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Supplementary Material

A Proof of Corollary 1

We first present the two lemmas used in the proof of Theorem 3: one establishes the convergence of dk(P, P̂m)
and the other describes the lower semi-continuity of the KLD.
Lemma 2. [47, 48] Assume 0 ≤ k(·, ·) ≤ K. Given ym i.i.d. ∼ P , denote by P̂m the empirical measure of ym.
It follows that

Pym

(
dk(P, P̂m) > (2K/m)1/2 + ε

)
≤ exp

(
−ε

2m

2K

)
.

Lemma 3 ([50]). For a fixed Q ∈ P, D(·‖Q) is a lower semi-continuous function w.r.t. the weak topology of P.
That is, for any ε > 0, there exists a neighborhood U ⊂ P of P such that for any P ′ ∈ U , D(P ′‖Q) ≥ D(P‖Q)− ε
if D(P‖Q) <∞, and D(P ′‖Q)→∞ as P ′ tends to P if D(P‖Q) =∞.

Proof of Corollary 1. Since 0 ≤ k(·, ·) ≤ K, we have

∣∣∣d2
u(P, Q̂n)− d2

k(P, Q̂n)
∣∣∣ =

∣∣∣∣∣∣ 1
n2(n− 1)

n∑
i=1

∑
j 6=i

k(xi, xj)−
1
n2

n∑
i=1

k(xi, xi)

∣∣∣∣∣∣ ≤ K/n.
It then holds that{

xn : d2
k(P, Q̂n) ≤ γ2

n

}
⊂
{
xn : d2

u(P, Q̂n) ≤ γ2
n +K/n

}
⊂
{
xn : d2

k(P, Q̂n) ≤ γ2
n + 2K/n

}
.

Thus, under H0 : P = Q, we have

P
(
d2
u(P, Q̂n) > γ2

n +K/n
)
≤ P

(
d2
k(P, Q̂n) > γ2

n

)
≤ α,

where the last inequality is from Lemma 2 and the fact that dk(P, Q̂n) ≥ 0. The type-II error exponent follows
from

lim inf
n→∞

− 1
n

logQ
(
d2
u(P, Q̂n) ≤ γ2

n +K/n
)

≥ lim inf
n→∞

− 1
n

logQ
(
d2
k(P, Q̂n) ≤ γ2

n + 2K/n
)

≥ D(P‖Q).

The last inequality can be shown by similar argument of Eq. (1) because γ2
n + 2K/n→ 0 as n→∞. Applying

Chernoff-Stein lemma completes the proof.

B Proof of Theorem 4

We use a result from [25] to verify the two-sample test to be level α.
Lemma 4 ([25, Theorem 7]). Let P,Q, ym, xn, P̂m, Q̂n be defined in Theorem 4. Assume 0 ≤ k(·, ·) ≤ K. Then
under the null hypothesis H0 : P = Q,

Pymxn

(
dk(P̂m, Q̂n) > 2(K/m)1/2 + 2(K/n)1/2 + ε

)
≤ 2 exp

(
− ε2mn

2K(m+ n)

)
.

Proof of Theorem 4. That the two-sample test is level α can be verified by the above lemma. The rest is to show
the type-II error exponent being D(P‖Q).

We can write the type-II error probability as

Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n

)
= βum,n + βlm,n,
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where

γ′m,n =
√

2K/m+
√

2KnD(P‖Q)/m

βum,n = Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n, dk(P, P̂m) > γ′m,n

)
,

βlm,n = Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n, dk(P, P̂m) ≤ γ′m,n

)
.

It suffices to show that max{βum,n, βlm,n} decreases exponentially as n scales. We first have

βum,n ≤ Pym

(
dk(P, P̂m) > γ′m,n

)
≤ e−nD(P‖Q), (3)

where the last inequality is due to Lemma 2. Thus, βum,n vanishes at least exponentially fast with the error
exponent being D(P‖Q).

For βlm,n, we have

βlm,n =
∑

{P̂m:dk(P,P̂m)≤γ′m,n}

P
(
P̂m

)
Q
(
dk(P̂m, Q̂n) < γm,n

)

=

 ∑
P̂m:dk(P,P̂m)≤γ′m,n

P (P̂m)

 sup
{P̂m:dk(P,P̂m)≤γ′m,n}

Q
(
dk(P̂m, Q̂n) < γm,n

)
≤ sup
{P̂m:dk(P,P̂m)≤γ′m,n}

Q
(
dk(P̂m, Q̂n) < γm,n

)
≤ Q

(
dk(P, Q̂n) ≤ γm,n + γ′m,n

)
,

where the last inequality is from the triangle inequality for metric dk. Similar to Eq. (1), we get

lim inf
n→∞

− 1
n

log βlm,n ≥ D(P‖Q),

because γm,n + γ′m,n → 0 as n→∞. Together with Eq. (3), we have under H1 : P 6= Q,

lim inf
n→∞

− 1
n

log Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n

)
≥ D(P‖Q).

We next show the other direction under H1. We can write

Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n

) (a)
≥ Pymxn

(
dk(P̂m, P ) ≤ γ′m, dk(P, Q̂n) ≤ γ′n

)
= P

(
dk(P̂m, P ) ≤ γ′m

)
Q
(
dk(P, Q̂n) ≤ γ′n

)
,

where (a) is because dk is a metric, and we choose γ′m =
√

2K/m
(
1 +
√
− logα

)
and γ′n =

√
2K/n

(
1 +
√
− logα

)
so that γm,n > γ′m + γ′n. Then Lemma 2 gives P (dk(P, P̂m) ≤ γ′m) > 1 − α and P (dk(P, Q̂n) ≤ γ′n) > 1 − α,
where the latter implies that dk(P, Q̂n) ≤ γ′n is a level α test for testing H0 : xn ∼ P and H1 : xn ∼ Q with
P 6= Q. Together with Chernoff-Stein Lemma, we get

lim inf
n→∞

− 1
n

log Pymxn

(
dk(P̂m, Q̂n) ≤ γm,n

)
≤ lim inf

n→∞
− 1
n

log
(
P
(
dk(P̂m, P ) ≤ γ′m

)
Q
(
dk(P, Q̂n) ≤ γ′n

))
≤ lim inf

n→∞
− 1
n

log (1− α) + lim inf
n→∞

− 1
n

logQ
(
dk(P, Q̂n) ≤ γ′n

)
≤ D(P‖Q).

The proof is complete.
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C Proof of the Extended Sanov’s Theorem

Our proof is inspired by [16] which proved the original Sanov’s theorem w.r.t. the τ -topology. We first prove the
result with a finite sample space and then extend it to the case with general Polish space. The prerequisites are
two combinatorial lemmas that are standard tools in information theory.

For a positive integer t, let Pm(t) denote the set of probability distributions defined on {1, . . . , t} of form
P =

(
m1
m , · · · , mt

m

)
, with integers m1, . . . ,mt. Stated below are the two lemmas.

Lemma 5 ([15, Theorem 11.1.1]). |Pm(t)| ≤ (m+ 1)t.
Lemma 6 ([15, Theorem 11.1.4]). Assume ym i.i.d. ∼ R where R is a distribution defined on {1, . . . , t}. For
any P ∈ Pm(t), the probability of the empirical distribution P̂m of ym equal to P satisfies

(m+ 1)−te−mD(P‖R) ≤ Pym(P̂m = P ) ≤ e−mD(P‖R).

C.1 Finite Sample Space

Upper bound Let t denote the cardinality of X . Without loss of generality, assume that inf(R,S)∈int Γ cD(R‖P )+
(1 − c)D(S‖Q) < ∞. Hence, the open set int Γ is non-empty. As 0 < c = limm,n→∞

m
m+n < 1, we can find

m0 and n0 such that there exists (P ′m, Q′n) ∈ int Γ ∩ Pm(t) × Pm(t) for all m > m0 and n > n0, and that
cD(P ′m‖P ) + (1 − c)D(Q′n‖Q) → inf(R,S)∈int Γ cD(R‖P ) + (1 − c)D(S‖Q) as m,n → ∞. Then we have, with
m > m0 and n > n0,

Pymxn((P̂m, Q̂n) ∈ Γ) =
∑

(R,S)∈Γ∩Pm(t)×Pm(t)

Pymxn(P̂m = R, Q̂n = S)

≥
∑

(R,S)∈int Γ∩Pm(t)×Pm(t)

Pymxn(P̂m = R, Q̂n = S)

≥ Pymxn(P̂m = P ′m, Q̂n = Q′n)
= Pym(P̂m = P ′m) Pxn(Q̂n = Q′n)

≥ (m+ 1)−t(n+ 1)−te−mD(P ′m‖P )e−nD(Q′n‖Q),

where the last inequality is from Lemma 6. It follows that

lim sup
m,n→∞

− 1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ)

≤ lim
m,n→∞

1
m+ n

(−t log((m+ 1)(n+ 1)) +mD(P ′m‖P ) + nD(Q′n‖Q))

= lim
m,n→∞

1
m+ n

(mD(P ′n‖P ) + nD(Q′n‖Q))

= inf
(R,S)∈int Γ

cD(R‖P ) + (1− c)D(S‖Q).

Lower bound

Pymxn((P̂m, Q̂n) ∈ Γ) =
∑

(R,S)∈Γ∩Pm(t)×Pm(t)

Pym(P̂m = R) Pxn(Q̂n = S)

(a)
≤

∑
(R,S)∈Γ∩Pm(t)×Pn(t)

e−mD(R‖P )e−nD(S‖Q)

(b)
≤ (m+ 1)t(n+ 1)t sup

(R,S)∈Γ
e−mD(R‖P )e−nD(S‖Q), (4)

where (a) and (b) are due to Lemma 6 and Lemma 5, respectively. This gives

lim inf
m,n→∞

− 1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ) ≥ inf
(R,S)∈Γ

cD(R‖P ) + (1− c)D(S‖Q),

and hence the lower bound by noting that Γ ∈ cl Γ. Indeed, when the right hand side is finite, the infimum over Γ
equals the infimum over cl Γ as a result of the continuity of KLD for finite alphabets.
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C.2 Polish Sample Space

We consider the general case with X being a Polish space. Now P is the space of probability measures on
X endowed with the topology of weak convergence. To proceed, we introduce another topology on P and an
equivalent definition of the KLD.

τ-topology: denote by Π the set of all partitions A = {A1, . . . , At} of X into a finite number of measurable
sets Ai. For P ∈ P, A ∈ Π, and ζ > 0, denote

U(P,A, ζ) = {P ′ ∈ P : |P ′(Ai)− P (Ai)| < ζ, i = 1, . . . , t}. (5)

The τ -topology on P is the coarsest topology in which the mapping P → P (F ) are continuous for every measurable
set F ⊂ X . A base for this topology is the collection of the sets (5). We will use Pτ when we refer to P endowed
with this τ -topology, and write the interior and closure of a set Γ ∈ Pτ as intτ Γ and clτ Γ, respectively. We
remark that the τ -topology is stronger than the weak topology: any open set in P w.r.t. weak topology is also
open in Pτ (see more details in [16, 19]). The product topology on Pτ ×Pτ is determined by the base of the form
of

U(P,A1, ζ1)× U(Q,A2, ζ2),

for (P,Q) ∈ Pτ × Pτ , A1,A2 ∈ Π, and ζ1, ζ2 > 0. We still use intτ (Γ) and clτ (Γ) to denote the interior and
closure of a set Γ ⊂ Pτ × Pτ . As there always exists A ∈ Π that refines both A1 and A2, any element from the
base has an open subset

Ũ(P,Q,A, ζ) := U(P,A, ζ)× U(Q,A, ζ) ⊂ Pτ × Pτ ,

for some ζ > 0.

Another definition of the KLD: an equivalent definition of the KLD will also be used:

D(P‖Q) = sup
A∈Π

t∑
i=1

P (Ai) log P (Ai)
Q(Ai)

= sup
A∈Π

D(PA‖QA),

with the conventions 0 log 0 = 0 log 0
0 = 0 and a log a

0 = +∞ if a > 0. Here PA denotes the discrete probability
measure (P (A1), . . . , P (At)) obtained from probability measure P and partition A. It is not hard to verify that
for 0 < c < 1,

cD(R‖P ) + (1− c)D(S‖Q) = c sup
A1∈Π

D(RA1‖PA1) + (1− c) sup
A2∈Π

D(SA2‖QA2)

= sup
A∈Π

(
cD
(
RA‖PA

)
+ (1− c)D

(
SA‖QA

))
, (6)

due to the existence of A that refines both A1 and A2 and the log-sum inequality [15].

We are ready to show the extended Sanov’s theorem with Polish space.

Upper bound It suffices to consider only non-empty open Γ. If Γ is open in P × P, then Γ is also open in
Pτ ×Pτ . Therefore, for any (R,S) ∈ Γ, there exists a finite (measurable) partition A = {A1, . . . , At} of X and
ζ > 0 such that

Ũ(R,S,A, ζ) = {(R′, S′) : |R(Ai)−R′(Ai)| < ζ, |S(Ai)− S′(Ai)| < ζ, i = 1, . . . , t} ⊂ Γ. (7)

Define the function T : X → {1, . . . , t} with T (x) = i for x ∈ Ai. Then (P̂m, Q̂n) ∈ Ũ(R,S,A, ζ) with R,S ∈ Γ if
and only if the empirical measures P̂ ◦m of {T (y1), . . . , T (ym)} := T (ym) and Q̂◦n of {T (x1), . . . , T (xn)} := T (xn)
lie in

U◦(R,S,A, ζ) = {(R◦, S◦) : |R◦(i)−R(Ai)| < ζ, |S◦(i)− S(Ai)| < ζ, i = 1, . . . , t} ⊂ Rt × Rt.

Thus, we have

Pymxn((P̂m, Q̂n) ∈ Γ) ≥ Pymxn((P̂m, Q̂n) ∈ Ũ(R,S,A, ζ))
= PT (ym)T (xn)((P̂ ◦m, Q̂◦n) ∈ U◦(R,S,A, ζ)).
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As T (x) and T (y) takes values from a finite alphabet and U◦(R,S,A, ζ) is open, we obtain that

lim sup
m,n→∞

− 1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ)

≤ lim sup
m,n→∞

− 1
m+ n

log PT (ym)T (xn)((P̂ ◦m, Q̂◦n) ∈ U◦(R,S,A, ζ))

≤ inf
(R◦,S◦)∈U◦(R,S,A,ζ)

cD(R◦‖PA) + (1− c)D(S◦‖QA)

= inf
(R′,S′)∈Ũ(R,S,A,ζ)

cD(R′A‖PA) + (1− c)D(S′A‖QA)

≤ cD(R‖P ) + (1− c)D(S‖Q), (8)

where we have used definition of KLD in Eq. (6) and (R,S) ∈ Ũ(R,S,A, ζ) in the last inequality. As (R,S) is
arbitrary in Γ, the lower bound is established by taking infimum over Γ.

Lower bound With notations

ΓA = {(RA, SA) : (R,S) ∈ Γ}, Γ(A) = {(R,S) : (RA, SA) ∈ ΓA},

where A = {A1, . . . , At} is a finite partition, it holds that

Pymxn((P̂m, Q̂n) ∈ Γ)
≤ Pymxn((P̂m, Q̂n) ∈ Γ(A))
= Pymxn((P̂Am , Q̂An ) ∈ ΓA ∩ Pn(t)× Pm(t))

≤ (n+ 1)t(m+ 1)t max
(R◦,S◦)∈ΓA∩Pn(t)×Pm(t)

Pymxn

(
P̂n = R◦, Q̂m = S◦

)
≤ (n+ 1)t(m+ 1)t exp

(
− inf

(R,S)∈Γ

(
nD(RA‖PA) +mD(SA‖QA)

))
,

where the last two inequalities are from Lemmas 5 and 6. As the above holds for any A ∈ Π, Eq. (6) indicates

lim sup
m,n→∞

1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ)

≤ inf
A

(
− inf

(R,S)∈Γ

(
cD(RA‖PA) + (1− c)D(SA‖QA)

))
= − sup

A
inf

(R,S)∈Γ
cD(RA‖PA) + (1− c)D(SA‖QA).

Then the remaining of obtaining the lower bound is to show

sup
A

inf
(R,S)∈Γ

cD(RA‖PA) + (1− c)D(SA‖QA) ≥ inf
(R,S)∈cl Γ

cD(R‖P ) + (1− c)D(S‖Q).

Assuming, without loss of generality, that the left hand side is finite, we only need to show

cl Γ ∩B(P,Q, η) 6= ∅,

whenever
η > sup

A
inf

(R,S)∈Γ
cD(RA‖PA) + (1− c)D(SA‖QA).

Here B(P,Q, η) is the divergence ball defined as follows

B(P,Q, η) = {(R,S) : cD(R‖P ) + (1− c)D(S‖Q) ≤ η} ,

which is compact in P × P w.r.t. the weak topology, due to the lower semi-continuity of D(·‖P ) and D(·‖Q) as
well as the fact that 0 < c < 1.
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To this end, we first show the following:

cl Γ =
⋂
A

cl Γ(A). (9)

The inclusion is obvious since Γ ∈ Γ(A). The reverse means that if (R,S) ∈ cl Γ(A) for each A, then any
neighborhood of (R,S) w.r.t. the weak convergence intersects Γ. To verify this, let O(R,S) be a neighborhood of
(R,S) w.r.t. the weak convergence, then there exists Ũ(R,S,B, ζ) ∈ O(R,S) over a finite partition B as O(R,S)
is also open in Pτ × Pτ . Furthermore, the partition B can be chosen to refine A so that cl Γ(B) ⊂ cl Γ(A).
As τ -topology is stronger than the weak topology, a closed set in the Pτ × Pτ is closed in P × P, and hence
cl Γ(B) ⊂ clτ Γ(B). That (R,S) ∈ clτ Γ(B) implies that there exists (R′, S′) ∈ Ũ(R,S,B, ζ) ∩ Γ(B). By the
definition of Γ(B), we can also find (R̃, S̃) ∈ Γ such that R̃(Bi) = R′(Bi) and S̃(Bi) = S′(Bi) for each Bi ∈ B, and
hence (R̃, S̃) ∈ Ũ(R,S,B, ζ). In summary, we have (R̃, S̃) ∈ Ũ(R,S,B, ζ) ⊂ O(R,S) and (R̃, S̃) ∈ Γ. Therefore,
Γ ∩O(R,S) 6= ∅ and the claim follows.

Next we show that, for each partition A,

Γ(A) ∩B(P,Q, η) 6= ∅. (10)

By Eq. (6), there exists (P̃ , Q̃) such that cD(P̃A‖PA)+(1− c)D(Q̃A‖QA) ≤ η. For such (P̃ , Q̃), we can construct
(P ′, Q′) ∈ Γ(A) as

P ′(F ) =
t∑
i=1

P̃ (Ai)
P (Ai)

P (F ∩Ai),

Q′(F ) =
t∑
i=1

Q̃(Ai)
Q(Ai)

Q(F ∩Ai),

for any measurable subset F ⊂ X . If P (Ai) = 0 (Q(Ai) = 0) and hence P̃ (Ai) = 0 (Q̃(Ai) = 0), as
D(P̃A‖PA) <∞ (D(Q̃A‖QA) <∞), for some i, the corresponding term in the above equation is set equal to
0. Then (P ′, Q′) belongs to Γ(A) and also lies in B(P,Q, η). The latter is because D(P ′‖P ) = D(P̃A‖QA) and
D(Q′‖Q) = D(Q̃A‖QA): one can verify that any B that refines A satisfies

D(P ′B‖PB) = D(P̃A‖PA), D(Q′B‖QB) = D(Q̃A‖QA).

For any finite collection of partitions Ai ∈ Π and A ∈ Π refining each Ai, each Γ(Ai) contains Γ(A). This implies
that

r⋂
i=1

(Γ(Ai) ∩B(p, q, η)) 6= ∅,

for any finite r. Finally, the set cl Γ(A) ∩B(P,Q, η) for any A is compact due to the compactness of B(P,Q, η),
and any finite collection of them has non-empty intersection. It follows that all these sets is also non-empty. This
completes the proof.

D Proof of Theorem 7

Proof. According to Theorem 1, dk metrizes the weak convergence over P. For convenience, we will write the
type-I and type-II error probabilities as αm,n and βm,n, respectively; we will also use β to denote the type-II error
exponent. That αm,n ≤ α is clear from Lemma 4, and we only need to show that βm,n vanishes exponentially as
m and n scale.

We first show β ≥ D∗. With a fixed γ > 0, we have γm,n ≤ γ for sufficiently large n and m. Therefore,

β = lim inf
m,n→∞

− 1
m+ n

log Pymxn(dk(P̂m, Q̂n) ≤ γm,n)

≥ lim inf
m,n→∞

− 1
m+ n

log Pymxn(dk(P̂m, Q̂n) ≤ γ)

≥ inf
(R,S):dk(R,S)≤γ

cD(R‖P ) + (1− c)D(S‖Q)

:= D∗γ , (11)
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where the last inequality is from the extended Sanov’s theorem and that dk metrizes weak convergence of P so
that {(R,S) : dk(R,S) ≤ γ} is closed in the product topology on P ×P . Since γ > 0 can be arbitrarily small, we
have

β ≥ lim
γ→0+

D∗γ ,

where the limit on the right hand side must exist as D∗γ is positive, non-decreasing when γ decreases, and bounded
by D∗ that is assumed to be finite. Then it suffices to show

lim
γ→0+

D∗γ = D∗.

To this end, let (Rγ , Sγ) be such that dk(Rγ , Sγ) ≤ γ and cD(Rγ‖P ) + (1− c)D(Sγ‖Q) = D∗γ . Notice that Rγ
and Sγ must lie in {

W : D(W‖P ) ≤ D∗

c
,D(W‖Q) ≤ D∗

1− c

}
:=W,

for otherwise D∗γ > D∗. We remark that W is a compact set in P as a result of the lower semi-continuity
of KLD w.r.t. the weak topology on P [50, 19]. Existence of such a pair can be seen from the facts that
{(R,S) : dk(R,S) ≤ γ} is closed and convex, and that both D(·‖P ) and D(·‖Q) are convex functions [50].

Assume that D∗ cannot be achieved. We can write

lim
γ→0+

D∗γ = D∗ − ε, (12)

for some ε > 0. By the definition of lower semi-continuity, there exists a κW > 0 for each W ∈ W such that

cD(R‖P ) + (1− c)D(S‖Q) ≥ cD(W‖P ) + (1− c)D(W‖Q)− ε

2 ≥ D
∗ − ε

2 , (13)

whenever R and S are both from
SW = {R : dk(R,W ) < κW } .

Here the last inequality comes from the definition of D∗ given in Theorem 7. To find a contradiction, define

S ′W =
{
R : dk(R,W ) < κW

2

}
.

Since S′W is open and
⋃
W S ′W covers W , the compactness of W implies that there exists finite S ′W ’s, denoted by

S ′W1
, . . . ,S ′WN

, covering W. Define κ∗ = minNi=1 κWi
> 0. Now let γ < κ∗/2 as γ can be made arbitrarily small.

Since
⋃N
i=1 S ′Wi

covers W, we can find a Wi with Rγ ∈ S ′Wi
⊂ SWi

. Thus, it holds that

dk(Sγ ,Wi) ≤ dk(Sγ , Rγ) + dk(Rγ ,Wi) < κWi
.

That is, Sγ also lies in SWi . By Eq. (13) we get

cD(Rγ‖P ) + (1− c)D(Sγ‖Q) ≥ D∗ − ε/2.

However, by our assumption in Eq. (12), it should hold that

cD(Rγ‖P ) + (1− c)D(Sγ‖Q) ≤ D∗ − ε.

Therefore, β ≥ D∗.

The other direction can be simply seen from the optimal type-II error exponent in Theorem 8. Alternatively, we
can use Chernoff-Stein lemma in a similar manner to the proof of Theorem 3. Let P ′ be such that cD(P ′‖P ) +
(1− c)D(P ′‖Q) = D∗. Such P ′ exists because 0 < D∗ <∞ and D(·‖P ) and D(·‖Q) are convex w.r.t. P. That
D∗ is bounded implies that both D(P ′‖P ) and D(P ′‖Q) are finite. We have

βm,n = Pymxn(dk(P̂m, Q̂n) ≤ γm,n)
(a)
≥ Pymxn(dk(P ′, P̂m) + dk(P ′, Q̂n) ≤ γm,n)
(b)
≥ Pymxn(dk(P ′, P̂m) ≤ γm, dk(P ′, Q̂m) ≤ γn)
= P (dk(P ′, P̂m) ≤ γm)Q(dk(P ′, Q̂n) ≤ γn),
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where (a) and (b) are from the triangle inequality of the metric dk, and we pick γn =
√

2K/n(1 +
√
− logα), and

γm =
√

2K/m(1 +
√
− logα) so that γm,n > γn + γm. Then Lemma 2 implies P ′(dk(P ′, P̂m) ≤ γm) > 1 − α.

For now assume that D(P ′‖P ) > 0 and D(P ′‖Q) > 0. We can regard {ym : dk(P ′, P̂m) ≤ γm} as an acceptance
region for testing H0 : ym ∼ P ′ and H1 : ym ∼ P . Clearly, this test performs no better than the optimal level α
test for this simple hypothesis testing in terms of the type-II error probability. Therefore, Chernoff-Stein lemma
implies

lim inf
m→∞

− 1
m

logP (dk(P ′, P̂m) ≤ γm) ≤ D(P ′‖P ). (14)

Analogously, we have

lim inf
n→∞

− 1
n

logQ(dk(P ′, Q̂n) ≤ γn) ≤ D(P ′‖Q). (15)

Now assume without loss of generality that D(P ′‖P ) = 0, i.e., P ′ = P . Then D(P ′‖Q) > 0 under the alternative
hypothesis H1 : P 6= Q, and Eq. (15) still holds. Using Lemma 2, we have P (dk(P ′, P̂m) ≤ γm) > 1− α, which
gives zero exponent. Therefore, Eq. (14) holds with P ′ = P .

As limm,n→∞
m

m+n = c, we conclude that

β = lim inf
m,n→∞

− 1
m+ n

log βm,n ≤ D∗.

The proof is complete.

E Proof of Theorem 8

Proof. Let P ′ be such that cD(P ′‖P ) + (1− c)D(P ′‖Q) = D∗. Consider first D(P ′‖P ) 6= 0 and D(P ′‖Q) 6= 0.
Since D∗ is assumed to be finite, we have both D(P ′‖P ) and D(P ′‖Q) being finite. This implies that P ′ is
absolutely continuous w.r.t. both P and Q, so the Radon-Nikodym derivatives dP ′/dP and dP ′/dQ exist.

Define two sets

Am =
{
ym : D(P ′‖P )− ε ≤ 1

m
log dP

′(ym)
dP (ym) ≤ D(P ′‖P ) + ε

}
,

Bn =
{
xn : D(P ′‖Q)− ε ≤ 1

n
log dP

′(xn)
dQ(xn) ≤ D(P ′‖Q) + ε

}
,

(16)

Recall the definition of the KLD:D(P ′‖P ) = Ex∼P ′ log(dP ′(x)/dP (x)) andD(P ′‖Q) = Ex∼P ′ log(dP ′(x)/dQ(x)).
By law of large numbers, we have for any given ε > 0,

Pymxn(Am ×Bn) ≥ 1− ε, for large enough m and n, (17)

with ym and xn i.i.d. ∼ P ′.

Now consider the type-II error probability of level α tests. First, for a level α test, we have its acceptance region
satisfies

Pymxn(Ω′0(m,n)) > 1− α, (18)

when ym and xn i.i.d. ∼ P ′, i.e., when the null hypothesis H0 : P = Q holds. Then under the alternative
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hypothesis H1 : P 6= Q, we have

Pymxn(Ω′0(m,n))
≥ Pymxn(Am ×Bn ∩ Ω′0(m,n))

=
∫
Am×Bn∩Ω′0(m,n)

dP (ym) dQ(xn)

(a)
≥
∫
Am×Bn∩Ω′0(m,n)

2−m(D(P ′‖P )+ε)2−n(D(P ′‖Q)+ε)dP ′(ym) dP ′(xn)

= 2−mD(P ′‖P )−n(D(P ′‖Q)−(m+n)ε
∫
Am×Bn∩Ω′0(m,n)

dP ′(ym) dP ′(xn)

(b)
≥ 2−mD(P ′‖P )−nD(P ′‖Q)−(m+n)ε(1− α− ε),

where (a) is from Eq. (16) and (b) is due to Eqs. (17) and (18). Thus, when ε is small enough so that 1−α− ε > 0,
we get

lim inf
m,n→∞

− 1
m+ n

log Pymxn(Ω′0(m,n)) ≤ lim inf
m,n→∞

− 1
m+ n

(mD(P ′‖P ) + n(D(P ′‖Q) + (m+ n)ε)

= D∗ + ε. (19)

If a test is an asymptotic level α test, we can replace α by α+ ε′ where ε′ can be made arbitrarily small provided
that m and n are large enough. Thus, Eq. (19) holds too. Finally, since ε can also be arbitrarily small, we
conclude that

lim inf
m,n→∞

− 1
m+ n

log Pymxn(Ω′0(m,n)) ≤ D∗.

If P ′ = P , then Am contains all ym ∈ Xm and the above procedure gives the same result.

F Experiments

This section presents empirical results of the MMD and KSD based goodness-of-fit tests in the finite sample
regime. We note that there have been extensive experiments in [12, 23, 34, 29] and the sample size m drawn from
P is usually fixed for the kernel two-sample test. As such, we only consider two toy experiments and let m scale
as required in Theorem 4.

We evaluate the following tests with a fixed level α = 0.1, all using Gaussian kernel k(x, y) = e−‖x−y‖
2
2/(2w):

1) Simple: the simple kernel test dk(P, Q̂n). The acceptance threshold is estimated by drawing i.i.d. samples from
P , i.e., the Monte Carlo method. The number of trials is 500. 2) Two-sample: the two-sample test dk(P̂m, Q̂n)
with m = n1.5. Threshold is obtained from the bootstrap method in [25], with 500 bootstrap replicates. 3) KSD:
the KSD based test d2

S(P, Q̂n). We use wild bootstrap method from [12] with 500 replicates to estimate the
α-quantile.

Gaussian vs. Laplace. We use a similar experiment setting in [29]. Consider P : N (0, 2
√

2) andQ : Laplace(0, 2),
a zero-mean Laplace distribution with scale parameter 2. The parameters are chosen so that P and Q have the
same mean and variance. We pick a fixed bandwidth w = 1 for all the kernel based tests and repeat 500 trials
of each sample size n for both hypotheses. We also evaluate the likelihood ratio test LR, an oracle approach
assuming both P and Q are known. In Figure 1a, LR has the lowest type-II error probabilities as expected, while
Simple and Two-sample perform slightly better than KSD. As shown in Figure 1b, all the kernel based tests have
the type-I error probabilities around the given level α = 0.1, except for KSD with n = 5 samples.

Gaussian Mixture. The next experiment is taken from [34]. The i.i.d. observations xn are drawn from
Q :

∑5
i=1 aiN (x;µi, σ2) with ai = 1/5, σ2 = 1, and µi randomly drawn from Uniform[0, 10]. We then generate

P by adding standard Gaussian noise (perturbation) to µi. In [34], the sample number m drawn from P is fixed
while the observed sample number n varies. We report the type-II error probabilities in Figure 2, averaged over
500 random trials.

With the median heuristic for bandwidth choice, KSD and Two-sample perform similarly whereas Simple has its
type-II error probability decreasing slowly, as shown in Figure 2a. Picking a fixed bandwidth w = 1 for Simple
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Figure 1: Gaussian vs. Laplace.
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Figure 2: Gaussian mixture. (a) median bandwidth for Simple, Two-sample, and KSD, and a fixed bandwidth
w = 1 for Simple; (b) fixing n = 50 samples and varying kernel bandwidths.

again results in a better performance. In light of the role of kernels, we then search over the kernel bandwidths in
[0, 8] for a fixed sample size n = 50. In Figure 2b, Simple and Two-sample tend to achieve lower type-II error
probabilities when w is small, while KSD has a lower error probability around w = 5. The optimal type-II error
probabilities of Simple and KSD are close and slightly lower than that of Two-sample. While computational issue
is not the focus of this paper, we do observe that KSD is more efficient in this experiment, as it does not need to
draw samples.

Whereas we cannot tell much statistical difference in our experiments, some experiments in the literature
showed that the MMD based tests performed better than the KSD based tests and others showed the opposite
[12, 23, 34, 29]. The finite sample performance depends on kernel choice as well as specific distributions. Under
the universal setting, no test is known to be optimal in terms of the type-II error probability subject to a given
level constraint. Statistical optimality can only be established in the large sample limit, as the one considered in
the present work.


