Online Multiclass Boosting with Bandit Feedback

Appendix A DETAILED PROOFS

In this section, we include the full proofs that are omit-
ted in the main manuscript.

A.1 Unbiased Estimate of The Zero-One Loss
We prove the unbaisedness of our loss estimator pre-
sented in (4).

Lemma A.1. The estimator 12 in (4) is an unbi-
[P

ased estimator of the zero-one loss [,
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Proof. Since g is drawn with respect to p;, we can
write
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where the last term is l?;l, which completes the proof.
O

A.2 Proof of Theorem 3.1

Since the agnostic learnability condition is given with
deterministic cost vectors, we need to bridge the de-
terministic costs with the randomized ones. Observe
that ¢! relies solely on the random draw of §; at each
round. Therefore, the partial sum of random vectors
S; =>1_, & — ¢} has the martingale property. Then
we can prove the following lemma using the Azuma-
Hoeffding inequality.

Lemma A.2. Suppose the random cost vectors ¢; are
b-bounded. Let p; be a probability vector in Ay. Then
the following inequality holds with probability 1 — §:
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Proof. Since ¢; is b-bounded and unbiased, we have
[(é: —ct) pel <bas. and E(é —¢) -pr = 0.

Therefore the Azuma-Hoeffding’s inequality implies
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Putting € = b4/2T 1og% finishes the proof. O

We now go into the main proof of Theorem 3.1.

Proof. Fix the sequence of cost vectors wyc;. From the
richness condition with edge 2y, we know

E WiCy - Ug»y

~

inf g wee
=) pa tCt,h(xy)

By applying Lemma A.2 with p; = ej,(,,), we get with
probability 1 — 6,

l]flf Zwtct h(wt) < Zwtct U2,Y+b 2T10g 5 (].3)
t=1

Then by the online learnability condition, the online
learner based on H can generate predictions ¢, that
satisfies the following inequality with probability 1—d:
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t=1

Using (13) and the union bound, we have with proba-
bility 1 — 20,
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Then by the definition of C{°" in (6), we can compute

1—
ct-uy:J.
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Therefore, using the assumption w; > m for all ¢, we
can bound

T T
D (uf — ) = 3 D>
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Then by taking

1
S = sup — LmT + by /2T log = + Rs(T),
Tk 5

we prove that with probability 1 — 20,
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which shows the learner and the adversary satisfy
BanditWLC(v, 24, 5). O
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A.3 Proof of Theorem 3.2

Note that the cost vectors defined in (8) does not put
zero cost on the correct label. In order to apply the
BanditWLC, we transform the cost vector. Since the
zero-one loss vector has the minimal loss on the true
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label, we can inductively check that argmin, Ci, L= Yt
Then we define di € R¥ as below:

i i i
dt,l =C 1~ Cry,-
The minimal entry of d} is zero. Let w} = ||di||1,

which plays a similar role of the sample weight in that

d?r . .
5 € C{". We also define w"™ = sup, wj.
t

We bound the cumulative potential functions by fol-
lowing the modified proof of Theorem 2 from Jung
et al. (2017).

Lemma A.3. With probability 1 — NJ, we have
Z o8 T+ S Z w'

Proof. In the proof of Theorem 2 by Jung et al. (2017),
the authors write

¥y < on(0

Using the fact that our weak learners satisfy
BanditWLC(7, §, S), we have with probability 1 — ¢

T
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from which we deduce

Zd)N 7,+1

Summing this over ¢ and using the union bound, we
have with probability 1 — Nd,

T T N )
Do) <D %0+ 8D w
t=1 t=1 =1

By symmetry, we can check ¢k (0) = ¢4(0) for any
label [ € [k], which completes the proof. O
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We now prove Theorem 3.2.

Proof. Since §j, = argmax; s;';, we obtain

0 (St ) = 1(g: # yt)-

Furthermore, Jung et al. (2017) bound the terms that
appear in the previous lemma:

¢lN( ) < (k—1)e”
Zw kO/QW).

V2N

Combining these, we get with probability 1 — N§,

T 2y
D 1 # ) < (k—1)e” 2 T+ OK>VNS)
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22 ~ k2N
<(k—1)e 2 T+ O(f),

where the last inequality holds by (7).
To bound the booster’s loss I(g; # y:), observe

Eg, 1(g: # ye) < LG # ye) + p.

Using the concentration inequality, we have with prob-
ability 1 — (N + 1)4,

22 ~ k72N 1
<(k-1e = T+ O(p\F) +pT + | Tlog

k72N

< (k—1)e T 1257 + OV ),

1
where we use the relation pT + 10% > 24 /Tlog% to
absorb the term /7 log %. This proves the main the-

orem. O

A.4 Proof of Theorem 3.3

We first recall a lemma from Jung et al. (2017) to aid
the proof.

Lemma A.4 (Jung et al. (2017), Lemma 11). Suppose
A,B>0,B-A=~v¢€[-1,1], and A+ B <1. Then
we have

: a oy <
aer{l_lrglg]A(e 1)+ B(e 1)< 5

Now we proceed with a bound of the zero-one loss of
AdaBandit. The main structure of the proof results
from the mistake bound of Adaboost.OLM by Jung
et al. (2017).

Proof. We let M; denote the number of mistakes made
by expert i: M; = Ethl I(9: # yi). We also let
My =T for convenience. As the booster uses the
estimate l ! to run the Hedge algorlthm we define

Zt 1 t_} so that By, ... 5. M; = M;.
wrlte i* = argmin; M;, then by the Azuma-Hoeffding
inequality and the fact that l? “1is %—bounded7 we have
with probability 1 — 4,

If we

min M; < M;- < min M; + O(=VT),
A 1 P
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where O suppresses dependence on log %.

Then a standard analysis of the Hedge algorithm
(see Corollary 2.3 by Cesa-Bianchi and Lugosi (2006))
and the Azuma-Hoeffding inequality provide that with
probability 1 — 34,

T T
2 Moo #w) < QT+ OCVT)
t=1 =1
~ ~ k
< 2min M; + 2log N + O(=V/T) (14)
i P
~ k
< 2min M; +2log N + O(=VT).
i P
Now define w = — Y/, ¢ .- If the expert i—1 makes
a mlstake at round ¢, there is [ # y; such that sz ! , <
s;;'. According to (10), this implies that —c} 2 1
From this, we can deduce that
i Mifl
w > .
- 2
By our convention My = T, the above inequality still
holds for 7 = 1.

(15)

Next we define the difference in the cumulative logistic
loss between two consecutive experts as

T
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T
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From (12), we have with probability 1 — 0,

T
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Let us record an inequality:
log(1 + ") ~ log(1 +¢*) = log(1 + =~ 1)
o e —lo e’)=1lo B
g g g(l+ =
e —1
T l4es

Using this, we can write

LB (st +aey;) = E(si )

C;hi (e*—1) if hi £y
Ao (—em 1) ifhl=y
Summing this over ¢, we get

T

log (. i—1
Z lyt (st

t=1

+aey;) = lyE(si")

<w'(A(e® —1) + Ble™™ — 1)),

where

A= Z ci’hi/wi, B=-— Z c;hi/wi.

t:hiy, t:hi=y,

By (10), A and B are non-negative and B — A =; €
[—1,1], which is the empirical edge of WL!. Then
Lemma A.4 implies

- 2
. llog i—1 ) — Zlog i—1y ~ _’ﬁ i.
acli2 2] L (sp " +aey:) —1,8(sy ) < 5w
Combining this result with (15) and (16), we have with
probability 1 — 6,

2
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Summing this over ¢ and using the union bound, we
have with probability 1 — NJ,

T
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Since l;‘zg(O) = (k—1)log2 and llOg(st ) > 0, we have
with probability 1 — N4,

4(k —1)log?2 ~ k2N
( N)Of T+0(—x— V7).
dim1 Vi P =1 i

Using this to (14), we get with probability 1—

min M; <
1

(N+3)6,
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Then by the same argument as in Appendix A.3, we
get with probability 1 — (N + 4)4,

T
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where the last inequality comes from the arithmetic
mean and geometric mean relation:

2ek2NVT < kT + 2k* N2,
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Table 2: Bandit and Full Information Total Accuracy

Data k  StreamCnt OptBandit AdaBandit BinBandit OptFull AdaFull
Balance 3 6250 0.83 0.91 0.73 0.71 0.85
Car 4 10368 0.82 0.93 0.78 0.80 0.93
Nursery 4 51840 0.89 0.92 0.89 0.91 0.95
Movement 5 165631 0.89 0.95 0.84 0.87 0.95
Mice 8 8640 0.53 0.71 0.62 0.65 0.84
Isolet 26 116955 0.32 0.51 0.52 0.74 0.78

Appendix B DETAILED
DESCRIPTIONS OF
EXPERIMENTS

We discuss the experimental results more in detail.

B.1 Data Set Details

We modified the data sets identically as in Jung et al.
(2017). In particular, we replaced missing data val-
ues in Mice data with 0 and removed user information
from Movement, leaving only sensor data in the lat-
ter. A single data point with missing values was also
removed from Movement. Lastly, for Isolet the original
617 covariates were projected onto the top 50 principal
components of the data set, retaining 80% of the vari-
ance. Table 3 summarizes the data information after
preprocessing.

B.2 Parameter Tuning

Our boosting algorithms have a few parameters: the
number of weak learners N, the edge ~ for Ban-
ditBBM, and the exploration rate p. As the goal of
the experiment is to compare the bandit algorithms
with their full information counterparts, we did not
optimize the parameters too hard. We optimized N
up to multiples of 5 and fix v = 0.1 for all data sets.

The only parameter we tried to fit is exploration rate.
To obtain a reasonable p, we ran a grid search keeping

Table 3: Data Set Summary

Data Size Dimension &k
Balance 625 4 3
Car 1728 82 4
Nursery 12960 4 8
Mice 1080 82 8
Isolet 7797 50 26
Movement 165631 12 4

all other parameters stable and observing accuracy on
a random stream from each data set. The chosen p
values reflect choices that made all the bandit algo-
rithms perform well on each set. Table 4 shows the
chosen p from each of these grid searches. How many
data points were streamed to obtain the final accuracy
is shown in column Count.

B.3 Updating Weak Learners

We used the VFDT algorithm designed by Domingos
and Hulten (2000). The learner takes a label and an
importance weight to be updated. When a cost vector
¢t € R is passed to the learner, we used

k
| = argmin ¢} ; and w = Z(é;j — &)
J j=1
as the label and the importance weight, respectively.
If there were multiple minima in ¢}, we chose one of
them randomly in a mistake round and selected the
true label y; in a correct round if it minimized the
cost vector.

One weakness of VFDT is that its performance is
very sensitive to the range of importance weights. To
address this, we added clipping in our implementa-
tion to prevent cost vectors from having excessively
large entries. We introduced a magic number 100 and
clipped the entry whenever it went outside the range
[-100, 100]. Clipping was especially helpful in stabi-
lizing results for data sets with large k. Additionally,

Table 4: Parameters for Bandit Algorithms

Data Count P NOpt NAda Y
Balance 2500 0.001 20 15 0.1
Car 6912 0.001 15 15 0.1
Nursery 12960  0.001 10 ) 0.1
Movement 165631 0.001 10 20 0.1
Mice 4320 0.1 10 20 0.1
Isolet 38985 0.1 10 20 0.1
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we scaled the importance weights for Isolet, as large k
tends to create larger weights.

B.4 Total Accuracy

Table 2 shows the average accuracy of all five algo-
rithms on each of the data sets, in contrast to the
asymptotic performance in Table 1. The effect of in-
creased k on the excess loss is noticeable, showing that
the bandit algorithms learn less quickly. For data sets
with smaller &, the total loss is a fairly large percentage
of the asymptotic loss, indicating the the algorithms
stay at their asymptotic accuracy for a larger fraction
of rounds. For Mice and Isolet data, however, the to-
tal accuracy is significantly lower than the asympototic
loss, indicating a much more linear improvement that
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Figure 2: Learning Curves on Balance (Top), Nursery,
Movement, and Mice (Bottom); Best Viewed in Color

is amortized over the whole data stream. Indeed, this
corroborates Figure 1, where accuracy improvement
of the bandit algorithms slows and tends towards a
straight line for large k.

B.5 Learning Curves

Figure 2 exhibits the learning curves of our bandit al-
gorithms and the full information ones. Similar to the
analysis in the main paper, the bandit algorithms learn
slower than the full information algorithms in general,
and the trend becomes obvious when k gets larger.
However, the bandit algorithms, especially AdaBan-
dit, become competitive in the end and sometimes out-
perform the full information algorithms. The under-
performance of the optimal algorithms is partially be-
cause we did not optimize the edge ~y, and this aspect
makes adaptive algorithms more suitable in practice.
It should be noted that the learning curves do not be-
gin at round 0 because the window accuracy is not
defined for a number of rounds less than 20% of the
total rounds to be given.



