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Abstract

We investigate how to train kernel approxi-
mation methods that generalize well under
a memory budget. Building on recent theo-
retical work, we define a measure of kernel
approximation error which we find to be more
predictive of the empirical generalization per-
formance of kernel approximation methods
than conventional metrics. An important con-
sequence of this definition is that a kernel
approximation matrix must be high rank to
attain close approximation. Because storing a
high-rank approximation is memory intensive,
we propose using a low-precision quantiza-
tion of random Fourier features (LP-RFFs)
to build a high-rank approximation under a
memory budget. Theoretically, we show quan-
tization has a negligible e↵ect on generaliza-
tion performance in important settings. Em-
pirically, we demonstrate across four bench-
mark datasets that LP-RFFs can match the
performance of full-precision RFFs and the
Nyström method, with 3x-10x and 50x-460x
less memory, respectively.

1 INTRODUCTION

Kernel methods are a powerful family of machine learn-
ing methods. A key technique for scaling kernel meth-
ods is to construct feature representations whose inner
products approximate the kernel function, and then
learn a linear model with these features; important ex-
amples of this technique include the Nyström method
(Williams and Seeger, 2000) and random Fourier fea-
tures (RFFs) (Rahimi and Recht, 2007). Unfortunately,
a large number of features are typically needed for at-
taining strong generalization performance with these
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methods on big datasets (Rahimi and Recht, 2008; Tu
et al., 2016; May et al., 2017). Thus, the memory re-
quired to store these features can become the training
bottleneck for kernel approximation models. In this
paper we work to alleviate this memory bottleneck by
optimizing the generalization performance for these
methods under a fixed memory budget.

To gain insight into how to design more memory-
e�cient kernel approximation methods, we first in-
vestigate the generalization performance vs. memory
utilization of Nyström and RFFs. While prior work
(Yang et al., 2012) has shown that the Nyström method
generalizes better than RFFs under the the same num-
ber of features, we demonstrate that the opposite is
true under a memory budget. Strikingly, we observe
that 50,000 standard RFFs can achieve the same held-
out accuracy as 20,000 Nyström features with 10x less
memory on the TIMIT classification task. Further-
more, this cannot be easily explained by the Frobenius
or spectral norms of the kernel approximation error ma-
trices of these methods, even though these norms are
the most common metrics for evaluating kernel approx-
imation methods (Gittens and Mahoney, 2016; Yang
et al., 2014; Sutherland and Schneider, 2015; Yu et al.,
2016; Dao et al., 2017); the above Nyström features
attain 1.7x smaller Frobenius error and 17x smaller
spectral error compared to the RFFs. This observa-
tion suggests the need for a more refined measure of
kernel approximation error—one which better aligns
with generalization performance, and can thus better
guide the design of new approximation methods.

Building on recent theoretical work (Avron et al., 2017),
we define a measure of approximation error which we
find to be much more predictive of empirical generaliza-
tion performance than the conventional metrics. In par-
ticular, we extend Avron et al.’s definition of �-spectral
approximation to our definition of (�

1

, �
2

)-spectral ap-
proximation by decoupling the two roles played by �
in the original definition.1 This decoupling reveals that

1The original definition uses the same scalar � to upper
and lower bound the approximate kernel matrix in terms
of the exact kernel matrix in the semidefinite order.
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Table 1: Memory utilization for kernel approximation methods. We consider data x 2 Rd, kernel features
z(x) 2 Rm, mini-batch size s, # of classes c (for regression/binary classification c = 1). We assume full-precision
numbers are 32 bits. We measure a method’s memory utilization as the sum of the three components in this table.

Approximation Method Feature generation Feature mini-batch Model parameters

Nyström 32(md + m

2) 32ms 32mc

RFFs 32md 32ms 32mc

Circulant RFFs 32m 32ms 32mc

Low-precision RFFs, b bits (ours) 32m bms 32mc

�
1

and �
2

impact generalization di↵erently, and can
together much better explain the relative generalization
performance of Nyström and RFFs than the original
�, or the Frobenius or spectral errors. This (�

1

,�
2

)
definition has an important consequence—in order for
an approximate kernel matrix to be close to the exact
kernel matrix, it is necessary for it to be high rank.

Motivated by the above connection between rank and
generalization performance, we propose using low-
precision random Fourier features (LP-RFFs) to attain
a high-rank approximation under a memory budget.
Specifically, we store each random Fourier feature in a
low-precision fixed-point representation, thus achieving
a higher-rank approximation with more features in the
same amount of space. Theoretically, we show that
when the quantization noise is much smaller than the
regularization parameter, using low precision has negli-
gible e↵ect on the number of features required for the
approximate kernel matrix to be a (�

1

,�
2

)-spectral
approximation of the exact kernel matrix. Empiri-
cally, we demonstrate across four benchmark datasets
(TIMIT, YearPred, CovType, Census) that in the mini-
batch training setting, LP-RFFs can match the perfor-
mance of full-precision RFFs (FP-RFFs) as well as the
Nyström method, with 3x-10x and 50x-460x less mem-
ory, respectively. These results suggest that LP-RFFs
could be an important tool going forward for scaling
kernel methods to larger and more challenging tasks.

The rest of this paper is organized as follows: In Section
2 we compare the performance of the Nyström method
and RFFs in terms of their training memory footprint.
In Section 3 we present a more refined measure of kernel
approximation error to explain the relative performance
of Nyström and RFFs. We introduce the LP-RFF
method and corresponding analysis in Section 4, and
present LP-RFF experiments in Section 5. We review
related work in Section 6, and conclude in Section 7.

2 NYSTRÖM VS. RFFS: AN
EMPIRICAL COMPARISON

To inform our design of memory-e�cient kernel approx-
imation methods, we first perform an empirical study
of the generalization performance vs. memory utiliza-

tion of Nyström and RFFs. We begin by reviewing
the memory utilization for these kernel approximation
methods in the mini-batch training setting; this is a
standard setting for training large-scale kernel approxi-
mation models (Huang et al., 2014; Yang et al., 2015;
May et al., 2017), and it is the setting we will be us-
ing to evaluate the di↵erent approximation methods
(Sections 2.2, 5.1). We then show that RFFs outper-
form Nyström given the same training memory budget,
even though the opposite is true given a budget for
the number of features (Yang et al., 2012). Lastly, we
demonstrate that the Frobenius and spectral norms of
the kernel approximation error matrix align poorly with
generalization performance, suggesting the need for a
more refined measure of approximation error for eval-
uating the quality of a kernel approximation method;
we investigate this in Section 3.

For background on RFFs and the Nyström method,
and for a summary of our notation, see Appendix A.

2.1 Memory Utilization

The optimization setting we consider is mini-batch
training over kernel approximation features. To un-
derstand the training memory footprint, we present in
Table 1 the memory utilization of the di↵erent parts
of the training pipeline. The three components are:

1. Feature generation: Computing m RFFs over data
in Rd requires a random projection matrix W 2
Rm⇥d. The Nyström method stores m “landmark
points” x̂

i

2 Rd, and a projection matrix in Rm⇥m.

2. Feature mini-batch: Kernel approximation features
z(x

i

) 2 Rm for all x

i

in a mini-batch are stored.2

3. Model parameters: For binary classification and
regression, the linear model learned on the z(x) fea-
tures is a vector ✓ 2 Rm; for c-class classification,
it is a matrix ✓ 2 Rm⇥c.

In this work we focus on reducing the memory occupied
by the mini-batches of features, which can occupy a

2For simplicity, we ignore the memory occupied by the
mini-batches of d-dim. inputs and c-dim. outputs, as gener-
ally the number of kernel approx. features m � d, c.



Jian Zhang

⇤
, Avner May

⇤
, Tri Dao, Christopher Ré
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Figure 1: Generalization performance of full-precision RFFs and Nyström with respect to the number of features
and training memory footprint on TIMIT (a,b). Nyström performs better for a fixed number of features, while
RFFs perform better under a memory budget. We also see that the generalization performance of these methods
does not align well with the Frobenius or spectral norms of their respective kernel approximation error matrices
(c,d). For results on YearPred, CovType, and Census, see Appendix D.2.

significant fraction of the training memory. Our work
is thus orthogonal to existing work which has shown
how to reduce the memory utilization of the feature
generation (Le et al., 2013; Yu et al., 2015) and the
model parameters (Sainath et al., 2013a; Sindhwani
et al., 2015; De Sa et al., 2018) (e.g., using structured
matrices or low precision). Throughout this paper, we
measure the memory utilization of a kernel approxima-
tion method as the sum of the above three components.

2.2 Empirical Comparison

We now compare the generalization performance of
RFFs and the Nyström method in terms of their train-
ing memory footprint. We demonstrate that RFFs
can outperform the Nyström method given a memory
budget, and show that the di↵erence in performance
between these methods cannot be explained by the
Frobenius or spectral norms of their kernel approxima-
tion error matrices.

In experiments across four datasets (TIMIT, YearPred,
CovType, Census (Garofolo et al., 1993; Dheeru and
Karra Taniskidou, 2017)), we use up to 20k Nyström
features and 400k RFFs to approximate the Gaus-
sian kernel;3 we train the models using mini-batch
stochastic gradient descent with early stopping, with
a mini-batch size of 250. We present results averaged
from three random seeds, with error bars indicating
standard deviations (for further experiment details,
see Appendix D.2). In Figure 1(a) we observe that
as a function of the number of kernel approximation
features the Nyström method generally outperforms
RFFs, though the gap narrows as m approaches 20k.
However, we see in Figure 1(b) that RFFs attain better
generalization performance as a function of memory.
Interestingly, the relative performance of these meth-

3We consider di↵erent ranges for the number of Nyström
vs. RFF features because the memory footprint for training
with 400k RFFs is similar to 20k Nyström features.

ods cannot simply be explained by the Frobenius or
spectral norms of the kernel approximation error ma-
trices;4 in Figure 1(c,d) we see that there are many
cases in which the RFFs attain better generalization
performance, in spite of having larger Frobenius or
spectral approximation error. This is a phenomenon
we observe on other datasets as well (Appendix D.2).
This suggests the need for a more refined measure of the
approximation error of a kernel approximation method,
which we discuss in the following section.

3 A REFINED MEASURE OF
KERNEL APPROX. ERROR

To explain the important di↵erences in performance be-
tween Nyström and RFFs, we define a more refined mea-
sure of kernel approximation error—(�

1

, �
2

)-spectral
approximation. Our definition is an extension of Avron
et al.’s definition of �-spectral approximation, in which
we decouple the two roles played by � in the original
definition. This decoupling allows for a more fine-
grained understanding of the factors influencing the
generalization performance of kernel approximation
methods, both theoretically and empirically. Theoret-
ically, we present a generalization bound for kernel
approximation methods in terms of (�

1

, �
2

) (Sec. 3.1),
and show that �

1

and �
2

influence the bound in dif-
ferent ways (Prop. 1). Empirically, we show that �

1

and �
2

are more predictive of the Nyström vs. RFF
performance than the � from the original definition,
and the Frobenius and spectral norms of the kernel
approximation error matrix (Sec. 3.2, Figure 2). An
important consequence of the (�

1

,�
2

) definition is
that attaining a small �

1

requires a large number of
features; we leverage this insight to motivate our pro-
posed method, low-precision random Fourier features,
in Section 4.

4We consider the Frobenius and spectral norms of K�K̃,
where K and K̃ are the exact and approximate kernel
matrices for 20k randomly sampled heldout points.
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3.1 (�
1

, �
2

)-spectral Approximation

We begin by reviewing what it means for a matrix
A to be a �-spectral approximation of a matrix B

(Avron et al., 2017). We then extend this definition
to (�

1

,�
2

)-spectral approximation, and bound the
generalization performance of kernel approximation
methods in terms of �

1

and �
2

in the context of fixed
design kernel ridge regression.

Definition 1. For � � 0, a symmetric matrix A is a
�-spectral approximation of another symmetric matrix
B if (1 � �)B � A � (1 + �)B.

We extend this definition by allowing for di↵erent values
of � in the left and right inequalities above:

Definition 2. For �
1

,�
2

� 0, a symmetric matrix
A is a (�

1

,�
2

)-spectral approximation of another
symmetric matrix B if (1 � �

1

)B � A � (1 + �
2

)B.

Throughout the text, we will use � to denote the
variable in Def. 1, and (�

1

, �
2

) to denote the variables
in Def. 2. In our discussions and experiments, we
always consider the smallest �, �

1

, �
2

satisfying the
above definitions; thus, � = max(�

1

, �
2

).

In the paragraphs that follow we present generalization
bounds for kernel approximation models in terms of
�

1

and �
2

in the context of fixed design kernel ridge
regression, and demonstrate that �

1

and �
2

influence
generalization in di↵erent ways (Prop. 1). We consider
the fixed design setting because its expected generaliza-
tion error has a closed-form expression, which allows us
to analyze generalization performance in a fine-grained
fashion. For an overview of fixed design kernel ridge
regression, see Appendix A.3.

In the fixed design setting, given a kernel matrix K 2
Rn⇥n, a regularization parameter � � 0, and a set of
labeled points {(x

i

, y

i

)}n
i=1

where the observed labels
y

i

= ȳ

i

+✏

i

are randomly perturbed versions of the true
labels ȳ

i

2 R (✏
i

independent, E [✏
i

] = 0, E
⇥
✏

2

i

⇤
= �

2

<

1), it is easy to show (Alaoui and Mahoney, 2015) that
the optimal kernel regressor5 f

K

has expected error

R(f
K

) =
�

2

n

ȳ

T (K +�I)�2

ȳ +
�

2

n

tr
⇣
K

2(K +�I)�2

⌘
,

where ȳ = (ȳ
1

, . . . , ȳ

n

) is the vector of true labels.

This closed-form expression for generalization error
allows us to bound the expected loss R(f

˜

K

) of a kernel
ridge regression model f

˜

K

learned using an approximate
kernel matrix K̃ in place of the exact kernel matrix K.
In particular, if we define

bR(f
K

) :=
�

n

ȳ

T (K + �I)�1

ȳ +
�

2

n

tr
⇣
K(K + �I)�1

⌘
,

5
f

K

(x) =
P

i

↵

i

k(x, x
i

) for ↵ = (K + �I)�1
y.

which is an upper bound on R(f
K

), we can bound the
expected loss of f

˜

K

as follows:

Proposition 1. (Extended from (Avron et al., 2017))
Suppose K̃ + �I is (�

1

, �
2

)-spectral approximation of
K + �I, for �

1

2 [0, 1) and �
2

� 0. Let m denote
the rank of K̃, and let f

K

and f

˜

K

be the kernel ridge
regression estimators learned using these matrices, with
regularizing constant � � 0 and label noise variance
�

2

< 1. Then

R(f
˜

K

)  1

1 � �
1

bR(f
K

) +
�

2

1 + �
2

m

n

�

2

. (1)

We include a proof in Appendix B.1. This result shows
that smaller values for �

1

and �
2

imply tighter bounds
on the generalization performance of the model trained
with K̃. We can see that as �

1

approaches 1 the bound
diverges, and as �

2

approaches 1 the bound plateaus.
We leverage this generalization bound to understand
the di↵erence in performance between Nyström and
RFFs (Sec. 3.2), and to motivate and analyze our pro-
posed low-precision random Fourier features (Sec. 4).

Remark The generalization bound in Prop. 1 as-
sumes the regressor f

K

is computed via the closed-
form solution for kernel ridge regression. However, in
Sections 4-5 we focus on stochastic gradient descent
(SGD) training for kernel approximation models. Be-
cause SGD can also find the model which minimizes
the regularized empirical loss (Nemirovski et al., 2009),
the generalization results carry over to our setting.

3.2 Revisiting Nyström vs. RFF Comparison

In this section we show that the values of �
1

and �
2

such that the approximate kernel matrix is a (�
1

, �
2

)-
spectral approximation of the exact kernel matrix cor-
relate better with generalization performance than the
original �, and the Frobenius and spectral norms of
the kernel approximation error; we measure correlation
using Spearman’s rank correlation coe�cient ⇢.

To study the correlation of these metrics with gen-
eralization performance, we train Nyström and RFF
models for many feature dimensions on the Census
regression task, and on a subsampled version of 20k
train and heldout points from the CovType classifica-
tion task. We choose these small datasets to be able
to compute the various measures of kernel approxima-
tion error over the entire heldout set. We measure the
spectral and Frobenius norms of K � K̃, and the �
and (�

1

,�
2

) values between K + �I and K̃ + �I (�
chosen via cross-validation), where K and K̃ are the
exact and approximate kernel matrices for the heldout
set. For more details about these experiments and how
we compute � and (�

1

, �
2

), see Appendix D.3.

In Figure 2, we plot the generalization performance on
these tasks as a function of these metrics; while the
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Figure 2: The correlation between generalization performance and di↵erent measures of kernel approximation
error for the full-precision RFF and Nyström methods. We see that generalization performance aligns well with
1/(1 � �

1

) (Spearman rank correlation coe�cient ⇢ = 0.958), while aligning poorly with � and the spectral and
squared Frobenius norms of the kernel approximation error matrix. See Appendix D.3 for results on CovType.

original � and the Frobenius and spectral norms gener-
ally do not align well with generalization performance,
we see that 1

1��1
does. Specifically, 1

1��1
attains a

Spearman rank correlation coe�cient of ⇢ = 0.958,
while squared Frobenius norm, spectral norm, and the
original � attain values of 0.594, 0.540, and 0.759.6

In Appendix D.3 we show these trends are robust to
di↵erent kernel approximation methods and datasets.
For example, we show that while other approximation
methods (e.g., orthogonal RFFs (Yu et al., 2016)), like
Nyström, can attain much lower Frobenius and spectral
error than standard RFFs, this does not translate to
improved �

1

or heldout performance. These results
mirror the generalization bound in Proposition 1, which
grows linearly with 1

1��1
. For simplicity, we ignore

the role of �
2

here, as �
1

appears to be su�cient for
explaining the main di↵erences in performance between
these full-precision methods.7 In Sections 4.2 and 5.2,
however, we show that �

2

has a large influence on
generalization performance for low-precision features.

Now that we have seen that �
1

has significant theoreti-
cal and empirical impact on generalization performance,
it is natural to ask how to construct kernel approxi-
mation matrices that attain small �

1

. An important
consequence of the definition of �

1

is that for K̃+�I to
have small �

1

relative to K +�I, K̃ must be high-rank ;
in particular, a necessary condition is �

1

� �m+1(K)

�m+1(K)+�

,

where m is the rank of K̃ and �

i

(K) is the i

th largest
eigenvalue of K.8 This sets a lower bound on the rank
necessary for K̃ to attain small �

1

which holds regard-
less of the approximation method used, motivating us
to design high-rank kernel approximation methods.

6One reason �1 correlates better than � is because
when �2 > �1, � = max(�1,�2) hides the value of �1.
This shows why decoupling the two roles of � is important.

7While 1/(1 � �1) aligns well with performance, it is
not perfect—for a fixed �1, Nyström generally performs
slightly better than RFFs. In App. D.3.1 we suggest this is
because Nyström has �2 = 0 while RFFs has larger �2.

8By definition, (K + �I)(1 � �1) � K̃ + �I. By Weyl’s

inequality this implies 8i (�
i

(K) + �)(1 � �1)  �

i

(K̃) + �.

If K̃ is rank m, then �

m+1(K̃) = 0, and the result follows.

4 LOW-PRECISION RANDOM
FOURIER FEATURES (LP-RFFS)

Taking inspiration from the above-mentioned connec-
tion between the rank of the kernel approximation
matrix and generalization performance, we propose
low-precision random Fourier features (LP-RFFs) to
create a high-rank approximation matrix under a mem-
ory budget. In particular, we quantize each random
Fourier feature to a low-precision fixed-point represen-
tation, thus allowing us to store more features in the
same amount of space. Theoretically, we show that
when the quantization noise is small relative to the
regularization parameter, using low precision has mini-
mal impact on the number of features required for the
approximate kernel matrix to be a (�

1

,�
2

)-spectral
approximation of the exact kernel matrix; by Propo-
sition 1, this implies a bound on the generalization
performance of the model trained on the low-precision
features. At the end of this section (Section 4.3), we
discuss a memory-e�cient implementation for training
a full-precision model on top of LP-RFFs.

4.1 Method Details

The core idea behind LP-RFFs is to use b bits to store
each RFF, instead of 32 or 64 bits. We implement
this with a simple stochastic rounding scheme. We use
the parametrization z

i

(x) =
p

2/m cos(wT

i

x + a

i

) 2
[�
p

2/m,

p
2/m] for the RFF vector z(x) 2 Rm

(Rahimi and Recht, 2007), and divide this interval

into 2b � 1 sub-intervals of equal size r =
2

p
2/m

2

b�1

. We
then randomly round each feature z

i

(x) to either the
top or bottom of the sub-interval [z, z] containing it,
in such a way that the expected value is equal to z

i

(x);
specifically, we round z

i

(x) to z with probability z�z

z�z

and to z with probability z�z

z�z

. The variance of this

stochastic rounding scheme is at most �

2

b

/m, where
�

2

b

:= 2/(2b � 1)2 (Prop. 7 in App. C.2). For each low-
precision feature z̃

i

(x) we only need to store the integer
j 2 [0, 2b � 1] such that z̃

i

(x) = �
p

2/m + jr, which
takes b bits. Letting Z̃ 2 Rn⇥m denote the matrix
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Figure 3: Empirical validation of Theorem 2. In the left and middle plots (shared legend), we see that as the #
of features grows, LP-RFFs approach �

1

= 0, but plateau at larger �
2

values (at most �

2

b

/�, marked by dashed
lines) for very low precisions. In the right plot we see that the larger � is, the lower the precision at which using
low precision does not impact �

2

. For �
1

and �
2

vs. # features plots on CovType, see Appendix D.4.

of quantized features, we call K̃ = Z̃Z̃

T an m-feature
b-bit LP-RFF approximation of a kernel matrix K.

As a way to further reduce the memory footprint during
training, we leverage existing work on using circulant
random matrices (Yu et al., 2015) for the RFF random
projection matrix to only occupy 32m bits.9 All our
LP-RFF experiments use circulant projections.

4.2 Theoretical Results

In this section we show quantization has minimal im-
pact on the number of features required to guarantee
strong generalization performance in certain settings.
We do this in the following theorem by lower bounding
the probability that K̃ + �I is a (�

1

, �
2

)-spectral ap-
proximation of K +�I, for the LP-RFF approximation
K̃ using m features and b bits per feature.10

Theorem 2. Let K̃ be an m-feature b-bit LP-
RFF approximation of a kernel matrix K, assume
kKk � � � �

2

b

:= 2/(2b � 1)2, and define a :=
8 tr

�
(K + �I

n

)�1(K + �

2

b

I

n

)
�
. Then for any �

1

� 0,
�

2

� �

2

b

/�,

P
h
(1 � �

1

)(K + �I) � K̃ + �I � (1 + �
2

)(K + �I)
i

�

1�a

 
exp

✓
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4n

�

(1 + 2
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)

◆
+exp
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2

� �

2
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�

)2

4n

�
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� �

2
b
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))

!!
.

The proof of Theorem 2 is in Appendix C. To provide
more intuition we present the following corollary:

Corollary 2.1. Assuming �
1

 3/2, it follows that
(1��

1

)(K+�I

n

) � K̃+�I

n

with probability at least 1�⇢

if m � 8n/�

�

2
1

log
⇣

a

⇢

⌘
. Similarly, assuming �

2

2
⇥
�

2
b
�

,

3

2

⇤
,

it follows that K̃ + �I

n

� (1 + �
2

)(K + �I

n

) with

probability at least 1 � ⇢ if m � 8n/�

(�2��

2
b/�)

2 log
⇣

a

⇢

⌘
.

9Technically, m additional bits are needed to store a
vector of Rademacher random variables in {�1, 1}m.

10This theorem extends directly to the quantization of
any kernel approximation feature matrix Z 2 Rn⇥m with
i.i.d. columns and with entries in [�

p
2/m,

p
2/m].

The above corollary suggests that using low precision
has negligible e↵ect on the number of features necessary
to attain a certain value of �

1

, and also has negligible
e↵ect for �

2

as long as �

2

b

/� ⌧ �
2

.

Validation of Theory We now empirically validate
the following two predictions made by the above theory:
(1) Using low precision has no e↵ect on the asymptotic
behavior of �

1

as the number of features m approaches
infinity, while having a significant e↵ect on �

2

when
�

2

b

/� is large. Specifically, as m ! 1, �
1

converges
to 0 for any precision b, while �

2

converges to a value
upper bounded by �

2

b

/�.11 (2) If �

2

b

/� ⌧ �
2

, using b-
bit precision will have negligible e↵ect on the number of
features required to attain this �

2

. Thus, the larger �

is, the smaller the impact of using low precision should
be on �

2

.

To validate the first prediction, in Figure 3 (left, middle)
we plot �

1

and �
2

as a function of the number of
features m, for FP-RFFs and LP-RFFs; we use the
same � as in the Section 2 Census experiments. We
show that for large m, all methods approach �

1

= 0;
in contrast, for precisions b  4 the LP-RFFs converge
to a �

2

value much larger than 0, and slightly less than
�

2

b

/� (marked by dashed lines).

To validate the second prediction, in Figure 3 (right)
we plot �

2

vs. precision for various values of �, using
m = 2000 features for all precisions; we do this on
a random subsample of 8000 Census training points.
We see that for large enough precision b, the �

2

is
very similar to the value from using 32-bit precision.
Furthermore, the larger the value of �, the smaller the
precision b can be without significantly a↵ecting �

2

.

11By Lemma 3 in Appendix C, we know that E
h
Z̃Z̃

T

i
=

K + D for a diagonal matrix D satisfying 0 � D � �

2
b

I

n

,
where D is independent of m. As m ! 1, �2 converges
to k(K + �I)�1/2

D(K + �I)�1/2k  �

2
b

/�.
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Figure 4: Generalization performance of FP-Nyström, FP-RFFs, circulant FP-RFFs, and LP-RFFs with respect
to memory (sum of components in Table 1) on TIMIT, YearPred and CovType. LP-RFFs attain the best
performance across a wide range of memory budgets. The same trend holds for Census in Appendix D.5.

Table 2: The compression ratios achieved by LP-RFFs
relative to the best performing full-precision baselines.

FP-RFFs Cir. FP-RFFs Nyström

Census 2.9x 15.6x 63.2x
YearPred 10.3x 7.6x 461.6x
Covtype 4.7x 3.9x 237.2x
TIMIT 5.1x 2.4x 50.9x

4.3 Implementation Considerations

In this paper, we focus on training full-precision models
using mini-batch training over low-precision features.
Here we describe how this mixed-precision optimization
can be implemented in a memory-e�cient manner.

Naively, to multiply the low-precision features with the
full-precision model, one could first cast the features to
full-precision, requiring significant intermediate mem-
ory. We can avoid this by casting in the processor
registers. Specifically, to perform multiplication with
the full-precision model, the features can be streamed
to the processor registers in low precision, and then cast
to full precision in the registers. In this way, only the
features in the registers exist in full precision. A similar
technique can be applied to avoid intermediate memory
in the low-precision feature computation—after a full-
precision feature is computed in the registers, it can be
directly quantized in-place before it is written back to
main memory. We leave a more thorough investigation
of these systems issues for future work.

5 EXPERIMENTS

In this section, we empirically demonstrate the per-
formance of LP-RFFs under a memory budget, and
show that (�

1

,�
2

) are predictive of generalization
performance. We show in Section 5.1 that LP-RFFs
can attain the same performance as FP-RFFs and
Nyström, while using 3x-10x and 50x-460x less memory.
In Section 5.2, we show the strong alignment between
(�

1

,�
2

) and generalization performance, once again
validating the importance of this measure.

5.1 Empirical Evaluation of LP-RFFs

To empirically demonstrate the generalization perfor-
mance of LP-RFFs, we compare their performance
to FP-RFFs, circulant FP-RFFs, and Nyström fea-
tures for various memory budgets. We use the same
datasets and protocol as the large-scale Nyström vs.
RFF comparisons in Section 2.2; the only significant ad-
ditions here are that we also evaluate the performance
of circulant FP-RFFs, and LP-RFFs for precisions
b 2 {1, 2, 4, 8, 16}. Across our experiments, we com-
pute the total memory utilization as the sum of all
the components in Table 1. We note that all our low-
precision experiments are done in simulation, which
means we store the quantized values as full-precision
floating-point numbers. We report average results from
three random seeds, with error bars showing standard
deviations. For more details about our experiments, see
Appendix D.5. We use the above protocol to validate
the following claims on the performance of LP-RFFs.12

LP-RFFs can outperform full-precision fea-
tures under memory budgets. In Figure 4, we
plot the generalization performance for these experi-
ments as a function of the total training memory for
TIMIT, YearPred, and CovType. We observe that LP-
RFFs attain better generalization performance than
the full-precision baselines under various memory bud-
gets. To see results for all precisions, as well as results
on additional benchmark datasets (Census, Adult, Cod-
RNA, CPU, Forest) from the UCI repository (Dheeru
and Karra Taniskidou, 2017), see Appendix D.5.

LP-RFFs can match the performance of full-
precision features with significantly less mem-
ory. In Table 2 we present the compression ratios we
achieve with LP-RFFs relative to the best performing
baseline methods. For each baseline (FP-RFFs, circu-
lant FP-RFFs, Nyström), we find the smallest LP-RFF
model, as well as the smallest baseline model, which
attain within 10�4 relative performance of the best-
performing baseline model; we then compute the ratio

12Our code: github.com/HazyResearch/lp_rffs.
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Figure 5: Generalization perf. vs. �
2

(left plots, shared legend), and vs. 1/(1 � �
1

) and max (1/(1 � �
1

), �
2

)
(right plots, shared legend). Left: heldout performance deteriorates as �

2

gets larger due to lower precision.
Right: max (1/(1 � �

1

), �
2

) aligns well with performance across LP-RFF precisions (Spearman rank correlation
coe�cient ⇢ = 0.959), while 1/(1 � �

1

) aligns poorly (⇢ = 0.403). See Appendix D.6 for CovType results.

of the memory used by these two models (baseline/LP-
RFF) for three random seeds, and report the aver-
age. We can see that LP-RFFs demonstrate significant
memory saving over FP-RFFs, circulant FP-RFFs, and
Nyström, attaining compression ratios of 2.9x-10.3x,
2.4x-15.6x, and 50.9x-461.6x, respectively.

5.2 Generalization Performance vs. (�
1

, �
2

)

In this section we show that �
1

and �
2

are together
quite predictive of generalization performance across all
the kernel approximation methods we have discussed.
We first show that performance deteriorates for larger
�

2

values as we vary the precision of the LP-RFFs,
when keeping the number of features constant (thereby
limiting the influence of �

1

on performance). We then
combine this insight with our previous observation
(Section 3.2) that performance scales with 1

1��1
in the

full-precision setting by showing that across precisions
the performance aligns well with max

�
1

1��1
, �

2

�
. For

these experiments, we use the same protocol as for the
(�

1

,�
2

) experiments in Section 3.2, but additionally
consider LP-RFFs for precisions b 2 {1, 2, 4, 8, 16}.

We show in Figure 5 (left plots) that for a fixed number
of random Fourier features, performance deteriorates
as �

2

grows. As we have shown in Figure 3 (left), �
1

is primarily governed by the rank of the approxima-
tion matrix, and thus holding the number of features
constant serves as a proxy for holding �

1

roughly con-
stant. This allows us to isolate the impact of �

2

on
performance as we vary the precision.

To integrate the influence of �
1

and �
2

on general-
ization performance into a single scalar, we consider
max

�
1

1��1
, �

2

�
. In Figure 5 (right plots) we show that

when considering both low-precision and full-precision
features, max

�
1

1��1
, �

2

�
aligns well with performance

(⇢ = 0.959, incorporating all precisions), while 1

1��1

aligns poorly (⇢ = 0.403).

In Appendix B we argue that performance scales
roughly as �

2

instead of as �
2

/(1 + �
2

) (as suggested
by Prop. 1) due to looseness in the Prop. 1 bound.

6 RELATED WORK

Low-Memory Kernel Approximation For RFFs,
there has been work on using structured random pro-
jections (Le et al., 2013; Yu et al., 2015, 2016), and
feature selection (Yen et al., 2014; May et al., 2016) to
reduce memory utilization. Our work is orthogonal, as
LP-RFFs can be used with both. For Nyström, there
has been extensive work on improving the choice of
landmark points, and reducing the memory footprint
in other ways (Kumar et al., 2009; Hsieh et al., 2014;
Si et al., 2014; Musco and Musco, 2017). In our work,
we focus on the e↵ect of quantization on generalization
performance per bit, and note that RFFs are much
more amenable to quantization. For our initial experi-
ments quantizing Nyström features, see Appendix D.7.

Low Precision for Machine Learning There has
been much recent interest in using low precision for
accelerating training and inference of machine learning
models, as well as for model compression (Gupta et al.,
2015; De Sa et al., 2015; Hubara et al., 2016; De Sa
et al., 2018, 2017; Han et al., 2016). There have been
many advances in hardware support for low precision
as well (Jouppi et al., 2017; Caulfield et al., 2017).

This work is inspired by the Nyström vs. RFF exper-
iments in the PhD dissertation of May (2018), and
provides a principled understanding of the prior results.
For more related work discussion, see Appendix E.

7 CONCLUSION

We defined a new measure of kernel approximation error
and demonstrated its close connection to the empirical
and theoretical generalization performance of kernel
approximation methods. Inspired by this measure,
we proposed LP-RFFs and showed they can attain
improved generalization performance under a memory
budget in theory and in experiments. We believe these
contributions provide fundamental insights into the
generalization performance of kernel approximation
methods, and hope to use these insights to scale kernel
methods to larger and more challenging tasks.
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