
Faster First-Order Methods for Stochastic Non-Convex Optimization
on Riemannian Manifolds

(Supplementary File)

This supplementary document contains the technical proofs of convergence results and some additional
numerical results of the manuscript entitled “Faster First-Order Methods for Stochastic Non-convex
Optimization on Riemannian Manifolds”. It is structured as follows. The proof of the key lemma, namely
Lemma 1 in Section 3.2, is presented in Appendix A. Then Appendix B.1 provides the proofs of the main
results for general finite-sum non-convex problems in Section 3.2, including Theorem 1 and Corollary 1.
Next, Appendix B.3 gives the proof of the results for online setting, including Theorem 2 and Corollary 2.
For gradient dominated results in Section 3.3, including Theorems 3 and 4, are given in Appendix C.1.
Finally, the detailed descriptions of datasets and more experimental results are provided in Appendix D.

A Proofs of Lemma 1

Before proving Lemma 1, we first present an useful lemma from [1]. Let Q(x) denote arbitrary determinstic
vector and ξk(x0:k) denote the unbiased estimate Q(xk)−Q(xk−1). Namely, E[ξk(x0:k)|x0:k] = Q(xk)−Q(xk−1).
Then we aim to use the stochastic differential estimate to approximate Q(xk) as follows:

Q̃(xk) = Q̃(x0) +

k∑
i=1

ξi(x0:i),

where Q̃(x0) is the estimation of Q(x0).

Lemma 2. [1] For any vector h, we have

E‖Q̃(xk)−Q(xk)‖2 ≤ E‖Q̃(x0)−Q(x0)‖2 +

k∑
i=1

E‖ξi(x0:i)− (Q(xi)−Q(xi−1))‖2.

Let Ai map any vector x to a random vector esimate Ai(x) such that

E[Ai(xk)−Ai(xk−1)|x0:k] = Vk − Vk−1, (3)

where Vk is defined below. Assume AS = 1
|S|
∑
i∈S Ai where S denote the sampled data of sample number |S|.

Besides, Ai satisfies
Ei‖Ai(x)−Ai(y)‖22 ≤ L2‖Exp−1

x (y) ‖2.

Then we define Vk = AS(xk)−AS(xk−1) + Vk−1 and V0 is the estimate of A(x0). Based on Lemma 2, we can
further conclude:

Lemma 3. Assume d (xk−1,xk) = ‖Exp−1
xk

(xk−1) ‖ = ρk−1. Then we have

E‖Vk −A(xk)‖2 ≤ E‖V0 −A(x0)‖2 + L2
t∑
i=1

I{|Si|<n}
ρ2
i−1

|Si|
. (4)

Proof. The proof here mimics that of Lemma 4 in [1]. For completeness, we provide the proof. Assume for the

Running heading title breaks the line

k-th sampling, the seleced sample set is denoted by Sk. Then, we have

E‖Vk −A(xk)‖2 =E‖ASk(xk)−ASk(xk−1) + Vk−1 −A(xk)‖2

=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1) + Vk−1 −A(xk−1)‖2

=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

+ E〈ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1),Vk−1 −A(xk−1)〉
¬
=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

=
1

|Sk|
E‖Ai(xk)−Ai(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

­
≤ 1

|Sk|
E‖Ai(xk)−Ai(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

®
≤ L2

|Sk|
‖Exp−1

xk
(xk−1) ‖2 + E‖Vk−1 −A(xk−1)‖2

≤
L2ρ2

k−1

|Sk|
+ E‖Vk−1 −A(xk−1)‖2,

where ¬ holds since E〈ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1),Vk−1 −A(xk−1)〉 = 0 in which the expectation
is taken on the random set Sk (Vk−1 −A(xk−1) is constant); ­ holds due to E‖x− E(x)‖2 ≤ E‖x‖2; ® holds
since fi(x) is L-gradient Lipschitz, namely Ei‖∇fi(x)−Γx

y (∇fi(y)) ‖22 ≤ L‖Exp
−1
x (y) ‖2. Notice, when |Sk| ≥ n,

in ¬, we have E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2 = 0. In this case, we can
obtain E‖Vk −A(xk)‖2 = E‖Vk−1 −A(xk−1)‖2. Therefore, consider these two cases and sum up k = 0, 1, · · · , t,
we have

E‖V(xt)−A(xt)‖2 ≤ E‖V0 −A(x0)‖2 + L2
t∑
i=1

I{|Si|<n}
ρ2
i−1

|Si|
.

The proof is completed.

Lemma 4. Suppose Assumptions 1 and 2 hold. Let k0 = bk/pc and k̃0 = k0p. Assume that for k = bk/pc · p,
we select |S1| samples to estimate vk and for k 6= bk/pc · p, we select |S2,k| samples to estimate vk. Then the
estimation error between the full Riemannian gradient ∇f(xk) and its estimate vk in Algorithm 1 is bounded as

E
[
‖vk −∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤ I{|S1|<n}

σ2

|S1|
+ L2

k̃0+p−1∑
i=k̃0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
,

where d (xi,xi+1) is the distance between xi and xi+1.

Proof. Here we construct an auxiliary sequence

v̂t =

t∑
i=1

(
Px̂
xi

(∇fS2(xi))− Px̂
xi−1

(∇fS1(xi−1))
)

+ Px̂
x0

(∇fS1(x0))

=Px̂
xt

(∇fS2(xt))− Px̂
xt−1

(∇fS2(xt−1)) + v̂t−1,

where x̂ is a given point and does not depend on the sequence {xk} and the algorithm, and v̂0 = Px̂
x0

(∇fS1(x0)).

In this way, let AS(xt) = Px̂
xt

(
∇fSt

2
(xt)

)
. Then we have v̂t = AS(xt)−AS(xt−1) + v̂t−1. Accordingly, we can

obtain

Ei‖Ai(xt)−Ai(xt−1)‖22 =Ei
∥∥∥Px̂

xt
(∇fi(xt))− Px̂

xt−1
(∇fi(xt−1))

∥∥∥2

=Ei
∥∥∥Px̂

xt−1

(
Pxt−1
xt

(∇fi(xt))
)
− Px̂

xt−1
(∇fi(xt−1))

∥∥∥2

=Ei
∥∥∥Px̂

xt−1

(
Pxt−1
xt

(∇fi(xt))−∇fi(xt−1)
)∥∥∥2

¬
=Ei

∥∥Pxt−1
xt

(∇fi(xt))−∇fi(xt−1)
∥∥2

≤L2‖Exp−1
xt−1

(xt) ‖2,

where ¬ holds as the parallel transport Py
x preserves the norm. On the other hand, all Ai(xt) (t = 0, · · · , k) are

located in the tangent space at the point xk. Thus, Lemma 3 is applicable to the sequence v̂t.

Let k0 = bK/pc. For simplicity, we use V0,V1, · · · ,Vk to respectively denote Vk0 ,Vk0+1, · · · ,Vk0+k. For V0, we
have V0 = Px̂

xk0
(∇fS1(xk0)). Then it yields

E‖V0 −A(x0)‖2 =E‖Px̂
xk0

(∇fS1(xk0))− Px̂
xk0

(∇f(xk0))‖2

=E‖∇fS1(xk0)−∇f(xk0)‖2

=
1

|S1|
E‖∇fi(xk0)−∇f(xk0)‖2

¬
≤ σ2

|S1|
,

where ¬ holds since the gradient variance is bounded in Assumption 2. On the other hand, since xk+1 =

Expxk

(
−ηk vk

‖vk‖

)
, we have

d2 (xk+1,xk) =
∥∥Exp−1

xk
(xk+1)

∥∥ .
Therefore, we have

E‖v̂t − Px̂
xt

(∇f(xt))‖2 ≤ L2
t−1∑
i=0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
+

σ2

|S1|
.

Since the parallel transport preserve the norm, we can further establish

E‖Pxk

x̂

(
v̂t − Px̂

xt
(∇f(xt))

)
‖2 = E‖v̂t − Px̂

xt
(∇f(xt))‖2 ≤ L2

t−1∑
i=0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
+

σ2

|S1|
.

By setting t = k and noting t ≤ p for each epoch, we establish

E‖vk −∇f(xk)‖2 = E‖Pxk

x̂

(
v̂k − Px̂

xk
(∇f(xk))

)
‖2 ≤ σ2

|S1|
+ L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
.

Notice, when we sample all n samples, we have E‖V0 −A(x0)‖2 = 0 and thus

E‖vk −∇f(xk)‖2 ≤ L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
.

So by combining the two case together, we can obtain the result in Lemma 1. The proof is completed.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. To prove Lemma 1, we can directly set |S2,k| in Lemma 4 as |S2| in Lemma 1 and obtain
the results in Lemma 1. The proof is completed.

Running heading title breaks the line

B Proof of the Results in Section 3.2

B.1 Proof of Theorem 1

Proof. For brevity, let η̃k = ηk
‖vk‖ . Then by using the L-gradient Lipschitz, we have

f(xk+1) ≤f(xk) + 〈∇f(xk),Exp−1
xk

(xk+1)〉+
L

2
‖Exp−1

xk
(xk+1) ‖2

≤f(xk)− η̃k〈∇f(xk),vk〉+
η̃2
kL

2
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2.

(5)

Since we have xk+1 = Exp−1
xk

(
−ηk vk

‖vk‖

)
, we can obtain

d (xk+1,xk) = ηk = min

(
ε

2Ln0
,
‖vk‖
4Ln0

)
≤ ε

2Ln0
. (6)

Now we consider the two cases: (1) k is not an integer multiple of p; (2) k is an integer multiple of p. We can
consider case (1) as follows. If s = n, then by Lemma 1 and Eqn. (6), we have

E‖vk −∇f(xk)‖2 ≤ L2

|S2|

k0+p−1∑
i=k0

d2 (xi,xi+1) ≤ pL2

|S2|
ε2

4L2n2
0

= n0s
1
2L2 n0

4s
1
2

ε2

4L2n2
0

=
1

16
ε2.

If s = 16σ2

ε2 , then Lemma 1 gives

E‖vk −∇f(xk)‖2 ≤ pL2

|S2|
ε2

4L2n2
0

+
σ2

|S1|
= n0s

1
2L2 ε2

4L2n2
0

n0

4s
1
2

+
ε2

16
=

1

8
ε2. (7)

For case (2), namely when k is an integer multiple of p, we have E‖vk −∇f(xk)‖2 ≤ pL2η2k
|S2| + σ2

|S1| = 0 + ε2

16 ≤
1
8ε

2.

At the same time, since ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, we have η̃k = ηk

‖vk‖ = min
(

ε
2Ln0‖vk‖ ,

1
4Ln0

)
≤ 1

4Ln0
and

η̃k(1− η̃kL)‖vk‖2 ≥
3η̃k
4
‖vk‖2 =

3

8
min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
‖vk‖2 =

3ε2

16Ln0
min

(
2‖vk‖
ε

,
‖vk‖2

ε2

)
¬
≥ 3ε(2‖vk‖ − ε)

16Ln0
,

where ¬ uses x2 ≥ 2|x| − 1 for ∀x. So by taking expectation, we have

E [f(xk+1)− f(xk)] ≤ 1

2

1

4Ln0

ε2

8
− 1

2

3ε(2‖vk‖ − ε)
16Ln0

= − ε

64Ln0
(12E‖vk‖ − 7ε) .

In this way, we have

1

K

K−1∑
k=0

E‖vk‖ ≤
7ε

64
+

16Ln0

3Kε
E [f(x0)− f(xK)] ≤ 7ε

64
+

16Ln0∆

3Kε
,

where we use E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆. It means that after running at most
K = 14Ln0∆

ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖ =
1

K

K−1∑
k=0

E‖∇f(xk)‖ ≤ 1

K

K−1∑
k=0

[E‖∇f(xk)− vk‖+ E‖vk‖]
¬
≤ 1

K

K−1∑
k=0

√
E‖∇f(xk)− vk‖2 +

ε

2

­
≤ ε,

where ¬ uses the Jensen’s inequality; ­ holds since E‖∇f(x)− vk‖2 ≤ ε2

8 in Eqn. (7). The proof is completed.
The proof is completed.

B.2 Proof of Corollary 1

Proof. According to Theorem 1, we know that after running at most K = 14Ln0∆
ε2 iterations, the algorithm will

terminate. In this way, we can compute the stochastic gradient complexity as

O
(
K

p
|S1|+K|S2|

)
= O

(
Ln0∆

ε2

(
s

1

n0s1/2
+
s1/2

2n0

))
= O

(
min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
.

The proof is completed.

B.3 Proof of Theorem 2

Proof. For brevity, let η̃k = ηk
‖vk‖ . From Eqn. (5), we can obtain the following inequality:

f(xk+1) ≤ f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2. (8)

Now we consider the two cases: (1) k is not an integer multiple of p; (2) k is an integer multiple of p. We
can consider case (1) as follows. By setting p = σn0

ε , ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, |S1| = 16σ2

ε2 , S2 = σ
2εn0

, where
n0 ∈ [1, 2σ/ε], Lemma 1 gives

E‖vk −∇f(xk)‖2 ≤ pL2η2
k

|S2|
+

σ2

|S1|
=
σn0

ε
L2 ε2

4L2n2
0

εn0

4σ
+
ε2

16
=

1

8
ε2. (9)

For case (2), namely when k is an integer multiple of p, we have E‖vk −∇f(xk)‖2 ≤ pL2η2

|S2| + σ2

|S1| = 0 + ε2

16 ≤
1
8ε

2.

Then similar to proof in Sec. B.1, since ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, we have η̃k = ηk

‖vk‖ = min
(

ε
2Ln0‖vk‖ ,

1
4Ln0

)
≤ 1

4Ln0

and

η̃k(1− η̃kL)‖vk‖2 ≥
3η̃k
4
‖vk‖2 =

3

8
min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
‖vk‖2 =

3ε2

16Ln0
min

(
2‖vk‖
ε

,
‖vk‖2

ε2

)
¬
≥ 3ε(2‖vk‖ − ε)

16Ln0
,

where ¬ uses x2 ≥ 2|x| − 1 for ∀x. So by taking expectation, we have

E [f(xk+1)− f(xk)] ≤ 1

2

1

4Ln0

ε2

8
− 1

2

3ε(2‖vk‖ − ε)
16Ln0

= − ε

64Ln0
(12E‖vk‖ − 7ε) .

In this way, we have

1

K

K−1∑
k=0

E‖vk‖ ≤
7ε

64
+

16Ln0

3Kε
E [f(x0)− f(xK)] ≤ 7ε

64
+

16Ln0∆

3Kε
,

where we use E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆. It means that after running at most
K = 14Ln0∆

ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖ =
1

K

K−1∑
k=0

E‖∇f(xk)‖ ≤ 1

K

K−1∑
k=0

[E‖∇f(xk)− vk‖+ E‖vk‖]
¬
≤ 1

K

K−1∑
k=0

√
E‖∇f(xk)− vk‖2 +

ε

2

­
≤ ε,

where ¬ uses the Jensen’s inequality; ­ holds since E‖∇f(x)− vk‖2 ≤ ε2

8 in Eqn. (7). The proof is completed.
The proof is completed.

B.4 Proof of Corollary 2

Proof. We adopt similar proof sketch of Corollary 1. According to Theorem 2, we know that after running at
most K = 14Ln0∆

ε2 iterations, the algorithm will terminate. In this way, we can compute the stochastic gradient
complexity as

O
(
K

p
|S1|+K|S2|

)
= O

(
Ln0∆

ε2

(
σ2

ε2
ε

σn0
+

σ

εn0

))
= O

(
Lσ∆

ε3

)
.

The proof is completed.

Running heading title breaks the line

C Proofs of the Results in Section 3.3

Before proving Theorems 3 and 4, we first prove Lemma 5 which is a key lemma to prove Theorems 3 and 4.
Lemma 5. Assume function f(x) is τ -gradient dominated. Let E denotes the event:

E =
{
E‖∇f(x̃)‖2 ≤ ε2 and E [f(x̃)− f(x∗)] ≤ τε2.

}
(1) For online-setting, we have p= σn0

ε , ηk = ‖vk‖
2Ln0

, |S1|= 32σ2

ε2 , |S2,k|= 8σ‖vk−1‖2
ε3n0

. To let the event E happen,
Algorithm 1 runs at most K = 64Ln0∆

ε2 iterations and the IFO complexity is

O
(
L∆σ

ε3

)
, where ∆̃ = f(x0)− f(x∗).

(2) For finite-sum setting, we let s=min
(
n, 32σ2

ε2

)
, p=n0s

1
2 , ηk = ‖vk‖

2Ln0
, |S1|=s, |S2,k|= min

(
8p‖vk−1‖2

n2
0ε

2 , n
)
. To

let the event E happen, Algorithm 1 runs at most K = 64Ln0∆
ε2 iterations and the IFO complexity is

O
(

min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
, where ∆ = f(x0)− f(x∗).

Proof. For brevity, let η̃k = ηk
‖vk‖ = 1

2Ln0
. Then similar to Eqn. (5), by using the L-gradient Lipschitz, we have

f(xk+1) ≤f(xk) + 〈∇f(xk),Exp−1
xk

(xk+1)〉+
L

2
‖Exp−1

xk
(xk+1) ‖2

≤f(xk)− η̃k〈∇f(xk),vk〉+
η̃2
kL

2
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2

¬
≤f(xk) +

1

4Ln0
‖∇f(xk)− vk‖2 −

1

8Ln0
‖vk‖2,

where ¬ holds since n0 ≥ 1. By summing up this equation from 0 to K − 1 and taking expectation, we can obtain

1

K

K−1∑
k=0

E‖vk‖2 ≤
2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0

K
[f(x0)− f(xK)]

¬
≤ 2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0∆

K
,

where ¬ uses E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆.

Now we use Lemma 4 to bound each E‖vk −∇f(xk)‖2 for both online and finite-sum setting. For online-setting,
we have p= σn0

ε , ηk = ‖vk‖
2Ln0

, |S1|= 32σ2

ε2 , |S2,k|= 8σ‖vk−1‖2
ε3n0

. From Lemma 4, we can establish

E‖vk−∇f(xk)‖2 ≤ I{|S1|<n}
σ2

|S1|
+L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
≤ σ2 ε2

32σ2
+L2

k0+p−1∑
i=k0

‖vi‖2

4L2n2
0

ε3n0

8σ‖vi‖2
≤ ε2

16
,

where we use d2 (xk+1,xk) =
∥∥Exp−1

xk
(xk+1)

∥∥2
= η2

k since xk+1 = Expxk

(
−ηk vk

‖vk‖

)
. For finite-sum setting, we

let s=min
(
n, 32σ2

ε2

)
, p=n0s

1
2 , ηk = ‖vk‖

2Ln0
, |S1|=s, |S2,k|= min

(
8p‖vk−1‖2

n2
0ε

2 , n
)
. In this case, we also have

E‖vk−∇f(xk)‖2 ≤ I{|S1|<n}
σ2

|S1|
+L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
≤ σ2 ε2

32σ2
+L2

k0+p−1∑
i=k0

‖vi‖2

4L2n2
0

n2
0ε

2

8p‖vi‖2
≤ ε2

16
.

Meanwhile, we set K = 64Ln0∆
ε2 , which gives

1

K

K−1∑
k=0

E‖vk‖2 ≤
2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0∆

K
≤ ε2

4
.

It means that after running at most K = 14Ln0∆
ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖2 =
1

K

K−1∑
k=0

E‖∇f(xk)‖2 ≤ 1

K

K−1∑
k=0

[
2E‖∇f(xk)− vk‖2 + 2E‖vk‖2

]
≤ ε2.

Then we use the definition of τ -gradient dominated function, we have

E[f(x̃)− f(x∗)] =
1

K

K−1∑
k=0

E[f(xk)− f(x∗)] ≤
τ

K

K−1∑
k=0

E‖∇f(xk)‖2 = τE‖∇f(x̃)‖2 ≤ τε2.

Now consider the IFO complexity for both online and finite-sum settings. For online setting, its IFO complexity is

O

(
K

p
|S1|+

K−1∑
k=0

E|S2,k|

)
= O

(
L∆σ

ε3
+

σ

n0ε3

K−1∑
k=0

E‖vk‖2
)
≤ O

(
L∆σ

ε3
+

σ

n0ε3
K · ε

2

4

)
= O

(
L∆σ

ε3

)
.

similarly, we can compute the expectation IFO complexity for finite-sum setting:

O

(
K

p
|S1|+

K−1∑
k=0

E|S2,k|

)
= O

(
min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
.

The proof is completed.

C.1 Proof of Theorems 3

Now we are ready to prove Theorem 3.

Proof. We first consider the t iteration in Algorithm 2. By Lemma 5, we obtain that by using εt−1 with proper
other parameters, the IFO complexity of Algorithm 1 for computing E[‖∇f(x̃t)‖2] ≤ ε2t−1 is

O
(

min
(
n+

L∆t
√
n

ε2t−1

,
L∆tσ

ε3t−1

))
,

when the parameters satisfy st = min
(
n, 32σ2

ε2t−1

)
, pt =nt0s

1
2
t , ηtk =

‖vt
k‖

2Ln0
, |St1|= st, |St2,k|= min(

8pt‖vt
k−1‖

2

(nt
0)2ε2t−1

, n) and

Kt =
64Lnt

0∆t

ε2t−1
. Then the initial point x0 at the t iteration is the output x̃t−1 of the (t− 1)-th iteration, which

gives the distance ∆t = E[f(x0)− f(x∗)] = E[f(x̃t−1)− f(x∗)] ≤ τε2t−2 by using Lemma 5. On the other hand,
εt = ε0

2t . So the IFO complexity of the t-th iteration is

O
(

min
(
n+

L∆t
√
n

ε2t−1

,
L∆tσ

ε3t−1

))
= O

(
min

(
n+

Lτε2t−2

√
n

ε2t−1

,
Lστε2t−2

ε3t−1

))
= O

(
min

(
n+ τL

√
n,
τLσ

εt−1

))
.

So to achieve εT ≤ ε0
2T ≤ ε, T satisfies T ≥ log

(
ε0
ε

)
. So for the T iterations, the total complexity is

O

(
min

((
n+ τL

√
n
)

log

(
1

ε

)
, τLσ

T∑
t=1

1

εt−1

))
= O

(
min

((
n+ τL

√
n
)

log

(
1

ε

)
,
τLσ

ε

))
.

Meanwhile, we can obtain

E‖∇f(x̃t)‖ ≤
√
E‖∇f(x̃t)‖2 ≤ εt−1 =

ε0
2t−1

=
1

2t

√
∆

τ
and E [f(x̃t)− f(x∗)] ≤ τε2t−1 =

τε20
4t−1

=
∆

4t
,

where we set ε0 = 1
2

√
∆
τ . The proof is completed.

Running heading title breaks the line

C.2 Proof of Theorem 4

Proof. The proof here is very similar to the strategy in Section C.1 for proving Theorem 3. The main idea is to
use the result in Lemma 5, to achieve

E‖∇f(x̃)‖2 ≤ ε2 and E [f(x̃)− f(x∗)] ≤ τε2,

the IFO complexity is

O
(
L∆σ

ε3

)
, where ∆̃ = f(x0)− f(x∗).

Then following the proof in Section C.1 for proving Theorem 3, we can obtain the IFO complexity for achieving
E‖∇f(x̃t)‖2 ≤ ε2t−1:

O
(
τLσ

ε

)
,

when the parameters obey pt=
σnt

0

εt−1
, ηtk =

‖vt
k‖

2Lnt
0
, |St1|= 32σ2

ε2t−1
, |St2,k|=

8σ‖vt
k−1‖

2

ε3t−1n
t
0

, and Kt =
64Lnt

0∆t

ε2t−1
.

Meanwhile, we can obtain

E‖∇f(x̃t)‖ ≤
√
E‖∇f(x̃t)‖2 ≤ εt−1 =

ε0
2t−1

=
1

2t

√
∆

τ
and E [f(x̃t)− f(x∗)] ≤ τε2t−1 =

τε20
4t−1

=
∆

4t
,

where we set ε0 = 1
2

√
∆
τ . The proof is completed.

D More Experimental Results

D.1 Descriptions of Testing Datasets

We first briefly introduce the ten testing datasets in the manuscript. Among them, there are six datasets, including
a9a, satimage, covtype, protein, ijcnn1 and epsilon, that are provided in the LibSVM website1. We also evaluate our
algorithms on the three datasets: YaleB [2], AR [3] and PIE [4], which are very commonly used face classification
datasets. Finally, we also test those algorithms on a movie recommendation dataset, namely MovieLens-1M2.
Their detailed information is summarized in Table 2. From it we can observe that these datasets are different
from each other due to their feature dimension, training samples, and class numbers, etc.

Table 2: Descriptions of the ten testing datasets.

#class #sample #feature #class #sample #feature

a9a 2 32,561 123 epsilon 2 40,000 2000
satimage 6 4,435 36 YaleB 38 2,414 2,016
covtype 2 581,012 54 AR 100 2,600 1,200
protein 3 14,895 357 PIE 64 11,554 1,024
ijcnn1 2 49,990 22 MovieLens-1M — 6,040 3,706

D.2 Comparison of Algorithm Running Time

In this subsection, we present more experimental results to show the algorithm running time comparison among
the compared algorithms in the manuscript. The experimental results in Figure 1 only provides the algorithm
running time comparison of the ijcnn and epsilon datasets. Here we provide the comparison of all remaining
datasets in Figure 5 which respond to Figures 1 and 3 in the manuscript. From the curves of comparison of
optimality gap vs. algorithm running time, one can observe that our R-SPIDER-A is the fastest method and
R-SPIDER can also quickly converge to a relatively high accuracy, e.g. 10−8. We have discussed these results in
the manuscript. Besides, all these results are consistent with the curves of the comparison of optimality gap vs.
IFO, since the IFO complexity can comprehensively reflect the overall computational performance of a first-order
Riemannian algorithm.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://grouplens.org/datasets/movielens/1m/

0 10 20 30 40

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

a09

0 0.5 1 1.5 2 2.5 3
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

satimage

0 10 20 30 40 50 60
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

covtype

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

protein

(a) Comparison among Riemannian stochastic gradient algorithms on k-PCA problem.

0 200 400 600 800

−10

−8

−6

−4

−2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

YaleB

0 50 100 150 200 250

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

AR

0 500 1000 1500
−10

−8

−6

−4

−2

0

2

4

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

PIE

0 1000 2000 3000

−6

−4

−2

0

2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

MovieLens−1M

(b) Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.
Figure 5: Comparison of algorithm running time of Riemannian stochastic gradient algorithms.

D.3 Comparison between Riemannian Stochastic Gradient Algorithms with Adaptive Learning
Rate

Here we provide more comparison among our proposed R-SPIDER-A, R-SRG-A and R-SRG+A. R-SRG-A and
R-SRG+A are respectively the counterparts of R-SRG and R-SRG+ with adaptive learning rate of formulation
ηk = α(1 + αλαbkp c) [5]. Notice, the reason that we do not compare all algorithms together is to avoid too many
curves in one figure, leading to poor readability.

By observing Figure 6, we can find that the algorithm with adaptive learning rate usually outperforms the
vanilla counterpart, which demonstrates the effectiveness of the strategy of adaptive learning rate. Moreover,
R-SPIDER-A also consistently shows sharpest convergence behaviors compared with R-SRG-A and R-SRG+A.
All these results are consistent with the experimental results in the manuscript. All results shows the advantages
of our proposed R-SPIDER and R-SPIDER-A.

References
[1] C. Fang, C. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path integrated

differential estimator. arXiv preprint arXiv:1807.01695, 2018. 1
[2] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition

under variable lighting and pose. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23:643–660, Jun. 2001. 8
[3] A. Martinez and R. Benavente. The AR face database. CVC Tech. Rep. 24, Jun. 1998. 8
[4] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 25:1615–1618, Dec. 2003. 8
[5] H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic recursive gradient algorithm with retraction and vector

transport and its convergence analysis. In Proc. Int’l Conf. Machine Learning, pages 2521–2529, 2018. 9

Running heading title breaks the line

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

epsilon

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

ijcnn

(a) Comparison among Riemannian stochastic gradient algorithms on k-PCA problem.

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

YaleB

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

AR

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

PIE

0 50 100 150 200 250 300

−6

−4

−2

0

2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

MovieLens−1M

(b) Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.
Figure 6: More comparison between R-SPIDER and R-SRG with adaptive learning rates.

