Supplement: A Robust Zero-Sum Game
Framework for Pool-based Active Learning

A Proof of Theorem 1

The first part of the Theorem follows Theorem 1 in [8], and the second part
follows Corollary 3.2 in [8].

B Proof of Theorem 3 and Step Size Setting

Proof. Following Lemma 1 of [26], for any p € A,, and w € 2 we have
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Next, we bound the last term in the above inequality.
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Following the analysis of mirror descent on p; (e.g., Lemma 2 in [26]), we have
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In addition,
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where the first inequality uses that 1/ exp(—Yw'x) is R/4-Lipchitz continuous
function, £(w¢;x;) € [0, M] and ||p — p¢|]1 < 2. Combining the above inequalities
together, we have
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Let p be the vector that maximizes p'/(w,), and suppose D(p,p;) < D,

n = 2v2r/(GVT) and o = \/D/(M?>T), then
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For constrained problems, we have D = p/n. For regularized problems, we
can use the bound D(p,p1) < log(n) for KL divergence and D(p,p;) < 2 for
Euclidean divergence. O

C Dataset Statistics

Table 1: Statistics of Datasets

Dataset # Feature +# Training # Testing
svimguide3 22 1243 41
breast-cancer 9 200 77
twonorm 20 400 7000
ringnorm 20 400 7000
flare solar 9 666 400
heart 13 170 100
german 20 700 300
diabetis 8 468 300
duke breast-cancer 7129 38 4
madelon 500 2000 600
MNIST 28 x 28 55000 10000
CIFAR-10 32%32%3 50000 10000
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