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Abstract

We consider the tensor completion prob-
lem of predicting the missing entries of
a tensor. The commonly used CP model
has a triple product form, but an alter-
nate family of quadratic models which
are the sum of pairwise products in-
stead of a triple product have emerged
from applications such as recommen-
dation systems. Non-convex methods
are the method of choice for learning
quadratic models, and this work exam-
ines their sample complexity and error
guarantee. Our main result is that with
the number of samples being only linear
in the dimension, all local minima of the
mean squared error objective are global
minima and recover the original tensor.
We substantiate our theoretical results
with experiments on synthetic and real-
world data.

1 Introduction

Tensors provide a natural way to model higher or-
der data [1, 2, 3, 4, 5]. They have applications in
recommendation systems [6, 7, 8], knowledge base
completion [9, 10, 11], predicting geo-location tra-
jectories [12] and so on. Most tensor datasets
encountered in the above settings are not fully
observed. This leads to tensor completion, the
problem of predicting the missing entries, given
a small number of observations from the tensor
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[2, 13]. In order to recover the missing entries,
it is important to take into account the data effi-
ciency of the tensor completion model.

One of the most well known tensor models is
the CANDECOMP/PARAFAC or CP decomposition
[2]. For a third order tensor, the CP model will
express the tensor as the sum of rank 1 ten-
sors, i.e. tensor product of three vectors. The
tensor completion problem of learning a CP de-
composition has received a lot of attention re-
cently [14, 15, 16]. It is commonly believed that
reconstructing a third-order d dimensional ten-
sor in polynomial time requires Θ(d3/2) samples
[14, 17]. This is necessary even for low rank ten-
sors, where Θ(d) samples are information theo-
retically sufficient for recovery. The sample re-
quirement of CP decomposition limits its repre-
sentational power for sparsely observed tensors in
practice [12, 10, 18]. While regularization may
be helpful when there are limited observations,
adding strong regularization will also hurt the op-
timization performance.

On the other hand, an alternative family of
quadratic tensor models have emerged from appli-
cations in recommendation systems [6] and knowl-
edge base completion [11]. The pairwise interac-
tion model has demonstrated strong performance
for the personalized tag recommendation problem
[6, 7, 8]. In this model, the (i, j, k) entry of a ten-
sor is viewed as the sum of pairwise inner prod-
ucts: 〈xi, yj〉 + 〈xi, zk〉 + 〈yj , zk〉, where xi, yj , zk
correspond to the embedding of each coordinate.
As another example, the translating embedding
model [9] for knowledge base completion can be
(implicitly) viewed as solving tensor completion
with a quadratic model. Suppose that x, z are the
embedding of two entities and y is the embedding
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of a relation. Then the smaller ‖x+y−z‖2 is, the
more likely x, z are related by y. To be concrete,
we formalize the notion of quadratic tensors as:

Ti,j,k =
r∑
l=1

κ(Ai,l, Bj,l, Ck,l),∀ 1 ≤ i, j, k,≤ d.

where A,B,C ⊆ Rd×r correspond to the embed-
ding vectors, and κ : R3 → R denotes a quadratic
function. Both the pairwise interaction model and
the translational embedding model correspond to
specific choices of κ.

It is known that for the special case of pairwise
interaction tensors, linear (in dimension) number
of samples are enough to recover the tensor via
convex relaxation [19]. However, in practice non-
convex methods are the predominant method of
choice for training quadratic models. This is be-
cause non-convex methods, such as alternating
minimization and gradient descent, are more scal-
able to handle very large datasets. Despite the
practical success, it has been a major challenge
to theoretically analyze the performance of non-
convex methods. In this work, we present the
first recovery guarantee of non-convex methods
for learning quadratic tensors. Besides the moti-
vation of quadratic tensors, our work joins a line
of recent work to further understand when local
methods can lead to globally optimal solutions in
non-convex low rank problems [20, 21, 22, 23, 24].
Our results show that quadratic tensor comple-
tion enjoys the property that all local minima are
global minima in its non-convex formulation.

Main Results. Assume that we observe m en-
tries of T uniformly at random. Denote the set of
observed entries as Ω. Consider the natural least
squares minimization problem.

f(X,Y, Z) =
∑

(i,j,k)∈Ω

(
R∑
l=1

κ(Xi,l, Yj,l, Zk,l)− Ti,j,k

)2

+Q(X,Y, Z),

where Q(X,Y, Z) includes weight decay and other
regularizers. (See Section 3 for the precise defi-
nition). Note that f(X,Y, Z) is in general non-
convex since it generalizes the matrix completion
setting when κ(Xi,l, Yj,l) = Xi,lYj,l. We show that
as long as R ≥ 2

√
m, all local minimum can re-

construct the ground truth T accurately.

Theorem 1 (informal). Assume that for all 1 ≤
i ≤ d, ‖e>i A‖, ‖e>i B‖, ‖e>i C‖ ≤

√
µr/d. Let ε be

the desired accuracy and m = Θ(dr4µ4(log d)/ε2).
For the regularized objective f , as long as R ≥
2
√
m, then all local minimum V of f can be

used to reconstruct T̂ ⊆ Rd×d×d such that
1
d3
∑

1≤i,j,k≤d

∣∣∣T̂i,j,k − Ti,j,k∣∣∣ . ε/d.

In the incoherent setting when µ is a small con-
stant, the tensor entries are on the order of 1/d.
Our results imply that the average recovery error
is on the order of ε/d. Hence we recover most ten-
sor entries up to less than ε relative error. Our
result applies to any quadratic tensor, whereas
the previous result on convex relaxations only ap-
plies to pairwise interaction tensors [19]. An ad-
ditional advantage is that our approach does not
require the low rank assumption for recovery, we
only need r in Theorem 1 to be small, where r is
upper bounded by the rank R. We also note that
the r4 dependence of the sample complexity on r
for our results is comparable to recent results for
non-convex methods for matrix completion [24].

Our technique is based on over-parameterizing the
search space to dimension R = Θ(

√
m) (the R =

Θ(
√
m) dependence on over-parameterization is

comparable to previous analyses for low-rank
Burer-Monteiro formulations [21, 25]). We show
that for the training objective, there is no bad lo-
cal minimum after over-parameterization. Hence
any local minima can achieve small training er-
ror. The regularizer Q is then used to ensure
that the generalization error to the entire tensor
is small, provided with just a linear number of
samples from Ω. Since the result applies to any
local minimum, it has implications for any non-
convex method conceptually, such as alternating
least squares and gradient descent.

Experiments. We substantiate our theoretical
results with experiments on synthetic and real-
world tensors. Our synthetic experiments val-
idate our theory that non-convex methods can
recover quadratic tensors with linear number of
samples. Our real-world experiments compare the
CP model and the quadratic model solved using
non-convex methods on two real world datasets.
The first dataset consists of 10 million movie rat-
ings over time (Movielens-10M). The task is to
predict movie ratings by completing the miss-
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ing entries of the tensor. We found that the
quadratic model outperforms CP-decomposition
by 10%. The second dataset consists of a word tri-
occurrence tensor comprising the most frequent
2000 English words. We learn word embeddings
from the tensor using both the quadratic model
and the CP model, and evaluate the embeddings
on standard NLP tasks. The quadratic model is
20% more accurate than the CP model. These re-
sults indicate that the quadratic model is better
suited to sparse, high-dimensional datasets than
the CP model, and we hypothesize that this stems
from its better data efficiency.

In conclusion, we show that provided with just lin-
ear number of samples from a quadratic tensor,
we can recover the tensor accurately using any
local minimum of the natural non-convex formu-
lation. Empirically, the quadratic models enjoy
superior performance when solved with the non-
convex formulation, compared to the CP model.
Together, they indicate that the quadratic model
may be the right tensor model to use in practical
settings with limited data.

Organization. The rest of the paper is orga-
nized as follows. In Section 2 we define the
quadratic model more formally and review related
work. In Section 3 we present our theoretical re-
sults. In Section 4 we experimentally evaluate
the non-convex formulation for solving quadratic
models and conclude in Section 5.

Notation. Given a positive integer d, let [d] de-
note the set of integers from 1 to d. For a matrix
X ∈ Rd1×d2 , let Xi denote the i-th row vector
of X, for any i ∈ [d1]. We use X < 0 to de-
note that X is positive semi-definite. Denote by
Sd as the set of symmetric matrices of size d by
d. Denote by S+

d as the set of d by d positive
semidefinite matrices. Let ‖ · ‖ denote the Eu-
clidean norm of a vector and spectral norm of a
matrix. Let ‖ · ‖F denote the Euclidean norm of
a matrix. Let ‖ · ‖1 denote the `1 norm of a ma-
trix or tensor, i.e. sum of absolute value of every
entry. For two matrices A,B we define the inner
product 〈A,B〉 = Tr(ABT ). For three matrices
X,Y, Z ∈ Rd×d′ , denote by [X;Y ;Z] ∈ R3d×d′ as
the three matrices stacked vertically.

Given an objective function f : Rd → R, we

use ∇f(U) to denote the gradient of f(U), and
∇2f(U) to denote the Hessian matrix of f(U),
which is of size d by d.

We denote f(x) . g(x) if there exists an absolute
constant C such that f(x) ≤ Cg(x).

2 Preliminaries

We now define the quadratic model more formally
with examples. Recall that T ∈ Rd×d×d is a third
order tensor, composed by a quadratic function
over three factor matrices A,B,C ⊆ Rd×r.1 In
the introduction we defined κ as a function on real
values, we now overload the notation and define
κ : Rd′ × Rd′ × Rd′ → R to work over vectors as
well. More specifically,

Ti,j,k = κ(Ai;Bj ;Ck)

= 〈[Ai;Bj ;Ck],K · [Ai;Bj ;Ck]〉.

Recall that [Ai;Bj ;Ck] is a (3 × d′) matrix with
the i, j, k rows of A,B,C stacked vertically. Here
the kernel matrix K ∈ R3×3 encodes the similar-
ity/dissimilarity represented by κ between the in-
put vectors. Different choices of K represent dif-
ferent quadratic models, for example whenK = I,
Ti,j,k = ‖Ai‖2 + ‖Bj‖2 + ‖Ck‖2. We assume that
K is a symmetric matrix without loss of gener-
ality, since we can always symmetrize K without
changing κ. We now describe two quadratic mod-
els which are commonly used in the literature.

Example 2. The Pairwise Interaction Tensor
Model [6] is proposed in the context of tag rec-
ommendation, e.g. suggesting a set of tags that
a user is likely to use for an item. The Pairwise
Model scores the triple (i, j, k) with the following
measure:

Ti,j,k = 〈Ai, Bj〉+ 〈Ai, Ck〉+ 〈Bj , Ck〉.

For this model, the kernel matrix K has 1/2 on all
off-diagonal entries, and 0 on the diagonal entries.
In the tag recommendation setting, Ai, Bj and Ck
correspond to embeddings for the ith user, jth

1We assume that the three dimensions all have size d in
order to simplify the notations. It is not hard to extend our
results to the more general case when different dimensions
have different sizes. Also, we will focus on third order
tensor for the ease of presentation – it is straightforward
to extend the quadratic model to higher orders.
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item, and kth tag respectively. The pairwise in-
teraction model models two-way interactions be-
tween users, items and tags to predict if user i is
likely to use tag k for item j.

Example 3. The Translational Embedding Model
(a.k.a TransE) [9] is well studied in the knowl-
edge base completion problem, e.g. inferring rela-
tions between entities. The TransE model scores
a triple (i, j, k) with

Ti,j,k = ‖Ai +Bj − Ck‖2.

Intuitively, the smaller Ti,j,k is, the more likely
that entities i and k will be related by relation j.

The idea here is that if adding the embedding for
Italy to the embedding for the capital of relation-
ship results in a vector close to the embedding for
Rome, then Rome and Italy are likely to be linked
by the capital of relation.

2.1 Related Work

We first review existing approaches for analyzing
non-convex low rank problems. One line of work
focuses on the geometry of the non-convex prob-
lem, and show that as long as the current solution
is not optimal, then a direction of improvement
can be found [20, 21, 23, 24, 26]. There are a few
technical difficulties in applying this line of ap-
proach to our setting. One difficulty is asymmetry
— our setting requires recovering three set of dif-
ferent parameters. Existing analysis of alternat-
ing least squares does not seem to apply because
of the asymmetry as well [27]. The second diffi-
culty is that there exists multiple factor matrices
which correspond to the same quadratic tensor in
our setting. Hence it is not clear which factor ma-
trices the gradient descent algorithms converges
to. A second line of work builds on an interest-
ing connection between SDPs and their Burer-
Monteiro low-rank formulations [21, 22]. How-
ever, their results do not directly apply to our
setting because the non-convex formulation is un-
constrained. Recent work has applied this con-
nection to analyzing over-parameterization in one
hidden layer neural networks with quadratic acti-
vations [25]. Our techniques are inspired by this
work, however our setting is fundamentally dif-
ferent from their setting. This is because we need
to take into account the incoherence of the factor

matrices. Hence we need to add the incoherence
regularizer to our setting [20, 21]. We refer the
reader to Section 3 for more technical details.

Next we review related works for tensor comple-
tion. One approach is to flatten the tensor into a
matrix, or treat each slice of the tensor as a low
rank matrix individually, and then apply matrix
completion methods [28, 29, 30]. There are other
models such as RESCAL [3], Tucker-based meth-
ods [2] etc. We refer the interested reader to a
recent survey for more information [13].

3 Recovery Guarantees

In this section, we consider the recovery of
quadratic tensors under partial observations. Re-
call that we observe m entries uniformly at ran-
dom from an unknown tensor T . Let Ω ∈ [d]3

denote the indices of the observed entries. Given
Ω, our goal is to recover T accurately. We first re-
view the definition of local optimality conditions.

Definition 4. (Local minimum) Suppose that U
is a local minimum of f(U), then we have that
∇f(U) = 0 and ∇2f(U) < 0.

We focus on the following non-convex least
squares formulation with variables X,Y, Z, which
model the true parameters A,B,C. In this set-
ting, we assume that κ is already known. This is
without loss of generality, since our approach also
applies to the case when κ is unknown using the
same proof technique.

min
X,Y,Z⊆Rd×R

g(X,Y, Z) =

1

m

∑
(i,j,k)∈Ω

(
R∑
l=1

κ(Xi,l, Yj,l, Zk,l)− Ti,j,k

)2

+λ1(‖X‖2
F

+ ‖Y ‖2
F

+ ‖Z‖2
F

) + λ2

d∑
i=1

qα(‖e>i U‖)

+〈[X;Y ;Z], C [̇X;Y ;Z]〉.

Let us unpack the above function. The first term
corresponds to the natural MSE over Ω. Next
we have qα(x) = (|x| −

√
α)41x≥

√
α. The role of

qα(x) is to penalize any row ofX,Y, Z whose norm
is larger than

√
α, the desired amount from our

assumption. It is not hard to verify that qα(x) is
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twice differentiable. Last, C ⊆ S+
3d is a random

PSD matrix with spectral norm at most λ1. One
can view C as a small perturbation on the loss
surface. This perturbation will be important to
smooth out unlikely cases in our analysis, as we
will see later. Our main result is described below.

Theorem 5. Let T ? ⊆ Rd×d×d be a quadratic
tensor defined by factors A?, B?, C? ⊆ Rd×r and
a quadratic function κ. Assume that

‖e>i A?‖, ‖e>i B?‖, ‖e>i C?‖ ≤
√
α,∀ 1 ≤ i ≤ d.

We are given a uniformly random subset of m en-
tries Ω ⊆ [d]3 from T ?. Let m & d(log d)/ε2 and
R ≥

√
2m+ 2d. Under appropriate choices of λ1

and λ2, for any local minimum X,Y, Z of g, with
high probability over the randomness of Ω and C,
for T̂i,j,k =

∑R
l=1 κ(Xi,l, Yj,l, Zk,l), we have:

1

d3

∑
1≤i,j,k≤d

∣∣∣T̂i,j,k − T ?i,j,k∣∣∣ . dα2ε.

Note that Theorem 1 simply follows from Theo-
rem 5 by setting α =

√
µr/d as well as the corre-

sponding value of m and R in Theorem 5.

For a concrete example of the recovery guaran-
tee, suppose that A?, B?, C? are all sampled in-
dependently from N (0, 1/

√
d). In this case, it is

easy to verify that α . r(log d)/d. Hence when
m & dr4 log3 d, we have that the average recovery
error is at most O(ε/d). Note that every entry of
T ? is on the order of 1/d based on the quadratic
model. Hence our theorem shows that most ten-
sor entries are accurately recovered up to a rela-
tive error of ε fraction.

Next we give an overview of the technical insight.
The first technical complication of analyzing such
a g(X,Y, Z) is that the three factors are asym-
metric. Therefore to simplify the analysis, we first
reduce the problem to a symmetric problem, by
viewing the search space as [X;Y ;Z] ∈ R3d×r in-
stead. We then show that all local minima of
g(X,Y, Z) are global minima. Here is where we
crucially use the random perturbation matrix C –
this is necessary to avoid a zero probability space
which may contain non global minima. While this
idea of adding a random perturbation is inspired
by the work of Du and Lee [25] (and is also used
in [31, 32]), the adaptation to our setting is novel

and requires careful analysis. In the last part,
we use the regularizer of g to argue that all lo-
cal minima are incoherent, and their Frobenius
norms are small. Based on these two facts, we
use Rademacher complexity to bound the gener-
alization error. We now go into the details of the
proof.

Local optimality. Before proceeding, we in-
troduce several notations. Denote by U? =
[A?;B?;C?] ⊆ R3d×r as the three factors stacked
vertically. Let X? = U?U?>. For each triple
t = (i, j, k) ∈ [d]3, denote by At ⊆ R3d×3d as a
sensing matrix such that 〈At, X?〉 = T ?i,j,k. Specif-
ically, we have that At restricted to the row and
column indices i, j + d, k + 2d is equal to K (the
kernel matrix of κ), and 0 otherwise. We can
rewrite g(X,Y, Z) more concisely as follows.

f(U) =
1

m

∑
t∈Ω

〈At, UU> −X?〉2 + λ1‖U‖2F

+ λ2

3d∑
i=1

qα(‖e>i U‖) + 〈C,UU>〉,

where U = [X;Y ;Z] ⊆ R3d×R. We will use the
following Proposition in the proof.

Proposition 6 (Proposition 4 in Bach et al.
[33]). Let g be a twice differentiable function con-
vex function over S+

d . If the function h : U →
g(UU>) defined over U ⊆ d× d′ has a local min-
imum at a rank deficient matrix V , then V V > is
a global minimum of g.

Now we are ready to show that there is no bad
local minima in the landscape of f(U).

Lemma 7. In the setting of Theorem 5, with high
probability any local minimum U of f(·) is a global
minimum.

Proof. We will show that rank(U) < R, hence by
Proposition 6, U is a global minimum of f(U).
Assume that rank(U) = R. By local optimiality,
∇f(U) = 0, we obtain that:(∑

t∈Ω

ztAt +
d∑
i=1

wieie
>
i + λ1 Id +C

)
U = 0,

where wi =
4λ2(‖e>i U‖ −

√
α)3

‖e>i U‖
1‖e>i U‖≥

√
α,

and zt =
2

m
〈At, UU> −X?〉.
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Denote by

M(w, z) =

d∑
i=1

wieie
>
i +

∑
t∈Ω

ztAt, and

A =
{
X −M(w, z)− λ1 Id : X ∈ S3d, XU = 0,

w ∈ Rd, z ∈ Rm
}
.

In the above definition, X is a symmetric matrix
in the null space of U – recall that At is symmet-
ric, for any t ∈ [d]3. The set A is a manifold and
clearly C ∈ A by the gradient condition.

Since the rank of the null space is 3d−R, the di-
mension of such X is 3d(3d+1)

2 − R(R+1)
2 . Together

with w and z, we have that the dimension of A is

3d(3d+ 1)

2
− R(R+ 1)

2
+m+ d.

We have assumed that R ≥
√

2m+ 2d. Hence the
dimension of A is strictly less than 3d(3d+1)

2 . How-
ever, the probability that a random PSD matrix
C falls in such a set A only happens with proba-
bility zero. Hence with high probability, the rank
of V is less than R. The proof is complete.

Rademacher complexity. Next we bound the
generalization error using Rademacher complex-
ity. We first introduce some notations. For any
S ⊆ [d]3, X ⊆ S3d, denote by

LS(X) =
1

|S|
∑
t∈S
|〈At, X −X?〉| .

And let G denote the set of matrices as follows.

G :=
{
X ∈ S+

3d : Tr(X) ≤ 2dα,Xi,i ≤ 2α ∀ i ∈ [d]
}
.

We bound the Rademacher complexity of G in the
following Lemma.

Lemma 8. Let c be a fixed constant. In the set-
ting of Theorem 5, with high probability over the
randomness of Ω, we have that

sup
X∈G

∣∣LΩ(X)− L[d]3(X)
∣∣ ≤ c‖K‖1dα2ε.

The proofs for Lemma 8 as well as Theorem 5 are
deferred to the Appendix – Theorem 5 follows by
combining Lemma 7 and Lemma 8.

4 Experiments

In this section, we describe our experiments on
synthetic data and real world data. For syn-
thetic data, we validate our theoretical results
and show that the number of samples needed to
recover the tensor only grows linearly in the di-
mension using two non-convex methods – gradi-
ent descent and alternating least squares (ALS).
We then evaluate the quadratic model solved us-
ing non-convex methods on real-world tasks in
two diverse domains: a) predicting movie rat-
ings in the Movielens-10M dataset. b) learn-
ing word embeddings using a tensor of word tri-
occurrences. In the Movielens-10M dataset the
quadratic model outperforms CP decomposition
by more than 10%. In the word embedding ex-
periment the quadratic model outperforms CP de-
composition by more than 20% across NLP bench-
marks for evaluating word embeddings.

4.1 Synthetic Data

Both gradient descent and ALS are common
paradigms for solving non-convex problems, and
hence our goal in this section is to evaluate their
performances on synthetic data. The ALS ap-
proach minimizes the mean squared error objec-
tive by iteratively fixing two sets of factors, and
then solving the regularized least squares problem
on the third factor. In addition, we also evaluate a
semidefinite programming based approach which
solves a trace minimization problem, similar to
the approach in Chen et al. [19].

We now describe our setup. Let A,B,C ∈ Rd×r,
where every entry is sampled independently from
standard normal distribution. We sample a uni-
formly random subset of m entries from the
quadratic tensor T = T (A,B,C). Let the set
of observed entries be Ω, and the goal is to re-
cover T given Ω. We measure test error of the
reconstructed tensor T̂ as follows:√√√√∑(i,j,k)/∈Ω(T̂i,j,k − Ti,j,k)2∑

(i,j,k)/∈Ω T
2
i,j,k

.

Accuracy. We first examine how many samples
ALS and the SDP require in order to recover T
accurately. Let m = c×d× r, here m is the num-
ber of samples. We fix r = 5. For each value of d
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(a) Test error vs. Dimension for ALS (b) Test error vs. Dimension for SDP

Figure 1: ALS and SDP require 2dr to 3dr samples to recover a quadratic tensor with random factors,
providing evidence that their sample complexity is O(d). Here r = 5 and number of samples m = cdr.

and c, we repeat the experiment thrice, and report
the median value with error bars. Because ALS is
more scalable, we are able to test on much larger
dimensions d. Fig. 1 shows that the sample
complexity of both the SDP and ALS is between
2dr to 3dr. When m = 2dr, both the SDP and
ALS fail to recover T ; but given m = 3dr samples,
they can recover T very accurately. ALS also con-
verges within 30 iterations across our experiments
(Fig. 2 in the Appendix shows how the error de-
cays with the iteration). This makes ALS highly
scalable for solving the problem on large tensors.
We also repeat the same experiment for gradient
descent (Section B.2 in the Appendix) and show
that it also has linear sample complexity—though
the constants seem to be worse than ALS.

4.2 Movie Ratings Prediction on
Movielens-10M Dataset

The Movielens-10M dataset2 contains about 10
million ratings (each between 0-5) given by 71, 567
users to 10, 681 movies, along with time stamps
for each rating. We test both CP decomposition
and the quadratic model on a tensor completion
task of predict missing ratings given a subset of
the ratings. We also compare with a matrix fac-
torization based method which ignores the tem-
poral information to evaluate if the temporal in-
formation in the time stamps is useful.

Methodology. We split the ratings into a
training and test set with two different sampling
rates: p = 0.2 and p = 0.8 corresponding to
20% and 80% of the entries being in the train-
ing set respectively, and repeat the experiment

2https://grouplens.org/datasets/movielens/10m/

thrice for each p. The smaller p = 0.2 sampling
rate is to evaluate the performance of the algo-
rithm given very little data. To construct the
tensor of ratings we bin the time window into 20
week long intervals, which gives a tensor of size
(71, 567 × 10, 681 × 37), where the third mode is
the temporal mode. We then use CP decomposi-
tion and the quadratic model, both with `2 regu-
larization to predict the missing ratings. For the
matrix method we run matrix factorization with
`2 regularization on the (71, 567×10, 681) dimen-
sional matrix of ratings. We use alternating min-
imization with a random initialization and tune
the regularization parameter for all algorithms.
The evaluation metric is the mean squared error
(MSE) on the test entries.

Results. The means and standard deviations
of the MSE are reported in Table 1. There are
two key takeaways. Firstly, we can see that the
quadratic model consistently yields superior per-
formance than the CP model for the choices of
rank3 and sampling rate we explored. The differ-
ence between the performances is also larger for
the regime with the lower sampling rate, and we
hypothesize that this is due to superior general-
ization ability of the quadratic model compared
with the CP model. Another reason for the per-
formance gap could be that the tensor is not a
low-rank CP tensor since every user only rates a
movie once. The quadratic model also gets a 4%
improvement over the baseline which ignores the
temporal information in the ratings and uses ma-
trix factorization. This is expected—as a users

3We found that going to higher rank did not improve
the performance of either model.
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Algorithm Sampling rate p = 0.2 Sampling rate p = 0.8

Rank r=10 Rank r=20 Rank r=10 Rank r=20
Matrix model 0.872± 0.004 0.947± 0.002 0.665± 0.003 0.667± 0.001
CP model 1.068± 0.087 1.141± 0.054 0.719± 0.010 0.705± 0.002
Quadratic model 0.798± 0.003 0.772± 0.003 0.642± 0.002 0.638± 0.002

Table 1: Results for the Movielens-10M dataset for varying sampling rates corresponding to different
training and test splits, and different ranks of the factorization. The quadratic model yields the best
results across all settings, with the gap being larger at lower sampling rates.

like or dislike for a genre of movies or a movie’s
rating may change over time.

4.3 Learning Word Embeddings

Word embeddings are vectors representations of
words, where the vectors and their geometry en-
codes both syntactic and semantic information.
We construct word embeddings using the factors
obtained by doing tensor factorization on a suit-
ably normalized tensor of word tri-occurrences,
and compare the quality of word embeddings
learned by the quadratic model and CP decom-
position. This experiment tests if the quadratic
model returns meaningful factors, in addition to
accurately predicting the missing entries.

Methodology. We construct a 2000 dimen-
sional cubic tensor T of word tri-occurrences of
the 2000 most frequent words in English by us-
ing sliding window of length 3 on a 1.5 billion
word Wikipedia corpus, hence the entry Tijk of
the tensor is the number of times word i, j and
k occur in a window of length 3. As in previ-
ous work [34, 18], we construct a normalized ten-
sor T̃ by applying an element-wise nonlinearity
of T̃ijk = log(1 + Tijk) for each entry of T . We
then find the factors {A,B,C} for a rank 100 fac-
torization of T̃ for the quadratic model and CP
decomposition using ALS. The embedding for the
ith word is then obtained by concatenating the
ith rows of A, B and C, and then normalizing
each row to have unit norm.

Evaluation. In addition to reporting the MSE,
we evaluate the learned embeddings on standard
word analogy and word similarity tasks. The
analogy tasks evaluate the percentage of word
analogy questions which can be solved using the
embeddings. The similarity tasks measure the
correlation between word similarity scores deter-

Metric CP model Quadratic model

MSE 0.5893 0.4253
Syntactic analogy 30.61% 46.14%
Semantic analogy 42.37% 54.76%
Word similarity 0.51 0.60

Table 2: Results for word embedding experi-
ments. The quadratic model significantly outper-
forms the CP model across all tasks.

mined from the embeddings and the true similar-
ity scores. More details about these tasks can be
found in Section C of the Appendix.

Results. The results are shown in Table 2. The
quadratic model significantly outperforms the CP
model on both the MSE metric, and on the NLP
tasks which directly evaluate the embeddings.

4.4 Discussions

The quadratic model is a simplification and spe-
cial case of the CP model, and hence has lesser
representational power. This can lead to worse
performance in certain tensor completion tasks,
we discuss this more with an example of a hyper-
spectral image completion task in Section D.

5 Conclusions and Future Work

In this work, we showed that with a non-convex
formulation we can recover quadratic tensors us-
ing a linear number of samples. Our results char-
acterized the landscape of quadratic tensor mod-
els. There are several immediate open questions.
Firstly, is it possible to show a convergence guar-
antee with a small number of iterations? Sec-
ondly, is it possible to achieve similar results with
rank O(r) as opposed to Θ(

√
d)? We believe that

solving this may require novel techniques.
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A Missing Proofs from Section 3

In this section, we fill in the missing proofs for Theorem 5. First, we present the proof of Lemma 8,
which bounds the Rademacher complexity of G, the set of quadratic tensors.

Proof of Lemma 8. We will prove the following inequality:

E
Ω

[
sup
X∈G

∣∣LΩ(X)− L[d]3(X)
∣∣] ≤ c‖K‖1dα2

√
d

m
≤ c‖K‖1dα2ε√

log d
, (1)

since m ≥ d log d/ε2. Based on the above inequality, we can obtain that by Markov’s inequality, the
probability that

sup
X∈G

∣∣LΩ(X)− L[d]3(X)
∣∣ > c‖K‖1dα2ε

happens with probability 1/
√

log d. In the following we will prove Equation (1). Let Ω′ denote a set of
m independent samples from [d]3. Clearly,

E
Ω

[LΩ(X)] = E
Ω′

[LΩ′(X)] .

By concavity, we have:

E
Ω

[
sup
X∈G

∣∣∣∣∣ 1

m

∑
t∈Ω

|〈At, X −X?〉| − E
Ω′

[
1

m

∑
t′∈Ω′

|〈At′ , X −X?〉|

]∣∣∣∣∣
]

≤ E
Ω,Ω′

[
sup
X∈G

∣∣∣∣∣ 1

m

∑
t∈Ω

|〈At, X −X?〉| − 1

m

∑
t′∈Ω′

|〈At′ , X −X?〉|

∣∣∣∣∣
]

(2)

Let {σi}mi=1 denote m i.i.d. Rademacher random variables. By the symmetry of Ω and Ω′, Equation
(2) is equal to:

E
Ω,Ω′,σ

[
sup
X∈G

∣∣∣∣∣ 1

m

m∑
l=1

σl ×
(
|〈Atl , X −X

?〉| −
∣∣∣〈At′l , X −X?〉

∣∣∣)∣∣∣∣∣
]

≤ 2× E
Ω,σ

[
sup
X∈G

∣∣∣∣∣ 1

m

m∑
l=1

σl |〈Atl , X −X
?〉|

∣∣∣∣∣
]

= 2× E
Ω,σ

[
sup
X∈G

∣∣∣∣∣ 1

m

m∑
l=1

σl〈Atl , X −X
?〉

∣∣∣∣∣
]

≤ 2

m
×

(
E

Ω,σ

[
sup
X∈G
〈
m∑
l=1

σtlAtl , X〉

]
+ E

Ω,σ

[
〈
m∑
l=1

σtlAtl , X
?〉

])
. (3)

We focus on the first part of Equation (3), and it is not hard to bound the second part similarly since
X? ∈ G. It suffices to consider a random one matrix xx> ∈ G. Specifically, since tr(X) ≤ dα by X ∈ G,
we have

E
Ω,σ

[
sup
X∈G
〈
m∑
l=1

σtlAtl , X〉

]

≤ dα E
Ω,σ

[
sup

xx>∈G:x∈R3d

〈
m∑
l=1

σtlAtl , xx
>〉

]
. ‖K‖1dα2

√
md.
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The last step is via standard ε-net arguments (see Lemma 2.8 in [35] for an example). Hence the proof
of Equation 1 is complete.

Based on the above Lemma, we are ready to prove Theorem 5.

Proof of Theorem 5. By Lemma 7, we have that as long as U is a local minimum of f(·), then it is a
global minimum. In particular, this implies that

f(U) ≤ f(U?) ≤ (λ1 + ‖C‖)‖U?‖2
F
≤ 2λ1‖U?‖F ,

since ‖C‖ ≤ λ1. Recall that T̂ is the reconstructed tensor. Hence we get that

1

m

∑
(i,j,k)∈Ω

(T̂i,j,k − T ?i,j,k)2 ≤ 2λ1‖U?‖2F . λ1dα

by the assumption on U?. By Cauchy-Schwarz inequality, this implies:

1

m

∑
(i,j,k)∈Ω

∣∣∣T̂i,j,k − T ?i,j,k∣∣∣ ≤√λ1dα . dα2ε,

by setting λ1 = c2‖K‖21d2α3/m for a fixed constant c.

Next, it is not hard to see that ‖e>i U‖ ≤
√

2α by setting λ2 = 2dλ1/α. Hence the (i, i)-th entry of
UU> is at most 2α and Tr(UU>) ≤ 2dα. This implies that UU> ∈ G. By Lemma 8, the generalization
error is also bounded by c‖K‖1dα2ε . dα2ε. The proof is complete.

B Additional Synthetic Experiments

B.1 Convergence Rate of ALS

In Figure 2, we show that ALS can actually converge given a small number of iterations— we observe
that within 30 iterations (each iteration requires solving a sparse d2 by d least squares problems), ALS
can achieve low test error.
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Figure 2: Training and test error for ALS vs the number of iterations. ALS achieves low test error
within 30 iterations.
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B.2 Sample Complexity for Gradient Descent

We also repeat the same experiment for gradient descent. We run gradient descent with rank r = d for
20000 iterations. Recall that the number of samples m = c× d× r, and r = 5. Figure 3 shows that the
sample complexity of gradient descent is between 5dr and 10dr samples. Our experiments suggest that
the constants for the sample complexity are slightly better for ALS as compared to gradient descent,
and ALS also seems to converge faster to a solution with small error.

Figure 3: Gradient descent requires about 10dr samples to recover a quadratic tensor with random
factors, providing evidence that the sample complexity for gradient descent is O(d). Here rank r = 5
and number of samples is m = cdr.

C Evaluating Word Embeddings

We evaluate the word embeddings on standard word analogy and word similarity tasks. The word
analogy tasks [36, 37] consist of analogy questions of the form “cat is to kitten as dog is to ?”, and
can be answered by doing simple vector arithmetic on the word vectors. For example, to answer this
particular analogy we take the vector for cat, subtract the vector for kitten, add the vector for dog, and
then find the word with the closest vector to the resulting vector. Hence the analogy task tests how
much the geometry in the vector space encodes meaningful syntactic and semantic information. There
are two standard datasets for analogy questions, one of which has more syntactic analogies [37] and the
other has more semantic analogies [36]. The metric here is the percentage of analogy questions which
the algorithm gets correct. The other task we test is a word similarity task [38, 39] where the goal is
to evaluate how semantically similar two words are, and this is done by taking the cosine similarity of
the word vectors. The evaluation metric is the correlation between the similarity scores assigned by
the algorithm and the similarity scores assigned by humans.

D Limitations of the Quadratic Model

In general, there exist tensors which can not be factorized exactly by any quadratic model. This is
because if a tensor can be factorized using a quadratic model, then T can be written as the sum of at
most O(d) rank 1 tensors. To see this, consider the pairwise tensor model as an example – the same
analysis can be applied to other quadratic models as well. Given three factors x ∈ Rd1 , y ∈ Rd2 and
z ∈ Rd3 , it is not hard to see that the pairwise model defines the following tensor:

T (x, y, z) = x⊗ y ⊗ e+ x⊗ e⊗ z + e⊗ y ⊗ z,

where e ⊆ Rd denotes the all one vector. Hence any tensor inside the span of {T (x, y, z) : x, y, z ⊆ Rd}
can be factorized into at most 3d rank one tensors. This lack of representational power can lead to the
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Rank r CP model Quadratic model

r = 10 0.247 0.265
r = 20 0.194 0.226
r = 50 0.128 0.205
r = 100 0.116 0.216

Table 3: Results for the hyperspectral image task. We see that the CP model outperforms the quadratic
model, likely because the higher representational power of CP decomposition is useful in this task.

quadratic model performing worse than the CP model on certain tasks which require high representation
ability—and we observe this on a hyperspectral image completion task.

D.1 Hyperspectral images

We evaluate CP decomposition and the quadratic model on a hyperspectral image “Riberia” [40]
which has previously been considered in the context of tensor factorization [41, 42]. The image is a
1017×1340×33 tensor T , where each slice of the image corresponds to the same scene being imaged at a
different wavelength. As has been done in previous works [41, 42], we resize the image to 203×268×33
by downsampling. We randomly sample 10% of the entries of the tensor, and the task is to estimate the
remaining 90% of the entries. We then compare the test error of CP decomposition and the quadratic
model for a given rank r factorization, measured in terms of the normalized Frobenius error of the
recovered tensor T̂ on the missing entries,√√√√∑(i,j,k)/∈Ω(T̂i,j,k − Ti,j,k)2∑

(i,j,k)/∈Ω T
2
i,j,k

.

We report the result in Table 3. The CP model outperforms the quadratic model on this task, and the
gap is larger for higher values of the rank r. We suspect this is because generalization to the test data
is not the challenging aspect of this task, and performance only depends on the training error because
a) we found that the best value of the `2 regularization parameter for both algorithms was actually 0,
b) the models do not overfit even after setting the rank to be very high, such as r = 100.

Figure 4: One slice of the tensor for the hyperspectral image Riberia.


