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Abstract

We characterize the asymptotic performance
of nonparametric goodness of fit testing. The
exponential decay rate of the type-II error
probability is used as the asymptotic per-
formance metric, and a test is optimal if it
achieves the maximum rate subject to a con-
stant level constraint on the type-I error prob-
ability. We show that two classes of Maximum
Mean Discrepancy (MMD) based tests attain
this optimality on Rd, while the quadratic-
time Kernel Stein Discrepancy (KSD) based
tests achieve the maximum exponential decay
rate under a relaxed level constraint. Under
the same performance metric, we proceed to
show that the quadratic-time MMD based
two-sample tests are also optimal for general
two-sample problems, provided that kernels
are bounded continuous and characteristic.
Key to our approach are Sanov’s theorem from
large deviation theory and the weak metriz-
able properties of the MMD and KSD.

1 Introduction

Goodness-of-fit tests play an important role in machine
learning and statistical analysis. Given a model distri-
bution P and sample xn := {xi}ni=1 originating from an
unknown distribution Q, the goal is to decide whether
to accept the null hypothesis that Q matches P , or
the alternative hypothesis that Q and P are different.
Traditional (parametric) approaches may require space
partitioning or closed-form integrals [6, 7, 9, 27]. They
become computationally intractable to machine learn-
ing applications that involve high dimensional data and
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complicated models [30, 39, 46].

Recently, several efficient tests have been proposed
based on Reproducing Kernel Hilbert Space (RKHS)
embedding [36, 43]. One is to conduct a Maximum
Mean Discrepancy (MMD) based two-sample test by
drawing samples from the model distribution P [35].
A difficulty with this approach is to determine the
number of samples drawn from P relative to n, the
sample number of the test sequence. Other tests are
based on classes of Stein transformed RKHS functions
[12, 22, 23, 34, 37], where the test statistic is the norm
of the smoothness-constrained function with the largest
expectation under Q and is referred to as the Kernel
Stein Discrepancy (KSD). The KSD based tests only
require knowing the density function of P up to the
normalization constant, and do not need to compute
integrals or draw samples. Additionally, constructing
explicit features of distributions results in a linear-time
goodness-of-fit test that is also more interpretable [29].

Motivated by their good performance in practice, this
paper investigates the statistical optimality of these
kernel based goodness-of-fit tests, a long-standing open
problem in information theory and statistics [15, 17, 28].
Given distribution P , the hypothesis testing between
H0 : xn ∼ P and H1 : xn ∼ Q can be extremely hard
when Q is arbitrary but unknown, as opposed to the
simple case when Q is known. With independent sam-
ple and a known Q, the type-II error probability of
an optimal test vanishes exponentially fast w.r.t. the
sample size n, and the exponential decay rate coincides
with the Kullback-Leibler Divergence (KLD) between P
and Q (cf. Lemma 1). This motivates the so-called uni-
versal hypothesis testing problem, originally proposed
by Hoeffding [28]: does there exist a nonparametric
goodness-of-fit test that achieves the same optimal ex-
ponential decay rate as in the simple hypothesis testing
problem where Q is known? Over the years, universally
optimal tests only exist when the sample space is fi-
nite, i.e., when P and Q are both multinomial [28, 49].
For a more general sample space, attempts have been
largely fruitless with the only exception of [53, 51].
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Their results, however, were obtained at the cost of a
weaker optimality and the proposed tests are rather
complicated due to use of Lévy-Prokhorov metric. We
remark that even the existence of such a test remains
unknown when the sample space is non-finite.

Contributions. We first show a simple kernel test,
comparing the MMD between the target distribution
and the sample empirical distribution with a proper
threshold, as an optimal approach to the universal
hypothesis testing problem when the sample space is
Polish, locally compact Hausdorff, e.g., Rd. To the
best of our knowledge, this is the first result on the
universal optimality for a general, non-finite sample
space. Taking into account the difficulty of obtaining
closed-form integrals for non-Gaussian distributions,
we then follow [35] to cast the original problem into
a two-sample problem. We establish the same opti-
mality for the quadratic-time kernel two-sample tests
proposed in [25], provided that ω(n) independent sam-
ples are drawn from P . For the KSD based tests, the
constant level constraint on the type-I error probability
is difficult to satisfy for all possible sample sizes. By
relaxing the constraint to an asymptotic one and as-
suming additional conditions, we establish the optimal
exponential decay rate of the type-II error probability
for the quadratic-time KSD based tests proposed in
[12, 34].

As another contribution, we proceed to investigate
the quadratic-time kernel two-sample tests in a more
general setting where the sample sizes scale in the same
order, e.g., when the two sets of samples have the same
size. We show that the type-II error probability also
vanishes exponentially fast. The obtained exponential
decay rate is further shown to be optimal among all
two-sample tests under the same level constraint, and
is independent of particular kernels provided that they
are bounded continuous and characteristic.

Key to our approach are Sanov’s theorem from large
deviation theory [19] and the weak metrizable prop-
erties of the MMD [42, 44] and the KSD [23], which
enable us to directly investigate the acceptance region
defined by the test, rather than using the test statistic
as an intermediate.

Paper Outline. Section 2 introduces the asymptotic
statistical criterion used in this paper and formally
states the problem of universal hypothesis testing. Sec-
tion 3 reviews related works. In Section 4, we present
two classes of MMD based tests that are optimal for
universal hypothesis testing and discuss their implica-
tions to goodness of fit testing. Section 5 considers the
KSD based goodness-of-fit tests and Section 6 estab-
lishes the universal optimality of the quadratic-time
MMD based two-sample tests in a more general setting.

We conclude this paper in Section 7.

2 Problem

Throughout this paper, let X be a Polish space (i.e.,
a separable completely metrizable topological space)
and P the set of Borel probability measures defined on
X . Given a distribution P ∈ P and sample xn from
an unknown distribution Q ∈ P , we want to determine
whether to accept H0 : P = Q or H1 : P 6= Q. A test
Ω(n) = {Ω0(n),Ω1(n)} partitions Xn into two disjoint
sets with Ω0(n)∪Ω1(n) = Xn. If xn ∈ Ωi(n), i = 0, 1, a
decision is made in favor of hypothesis Hi. We say that
Ω0(n) is an acceptance region for the null hypothesis
H0 and Ω1(n) the rejection region. A type-I error
is made when P = Q is rejected while H0 is true,
and a type-II error occurs when P = Q is accepted
despite H1 being true. The two error probabilities are
P (Ω1(n)) := Pxn∼P (xn ∈ Ω1(n)) and Q(Ω0(n)) :=
Pxn∼Q (xn ∈ Ω0(n)) with Q 6= P , respectively.

In general, the two error probabilities can not be mini-
mized simultaneously. A commonly used approach, the
so-called Neyman-Pearson approach [11], is to set an
upper bound α on the type-I error probability and con-
siders only level α tests, i.e., tests with P (Ω1(n)) ≤ α.
However, similar to the two-sample problem [25], it
is not possible to distinguish distributions with high
probability at a given, fixed sample, without prior as-
sumptions on the difference between P and Q. We
therefore consider an asymptotic statistical criterion
as the performance metric.

A level α test is said to be consistent if the type-II error
probability vanishes in the large sample limit. Such a
test is exponentially consistent when the error proba-
bility additionally vanishes exponentially fast w.r.t. the
sample size, that is, when

lim inf
n→∞

− 1
n

logQ(Ω0(n)) > 0.

The above limit is also referred to as the type-II error
exponent in information theory. Clearly, the larger
the error exponent, the faster the error probability
decreases in the sample limit. Under this criterion, an
optimal test would achieve the maximum type-II error
exponent while satisfying the level constraint. Error
exponent is a widely used metric in source coding and
channel coding [15], and is closely related to two other
asymptotic statistical criteria [41]. In particular, the
Chernoff index equals the minimum of the type-I and
type-II error exponents, and the exact Bahadur slope
is equivalent to twice of the type-I error exponent with
a constant constraint on the type-II error probability.

We present a useful lemma which gives the optimal
type-II error exponent of any level α test for simple
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hypothesis testing between two known distributions.
Let D(P‖Q) denote the KLD between P and Q. That
is, D(P‖Q) = EP log(dP/dQ) where dP/dQ stands for
the Radon-Nikodym derivative of P w.r.t. Q when it
exists, and D(P‖Q) =∞ otherwise [19].
Lemma 1 (Chernoff-Stein Lemma [15, 19]). Let xn
i.i.d. ∼ R. Consider simple hypothesis testing between
H0 : R = P ∈ P and H1 : R = Q ∈ P, with 0 <
D(P‖Q) < ∞. Given 0 < α < 1, let Ω∗(n, P,Q) =
{Ω∗0(n, P,Q),Ω∗1(n, P,Q)} be the optimal level α test
with which the type-II error probability is minimized
for each n. It follows that

lim
n→∞

− 1
n

logQ(Ω∗0(n, P,Q)) = D(P‖Q).

Problem Statement. Let Ω(n) = {Ω0(n),Ω1(n)} be
a nonparametric goodness-of-fit test of level α. With
xn i.i.d. ∼ Q under the alternative hypothesis, the
corresponding type-II error probability Q(Ω0(n)) can
not be lower than Q(Ω∗0(n, P,Q)). As such, Chernoff-
Stein lemma indicates that its type-II error exponent is
bounded by D(P‖Q). For any given P , the problem is
to find a goodness-of-fit test Ω(n), if it exists, so that

1. under H0 : P = Q, Pxn(Ω1(n)) ≤ α,

2. under H1 : P 6= Q,

lim inf
n→∞

− 1
n

log Pxn(Ω0(n)) = D(P‖Q),

for arbitrary Q with 0 < D(P‖Q) <∞,

giving rise to the name universal hypothesis testing.

3 Related Work

The decay rate of the type-II error probability has been
widely investigated for existing kernel based tests. For
the simple kernel tests in [1, 47, 48] and the kernel
two-sample tests in [14, 21, 24, 26, 46, 52], analysis is
based on the test statistics, through their asymptotic
distributions or some probabilistic bounds on their con-
vergence to the population statistics. The resulting
characterizations depend on kernels and are loose in
general. For the KSD based tests, current statistical
characterization is limited to consistency; the asymp-
totic distributions of the test statistics either have no
closed form [12] or are hard to analyze [29, 34].

Other asymptotic statistical criteria have also been
used for comparing nonparametric goodness-of-fit tests.
Jitkrittum et al. [29] used the approximate Bahadur
slope and showed that their linear-time test has greater
relative efficiency than the linear-time test proposed in
[34], assuming a mean-shift alternative. However, it is

not clear whether such a result holds for a more general
alternative. Balasubramanian et al. [5] investigated the
detection boundary and showed that the simple kernel
test is suboptimal under this criterion. A minimax
optimal test was then proposed for a composite al-
ternative, where the worst-case performance w.r.t. a
set of probability measures is optimized. In contrast,
our optimality criterion is much stronger in that the
optimality must hold for any distribution defining the
alternative hypothesis; specifically, the nonparametric
test must achieve the maximum type-II error exponent
D(P‖Q) for any Q satisfying 0 < D(P‖Q) <∞.

4 Maximum Mean Discrepancy Based
Goodness-of-Fit Tests

This section studies two classes of MMD based tests
for universal hypothesis testing, followed by discussions
on related aspects. We begin with a brief review of the
MMD and of Sanov’s theorem.

Let Hk be an RKHS defined on X with reproducing
kernel k. The mean embedding of P ∈ P in Hk is a
unique element µk(P ) ∈ Hk such that Ey∼P f(y) =
〈f, µk(P )〉Hk

for all f ∈ Hk [8]. We assume that k is
bounded continuous, hence the existence of µk(P ) is
guaranteed by the Riesz representation theorem. The
MMD between two probability measures P and Q is
defined as the RKHS-distance between their mean em-
beddings, which can be expressed as

dk(P,Q)
= ‖µk(P )− µk(Q)‖Hk

= (Eyy′k(y, y′) + Exx′k(x, x′)− 2Eyxk(y, x))1/2
,

where y, y′ i.i.d. ∼ P and x, x′ i.i.d. ∼ Q.

If the mean embedding µk is an injective map, then the
kernel k is said to be characteristic and the MMD dk be-
comes a metric on P [45]. A weak metrizable property
of dk has also been established recently. Consider the
weak topology on P induced by the weak convergence:
a sequence of probability measures Pl → P weakly if
and only if Ey∼Pl

f(y)→ Ey∼P f(y) for every bounded
continuous function f : X → R. The following theorem
states when dk metrizes this weak convergence.1

Theorem 1 ([42, Theorem 55], [44, Theorem 3.2]).
If X is Polish, locally compact Hausdorff, and k is
continuous and characteristic, then dk metrizes the
weak convergence on P.

We note that the weak metrizable property is also
favored for training deep generative models [3, 4, 32].

1Indeed, Simon-Gabriel and Schölkopf [42] show that X
only needs to be locally compact Hausdorff. We require X
be Polish in order to utilize Sanov’s theorem.
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An example of Polish, locally compact Hausdorff space
is Rd, and both Gaussian and Laplacian kernels defined
on it are bounded continuous and characteristic [44].

We next introduce Sanov’s theorem from large devia-
tion theory, which, together with the weak metrizable
property of the MMD, is critical to establish our main
results in this section. Denote by Q̂n the empirical
measure of xn, i.e., Q̂n = 1

n

∑n
i=1 δxi

with δx being the
Dirac measure at x.
Theorem 2 (Sanov’s Theorem [40, 19]). Let xn

i.i.d. ∼ Q ∈ P. For a set Γ ⊂ P, it holds that

lim sup
n→∞

− 1
n

log Pxn(Q̂n ∈ Γ) ≤ inf
R∈int Γ

D(R‖Q),

lim inf
n→∞

− 1
n

log Pxn(Q̂n ∈ Γ) ≥ inf
R∈cl Γ

D(R‖Q),

where int Γ and cl Γ are the interior and closure of Γ
w.r.t. the weak topology on P, respectively.

Sanov’s theorem states that if the underlying distribu-
tion Q is not in cl Γ, the closure of a set Γ of distribu-
tions, then the probability of its empirical distribution
Q̂n lying in cl Γ goes to 0 at least exponentially fast.
This enables us to directly investigate type-II error
exponent through the empirical distribution and the
acceptance region, rather than through the limiting
performance of the test statistics. Moreover, the lower
bound on the error exponent would establish the uni-
versal optimality if it is no lower than D(P‖Q) for a
goodness-of-fit test.

We now state the two classes of MMD based goodness-
of-fit tests that are universally optimal.

4.1 Simple Kernel Tests

The first test directly computes the MMD between the
target distribution P and the empirical distribution
of sample xn. Though having been investigated in
[1, 5, 47, 48], its optimality for the universal hypothesis
testing problem remains unknown.

Let also Q̂n be the empirical measure of xn. We have
a simple kernel test with acceptance region

Ω0(n) =
{
xn : dk(P, Q̂n) ≤ γn

}
,

where γn represents a threshold and d2
k(P, Q̂n) equals

1
n2

n∑
i=1

n∑
j=1

k(xi, xj) + Eyy′k(y, y′)− 2
n

n∑
i=1

Eyk(xi, y),

with y, y′ i.i.d. ∼ P . On the one hand, we want the
threshold γn to be small so that the test type-II error
probability is low; on the other hand, the threshold

cannot be too small in order to meet the level constraint
on the type-I error probability. The balance between
the two error probabilities is attained with a threshold
that diminishes at an appropriate rate.
Theorem 3. Let X be Polish, locally compact Haus-
dorff. For P ∈ P and xn i.i.d. ∼ Q ∈ P, assume
0 < D(P‖Q) < ∞ under the alternative hypothe-
sis H1. Further assume that kernel k is bounded
continuous and characteristic, with 0 ≤ k(·, ·) ≤ K
for some K > 0. For a given α, 0 < α < 1, set
γn =

√
2K/n

(
1 +
√
− logα

)
. Then the simple kernel

test dk(P, Q̂n) ≤ γn is an optimal level α test for the
universal hypothesis testing problem, that is,

1. under H0 : P = Q, Pxn

(
dk(P, Q̂n) > γn

)
≤ α,

2. under H1 : P 6= Q,

lim inf
n→∞

− 1
n

log Pxn

(
dk(P, Q̂n) ≤ γn

)
= D(P‖Q).

Proof. That dk(P, Q̂n) ≤ γn has level α can be directly
verified by [48, Eq. (24)] (see Lemma 2 in Appendix A).
Let β = lim infn→∞− 1

n log Pxn(dk(P, Q̂n) ≤ γn) un-
der H1. According to Chernoff-Stein lemma, we only
need to show β ≥ D(P‖Q).

To apply Sanov’s theorem, we notice that deciding if
xn ∈ {xn : dk(P, Q̂n) ≤ γn} is equivalent to deciding
if its empirical measure Q̂n ∈ {P ′ : dk(P, P ′) ≤ γn}.
Since γn → 0 as n→∞, for any constant γ > 0, there
exists an integer n0 such that γn < γ for all n > n0.
Hence, {P ′ : dk(P, P ′) ≤ γn} ⊂ {P ′ : dk(P, P ′) ≤ γ}
for large enough n. It follows that for any γ > 0,

β ≥ lim inf
n→∞

− 1
n

log Pxn

(
dk(P, Q̂n) ≤ γ

)
≥ inf
{P ′∈P:dk(P,P ′)≤γ}

D(P ′‖Q), (1)

where the last inequality is from Sanov’s theorem
and that {P ′ ∈ P : dk(P, P ′) ≤ γ} is closed
w.r.t. the weak topology (cf. Theorem 1). Then for
any given ε > 0, there exists some γ > 0 such that
inf{P ′∈P:dk(P,P ′)≤γ}D(P ′‖Q) ≥ D(P‖Q)−ε, using the
lower semi-continuity of the KLD [50] (Lemma 3 in Ap-
pendix A) and the assumption that 0 < D(P‖Q) <∞
under H1. This further implies β ≥ D(P‖Q).

It is worth noting that we simply select one threshold
γn in the above theorem. Indeed, any vanishing thresh-
old γ′n > 0 with γ′n ≥ γn leads to the same optimality
w.r.t. the type-II error exponent, an asymptotic statis-
tical criterion. A larger threshold, however, may result
in a higher type-II error probability in the finite sample
regime. A further discussion on the threshold choice
will be given in Section 4.3.
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The test statistic d2
k(P, Q̂n) is a biased estimator of

d2
k(P,Q). By replacing 1

n2

∑n
i=1
∑n
j=1 k(xi, xj) with

1
n(n−1)

∑n
i=1
∑
j 6=i k(xi, xj), we obtain an unbiased

statistic denoted as d2
u(P, Q̂n). We comment that

d2
u(P, Q̂n) is not a squared quantity and can be neg-

ative, due to the unbiasedness. The following result
shows that d2

u(P, Q̂) can also be used to construct a
universally optimal test.
Corollary 1. Under the same conditions of Theorem 3,
the test d2

u(P, Q̂n) ≤ γ2
n +K/n is a level α asymptoti-

cally optimal test for universal hypothesis testing.

Proof (sketch). As 0 ≤ k(·, ·) ≤ K, we get {xn :
d2
k(P, Q̂n) ≤ γ2

n} ⊂ {xn : d2
u(P, Q̂n) ≤ γ2

n + K/n} ⊂
{xn : d2

k(P, Q̂n) ≤ γ2
n + 2K/n}. The level constraint

and the type-II error exponent can then be verified
using the subset and superset, respectively. See Ap-
pendix A for details.

The tests in this section still require closed-form inte-
grals, namely, Eyk(xi, y) and Eyy′k(y, y′). Our purpose
here is to show that the universally optimal type-II
error exponent is indeed achievable, giving a meaning-
ful optimality criterion for goodness-of-fit tests. In the
next section, we consider another class of MMD based
tests without the need of closed-form integrals.

4.2 Kernel Two-Sample Tests

In the context of model criticism, Lloyd and Ghahra-
mani [35] cast goodness of fit testing into a two-sample
problem, where one draws sample ym from distribution
P and then decide if ym and xn are from the same
distribution. A question that arises is the choice of
number of samples, which is not obvious due to the lack
of an explicit criterion. In light of universal hypothesis
testing, we could ask how many samples would suf-
fice for a two-sample test to attain the error exponent
D(P‖Q).

Denote by P̂m the empirical measure of ym. Notice
that the type-I and type-II error probabilities of a two-
sample test depend on both P and Q. We consider the
following two-sample test with acceptance region

Ω0(m,n) = {(ym, xn) : dk(P̂m, Q̂n) ≤ γm,n},

where K is a finite bound on k(·, ·),

d2
k(P̂m, Q̂n) =

n∑
i=1

n∑
j=1

k(xi, xj) +
m∑
i=1

m∑
j=1

k(yi, yj)

− 2
mn

n∑
i=1

m∑
j=1

k(xi, yj),

γm,n =
(√

K/m+
√
K/n

)(
2 +

√
−2 log(α/2)

)
.

The statistic d2
k(P̂m, Q̂n) for estimating the squared

MMD was originally proposed in [25]. Although addi-
tional randomness is introduced due to the use of P̂m,
it does not hurt the type-II error exponent provided
that m is large enough, as stated below.
Theorem 4. Assume the same conditions as in Theo-
rem 3, and that ym i.i.d. ∼ P and xn i.i.d. ∼ Q. Let
Ω1(m,n) = Xm+n \ Ω0(m,n) be the rejection region.
If m is such that m/n→∞ as n→∞, then we have

1. under H0 : P = Q, Pymxn (Ω1(m,n)) ≤ α,

2. under H1 : P 6= Q,

lim inf
n→∞

− 1
n

log Pymxn (Ω0(m,n)) = D(P‖Q). (2)

The level α constraint can be verified by [25, Theo-
rem 7]. We decompose the type-II error probability
into two components and show that each decays at
least exponentially at a rate of D(P‖Q). A complete
proof is provided in Appendix B.

We may also replace the first two terms in
d2
k(P̂m, Q̂n) with 1

n(n−1)
∑n
i=1
∑
j 6=i k(xi, xj) and

1
m(m−1)

∑m
i=1
∑
j 6=i k(yi, yj), which results in an unbi-

ased statistic denoted as d2
u(P̂m, Q̂n) [25]. The follow-

ing corollary can be shown in a similar manner to Corol-
lary 1 by noting that |d2

u(P̂m, Q̂n) − d2
k(P̂m, Q̂n)| ≤

K/m+K/n; details are omitted.
Corollary 2. Under the same assumptions of Theo-
rem 4, the test d2

u(P̂m, Q̂n) ≤ γ2
m,n +K/m+K/n has

its type-I error probability below α and type-II error
exponent being D(P‖Q), when m/n→∞ as n→∞.

4.3 Remarks

Threshold Choice. The distribution-free thresholds
used in the MMD based tests are generally too conser-
vative, as the actual distribution P is not taken into
account. Alternatively, we may use Monte Carlo or
bootstrap methods to empirically estimate the accep-
tance threshold [12, 25, 29], making the tests asymp-
totically level α. These methods, however, introduce
additional randomness on the threshold choice and fur-
ther on the type-II error probability. As a result, it
becomes difficult to characterize the type-II error expo-
nent. A simple fix is to take the minimum of the Monte
Carlo or bootstrap threshold and the distribution-free
one, guaranteeing a vanishing threshold and hence the
optimal type-II error exponent. In our experiments,
the bootstrap threshold is always smaller than the
distribution-free threshold.
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Finite vs. Asymptotic Regimes. A finitely pos-
itive error exponent D(P‖Q) implies that the er-
ror probability decays with O

(
2−n(D(P‖Q)−ε)) where

ε ∈ (0, D(P‖Q)) can be arbitrarily small. It further
implies that kernels affect only the sub-exponential
term in the type-II error probability, as long as they
are bounded continuous and characteristic. When n
is small, the sub-exponential term may dominate and
the test performance does depend on the specific ker-
nel. Selecting a proper kernel is an ongoing research
topic and we refer the reader to related works such as
[29, 26, 46].

Non-i.i.d. Sample. We notice that Chwialkowski
et al. [12] considered non-i.i.d. sample by use of wild
bootstrap. In general, statistical optimality with non-
i.i.d. sample is difficult to establish even for simple
hypothesis testing.

General Two-Sample Problem. Studied in Sec-
tion 4.2 can be seen as a special case of the two-
sample problem where sample sizes scale in different
orders, i.e., m/n → ∞ as n → ∞. A direct exten-
sion is to consider the more common setting where
0 < limn→∞m/n <∞. For example, an equal number
of real and fake samples is typically used for training
generative models where the MMD acts as a critic to
distinguish between them [33, 20, 32]. However, the
current approach is not readily applicable, for lacking
an extended version of Sanov’s theorem that works with
two sample sequences. A naive way may try decompos-
ing the acceptance region Ω0(m,n) into Ω′0(m)×Ω′′0(n)
with Ω′0(m) and Ω′′0(n) being respectively decided by
ym and xn, and then apply Sanov’s theorem to each set.
Unfortunately, such a decomposition is not possible
for the MMD based two-sample tests. We postpone a
further investigation until Section 6, after studying the
KSD based goodness-of-fit tests in the next section.

5 Kernel Stein Discrepancy Based
Goodness-of-Fit Tests

In this section, we investigate the KSD based goodness-
of-fit tests recently proposed in [12, 29, 34].

Let X = Rd. Denote by p and q the density functions
(w.r.t. Lebesgue measure) of P and Q, respectively. In
[12, 34], the KSD is defined as

dS(P,Q) = max
‖f‖Hk

≤1
Ex∼Q [sp(x)f(x) +∇xf(x)] ,

where ‖f‖Hk
≤ 1 denotes the unit ball in the RKHS

Hk, and sp(x) = ∇x log p(x) is the score function of
p(x). An equivalent expression of the KSD is given by

d2
S(P,Q) = Ex∼QEx′∼Q hp(x, x′),

where hp(x, y) = sTp (x)sp(y)k(x, y) + sTp (y)∇xk(x, y) +
sTp (x)∇yk(x, y) + trace(∇x,yk(x, y)). Given sample
xn, we may estimate d2

S(P,Q) by d2
S(P, Q̂n) =

1
n2

∑n
i=1
∑n
j=1 hp(xi, xj), which is a degenerate V-

statistic under the null hypothesis H0 : P = Q [12].

With Ex∼Q‖∇x log p(x) − ∇x log q(x)‖2 ≤ ∞ and a
C0-universal kernel [10], dS(P,Q) = 0 if and only if
P = Q [12, Theorem 2.2]. A nice property of the
KSD is that this result requires only the knowledge
of p(x) up to the normalization constant. The KSD
has also been shown to be lower bounded in terms of
the MMD or the bounded Lipschitz metric (involving
some unknown constants) under suitable conditions
[23]. This indicates that dS(P, Pl)→ 0 only if Pl → P
weakly, which is important to applying Sanov’s theorem
in our approach.

Unlike the MMD based test statistics, there does not
exist a uniform or distribution-free probabilistic bound
on d2

S(P, Q̂n). As a result, it is difficult to find a test
threshold to meet the fixed level constraint for all sam-
ple sizes. To proceed, we relax the level constraint to
an asymptotic one, and use the result of [12, Proposi-
tion 3.2] which shows that nd2

S(P, Q̂n) converges weakly
to some distribution under H0.2 We assume a fixed
α-quantile γα of the limiting cumulative distribution
function, so that limn→∞ P (d2

S(P, Q̂n) > γα/n) = α.
Then if γn is such that γn → 0 and limn→∞ nγn →∞,
e.g., γn =

√
1/n

(
1 +
√
− logα

)
, we get γn > γα/n in

the limit and thus limn→∞ P (d2
S(P, Q̂n) > γn) ≤ α.

Similarly, this threshold choice may be poor in the
finite sample regime and we can take the minimum of
this threshold and a bootstrap one [2, 13, 31]. Together
with the weak convergence properties of the KSD, we
have the following result.
Theorem 5. Let P and Q be distributions defined
on Rd, with 0 < D(P‖Q) < ∞ under the alter-
native hypothesis. Assume xn i.i.d. ∼ Q and set
γn =

√
1/n

(
1 +
√
− logα

)
. It follows that

1. if hp is Lipschitz continuous and Ex∼Qhp(x, x) <
∞, then under H0 : P = Q,

lim
n→∞

Pxn

(
d2
S(P, Q̂n) > γn

)
≤ α.

2. if 1) d = 1, k(x, y) = Φ(x − y) for some
Φ ∈ C2 (twice continuous differentiable) with a
non-vanishing generalized Fourier transform; 2)
k(x, y) = Φ(x − y) for some Φ ∈ C2 with a non-
vanishing generalized Fourier transform, and the

2Chwialkowski et al. [12] assume τ -mixing as the no-
tion of dependence within the observations, which holds
in the i.i.d. case. They also assume a technical condition∑∞

t=1 t
2
√
τ(t) ≤ ∞ on τ -mixing. See details in [12, 18].
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sequence {Q̂n}n≥1 is uniformly tight; 3) k(x, y) =
(c2 + ‖x− y‖22)η for c > 0 and −1 < η < 0, then
under H1 : P 6= Q,

lim inf
n→∞

− 1
n

log Pxn

(
d2
S(P, Q̂n) ≤ γn

)
= D(P‖Q).

Proof (sketch). The condition for the asymptotic level
constraint is taken from [12, Proposition 3.2]. To
establish the type-II error exponent, let dW denote
the MMD or the bounded Lipschitz metric, which
metrize the weak convergence on P. Under each of
the three conditions from [23, Theorems 5, 7, and 8],
dW (P, Q̂n) ≤ g(dS(P, Q̂n)) where g(dS)→ 0 as dS → 0.
Then there exists γ′n such that {xn : d2

S(P, Q̂n) ≤
γn} ⊂ {xn : d2

W (P, Q̂n) ≤ γ′n} and γ′n → 0 as n → ∞.
Thus, the type-II error exponent is lower bounded by
D(P‖Q), following the same argument of Theorem 3.
The upper bound is from Chernoff-Stein lemma which
also holds for an asymptotic level constraint.

Liu et al. [34] proposed an unbiased U-statistic
d2
S(u)(P, Q̂n) = 1

n(n−1)
∑n
i=1
∑
j 6=i hp(xi, xj) for esti-

mating d2
S(P,Q). A similar result holds under an addi-

tional assumption on the boundedness of hp(·, ·), using
the same argument of Corollary 1.
Corollary 3. Assume the same conditions as in Theo-
rem 5 and further that hp(·, ·) ≤ Hp for some Hp ∈ R+.
Then the test d2

S(u)(P, Q̂n) ≤ γn + Hp/n is asymptot-
ically level α and achieves the optimal type-II error
exponent D(P‖Q).

The Weak Convergence Property. To use Sanov’s
theorem, we find a superset of probability measures
for the equivalent acceptance region, which is required
to be closed and to converge (in terms of weak con-
vergence) to P in the large sample limit. Without
the weak convergence property, the equivalent accep-
tance region may contain probability measures that
are not close to P , and the minimum KLD over the
superset would be hard to obtain. An example can be
found in [23, Theorem 6] where the KSDs are driven
to zero by sequences of probability measures not con-
verging to P . Consequently, our approach does not
establish the optimal type-II error exponent for the
linear-time KSD based tests in [29, 34], the linear-time
kernel two-sample test in [25], the B-test in [52], and
a pseudometric based two-sample test in [14], due to
lack of the weak convergence property.

6 General Two-Sample Problem

In this section, we investigate the kernel two-sample
tests in a more general setting. As discussed in Sec-
tion 4.3, the key is to establish an extended Sanov’s
theorem that is able to handle two sample sequences.

6.1 Extended Sanov’s Theorem

We define pairwise weak convergence for probability
measures: we say (Pl, Ql)→ (P,Q) weakly if and only
if both Pl → P and Ql → Q weakly. We consider
P × P endowed with the topology induced by this
pairwise weak convergence. It can be verified that this
topology is equivalent to the product topology on P×P
where each P is endowed with the topology of weak
convergence. An extended version of Sanov’s theorem
is stated below.
Theorem 6 (Extended Sanov’s Theorem). Let X be a
Polish space, ym i.i.d. ∼ P , and xn i.i.d. ∼ Q. Assume
0 < limm,n→∞

m
m+n = c < 1. Then for a set Γ ⊂ P×P,

it holds that

inf
(R,S)∈int Γ

cD(R‖P ) + (1− c)D(S‖Q)

≥ lim sup
m,n→∞

− 1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ)

≥ lim inf
m,n→∞

− 1
m+ n

log Pymxn((P̂m, Q̂n) ∈ Γ)

≥ inf
(R,S)∈cl Γ

cD(R‖P ) + (1− c)D(S‖Q),

where int Γ and cl Γ denote the interior and closure of
Γ w.r.t. the pairwise weak convergence, respectively.

We comment that this extension is not apparent as ex-
isting tools, e.g., Cramér theorem [19], used for proving
Sanov’s theorem can only deal with a single distribu-
tion. In Appendix C, we first prove the above result
in finite sample space and then extend it to general
Polish space, with two simple combinatorial lemmas as
prerequisites.

6.2 Exact and Optimal Error Exponent

With the extended Sanov’s theorem and a vanishing
threshold γm,n, we are ready to establish the exponen-
tial decay of the type-II error probability. A proof is
provided in Appendix D.
Theorem 7. Assume the same conditions as in The-
orem 4, and limm,n→∞

m
m+n = c ∈ (0, 1). Under the

alternative hypothesis H1 : P 6= Q, further assume that

0 < D∗ := inf
R∈P

cD(R‖P ) + (1− c)D(R‖Q) <∞.

Given 0 < α < 1, the test dk(P̂m, Q̂n) ≤ γm,n with γm,n
defined in Section 4.2 is level α and also exponentially
consistent with the type-II error exponent being

lim inf
m,n→∞

− 1
m+ n

log Pymxn(Ω0(m,n)) = D∗.

Here we consider the error exponent w.r.t.m+n, the to-
tal number of observations for testing. Therefore, when
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0 < c < 1, the type-II error probability vanishes as
O(2−(m+n)(D∗−ε)), where ε ∈ (0, D∗) is fixed and can
be arbitrarily small. Similarly, this result only requires
kernels be bounded continuous and characteristic.

Our next theorem provides an upper bound on the
type-II error exponent of any (asymptotically) level α
two-sample test. This further shows that the kernel
test dk(P̂m, Q̂n) ≤ γm,n is asymptotically optimal, by
choosing the type-II error exponent as the performance
metric. See Appendix E for a proof.
Theorem 8. Assume the same conditions as in Theo-
rem 7. For a nonparametric two-sample test Ω′(m,n) =
{Ω′0(m,n),Ω′1(m,n)} which is (asymptotically) level
α, 0 < α < 1, its type-II error exponent is bounded by
D∗, that is,

lim inf
m,n→∞

− 1
m+ n

log Pymxn(Ω′0(m,n)) ≤ D∗.

We can use Theorems 7 and 8 to identify more asymp-
totically optimal two-sample tests:

• Assuming n = m, the unbiased test d2
u(P̂m, Q̂n) ≤

(4K/
√
n)
√

log(α−1), with a tighter threshold, is
also level α [25]. As k(·, ·) is finitely bounded byK,
its type-II error probability vanishes exponentially
at a rate of infR∈P 1

2D(R‖P ) + 1
2D(R‖Q), which

can be shown by the same argument of Corollary 1.

• It is also possible to consider a family of kernels
for the test statistic [21, 44]. For a given family κ,
the test statistic is supk∈κ dk(P̂m, Q̂n) which also
metrizes weak convergence under suitable condi-
tions, e.g., when κ consists of finitely many Gaus-
sian kernels [44, Theorem 3.2]. If K remains to
be an upper bound for all k ∈ κ, then comparing
supk∈κ dk(P̂m, Q̂n) with γm,n in Section 4.2 results
in an asymptotically optimal level α test.

Fair Alternative. In [38], a notion of fair alterna-
tive is proposed when investigating how a two-sample
test performs as dimension increases. The idea is to
fix D(P‖Q) under the alternative hypothesis for all
dimensions, guided by the fact that the KLD is a fun-
damental information-theoretic quantity determining
the hardness of hypothesis testing problems. This ap-
proach, however, does not take into account the impact
of sample sizes. In light of our results, perhaps a better
choice is to fix D∗ defined in Theorem 7 when the
sample sizes grow in the same order. In practice, D∗
may be hard to compute, so fixing its upper bound
(1− c)D(P‖Q) and hence D(P‖Q) is reasonable.

Other Discrepancy Measures. Other discrepancy
measures between distributions may also metrize the

weak convergence on P , including Lévy-Prokhorov met-
ric, the bounded Lipschitz metric, and Wasserstein dis-
tance. We may directly compute such a discrepancy
between the empirical measures and then compare it
with a decreasing threshold. However, there also does
not exist a uniform or distribution-free threshold such
that the level constraint is satisfied for all sample sizes.
A possible remedy, as in Section 5, is to relax the level
constraint to an asymptotic one. We will not expand
into this direction, as computing such discrepancy mea-
sures from samples is generally more costly than the
MMD and KSD based statistics.

7 Concluding Remarks

In this paper, we established the statistical optimality
of the MMD and KSD based goodness-of-fit tests in
the spirit of universal hypothesis testing. The KSD
based tests are more computationally efficient, as there
is no need to draw samples or compute integrals. In
comparison, the MMD based tests are statistically fa-
vorable, as they require weaker assumptions and can
meet the level constraint for any sample size. The
quadratic-time MMD based two-sample tests are also
shown to be optimal when sample sizes scale in the
same order. Our findings not only solve a long-standing
open problem in statistics, but also provide meaningful
optimality criteria for nonparametric goodness-of-fit
and two-sample testing.

While the optimality criterion is defined in the asymp-
totic sense, we also conduct experiments of these kernel
based goodness-of-fit tests in the finite sample regime,
with results given in Appendix F due to space limit.
Whereas we cannot tell much statistical difference in
our experiments, some experiments in the literature
showed that the MMD based tests performed better
than the KSD based tests and others showed the op-
posite [12, 23, 34, 29]. The finite sample performance
depends on kernel choice as well as specific distribu-
tions. Under the universal setting, no test is known
to be optimal in terms of the type-II error probability
subject to a given level constraint. Statistical optimal-
ity can only be established in the large sample limit,
as the one considered in the present work.

Acknowledgement

The authors are grateful to the anonymous reviewers
for valuable comments and suggestions. The work of
BC was supported in part by the U.S. National Science
Foundation under grant CNS-1731237 and by the U.S.
Air Force Office of Scientific Research under grant
FA9550-16-1-0077. Part of this work was done when
SZ and PY were students at Syracuse University.



Shengyu Zhu, Biao Chen, Pengfei Yang, Zhitang Chen

References
[1] Y. Altun and A. Smola. Unifying divergence minimiza-

tion and statistical inference via convex duality. In
COLT, 2006.

[2] M. A. Arcones and E. Gine. On the bootstrap of U and
V statistics. The Annals of Statistics, pages 655–674,
1992.

[3] M. Arjovsky and L. Bottou. Towards principled meth-
ods for training generative adversarial networks. In
ICLR, 2007.

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
generative adversarial networks. In ICML, 2017.

[5] K. Balasubramanian, T. Li, and M. Yuan. On the
optimality of kernel-embedding based goodness-of-fit
tests. arXiv preprint arxiv:1709.08148, 2017.

[6] L. Baringhaus and N. Henze. A consistent test for
multivariate normality based on the empirical charac-
teristic function. Metrika, 35(1):339–348, 1988.

[7] J. Beirlant, L. Györfi, and G. Lugosi. On the asymp-
totic normality of the L1- and L2-errors in histogram
density estimation. Canadian Journal of Statistics, 22
(3):309–318, 1994.

[8] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel
Hilbert Spaces in Probability and Statistics. Springer
Science & Business Media, 2011.

[9] A. Bowman and P. Foster. Adaptive smoothing and
density-based tests of multivariate normality. Journal
of the American Statistical Association, 88(422):529–
537, 1993.

[10] C. Carmeli, E. De Vito, A. Toigo, and V. Umanitá.
Vector valued reproducing kernel Hilbert spaces and
universality. Analysis and Applications, 8(01):19–61,
2010.

[11] G. Casella and R. Berger. Statistical Inference.
Duxbury Thomson Learning, 2002.

[12] K. Chwialkowski, H. Strathmann, and A. Gretton. A
kernel test of goodness of fit. In International Confer-
ence on Machine Learning, 2016.

[13] K. P. Chwialkowski, D. Sejdinovic, and A. Gretton. A
wild bootstrap for degenerate kernel tests. In Advances
in Neural Information Processing Systems, 2014.

[14] K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and
A. Gretton. Fast two-sample testing with analytic
representations of probability measures. In Advances
in Neural Information Processing Systems, 2015.

[15] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. New York: Wiley, 2nd edition, 2006.

[16] I. Csiszár. A simple proof of Sanov’s theorem. Bulletin
of the Brazilian Mathematical Society, 37(4):453–459,
2006.

[17] I. Csiszár and P. C. Shields. Information theory and
statistics: A tutorial. Foundations and Trends in Com-
munications and Information Theory, 1(4):417–528,
2004.

[18] J. Dedecker, P. Doukhan, G. Lang, J. Leon, S. Louhichi,
and C. Prieur. Weak Dependence: With Examples and
Applications. New York: Springer, 2007.

[19] A. Dembo and O. Zeitouni. Large Deviations Tech-
niques and Applications. New York: Springer, 2009.

[20] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Train-
ing generative neural networks via maximum mean
discrepancy optimization. In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelli-
gence, 2015.

[21] K. Fukumizu, A. Gretton, G. R. Lanckriet,
B. Schölkopf, and B. K. Sriperumbudur. Kernel choice
and classifiability for rkhs embeddings of probability
distributions. In Advances in neural information pro-
cessing systems, 2009.

[22] J. Gorham and L. Mackey. Measuring sample quality
with Stein’s method. In NIPS, 2015.

[23] J. Gorham and L. Mackey. Measuring sample quality
with kernels. In ICML, 2017.

[24] A. Gretton, K. Fukumizu, Z. Harchaoui, and B. Sripe-
rumbudur. A fast, consistent kernel two-sample test.
In Advances in Neural Information Processing Systems,
2009.

[25] A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. Smola. A kernel two-sample
test. Journal of Machine Learning Research, 13(Mar):
723–773, 2012.

[26] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakr-
ishnan, M. Pontil, K. Fukumizu, and B. K. Sriperum-
budur. Optimal kernel choice for large-scale two-sample
tests. In Advances in Neural Information Processing
Systems, 2012.

[27] L. Györfi and E. C. Van Der Meulen. A consistent
goodness of fit test based on the total variation distance.
In Nonparametric Functional Estimation and Related
Topics, pages 631–645. Springer, 1991.

[28] W. Hoeffding. Asymptotically optimal tests for multi-
nomial distributions. The Annals of Mathematical
Statistics, pages 369–401, 1965.

[29] W. Jitkrittum, W. Xu, Z. Szabo, K. Fukumizu, and
A. Gretton. A linear-time kernel goodness-of-fit test.
In NIPS, 2017.

[30] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[31] A. Leucht et al. Degenerate U- and V-statistics under
weak dependence: Asymptotic theory and bootstrap
consistency. Bernoulli, 18(2):552–585, 2012.

[32] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póc-
zos. MMD GAN: Towards deeper understanding of
moment matching network. In Advances in Neural
Information Processing Systems, 2017.

[33] Y. Li, K. Swersky, and R. Zemel. Generative moment
matching networks. In International Conference on
Machine Learning, 2015.

[34] Q. Liu, J. Lee, and M. Jordan. A kernelized Stein
discrepancy for goodness-of-fit tests. In International
Conference on Machine Learning, 2016.

[35] J. R. Lloyd and Z. Ghahramani. Statistical model
criticism using kernel two sample tests. In Advances
in Neural Information Processing Systems, 2015.

[36] K. Muandet, K. Fukumizu, B. Sriperumbudur, and
B. Schölkopf. Kernel mean embedding of distributions:
A review and beyond. Foundations and Trends in
Machine Learning, 10(1-2):1–141, 2017.



Universal Hypothesis Testing with Kernels

[37] C. J. Oates, M. Girolami, and N. Chopin. Control
functionals for Monte Carlo integration. Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 79(3):695–718, 2017.

[38] A. Ramdas, S. J. Reddi, B. Póczos, A. Singh, and L. A.
Wasserman. On the decreasing power of kernel and
distance based nonparametric hypothesis tests in high
dimensions. In AAAI, 2015.

[39] R. Salakhutdinov. Learning deep generative models.
Annual Review of Statistics and Its Application, 2:
361–385, 2015.

[40] I. N. Sanov. On the probability of large deviations of
random variables. Technical report, North Carolina
State University. Dept. of Statistics, 1958.

[41] R. J. Serfling. Approximation Theorems of Mathemat-
ical Statistics. John Wiley & Sons, 2009.

[42] C.-J. Simon-Gabriel and B. Schölkopf. Kernel distri-
bution embeddings: Universal kernels, characteristic
kernels and kernel metrics on distributions. arXiv
preprint arXiv:1604.05251, 2016.

[43] A. Smola, A. Gretton, L. Song, and B. Schölkopf. A
hilbert space embedding for distributions. In Inter-
national Conference on Algorithmic Learning Theory,
2007.

[44] B. Sriperumbudur. On the optimal estimation of
probability measures in weak and strong topologies.
Bernoulli, 22(3):1839–1893, 08 2016.

[45] B. K. Sriperumbudur, A. Gretton, K. Fukumizu,
B. Schölkopf, and G. R. Lanckriet. Hilbert space em-
beddings and metrics on probability measures. Jour-
nal of Machine Learning Research, 11(Apr):1517–1561,
2010.

[46] D. Sutherland, H. Tung, H. Strathmann, S. De,
A. Ramdas, A. Smola, and A. Gretton. Generative
models and model criticism via optimized maximum
mean discrepancy. In ICLR, 2017.

[47] Z. Szabó, A. Gretton, B. Póczos, and B. Sriperum-
budur. Two-stage sampled learning theory on distri-
butions. In Artificial Intelligence and Statistics, 2015.

[48] Z. Szabó, B. K. Sriperumbudur, B. Póczos, and
A. Gretton. Learning theory for distribution regres-
sion. The Journal of Machine Learning Research, 17
(1):5272–5311, 2016.

[49] J. Unnikrishnan, D. Huang, S. P. Meyn, A. Surana, and
V. V. Veeravalli. Universal and composite hypothesis
testing via mismatched divergence. IEEE Transactions
on Information Theory, 57(3):1587–1603, 2011.

[50] T. Van Erven and P. Harremos. Rényi divergence and
Kullback-Leibler divergence. IEEE Transactions on
Information Theory, 60(7):3797–3820, 2014.

[51] P. Yang and B. Chen. Robust Kullback-Leibler diver-
gence and universal hypothesis testing for continuous
distributions. arxiv preprint arxiv:1711.04238, 2017.

[52] W. Zaremba, A. Gretton, and M. Blaschko. B-test: A
non-parametric, low variance kernel two-sample test.
In Advances in neural information processing systems,
2013.

[53] O. Zeitouni and M. Gutman. On universal hypotheses
testing via large deviations. IEEE Trans. Inf. Theory,
37(2):285–290, 1991.


