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Abstract

Variance reduction is a simple and effective
technique that accelerates convex (or non-
convex) stochastic optimization. Among ex-
isting variance reduction methods, SVRG
and SAGA adopt unbiased gradient estima-
tors and are the most popular variance re-
duction methods in recent years. Although
various accelerated variants of SVRG (e.g.,
Katyusha and Acc-Prox-SVRG) have been
proposed, the direct acceleration of SAGA
still remains unknown. In this paper, we pro-
pose a directly accelerated variant of SAGA
using a novel Sampled Negative Momentum
(SSNM), which achieves the best known ora-
cle complexity for strongly convex problems
(with known strong convexity parameter).
Consequently, our work fills the void of di-
rectly accelerated SAGA.

1 Introduction

In this paper, we consider optimizing the following
composite finite-sum problem, which arises frequently
in machine learning and statistics such as supervised
learning and regularized empirical risk minimization
(ERM):

min
x∈Rd

{
F (x) , f(x) + h(x)

}
, (1)

where f(x) = 1
n

∑n
i=1 fi(x) is an average of n smooth

and convex function fi(x), and h(x) is a simple
and convex (but possibly non-differentiable) function.
Here, we also define Fi(x) = fi(x) + h(x) with
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∇Fi(x) = ∇fi(x) + ∂h(x) and ∂h(x) denotes a sub-
gradient of h(·) at x, which will be used in the paper.

We focus on achieving a highly accurate solution for
Problem (1), although for practical optimization tasks,
such as supervised learning, low empirical risk may
result in a high generalization error. In this paper, we
treat Problem (1) as a pure optimization problem.

When F (·) in Problem (1) is strongly convex, tradi-
tional analysis shows that gradient descent (GD) yields
a fast linear convergence rate but with a high per-
iteration cost, and thus may not be suitable for prob-
lems with a very large n. As an alternative for large-
scale problems, SGD [Robbins and Monro, 1951] uses
only one or a mini-batch of gradients in each itera-
tion, and thus enjoys a significantly lower per-iteration
complexity than GD. However, due to the undimin-
ished variance of the gradient estimator, vanilla SGD
is shown to yield only a sub-linear convergence rate.
Recently, stochastic variance reduced methods (e.g.,
SAG [Roux et al., 2012], SVRG [Johnson and Zhang,
2013], SAGA [Defazio et al., 2014], and their proxi-
mal variants, such as [Schmidt et al., 2017], [Xiao and
Zhang, 2014] and [Konečný et al., 2016]) were proposed
to solve Problem (1). All these methods are equipped
with various variance reduction techniques, which help
them achieve low per-iteration complexities compara-
ble with SGD and at the same time maintain a faster
linear convergence rate than GD (including acceler-
ated GD). In terms of oracle complexity1, these meth-
ods all achieve an O((n+κ) log(1/ε)) complexity2, as
compared with O(n

√
κ log(1/ε)) for accelerated deter-

ministic methods (e.g., Nesterov’s accelerated gradient
descent [Nesterov, 2004]).

1Oracle complexity in this paper, denoted byO(·), is the
number of calls to Incremental First-order Oracle (IFO) +
Proximal operator Oracle (PO).

2We denote κ , L
µ

throughout the paper, which is

known as the condition number of an L-smooth and µ-
strongly convex function.
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Table 1: Comparison of some accelerated variants of SVRG and SAGA. Here, we regard using reductions or
proximal point variants as “Indirect” acceleration.

Indirect Direct

SVRG (or Prox-SVRG)
APPA & Catalyst

Katyusha & MiG

SAGA SSNM
Point-SAGA

Inspired by the acceleration technique proposed in
Nesterov’s accelerated gradient descent [Nesterov,
2004], accelerated variants of stochastic variance re-
duced methods have been proposed in recent years,
such as Acc-Prox-SVRG [Nitanda, 2014], APCG [Lin
et al., 2014], APPA [Frostig et al., 2015], Catalyst [Lin
et al., 2015], SPDC [Zhang and Xiao, 2015] and
Katyusha [Allen-Zhu, 2017]. Among these algorithms,
APPA and Catalyst achieve acceleration by using some
carefully designed reduction techniques, which, how-
ever, result in additional log factors in their overall
oracle complexities. Katyusha, as the first directly ac-
celerated variant of SVRG, introduced the idea of neg-
ative momentum (or Katyusha momentum): regarding
the gradient estimator of SVRG

∇̃ = ∇fi(x)−∇fi(x̃) +∇f(x̃),

the negative momentum is a (x̃−x) offset added (with
decay) to each update in this epoch. One can inter-
preted it as the momentum provided by a previously
randomly computed point. Then, by combining it
with Nesterov’s momentum, Katyusha yields the best
known3 oracle complexity O((n +

√
κn) log(1/ε)) for

strongly convex problems. More recent work [Zhou
et al., 2018] shows that adding only negative momen-
tum to SVRG is enough to achieve the best known
oracle complexity for strongly convex problems, which
results in a simple and scalable algorithm called MiG.

Although a considerable amount of work has been
done for accelerating SVRG, another popular stochas-
tic variance reduced method, SAGA, does not have a
directly accelerated variant until recently. Accelerat-
ing frameworks such as APPA or Catalyst can be used
to accelerate SAGA, but the reduction techniques pro-
posed in these works are always difficult to implement
and may also result in additional log factors in the
overall oracle complexity. A notable variant of SAGA
is Point-SAGA [Defazio, 2016]. Point-SAGA requires
the proximal operator oracle of each Fi(·) and with the
help of that, it can adopt a much larger learning rate

3According to [Arjevani, 2017], this rate can only be
attained when µ is known. Without knowing µ, the best
known rate is O((n+κ) log(1/ε)) achieved by [Lei and Jor-
dan, 2017] and [Xu et al., 2017]. We assume µ is known
throughout the paper.

than SAGA, which results in the accelerated complex-
ity O((n+

√
κn) log(1/ε)). Some accelerated variants

of SVRG and SAGA are summarized in Table 1. How-
ever, the proximal operator of each Fi(·) may not be
efficiently computed in practice. Even for logistic re-
gression, we need to run an individual loop (Newton’s
method) for its proximal operator oracle. Therefore,
a directly accelerated variant of SAGA is of real inter-
ests.

Following the idea of adding only negative momentum
to SVRG [Zhou et al., 2018], we consider adding neg-
ative momentum to SAGA. However, unlike SVRG,
which keeps a constant snapshot in each inner loop,
the “snapshot” of SAGA is a table of points, each cor-
responding to the position that the component func-
tion gradient ∇fi(·) was lastly evaluated. Thus, it is
non-trivial to directly accelerate SAGA. In this paper,
we propose a novel Sampled Negative Momentum for
SAGA. We further show that adding such a momen-
tum has the same acceleration effect as adding nega-
tive momentum to SVRG.

Our contributions are summarized below:

• We propose a directly accelerated variant of
SAGA. The acceleration technique is a combina-
tion of the negative momentum trick and a novel
double sampling scheme, which we called Sampled
Negative Momentum. We further prove that this
accelerated variant achieves the best known oracle
complexity for strongly convex problems, which is
O((n+

√
κn) log(1/ε)).

• We discuss some subtle differences on strongly
convex assumptions when applying the acceler-
ation technique. Such differences are always ne-
glected in previous directly accelerated methods
(e.g., Katyusha and MiG). Our discussion shows
that the strongly convex assumption imposed in
this paper can be adapted to other strongly con-
vex assumption using a transforming trick.

• We provide a variant of the proposed algorithm
for the non-smooth setting and prove that it

achieves a lower O
(

log(1/ε)√
ε

)
oracle complexity

than the O( 1
ε ) derived in Point-SAGA [Defazio,
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Algorithm 1 SAGA with Sampled Negative Momentum (SSNM)

Input: Iterations number K, initial point x1, learning rate η =

{√
1

3µnL if n
κ ≤

3
4 ,

1
2µn if n

κ >
3
4 .

, parameter τ = nηµ
1+ηµ .

Initialize: “Points” table φ with φ11 = φ12 = . . . = φ1n = x1 and a running average for the gradients of “points”
table.

1: for k = 1, 2, . . . ,K do
2: 1. Sample ik uniformly in {1, . . . , n} and compute the gradient estimator using the running average.
3: ykik = τxk + (1− τ)φkik ;

4: ∇̃k = ∇fik(ykik)−∇fik(φkik) + 1
n

∑n
i=1∇fi(φki );

5: 2. Perform a proximal step.

6: xk+1 = arg minx

{
h(x) + 〈∇̃k, x〉+ 1

2η‖xk − x‖
2
}

;

7: 3. Sample Ik uniformly in {1, . . . , n} , take φk+1
Ik

= τxk+1 + (1 − τ)φkIk . All other entries in the “points”
table remain unchanged. Update the running average corresponding to the change in the “points” table.

8: end for
Output: xK+1

2016].

• Since SSNM does not use the hybrid momentum
in Katyusha, it has a simpler structure and po-
tentially clearer intuition. We provide some in-
sights by building connections between the nega-
tive momentum trick and the standard Nesterov’s
momentum in [Nesterov, 2004].

2 Preliminaries

In this paper, we consider Problem (1) in standard
Euclidean space with the Euclidean norm denoted by
‖·‖. We use E to denote that the expectation is taken
with respect to all randomness in one epoch. In order
to further categorize the objective functions, we define
that a convex function f : Rn → R is said to be L-
smooth if for all x, y ∈ Rd, it holds that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, (2)

and µ-strongly convex if for all x, y ∈ Rd,

f(x) ≥ f(y) + 〈G, x− y〉+
µ

2
‖x− y‖2, (3)

where G ∈ ∂f(y), the set of sub-gradient of f(·) at y
for non-differentiable f(·). If f(·) is differentiable, we
can simply replace G ∈ ∂f(y) with G =∇f(y). Then
we make the following assumption to identify the main
objective condition (strongly convex) that is the focus
of this paper:

Assumption 1 (Strongly Convex). In Problem (1),
each fi(·)4 is L-smooth and convex, h(·) is µ-strongly
convex.

4In fact, if each fi(·) is L-smooth, the averaged function
f(·) is itself L-smooth — but probably with a smaller L.
We keep using L as the smoothness constant for a consis-
tent analysis.

3 Direct Acceleration of SAGA

Our proposed algorithm SSNM (SAGA with Sampled
Negative Momentum) is formally given in Algorithm 1.
As we can see, there are some unusual tricks used in
Algorithm 1. Thus we elaborate some ideas behind
Algorithm 1 by making the following remarks:

• Coupled point ykik correlates to the randomness
of ik. Unlike the negative momentum used for
Katyusha, which comes from a fixed snapshot x̃,
the negative momentum of SAGA can only be
found on a “points” table that changes over time.
Thus, in SSNM, we choose to use the ikth entry
of the “points” table to provide the negative mo-
mentum, which makes the coupled point correlate
to the randomness of sample ik. In fact, all the
possible coupled points yki form a “coupled table”.
Although the table is never explicitly computed,
we shall see that the concept of “coupled table”
is critical in the proof of SSNM. The 3rd step in
Algorithm 1 can thus be regarded as sampling a
point in such a table.

• “Biased” gradient estimator ∇̃k. The expectation
of the semi-stochastic gradient estimator ∇̃k de-
fined in Algorithm 1 is the average of the gradi-
ents computed in the “coupled table”, Eik

[
∇̃k
]

=
1
n

∑n
i=1∇fi(yki ), which seems to be surprising as

this expectation (except ∇̃1) does not correspond
to any gradient of f(·), but can be used to show
convergence to the optimal solution of F (·). In
some sense, ∇̃k is a “biased” gradient estimator.

• Independent samples Ik and ik. The additional
sample Ik is crucial for the convergence analysis of
Algorithm 1, which chooses an index to store the
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Table 2: Comparison of variants of SAGA (All complexities are for strongly convex objectives).

Complexity Requirements Memory

SAGA O((n+ κ) log(1/ε)) IFO of f(·), PO of h(·) O(nd) or O(n) for linear models.

Point-SAGA O((n+
√
κn) log(1/ε)) PO of each Fi(·) O(nd) or O(n) for linear models∗.

SSNM O((n+
√
κn) log(1/ε)) IFO of f(·), PO of h(·) O(nd)

∗ A memory issue of Point-SAGA is discussed in the Supplementary Material E.

updated point in the “points” table. The insight
of this choice is that it separates the randomness
of xk+1 and the update index in the “points” table
so as to make certain inequalities valid.

• Two learning rates for two cases. Using differ-
ent parameter settings for different objective con-
ditions (ill-condition and well-condition) is com-
mon for accelerated methods [Shalev-Shwartz and
Zhang, 2014, Allen-Zhu, 2017, Zhou et al., 2018].
If some parameters such as L, µ are unknown,
SSNM is still a practical algorithm with tuning
only η and τ , as compared with Katyusha which
has 4 parameters that need to be tuned. Note that
we have tried to make the parameter settings in
SSNM similar to Katyusha and MiG. We believe
that it can help conduct some fair experimental
comparisons with these methods.

• Only one variable vector with a simple algorithm
structure. Same as MiG in [Zhou et al., 2018],
SSNM only has one variable vector in the main
loop. Coupled point ykik can be computed when-
ever used and does not need to be explicitly
stored. Moreover, SSNM has a one loop struc-
ture compared to those variants of SVRG. Such
a structure is good for asynchronous implementa-
tion since algorithms with two loops in this setting
always require a synchronization after each inner
loop [Mania et al., 2017]. Moreover, the algorithm
structure of SSNM is more elegant than Katyusha
and MiG, both of which require a tricky weighted
averaged scheme at the end of each inner loop5.

Since the algorithms such as Point-SAGA and SAGA
are closely related to SSNM, in the next subsection, we
compare in details these different variants of SAGA.

3.1 Comparison with SAGA and
Point-SAGA

As summarized in Table 2, in comparison, SSNM
yields the same fastO((n+

√
κn) log(1/ε)) convergence

5These two algorithms can adopt an uniformly average
scheme, but in this case, both algorithms require certain
restarting tricks, which make them less implementable.

rate as Point-SAGA without requiring additional as-
sumptions, demonstrating the advantage of direct ac-
celeration. Weaker assumptions on the objective func-
tion make the algorithm more implementable. How-
ever, since SSNM requires storing the “points” table,
the memory complexity of SSNM is always O(nd).
This is a disadvantage when the objective is a linear
model such as linear logistic regression and ridge re-
gression. It is well known that for these linear models,
each gradient is just a weighting of the corresponding
data vector. Thus, we can simply store a scalar to
represent a gradient, which allows SAGA and Point-
SAGA to have an O(n) memory complexity for these
problems. Note that for logistic regression, the proxi-
mal operator oracle required by Point-SAGA does not
have a closed form solution. We may need to run sev-
eral Newton steps for an inexact oracle as in [Defazio,
2016]. In comparison, the gradient oracle required by
SSNM and SAGA is much easier to access.

For a general objective, all the three methods have the
same memory complexity. In such a case, SSNM is
apparently superior to the other two algorithms. Note
that the exact proximal operator oracle for a general
objective is always hard to be efficiently evaluated.

4 Theory

In this section, we theoretically analyze the perfor-
mance of SSNM. First, we give a variance bound of
the stochastic gradient estimator of SSNM shown in
Lemma 1. Since the stochastic gradient estimator
of SSNM is computed at a coupled point that con-
tains randomness, the variance bound for SSNM, un-
like most of the variance bounds in previous work, is
built with respect to the expectation of the “biased”
gradient estimator6. The proofs of Lemma 1 and The-
orem 1 are given in the Supplementary Material.

Lemma 1 (Variance Bound). Using the same nota-
tions as in Algorithm 1, we can bound the variance of

6Other methods using biased gradient estimators in-
clude SARAH [Nguyen et al., 2017], JacSketch [Gower
et al., 2018]
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the stochastic gradient estimator ∇̃k as

Eik

∥∥∥∥∥∇̃k − 1

n

n∑
i=1

∇fi(yki )

∥∥∥∥∥
2


≤ 2L

(
1

n

n∑
i=1

(
fi(φ

k
i )−f(yki )−

〈
∇fi(yki ), φki −yki

〉))
.

Now we can formally present the main theorem of
SSNM below. As stated in [Allen-Zhu, 2017], the ma-
jor task of the negative momentum is to cancel the
additional inner product term shown in the variance
bound so as to keep a close connection in each iter-
ation. As we shall see shortly, our proposed sampled
negative momentum effectively cancels the inner prod-
uct term, which is where the acceleration comes from.

Theorem 1. Let x? be the solution of Problem (1),
define the following Lyapunov function T , which is the
same as the one in SAGA [Defazio et al., 2014]:

T k , T (xk, φ
k) ,

1

nηµ

(
1

n

n∑
i=1

Fi(φ
k
i )−F (x?)− 1

n

n∑
i=1

〈∇Fi(x?), φki −x?〉

)

+
1

2ηn
‖xk − x?‖2.

If Assumption 1 holds, then by choosing τ = nηµ
1+ηµ , the

steps of Algorithm 1 satisfy the following contraction
for the Lyapunov function in expectation (conditional
on T k):

Eik,Ik
[
T k+1

]
≤ (1+ηµ)−1T k.

Thus, by carefully choosing η, we have the following
inequalities in two cases:

(I) (For ill-conditioned problems). If n
κ ≤

3
4 , with η =√

1
3µnL it holds that

E
[
‖xK+1 − x?‖2

]
≤

(
1+

√
1

3nκ

)−K(
2

µ
(F (x1)−F (x?))+‖x1−x?‖2

)
.

The above inequality implies that in order to re-
duce the squared norm distance to ε, we have an
O(
√
κn log(1/ε)) oracle complexity as ε→ 0 in expec-

tation.

(II) (For well-conditioned problems). If n
κ > 3

4 , by
choosing η = 1

2µn , we have

E
[
‖xK+1 − x?‖2

]
≤
(

1+
1

2n

)−K(
2

µ

(
F (x1)−F (x?)

)
+‖x1−x?‖2

)
.

This inequality implies that in this case we have an
O(n log(1/ε)) oracle complexity as ε → 0 in expecta-
tion.

Thus, for strongly convex objectives, SSNM yields a
fast O((n +

√
κn) log(1/ε)) rate, which matches the

best known oracle complexity achieved by accelerated
SVRG [Frostig et al., 2015, Allen-Zhu, 2017].

4.1 Some subtle differences on strongly
convex assumption

Recall that the strongly convex assumption for SAGA
is imposed on each fi(·) (or the average f(·) as an
extension) [Defazio et al., 2014]. In comparison, SSNM
requires the strong convexity of h(·) (in Assumption 1),
which seems to be critical in the proof. Below we show
that the strong convexity assumption of each fi(·) can
be efficiently transformed into Assumption 1.

Transforming the strong convexity assumption
from holding for all fi(·) to Assumption 1:
Suppose we have an objective in the form (1) with
each fi(·) L-smooth and µ-strongly convex, h(·) con-
vex and proper (the main assumption of SAGA).
By defining f ′i(·) = fi(·) − µ

2 ‖·‖
2 for each fi(·) and

h′(·) = h(·) + µ
2 ‖·‖

2, the optimal solution of mini-
mizing F ′(·) = 1

n

∑n
i=1 f

′
i(·) + h′(·) is equivalent to

that of (1) and it can be verified that each f ′i(·) is
(L − µ)-smooth and convex, h′(·) is µ-strongly con-
vex. Moreover, the proximal operator proxηh′(v) ,
arg minx{h′(x) + 1

2η‖x − v‖2},∀v ∈ Rd can be effi-
ciently computed as

proxηh′(v) = prox
η/(1+ηµ)
h

(
v

1 + ηµ

)
.

Conversely, Assumption 1 may not be reducible to the
strong convexity assumption of each fi(·) using the
above trick, since the modified regularizer h(·)− µ

2 ‖·‖
2

may not be as “proper” as h(·).

Directly accelerated variants of SVRG (e.g., Katyusha
and MiG) also require a strongly convex regularizer to
achieve acceleration. This requirement can be weak-
ened by adopting a restarting scheme for MiG (Algo-
rithm 3 with Option II in [Zhou et al., 2018]) 7, which
only requires F (·) to be strongly convex and thus
keeps the same assumption as in Prox-SVRG [Xiao and
Zhang, 2014]. Unfortunately, we found that the similar
trick does not work for SSNM. The best we can achieve
is to slightly weaken the strong convexity assumption
to be imposed on each Fi(·), but it requires an addi-
tional upper bound F (x) − F (x?) ≤ LF

2 ‖x − x
?‖2 for

all x ∈ Rd, where LF is potentially much larger than

7Similar restarting trick can be used for Katyusha to
weaken the strongly convex assumption.
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L (LF = L when h(·) ≡ 0). Moreover, the algorithm
structure will be more complicated than Algorithm 1.
Thus, we decided not to include the variant here.

The main limitation of the Lyapunov function used to
prove the convergence of SSNM (and many SAGA-like
algorithms) is that it does not contain an additive error
term for F (·), unlike the convergence of SVRG (and its
variants). We include a discussion on this difference in
the Supplementary Material C.

4.2 Non-smooth extension

Problem (1) with non-smooth but L1-Lipschitz con-
tinuous fi(·), strongly convex h(·) is also prevalent in
machine learning, e.g., L2-SVM. To solve this type
of problems, the most direct solution is using sub-
gradient methods (e.g., Pegasos [Shalev-Shwartz et al.,
2011] with an O( 1

ε ) rate). As an accelerated variant
of SAGA, Point-SAGA also obtains an O( 1

ε ) rate for
a similar type of objectives [Defazio, 2016]. In com-
parison, Point-SAGA requires the exact proximal op-
erator of each fi(·) but does not show improvement on
the bound. In this subsection, we consider extending
SSNM into this setting by utilizing the proximal in-
formation of each fi(·), which results in a convergence
rate faster than O( 1

ε ).

Following [Orabona et al., 2012], we apply Moreau-
Yosida regularization for each fi(·), which results in a

smooth approximation fβi (·) (with β > 0) defined as

∀v ∈ Rd, fβi (v) = inf
x∈Rd

{
fi(x) +

1

2β
‖x− v‖2

}
.

Then, it is clear that proxβfi(v) returns the point that

attains the infimum in fβi (v). As proven in Proposi-

tion 12.29 [Bauschke et al., 2011], fβi (·) is 1
β -smooth

and its gradient can be computed as ∇fβi (x) = 1
β (x−

proxβfi(x)),∀x ∈ Rd. Moreover, we have the following
properties to further bound the error in this smooth
approximation:

Lemma 2 (Lemma 2.2, [Orabona et al., 2012]). Let
fi(·) be an L1-Lipschitz continuous and convex func-
tion, then for any x ∈ Rd, β > 0

fβi (x) ≤ fi(x) ≤ fβi (x) +
βL2

1

2
.

Thus, by defining a “smoothed” objective F β(·) =
1
n

∑n
i=1 f

β
i (·) + h(·), we can use SSNM to minimize

F β(·), which leads to the following corollary:

Corollary 1. Using Algorithm 1 to minimize F β(·)
defined above, and by choosing β = µε

4L2
1
, where ε >

0 (small enough) is the required accuracy, in order

to achieve ‖xK+1 − x?‖2 ≤ ε at the output point
xK+1, where x? is the solution of minimizing the orig-

inal F (·), we need an O
((
n+

√
nL1√
εµ

)
log(1/ε)

)
oracle

complexity in expectation.

Proof. Denote the optimal solution of minimizing
F β(·) as x?β . With the strong convexity of F (·), we
can bound the difference between x?β and x? as

‖x?β − x?‖2 ≤
2

µ

(
F (x?β)− F (x?)

)
.

Based on Lemma 2, we have the following inequalities:

F (x?β) ≤ F β(x?β) +
µε

8

(?)

≤ F β(x?) +
µε

8
≤ F (x?) +

µε

8
,

where (?) holds due to the optimality of x?β .

Thus, we conclude that ‖x?β−x?‖2 ≤ ε
4 , which is based

on the choice of β.

Following Theorem 1, in order to reduce the squared
norm distance ‖xK+1−x?β‖2 at the output point xK+1

to ε
4 , we need O

((
n+

√
n
βµ

)
log(1/ε)

)
oracle calls.

Note that the above results imply that xK+1 satisfies

‖xK+1 − x?‖2 ≤ 2‖xK+1 − x?β‖2 + 2‖x?β − x?‖2 ≤ ε.

The above results imply anO
(

log(1/ε)√
ε

)
bound to solve

the non-smooth objectives, which is superior to the
O( 1

ε ) obtained by Point-SAGA. In order to avoid the
log factor in the bound, we can use the AdaptSmooth
in [Allen-Zhu and Hazan, 2016]. However, as men-
tioned in Section 4.1, in order to satisfy the HOOD
property in [Allen-Zhu and Hazan, 2016], we need an
additional upper bound F (x)− F (x?) ≤ LF

2 ‖x− x
?‖2

for all x ∈ Rd, which rules out certain choices of h(·),
such as the indicator function of a closed convex set.
Moreover, a log(LF /µ) factor will appear in the oracle
complexity bound after using the AdaptSmooth. Thus,
we omit further discussions about eliminating the log
factor here.

5 Some insights about the negative
momentum trick

In [Allen-Zhu, 2017], the negative momentum (or
Katyusha momentum) is described as a “magnet” that
reduces the error of the semi-stochastic gradient es-
timator for variance reduced algorithms. Thus, the
author combined this idea with Nesterov’s momen-
tum (or “positive” momentum) to achieve accelera-
tion. However, as shown in [Zhou et al., 2018] as well as
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this work, it seems that merely using the negative mo-
mentum trick is enough to obtain the same accelerated
convergence rate, which makes this acceleration some-
what “counter-intuitive”. In theory, it is clear that
with the help of negative momentum, we can adopt a
much tighter variance bound. However, this theoreti-
cal effect does not explain the source of acceleration.
In this section, we try to build a connection between
the negative momentum and the standard Nesterov’s
momentum in [Nesterov, 2004].

For simplicity, we mainly focus on the objective (1)
with h(·) ≡ 0 in this section. First, consider the de-
terministic case with n = 1, Algorithm 1 degenerates
into an algorithm with the following key steps (with
z ∈ Rd denoting the one item “points” table φ):

yk = τxk + (1− τ)zk;

xk+1 = xk − η∇f(yk);

zk+1 = τxk+1 + (1− τ)zk.

Note that we can completely eliminate the sequence
{xk}, which results in a simple scheme below.

zk+1 = yk − ητ∇f(yk);

yk+1 = zk+1 + (1− τ)(zk+1 − zk).

By carefully choosing parameters η and τ , we recover
the original Nesterov’s accelerated gradient method
with constant stepsize [Nesterov, 2004]. This observa-
tion motivates us to formulate the key steps in SSNM
(Algorithm 1) and MiG8 into the following schemes
(outer loops are omitted for simplicity):

SSNM

∇̃(1)
k = ∇fik(ykik)−∇fik(φkik) +

1

n

n∑
i=1

∇fi(φki );

φk+1
Ik

= ykIk − ητ∇̃
(1)
k ;

yk+1
ik+1

= φk+1
Ik

+ (1− τ)(φk+1
ik+1
− φkIk).

MiG

for k = 1 . . .m :

∇̃(2)
k = ∇fik(ysk)−∇fik(x̃s) +∇f(x̃s);

ysk+1 = ysk − ητ∇̃
(2)
k ;

x̃s+1 =
1

m

m∑
k=1

ysk+1;

ys+1
1 = ysm+1 + (1− τ)(x̃s+1 − x̃s).

8We adopt the uniform averaged scheme of MiG (Algo-
rithm 3 with Option II in [Zhou et al., 2018]) for simplicity.

The underlined parts of both algorithms can be re-
garded as the source of acceleration, since setting τ = 1
makes both algorithms degenerate into SAGA or Prox-
SVRG9. A more careful analysis shows that: For MiG,
the momentum x̃s+1− x̃s is provided every m stochas-
tic steps, where m = Θ(n) as suggested by the analysis
in [Zhou et al., 2018]; for SSNM, although a little bit
messy in randomness, we can observe that in expecta-
tion, every n steps, the momentum is provided by the
newly computed iterate. In comparison, the momen-
tum in Acc-Prox-SVRG [Nitanda, 2014] is added in ev-
ery stochastic step. However, as analyzed in [Nitanda,
2014], in pure stochastic setting (mini-batch size is
1)10, no acceleration can be guaranteed for Acc-Prox-
SVRG in theory. The intuition here is that we may
not trust the momentum provided in every stochastic
step; instead, we trust the momentum provided by the
average information of n stochastic steps.

Based on the above observation, we may understand
the negative momentum in SSNM and MiG as the Nes-
terov’s momentum based on average information, in
addition to attaining tighter variance bounds.

6 Experiments

In this section, we conducted experiments on training
an `2-logistic regression model to examine the practical
performance of SSNM as well as to justify our theoret-
ical results. Detailed experimental setup and parame-
ter settings are given in the Supplementary Material D.

The experiments were designed as some ill-conditioned
problems (with very small λ), since this is the regime
in which all the accelerated first-order methods take
effect. We tested SAGA, SSNM, Katyusha and MiG
with their theoretical parameter settings (Point-SAGA
is excluded since it requires a different oracle).

We report the results in Figure 1. From the results,
we can make the following observations to justify the
accelerated convergence rate:

• Similar convergence results comparing with other
accelerated algorithms. In fact, we are surprised
by the excellent performance of SSNM on the cov-
type dataset. For this dataset, SSNM is even
significantly faster than Katyusha and MiG in

9In fact, setting τ = 1 does not make SSNM and MiG
exactly the same as SAGA and Prox-SVRG. For SSNM,
the update index for the “points” table is different; for
MiG, the initial point ys+1

1 for the new epoch is different.
10Pure stochastic setting is important since it is proven

that in order to achieve the optimal convergence rate per
data access, we should always choose a mini-batch size of 1
for a family of variance reduction methods [Liu and Hsieh,
2018].
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Figure 1: Evaluations of SAGA, SSNM, Katyusha and MiG on the a9a dataset with λ = 10−6 and 10−7 (the
first two figures) and the covtype dataset with λ = 10−8 and 10−9 (the last two figures).

terms of the number of epochs (though in theory,
Katyusha and MiG yield the same convergence
rate as SSNM). The fast convergence of SSNM
in practice may imply that the algorithm could
potentially benefit many applications.

• Around 3 times slow-down when κ is 10 times
larger. It can be observed that using the same
dataset, when we divide λ by 10 (the same as
multiply κ by 10), approximately

√
10 times slow-

down (
√

10 times more oracle calls required to
achieve the same accuracy) is recorded for all
the accelerated methods. In comparison, SAGA
shows significant slow-down when κ is increased in
both experiments. This observation justifies the√
κ dependency for accelerated methods.

Another observation is that accelerated methods seem
to perform worse in the experiments on the a9a dataset
at first several passes. We conjecture that this is be-
cause the objective is locally well-conditioned around
the initial point. For well-conditioned problem, accel-
erated methods do not yield a faster rate in theory. In
practice, we always found that a smaller amount of mo-
mentum yields a better performance. Non-accelerated
methods (SVRG, SAGA) always perform better in this
case, since they are the accelerated methods without
momentum. In the parameter schemes of SSNM, MiG,
and Katyusha, the amounts of negative momentum are
all set to be ≥ 1/2 for simplicity in the proofs. To
achieve more consistent performance, we can use pa-
rameter schemes with a smaller amount of momentum.

However, as also reported in Figure 1, the convergence
of SSNM, though very fast, is somewhat unstable com-
pared with the other three methods. This can be ex-
plained by the double sampling trick used in SSNM,
which greatly increases the uncertainty inside each it-
eration.

An empirical comparison with Point-SAGA for ridge
regression is also given in the Supplementary Mate-
rial E for reference.
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Figure 2: Comparison of using sample ik (SSNM-i)
or Ik (SSNM-I) in 7th step of SSNM on the covtype

dataset with λ = 10−8.

6.1 Effectiveness of sample Ik

A natural question is that: can we use sample ik (the
sample of stochastic gradient) instead of an indepen-
dent sample Ik in the 7th step of Algorithm 1? We
empirically evaluated the effect of sample Ik as shown
in Figure 2. As we can see, using sample ik makes
the algorithm even more unstable and slower in con-
vergence comparing with using an independent sample
Ik. This effect can probably be explained by some kind
of variance cumulation when using the sample ik.

7 Conclusions

In this paper, we proposed SSNM, an accelerated
variant of SAGA, which uses the Sampled Negative
Momentum trick. Our theoretical results show that
SSNM achieves the best known oracle complexity for
strongly convex problems and our experiments justi-
fied such improvements for the ill-conditioned prob-
lems. Although memory consumption of SSNM is
higher than SAGA and some other variants, consid-
ering its good performance and general objective as-
sumption, SSNM is still potentially beneficial in prac-
tice.
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