are continuous w.r.t. W;.

3 Although problem is convex, it does not necessarily
mean the problem can be solved easily. This is because
computing Q(\) is a hard problem. So rather than trying
to solve the convex dual problem, our goal is to study
the duality gap in order to understand the degree of non-
convexity of the problem.

If there exists at least one feasible solution of problem
(P), then under Assumption 1| the duality gap w.r.t.
problems and can be bounded by
inf(P) —sup(D) _ 2

<

< .
0 -1

Aworst

Remark 1. Note that A; measures the divergence be-
tween the function value of f; and its convex relazation
fi- The constant Ayorst 1S the mazimal divergence
among all sub-networks, which grows slowly with the
increase of I. This is because Ay orse 0nly measures the
divergence of one branch. The normalized duality gap
(inf(P) — sup(D))/Ayorst has been widely used before
to measure the degree of non-convexity of optimization
problems [13, [57, [T4, [24), [22]. Such a normalization
avoids trivialities in characterizing the degree of non-
convexity: scaling the objective function by any constant
does not change the value of normalized duality gap.

Remark 2. Fven though Theorem/[]] is in the form of
population risk, the conclusion still holds for the em-
pirical loss as well. This can be achieved by setting the
marginal distribution Px as the uniform distribution on
a finite set and Py as the corresponding labels uniformly
distributed on the same finite set.

Remark 3. Setting K in problem infinitely large
implies that Theorem [1] holds for unconstrained deep
neural networks as well.

Inspiration for Architecture Designs. Theorem
[ shows that the duality gap of deep network shrinks
when the width [ is large; when I — 400, surprisingly,
deep network is as easy as a convex optimization, as the
gap is zero. An intuitive explanation is that the large
number of randomly initialized hidden units represent
all possible features. Thus the optimization problem
involves just training the top layer of the network,
which is convex. Our result encourages a class of net-
work architectures with multiple branches and supports
some of the most successful architectures in practice,
such as Inception [56], Xception [I8], ResNeXt [61],
SqueezeNet [33], Wide ResNet [62], Shake-Shake reg-
ularization [25] — all of which benefit from the split-
transform-merge behaviour as shown in Figure

Related Works. While many efforts have been de-
voted to studying the local minima or saddle points
of deep neural networks [42], 68, 54, [36], 60], 59], little
is known about the duality gap of deep networks. In
particular, Choromanska et al. [20, [19] showed that
the number of poor local minima cannot be too large.
Kawaguchi [35] improved over the results of [20] 19] by
assuming that the activation functions are independent
Bernoulli variables and the input data are drawn from
Gaussian distribution. Xie et al. [60] and Haeffele et
al. [30] studied the local minima of regularized net-
work, but they require either the network is shallow, or
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the network weights are rank-deficient. Ge et al. [27]
showed that every local minimum is globally optimal by
modifying the activation function. Zhang et al. [67] and
Aslan et al. [3] reduced the non-linear activation to the
linear case by kernelization and relaxed the non-convex
problem to a convex one. However, no formal guar-
antee was provided for the tightness of the relaxation.
Theorem [1} on the other hand, bounds the duality gap
of deep neural networks with mild assumptions.

Another line of research studies the convexity behaviour
of neural networks when the number of hidden neurons
goes to the infinity. In particular, Bach [5] proved that
a single-hidden-layer network is as easy as a convex
optimization by using classical non-Euclidean regular-
ization tools. Bengio et al. [I2] showed a similar phe-
nomenon for multi-layer networks with an incremental
algorithm. In comparison, Theorem [I| not only cap-
tures the convexification phenomenon when I — 400,
but also goes beyond the result as it characterizes the
convergence rate of convexity of neural networks in
terms of duality gap. Furthermore, the conclusion in
Theorem [I] holds for the population risk, which was
unknown before.

3 Strong Duality of Linear Neural
Networks

In this section, we show that the duality gap is zero
if the activation function is linear. Deep linear neural
network has received significant attention in recent
years [51], 35l [67, [44], 8 28] [3T], 9] because of its simple
formulationf] and its connection to non-linear neural
networks.

Network Setup. We discuss the strong duality of
regularized deep linear neural networks of the form

(Wi, Wiy) = argmin SIY — W WX
Wi, WH
7 H
to W XIS, + > IWillE, |,
1=2

(4)

where X = [x1,...,X,,] € R%*" is the given instance
matrix, Y = [y1, ..., yn] € R4 *" is the given label ma-
trix, and W, € R%*di-1 4 ¢ []] represents the weight
matrix in each linear layer. We mention that (a) while
the linear operation is simple matrix multiplications in
problem , it can be easily extended to other linear
operators, e.g., the convolutional operator or the lin-
ear operator with the bias term, by properly involving

4 Although the expressive power of deep linear neural net-
works and three-layer linear neural networks are the same,
the analysis of landscapes of two models are significantly
different, as pointed out by |28, [35] [44].

a group of kernels in the variable W, [30]. (b) The
regularization terms in problem are of common
interest, e.g., see [30]. When H = 2, our regulariza-
tion terms reduce to ||W;||%, which is well known as
the weight-decay or Tikhonov regularization. (c¢) The
regularization parameter 7y is the same for each layer
since we have no further information on the preference
of layers.

Our analysis leads to the following guarantees for the
deep linear neural networks.

Theorem 2. Denote by Y = YXIX € RI#xn gnd
dpin := min{dy,...,dg_1} < min{dy,dg,n}. Let 0 <
v < Umin(?) and H > 2, where Jmin(?) stands for
the minimal non-zero singular value of Y. Then the
strong duality holds for deep linear neural network ,
In other words, the optimum of problem is the same
as its convex dual problem

. 1, = 1
A= g LIV - AL SV
Row(A)CRow(X) (5)
st Al <7,
where || - |7~ = 1"“1“0 (1) is a convex function.

Moreover, the optimal solutions of przmal problem .
can be obtained from the dual problem in the fol-
lowing way: let ULVT = svddmm(Y — A*) be the
skinny SVD of matriz svdg_ (Y — A*), then Wi =
[(Z=VH 0;0,0] € REXdi-t fori =23, H—1, W} =
[USVH ] € Rénxdu-2 gnd Wi = [EVHVT; 0]XT €
R4 *do 45 g globally optimal solution to problem .

The regularization parameter v cannot be too large
in order to avoid underfitting. Our result provides a
suggested upper bound o, (Y) for the regularization
parameter, where oftentimes oyip (?) characterizes the
level of random noise. When v = 0, our analysis
reduces to the un-reqularized deep linear neural network,
a model which has been widely studied in [35] 44} [8] 28].

Theorem [2] implies the followig result on the landscape
of deep linear neural networks: the regularized deep
learning can be converted into an equivalent convex
problem by dual. To the best of our knowledge, this
is the first result on the strong duality of linear neu-
ral networks. We note that the strong duality rarely
happens in the non-convex optimization: matrix com-
pletion [6], Fantope [47], and quadratic optimization
with two quadratic constraints [1I] are among the few
paradigms that enjoy the strong duality. For deep
networks, the effectiveness of convex relaxation has
been observed empirically in [3] [67], but much remains
unknown for the theoretical guarantees of the relax-
ation. Our work shows strong duality of regularized
deep linear neural networks and provides an alternative
approach to overcome the computational obstacles due
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Figure 3: Visualization of Shapley-Folkman lemma. The first figure: an /,,; ball. The second and third
figures: the averaged Minkowski sum of two and ten £, , balls. The fourth figure: the convex hull of ¢; /5 ball
(the Minkowski average of infinitely many ¢, /, balls). It show that with the number of £, /5 balls to be averaged
increasing, the Minkowski average tends to be more convex.

to the non-convexity: one can apply convex solvers,
e.g., the Douglas—Rachford algorithmﬂ for problem
and then conduct singular value decomposition to
compute the weights {W?*}L, from svd,,_,, (Y — A%).
In addition, our result inherits the benefits of convex
analysis. The vast majority results on deep learning
study the generalization error or expressive power by
analyzing its complicated non-convex form [46], [66, [63].
In contrast, with strong duality one can investigate
various properties of deep linear networks with much
simpler convex form.

Related Works. The goal of convexified linear neu-
ral networks is to relax the non-convex form of deep
learning to the computable convex formulations [67] B3].
While several efforts have been devoted to investigating
the effectiveness of such convex surrogates, e.g., by ana-
lyzing the generalization error after the relaxation [67],
little is known whether the relaxation is tight to its orig-
inal problem. Our result, on the other hand, provides
theoretical guarantees for the tightness of convex relax-
ation of deep linear networks, a phenomenon observed
empirically in [3] [67].

We mention another related line of research — no bad
local minima. On one hand, although recent works
have shown the absence of spurious local minimum for
deep linear neural networks [50] 35], 44], many of them
typically lack theoretical analysis of regularization term.
Specifically, Kawaguchi [35] showed that un-regularized
deep linear neural networks have no spurious local
minimum. Lu and Kawaguchi [44] proved that depth
creates no bad local minimum for un-reqularized deep
linear neural networks. In contrast, our optimization
problem is more general by taking the regularization
term into account. On the other hand, even the “lo-
cal=global” argument holds for the deep linear neural
networks, it is still hard to escape bad saddle points [I].

SGrussler et al. [29] provided a fast algorithm to com-
pute the proximal operators of 1| - ||7. . . Hence, the Dou-
glas—Rachford algorithm can find the global solution up to
an e error in function value in time poly(1/€) [32].

In particular, Kawaguchi [35] proved that for linear
networks deeper than three layers, there exist bad sad-
dle points at which the Hessian does not have any
negative eigenvalue. Therefore, the state-of-the-art al-
gorithms designed to escape the saddle points might
not be applicable [34] 26]. Our result provides an alter-
native approach to solve deep linear network by convex
programming.

4 Our Techniques and Proof Sketches

In this section, we present our techniques and proof
sketches of Theorems [I] and 2

(a) Shapley-Folkman Lemma. The proof of Theo-
rem [1] is built upon the Shapley-Folkman lemma [22]
59l 24, [13], which characterizes a convexification phe-
nomenon concerning the average of multiple sets and is
analogous to the central limit theorem in the probability
theory. Consider the averaged Minkowski sum of I sets
Ay, As, ..., Ar given by {17! e @i a; € Aj} In-
tuitively, the lemma states that p(1~! e Ai) =0
as I — 400, where p(-) is a metric of the non-convexity
of a set (see Figure [3] for visualization). We apply
this lemma to the optimization formulation of deep
neural networks. Denote by augmented epigraph the
set {(h(w), £(w)) : all possible choices of w}, where h
is the constraint and ¢ is the objective function in the
optimization problem. The key observation is that the
augmented epigraph of neural network loss with multi-
branch architecture can be expressed as the Minkowski
average of augmented epigraphs of all branches. Thus
we obtain a natural connection between an optimization
problem and its corresponding augmented epigraph.
Applying Shapley-Folkman lemma to the augmented
epigraph leads to a characteristic of non-convexity of
the deep neural network.

(b) Variational Form. The proof of Theorem [2] is
built upon techniques (b), (¢), and (d). In particular,
problem (4]) is highly non-convex due to its multi-linear
form over the optimized variables {W,}2 . Fortu-
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nately, we are able to analyze the problem by grouping
WrWg_1...W;X together and converting the origi-
nal non-convex problem in terms of the separate vari-
ables {W,;}L to a convex optimization with respect
to the new grouping variable Wy Wy _1...W;X. This
typically requires us to represent the objective func-
tion of as a convex function of WgWg_1.. W.
To this end, we prove that |[WygWg_1.. W;X], =
H
. 1 H H
minw, w77 | [WiX]§, + > Wi, |. So the
i=2
objective function in problem has an equivalent
form
min
150, WH

+|WegWg_g--- WX,

1
Y = WyWg_- W X|%
2 (6)

This observation enables us to represent the optimiza-
tion problem as a convex function of the output of a
neural network. Therefore, we can analyze the non-
convex problem by applying powerful tools from convex
analysis.

(c) Reduction to Low-Rank Approximation.
Our results of strong duality concerning problem @
are inspired by the problem of low-rank matrix approx-
imation:

min 1||Y — A -WyWy W X% (7)
1,..Wg 2
We know that all local solutions of are globally
optimal [35], [44] [6]. To analyze the more general regu-
larized problem , our main idea is to reduce problem
@ to the form of by Lagrangian function. In other
words, the Lagrangian function of problem @ should
be of the form for a fixed Lagrangian variable A*,
which we will construct later in subsection (d). While
some prior works attempted to apply a similar reduc-
tion, their conclusions either depended on unrealistic
conditions on local solutions, e.g., all local solutions
are rank-deficient [30, [29], or their conclusions relied
on strong assumptions on the objective functions, e.g.,
that the objective functions are twice-differentiable [30],
which do not apply to the non-smooth problem @ In-
stead, our results bypass these obstacles by formulating
the strong duality of problem @ as the existence of a
dual certificate A* satisfying certain dual conditions.
Roughly, the dual conditions state that the optimal
solution (W3, W3,..., W) of problem () is locally
optimal to problem @ On one hand, by the above-
mentioned properties of problem (7)), (W7,..., W)
globally minimizes the Lagrangian function when A
is fixed to A*. On the other hand, by the convexity
of nuclear norm, for the fixed (W7,..., W};) the La-
grangian variable A* globally optimize the Lagrangian
function. Thus (W7, ..., W, A*) is a primal-dual sad-
dle point of the Lagrangian function of problem @

The desired strong duality is a straightforward result
from this argument.

(d) Dual Certificate. The remaining proof is to
construct a dual certificate A* such that the dual con-
ditions hold true. The challenge is that the dual con-
ditions impose several constraints simultaneously on
the dual certificate, making it hard to find a desired
certificate. This is why progress on the dual certificate
has focused on convex programming. To resolve the
issue, we carefully choose the certificate as an appro-
priate scaling of subgradient of nuclear norm around a
low-rank solution, where the nuclear norm follows from
our regularization term in technique (b). Although
the nuclear norm has infinitely many subgradients, we
prove that our construction of dual certificate obeys
all desired dual conditions. Putting techniques (b),
(c), and (d) together, our proof of strong duality is
completed.

5 Experiments

In this section, we verify our theoretical contributions
by the experimental validation.

5.1 Visualization of Loss Landscape

Experiments on Synthetic Datasets. We first
show that over-parametrization results in a less non-
convex loss surface for a synthetic dataset. The dataset
consists of 1,000 examples in R'® whose labels are
generated by an underlying one-hidden-layer RelLU
network f(x) = 37, Wi ,[W7 x]; with 11 hidden
neurons [49]. We make use of the visualization tech-
nique employed by [40] to plot the landscape, where
we project the high-dimensional hinge loss (7 = 1)
landscape onto a 2-d plane spanned by three points.
These points are found by running the SGD algorithm
with three different initializations until the algorithm
converges. As shown in Figure [I} the landscape ex-
hibits strong non-convexity with lots of local minima
in the under-parameterized case I = 10. But as [
increases, the landscape becomes more convex. In the
extreme case, when there are 1,000 hidden neurons in
the network, no non-convexity can be observed on the
landscape.

Experiments on MNIST and CIFAR-10. We
next verify the phenomenon of over-parametrization
on MNIST [39] and CIFAR-10 [37] datasets. For both
datasets, we follow the standard preprocessing step that
each pixel is normalized by subtracting its mean and di-
viding by its standard deviation. We do not apply data
augmentation. For MNIST, we consider a single-hidden-
layer network defined as: f(x) = 31, W, o[Wi1x] 4,
where W, ; € R4 W, 5 € RI9" " is the input di-
mension, h is the number of hidden neurons, and I is
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Figure 4: Top Row: Landscape of one-hidden-layer network on MNIST. Middle Row: Landscape of one-
hidden-layer network on CIFAR-10. Bottom Row: Landscape of three-hidden-layer, multi-branch network on
CIFAR-10 dataset. From left to right, the landscape looks less non-convex.

the number of branches, with d = 784 and h = 8. For
CIFAR-10, in addition to considering the exact same
one-hidden-layer architecture, we also test a deeper
network containing 3 hidden layers of size 8-8-8, with
ReLU activations and d = 3,072. We apply 10-class
hinge loss on the top of the output of considered net-
works.

Figure [4] shows the changes of landscapes when I in-
creases from 1 to 100 for MNIST, and from 1 to 50,000
for CIFAR-10, respectively. When there is only one
branch, the landscapes have strong non-convexity with
many local minima. As the number of branches I in-
creases, the landscape becomes more convex. When
I = 100 for 1-hidden-layer networks on MNIST and
CIFAR-10, and I = 50,000 for 3-hidden-layer network
on CIFAR-10, the landscape is almost convex.

5.2 Frequency of Hitting Global Minimum

To further analyze the non-convexity of loss surfaces,
we consider various one-hidden-layer networks, where
each network was trained 100 times using different
initialization seeds under the setting discussed in our
synthetic experiments of Section [5.1} Since we have
the ground-truth global minimum, we record the fre-
quency that SGD hits the global minimum up to a
small error 1 x 10~ after 100, 000 iterations. Table
shows that increasing the number of hidden neurons
results in higher hitting rate of global optimality. This
further verifies that the loss surface of one-hidden-layer

neural network becomes less non-convex as the width
increases.

Table 1: Frequency of hitting global minimum by SGD
with 100 different initialization seeds.

# Hidden Neurons ‘ Hitting Rate

12 21 / 100
13 24 /100
14 24 /100
15 29 /100
16 30 / 100
17 32 /100
18 35 /100
19 52 / 100
20 64 / 100
21 75 / 100

6 Conclusions

In this work, we study the duality gap for two classes
of network architectures. For the neural network with
arbitrary activation functions, multi-branch architec-
ture and 7-hinge loss, we show that the duality gap
of both population and empirical risks shrinks to zero
as the number of branches increases. For the neural
network with linear activation function and ¢y loss, we
show that the duality gap is zero. Our two results work
for arbitrary depths, while the analytical techniques
might be of independent interest to non-convex opti-
mization more broadly, e.g., the optimization problems
in adversarial defense and attack [65].
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