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A Proof of Theorem 1

Proof. Assume that P is piecewise smooth under analytic partition. Thus,

P(x) =
NX

i=1

MiY

j=1

[pi,j(x) � 0] ·
OiY

l=1

[qi,l(x) < 0] · hi(x) (2)

for some N,Mi, Oi and pi,j , qi,l, hi that satisfy the properties in Definition 1.

We use one well-known fact: the zero set {x 2 Rn | p(x) = 0} of an analytic function p is the entire Rn or has zero
Lebesgue measure [30]. We apply the fact to each pi,j and deduce that the zero set of pi,j is Rn or has measure
zero. Note that if the zero set of pi,j is the entire Rn, the indicator function [pi,j � 0] becomes the constant-1
function, so that it can be omitted from the RHS of equation (2). In the rest of the proof, we assume that this
simplification is already done so that the zero set of pi,j has measure zero for every i, j.

For every 1  i  N , we decompose the i-th region

Ri = {x | pi,j � 0 and qi,l(x) < 0 for all j, l} (3)

to
R0

i
= {x | pi,j > 0 and qi,l(x) < 0 for all j, l}

R00
i
= Ri \R0

i
.

(4)

Note that R0
i
is open because the pi,j and qi,l are analytic and so continuous, both {r 2 R | r > 0} and

{r 2 R | r < 0} are open, and the inverse images of open sets by continuous functions are open. This means that
for each x 2 R0

i
, we can find an open ball at x inside R0

i
so that P(x0) = hi(x0) for all x0 in the ball. Since hi is

smooth, this implies that P is di↵erentiable at every x 2 R0
i
.

For the other part R00
i
, we notice that

R00
i
✓

Mi[

j=1

{x | pi,j(x) = 0}.

The RHS of this equation is a finite union of measure-zero sets, so it has measure zero. Thus, R00
i
also has measure

zero as well.

Since {Ri}1iN is a partition of Rn, we have that

Rn =
N[

i=1

R0
i
[

N[

i=1

R00
i
.

The density P is di↵erentiable on the union of R0
i
’s. Also, since the union of finitely or countably many measure-

zero sets has measure zero, the union of R00
i
’s has measure zero. Thus, we can set the set A required in the

theorem to be this second union.

B Proof of Theorem 2

Proof. As shown in Equation 1,

P :=
⇣ NDX

i=1

⌘i·ki
⌘
·
⇣ NFX

j=1

⇣j ·lj
⌘

it su�ces to show that both factors are non-negative and piecewise smooth under analytic partition, because such
functions are closed under multiplication.

We prove a more general result. For any expression e, let Free(e) be the set of its free variables. Also, if a function
G in Definition 1 satisfies additionally that its hi’s are analytic, we say that this function G is piecewise analytic

under analytic partition. We claim that for all expressions e (which may contain free variables), if e (�,�, D, F ),

where D = {(⌘i, ki) | 1iND} and F = {(⇣j , lj , vj) | 1jNF }, then
⇣P

ND

i=1 ⌘i·ki
⌘
and

⇣P
NF

j=1 ⇣j ·lj
⌘
are non-

negative functions on variables in Free(e) [� and they are piecewise analytic under analytic partition, as k and

l0 in the sum are analytic. These two properties in turn imply that
⇣P

ND

i=1 ⌘i·ki
⌘
·
⇣P

NF

j=1 ⇣j ·lj
⌘
is a function on

variables in Free(e) [� and it is also piecewise analytic (and thus piecewise smooth) under analytic partition.
Thus, the desired conclusion follows. Regarding our claim, we can prove it by induction on the structure of the
expression e.
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C Discontinuous Hamiltonian Monte Carlo

The discontinuous HMC (DHMC) algorithm was proposed by [8]. It uses a coordinate-wise integrator, Algorithm 1,
coupled with a Laplacian momentum to perform inference in models with non-di↵erentiable densities. The
algorithm works because the Laplacian momentum ensures that all discontinuous parameters move in steps of
±mb✏ for fixed constants mb and step size ✏, where the index b is associated to each discontinuous coordinate.
These properties are advantages because they remove the need to know where the discontinuity boundaries
between each region are; the change of the potential energy in the state before and after the ±mb✏ move provides
us with information of whether we have enough kinetic energy to move into this new region. If we do not have
enough energy we reflect backwards pb = �pb. Otherwise, we move to this new region with a proposed coordinate
update x⇤

b
and momentum pb �mb · sign(pb) ·�U . This is in contrast to algorithms such as Reflect, Refract

HMC [7], that explictly need to know where the discontinuities boundaries are. Hence, it is important to have a
compilation scheme that enables one to do that.

The addition of the random permutation � of indices b is to ensure that the coordinate-wise integrator satisfies
the criterion of reversibility in the Hamiltonian. Although the integrator does not reproduce the exact solution, it
nonetheless preserves the Hamiltonian exactly, even if the density is discontinuous. See Lemma 1 and Theorems
2-3 in [8]. This yields a rejection-free proposal.

Algorithm 1 Coordinate-wise Integrator. A random permutation � on {1, . . . , B} is appropriate if the induced
random sequences (�(1), . . . ,�(|B|)) and (�(|B|), . . . ,�(1)) have the same distribution

1: function Coordinatewise(x,p, ✏, U)

2: pick an appropriate random permutation � on B
3: for i = 1, . . . , B do
4: b �(i)
5: x⇤  x
6: x⇤

b
 x⇤

b
+ ✏mb · sign(pb)

7: �U  U(x⇤)� U(x)
8: if K(pb) = mb|pb| > �U then
9: xb  x⇤

b

10: pb  pb �mb · sign(pb) ·�U
11: else
12: pb  �pb

13: end if
14: end for
15: return xb,pb

16: end function

Then DHMC algorithm [8] adpated for LF-PPL and our compilation scheme is as follows:
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Algorithm 2 Discontinuous HMC Integrator for the LF-PPL.
� is a map from random-variable names n in � to their values xn, H is the total Hamiltonian, ✏ > 0 is the step
size, and L is the trajectory length.

1: function DHMC-LFPPL(�,�, D, F,x,p, H, ✏, L)
2: B = �; A = � \ �
3: for a 2 A do . a represents the set of continuous variables
4: x0

a
 xa; pa ⇠ N (0,1)

5: end for
6: for b 2 B do
7: x0

b
 xb; pb ⇠ Laplace(0,1) . b represents the set of discontinuous variables

8: end for
9: 8a 2 A, x0

a
 xa; pa ⇠ N (0,1) . A represents the set of continuous variables

10: 8b 2 B, x0
b
 xb; pb ⇠ Laplace(0,1) . B represents the set of discontinuous variables

11: U  �LogJointDensity(D,F )
12: for i = 1 to L do
13: UA  U with names in B replaced by their values in xi

B

14: (xi

A
,pi

A
) Halfstep1(xi�1

A
,pi�1

A
, ✏, UA)

15: UB  U with names in A replaced by their values in xi

A

16: (xi

B
,pi

B
) Coordinate-wise(xi�1

B
,pi�1

B
, ✏, UB)

17: UA  U with names in B replaced by their values in xi

B

18: (xi

A
,pi

A
) Halfstep2(xi

A
,pi

A
, ✏, UA)

19: end for
20: xL  xL

A
[ xL

B
, pL  pL

A
[ pL

B
;

21: x⇤,p⇤  Evaluate(F, xL,pL)
22: ↵ ⇠ Uniform(0, 1)
23: if ↵ > min{1, exp(H(x,p)�H(x⇤,p⇤))} then
24: return x⇤,p⇤

25: else
26: return x,p
27: end if
28: end function
29: function HALFSTEP1(x,p, ✏, U)
30: p0  p� ✏

2rxU(x)
31: x0  x+ ✏

2rp0K(p0)
32: return (x0,p0)
33: end function
34: function HALFSTEP2(x,p, ✏, U)
35: x0  x+ ✏

2rpK(p)
36: p0  p� ✏

2rx0U(x0)
37: return (x0,p0)
38: end function
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D Program code

(let [y (vector -2.0 -2.5 ... 2.8)
pi [0.5 0.5]
z1 (sample (categorical pi))
...
z10(sample (categorical pi))
mu1 (sample (normal 0 2))
mu2 (sample (normal 0 2))
mus (vector mu1 mu2)]

(if (< (- z1) 0)
(observe (normal mu1 1) (nth y 0))
(observe (normal mu2 1) (nth y 0)))

...
(if (< (- z10) 0)

(observe (normal mu1 1) (nth y 9))
(observe (normal mu2 1) (nth y 9)))

(mu1 mu2 z1 ... z10))

Figure 4: The LF-PPL version of the Gaussian mixture
model detailed in Section 6.

(let [x (sample (uniform -6 6))
abs-x (max x (- x))
z (- (sqrt (* x (* A x))))]

(if (< (- abs-x 3) 0)
(observe (factor z) 0)
(observe (factor (- z 1)) 0))

x)

Figure 5: The LF-PPL version of the heavy-tailed model
detailed in Section 6.
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