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A Proofs, assumptions, and additional Results

As a general rule for this appendix, all the ¢ € (0, co) constants denote positive universal constants.
The specific values of these constants may change from place to place. For notational simplicity,
we assume the regime of interest is p > (n V 2); the modification to allow p < (nV 2) is trivial.

When constructing an approximate inverse © of n=' 2% ; X7 X; in (5) and (6), we adopt the
nodewise regression method proposed by van de Geer, et al. (2014). Since our analysis involves
establishing H(:)j - ®jH1 = 0p(1), as in van de Geer et al. (2014), our illustration (Theorem 1
and Corollary 1) in the main paper requires a sparsity condition on the inverse ©® = X ~! of the
population Hessian 3 := E (XlT X'Z) The realism of most assumptions for Theorem 1 and Corollary
1 in Section A.1 hinges crucially on whether the exact sparsity of Sy and © hold in the applications
of interest. We relax the exact sparsity of ©; (assumed in most literature including van de Geer, et
al., 2014) in Section A.2 to accommodate for approximate sparsity which permits all the entries in
©; to be non-zero as long as they decay sufficiently fast. This extension provides a more realistic
interpretation of most practical problems.

A.1 Assumptions for Theorem 1 and Corollary 1

Assumption 1. For j =1,...p, (Xl-j, Xij, Y;, 51)n | are i.1.d. sub-Gaussian variables with pa-
1=
rameters at most O(1).

Assumption 2. (i) For ¥ = E (X'Z»TXO, [Afmn(Z)]_l = O(1) and A%, (X) = O(1); there ex-
1

ists a parameter p such that for any unit vector a € RP, sup,> r3 (E aTX'iT

T) < p for all
i=1,...,n, and
s;V1)logp
% =0(1). (1)
n
(i) For 1 = E [E(X,|2)" E (Xi| Z)| (where E(Xi|Z,) := (B (Xu1|Z) ... E(Xp| Z2)) is a row vec-
tor of dimension p), A%, (X1) = O(1).
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Remark. Part (ii) of Assumption 2 is only used in the analysis for the second debiased esti-
mator b in (6).

Assumption 3. The conditional expectations E (Y;|Z;) and E(X;;|Z;) (j = 1,...,p) belong to
F. Forany f € F = {f:f/—f” L E]—'} and o € [0, 1], af € F (that is, F is star-
shaped).

Remark. This condition is needed to operationalize (5)-(6) which require estimators for the
conditional expectations. In view of the following identity

90(Zi) = E(Yi|Z;) — E(X4|Z;) o,
note that imposing conditions on the function class E (X;;|Z;)s and E (Y;|Z;) belong to automat-
ically restricts the function class go belongs to. Assumption 3 is relatively mild and often seen in
the literature of nonparametric statistics (see e.g., Wainwright, 2015); it is satisfied when the set F
is convex and includes the function f = 0. It is also satisfied by some non-convex sets of functions,

which arise in sparse regression models.

Assumption 4. (i) The initial estimator 3 satisfies that

-, = o y222).
el = o (s 22).
(ii) HE (X1]2) (B - 50) Hn =0, <\/ 501;:”) and the estimator § satisfies that

. 2 2 so logp
19912 = 0  (sur2) v (222

where ry, 1s the critical radius.

Remark. Part (ii) of Assumption 4 is only used in the analysis for the second debiased estimator
bin (6). Under mild conditions, the rates in Assumption 4 are satisfied by the initial estimators
based on Zhu (2017). For special cases where Z; has a low dimension and gy belongs to the mth
order Sobolev ball 8™, the initial estimators based on Miiller and van de Geer (2015) or Yu, et al.
(2017) also satisfy the rate requirements in Assumption 4.

Assumption 5. (|||, vV1)r2 =0 (\/ bff’) where 1y, s the critical radius. Moreover,

Vvns; (so V1) (7“721 % 10510) = o(1),

[s? (soV1) lo\/gﬁp} \Y [35’ (so V1) (ri v bi;p) \/@} = o(1),

o] e ()] - o
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Remark. With some algebraic manipulations, we show that \/n ( BQJ) = @ XTe + REM

and \/n (l;] — ng) = ﬁ@jXTE + REM’, where the leading term ﬁGjXTE has an asymptotic

normal distribution. Assumption 5 imposes requirements on the sparsity parameters so and s;s

as well as the rates (reflected by r,) for the auxiliary estimators fjs so that REM = o(1) and
REM' = o(1).

Assumption 6. For olll # j, 5 =1,...,p, E{%Xl (X] X,ﬂrjﬂ = O<\/b§p> as p — o0

and n — oo.

Remark. For a general sub-Gaussian matrix, Assumption 6 is needed in order to derive the scaling
for A\, whose choice in (9) depends on an upper bound for % HXZ} (X'j - WjX_j) HOO Intuitively,

Assumption 6 says that as the number of terms (Xi,fj) used to approximate Xij increases (that is,
as p — 00), E [%XZT (XJ — X 3)} = o(1) provided logp =o(1). IfE ()N(ij|)~(i ,-> = X; ;7 (eg.,
when X; is a normal vector), then E {%XZT (XJ ﬂ'jX )} = 0 for all [ # j. This special case is
considered in Theorem 2.2 in van de Geer, et al. (2014).

A.2 The case of approximate sparsity

With additional efforts, the exact sparsity assumptions of 3y and 7; can be relaxed to accommodate
for approximate sparsity, provided that the ordered coefficients decay sufficiently fast. To work with
approximately sparse 8y and 7;, we introduce two thresholded subsets:

Sr = {je{L,2, ... p}: Bl >}, (2)
Sr,o= il 2, o ph\i o fml > 1) (3)
Let |St ] = sp and ‘Szj‘ := s;. Note that the newly defined sg and s; generalize the previous exact

sparsity parameters; in Theorem 1, we simply take 7 = 0 and 7; = 0. We also introduce four terms

below. These terms are used in the proof for Theorem A.1 and appear in Assumptions 2A, 4A and
5A (to be stated). The roles these assumptions play in the case of approximately sparse Sy and =;
are similar to those Assumptions 2, 4 and 5 play in the case of exact sparsity. Let

1

lo lo ?
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Assumption 2A. The conditions in Assumption 2 hold with the only change being that (1) is
replaced by

(o' v 1) loi’p (|sz,|v1) = o), (4)
2
(1) S s |, = 0 (55). )

/logp
Assumption 4A. With T = 22_ &y (2) for some universal constant ¢ > 0, (i) the initial esti-

mator B satisfies that HB — 50H2 = O, (D2) and HB) - ﬁoul = O, (D1); (i1) HIE (X|Z2) (3 - 60) Hn =
O, (D) and the estimator § satisfies that |G — g||> = O, (([|6oll, 72) V D3).

Remark. Under mild conditions, the rates in Assumption 4A are satisfied by the initial esti-
mators based on Zhu (2017). As Assumption 4(ii), Assumption 4A(ii) is only used in the analysis
for the second debiased estimator b in (6).

Assumption 5A. (|||, V1) r2 =0 <1 /1051’> and

logp 108;17
ﬁma"{mnlDQ, Bu\/ﬁ By Dy, |Imll, (HﬁollNl)

\/ﬁmax{(||7rj|r§v|mul)k’§p (sl v s (72 legp W} — o),

lo lo
2 gp 3 gp
Vi max { (Il Wsl) o 252D, (s v s ) (72 v
lo lo
2 gp 3 gp
maX{Blj, (\|7rj||1v||7rj||1),/7, CARAEAN, (r,%v = )} = o(1).

In comparison with the case of exact sparsity, approximate sparsity permits all the entries in 5y (and

1
2
77‘1>+

mj) to be non-zero at the expense of incurring an extra approximation error (sm / 10% Hﬂg ge

1
)]
I] 1

Trjzsc .

logp

[

tively, ||7; — 7;[/;). Relative to Assumption 5, Assumption 5A imposes additional conditions on the

. (respectively, <s]- Wj’sczj ‘1) in the upper bound for HﬂA — Boul (respec-

so that the remainder terms in the asymptotic ex-

“small coefficients” via H 60753_ and
Tl

71']'75% _
Tilly
pansions of y/n (13] — 60]-) and /n (I;j - ,Boj) are dominated by the leading term ﬁ@ﬁz Te (which

7Tj7sczj ‘1 = O((S]\/l) \/@)
and Hﬂoﬁ% . = O<(80\/1)\/1O§p), we have Dy = (So\/l) losp’ Dy = \/%7 Blj =

(s; V1)4/ loflp, and Byj = 4/ % in Assumptions 2A, 4A and 5A; these terms take the same
forms as those used in Assumptions 2, 4 and 5.

gives Theorem 2 below). Note that for the special case where




Theorem A.1. Under Assumptions 1, 2A, 3, 4A, 5A and 6, if we choose \; =< \/lo% uni-
/ log

/oep ’
formly in j in (9) and 7; = SYn_ in (3) for some universal constant ¢ > 0, then the claims in

Agmn(z)
Theorem 1 still hold.

A.3 Proof for Theorem 1 and Corollary 1

Recall the two versions of the debiased estimators:
~ N 1A~ - N A
bj = B+ -6;X" (v -%8), (6)
1A .
b = Bt 0 X" (Y - X3-4(2)); (7)

n

9(2) = {92y, ¥ =Y -E(V]2) = {vi ~E(¥iZ))},

1=

is an estimate for Y = Y —E(Y|Z) :=
{¥; —E(V|Z) Yy, and for j = 1,...p, X; = X; - (X;]2) := {X;; — B (X[ 25)} _is an estimate
1=
for Xj = Xj — E(X]|Z) = {XU — E(XU|Zz)}?:1 Wewrite Y =Y +Y -Y = Xﬁg +e+Y -Y
and X = X + X — X, which are used in the following derivations. We show in the following that
bj and b; have the same asymptotic distribution.
For (6), we obtain

bj — Poj
= B BOj‘f‘%é]XT (ff—Xﬂ)
= 0, XTe— 16, (X~ X) 4 B~ iy + -0, X7 [Ro— (X~ X) po+ ¥ — ¥ — XJ]
= %@jXT€+ % (é] — @] XT€ — % Aj (X —X)T5+ <€j - Tllé]XTX) (5 - BO)
Eo By Es
_%@JXT (X_X) 50+l@]XT (Y—ff) (8)
E3 Ey



For (7), we obtain

bj — Boj
= Bj—Boj + %éjXT (Y - XB —fJ(Z)>
= %éjXTE— %éj (X —X)T&?—i-ﬁj — Bo;
F20,R7 [Rp0 — (X = X) o+ (X~ K)o — KB+ (X = X) f— (X~ X)+ 90— 9]

= 0,74 1 (6,-6,) KT~ 6;(X-X)"<

n

Ey E;
e = LOXTX) (5 ) + 26, X7 (X - X) (5 - 5o)
E> E,
O, XTE(X|2) (5 - 6o) - 6; (X - X) E(XI2) (3 6o) -1 6,87 G- g0 ()
B, E, E

By elementary inequalities, we have

EO < (:)j _@jHl ‘:LXT{:“ .
Er < |6y, ‘:Z(X—X)Ta .
Ey < |lej— %éjXTX N HB - 50”1,

By < [0 227 (- )| sl

B < o J2 (-9

and
g o< o, X (-5 _p-ml,
B, < |6 |zx B2 [5-a),.
B < (6], max 15— %] [Ex12) (3-8,
E; < |64, %XT(é—go) N

We bound Hej - %éjXTXHOO with (28) and |6, — @jHl with (25), which also implies that

N [log p log p
H@jul =0, (mjax sj> + O, (m]ax s? - —Hnjax s? (rij vV - ) ) (10)




By Assumption 4, we have

s, = o [wy22).

Hmmmm—mmn—c%(&“”)- (1)

n

By Assumption 1, standard tail bounds for sub-Exponential variables [e.g., Vershynin (2012)] yield

1 -~ I
lLer] - Op( )
n . n
HlXTIE(X|Z)H _ 0, [/ loeP (12)
n w P n |’

where we have used the fact that E (X;;|Z;) = X5 — f(ij is sub-Gaussian [implied by Assumption
1 and that sub-Gaussianity is preserved by linear operations|. Note that (11)-(12) only matter to
the second debiased estimator b; in (7).

Note that we have

G-X| = [BoG12) -E(x512)
L(&-%)d = B -Ex2)]
(%) < [eeun Bz e (x12) B (x,12)],
+‘;XJ'T B (x,12) -E (X;12) ]
% KT (V-7)| < |Ex12) -Ex;02)| |[E(V12) -E(¥I2)| + ’if(f E(v|2)-E(Y|2)]
S| < [BOGI2-BOGD], 18- 0ol + X G- o).

We write fj = I@(Xj|Z) and f; = E(X;|Z) for j =1,...,p, as well as fo =R (Y|Z) and fy :=
E(Y|Z). Under Assumptions 1 and 3, by standard argument for nonparametric least squares
estimators, for any t, > r,,

|7 =5 <ertn (13)

with probability at least 1 — cexp (—c'nti). Moreover, under Assumption 4,

1
w—mfw%ﬁmv8””> (14)

n

For fixed elements f] € F and g € F, respectively, we can view f] — fj and g — go as functions of
Z only. Additionally, note that E (¢;/Z;) = 0 and E (Yz\ZZ) =E (XZJ\ZZ) = 0 (by construction of

Y; and Xl-j, i=1,..,n,j=1,..,p). The remaining argument uses results from empirical processes

Y



theory and local function complexity. In particular, under the independent sampling assumption,
Lemma A5 with (13)-(14) implies that

max %[ (X)12)-E(x,12)] | = 0,(2).

s LT [E(x,12) -2 (x,2)]| = 0,(4).

e |17 201 -m012)]| = 0, (2).
s, [15T 00| = 0y (o) 0, (5E2).

provided that t,, > r,, and nt2 = log p. In our analysis, it the suffices to choose t,, = <rn V

Consequently,

s =97 = o (2 )

n o P\" n )’

14 N ~ log p

“XT(X-X = 0,(r2v ) 15

KT(x-5)| = o (hvEr). (15)
1. I log p

—XT(v-v = Y ) 1

|2XT(7-7)| = o, (rkvED), (16)
17 so lo

HnXT (9 — 90) = 0 <507‘121 v ==k ngp) : (17)

Note that (16) only matters to the first debiased estimator b; in (6) while (17) only matters to the
second debiased estimator b; in (7).

Putting all the pieces together, under Assumption 5, we apply the CLT and obtain M D,

N (0, 1) and f( 60]) 2, N (0, 1), where 05 = O;E (XlTXZ) ©F. Now it remains to show that

6, XZX o7 - 0,5 (X7X,) o
< lou [ SR m (o) e+ fore (17x) 67 —oie (x75) o]
< |SX-n(xrx)| (ol +lom (xrx) e - (X7 %) o]

1 ! 1
= 0, (s? (r,% \ o§p> + s? in + s? (r,%j \ o§p>) (18)

1 1 2 1 1
+ 0O, (si’ in + s? (1"721 V in) +(s; V1) 08P + (s? vV 1) (r% Vv in>) (19)

n

where (18) follows from (10) and (34)-(35); (19) follows from (27). Thus we have shown Theorem
1.

To show Corollary 1, we adopt the following result (Lemma Al) from Lemma 1.1 of Zhang
and Cheng (2016). Combining Lemma A1l with the facts established in Theorem 1, the claim in



Corollary 1 follows.

Lemma Al. Let ¢ = (Cij,..-,Cnj), J = 1,...,p, be i.i.d. sub-Gaussian random variables with
~ ~ 7
zero mean and variance ©;E (XZT Xi) @?. Assume that % < Cin~“ for some constants

c1, C1 > 0. Moreover, there exists a sequence of positive numbers «,, — oo such that QTR = o(1)
and

o (logp)* max X;\/5; = o(1).
J=4,...,p
Then, for any G C {1, ...,p},

P <maX\jﬁG Gj o t) —P (maxjfc’ ‘i < t)‘ <n ¢, >0,
n n

where €; = (€j1, ..., €jn) are i.i.d. normal random variables with mean 0 and variance ©;E (XZ»TXi) @;‘-F.

sup
teR

Lemma A2. Suppose Assumptions 1, 2(i) regarding A2 (X), 3, and 6 hold. If (||r;||, V1)r2 =

0<,/1°§P), Aj 75\ B2 and

lo
max s; [rn v gp} < ch?, (D) (20)
J n
for some sufficiently small constant ¢ > 0, then,
max [~ mll, = O (max 53, ) @)
j j
max [|7; — 7|, = O, <max sj)\j> . (22)
J J
Proof. First, write n; := X- — X_jwj and
% = X +E(X12) - E(X,12)
= X ymitm =X, +B(X|2) - E(X412)] 7 + 0,

thus we have

A

Xy = Xym+ [B(X512) —E(X412)| w5 - [B(X;12) - E(X12)] +ny
= X_jﬂ'j—i-u]'.
where . .
uj = [B(X412) - B(X412)] m; - [B(X;12) - E(X;12)] +m;. (23)

By standard argument for the Lasso, applying Lemma A6 [which shows the %)A(ij(,j satisfies
a lower restricted eigenvalue (LRE) condition with probability at least 1 — o(1)] and Lemma A7

along with Assumption 6 [which implies that max; H%X C_FjujH =0, ( /logp)] yields (21) and (22).

Lemma A3. Suppose Assumptions in Lemma A2 hold. Let A\; < logp uniformly in j. Then for
every j = 1,...,p, we have

lo 1
7— —7; ‘— (max (sj V1) k4 + max (s?\/l) (7“721\/ ng>)7 (24)

n J n




- - 2
where 72 := E {(Xij — Xi’_jﬂ']) ]; moreover,

N 1 1
@j_@jHl = 0, (mjaxs?“ OTgL —i—m]axsj <r vV in)>, (25)

A 3 [lo 5 lo
©; — @jH2 = 0O, (mjax s? ;ng + max CH (7’721 Y Sp)> , (26)
N feT o\ A 1 1 2
O,;E (XZTXO @;F - ®j,j‘ = 0, (mjax s?% + max s? ('r v in) )
logp logp
+ Oy (mjax (sj V1) — + max (532 Y 1) (ri Y - > , (27)
~ XTX 1 1
i = O, | max s? Oi;p + max 3? <1“,21 v in) (28)
- J J
Proof. Note that we have %3-2 = % Y and
1 - /o L \2
EZ (X,-j Xi _]7[']) —7'J2
=1
1 n R 9 n R 1 n
< 3| Rimi (= )] |2 [ Xy (g — )] |+ | 2wl -
i=1 =1 =1
2 Ko . Cooll2 N /s - T, .
< - [ i, (M) — Wg)} s = w5l = > (Xz',—j - Xi,—j) (Xi,—j - Xi,—j) ’
i=1 1=1 0o
T A 1Q~ o 2 RS
+ X uj HTFJ'*7TJ'||1+ *Z(Uij*mj) *Z(mg )
o0 s s

Under Assumption 2(i), applying Lemma A2 and Lemma A4 yields

23" [t 5 =, (e,

n

27 . - T , A -
~A 112
Iy = #5013 || > (Kis = XKiy) (Kimy = XKiy) |
=1 e’}
log p log p
= 0 2 )O ( 2y )
p<m]axsj ” b | Th ”

By (22) and Lemma A7 along with Assumption 6, we have

. log p logp
— il =0, [{/—= |0
. H7TJ 7TJ||1 p ( n ) D (mjaxsj n

10
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For the term ‘% A (ufj - 7712]) , it suffices to show

|[E(x12) - E(X|2)] @-Hi = 0, (mjaxs? (r,%v loip» (29)
iz -ECi2)) = 0 (r2v2ER) (30)

il [ECC412) - B(C|2)] 7 = 0, (maxs, (12 v 2EL) ) (31
i B2 -E12)] = 0, (v D). 32

In the above, (29) and (30) follow from (13) (where we choose t,, = <rn \Y% 105?)). In terms of (31)

and (32), for fixed elements fj/, [y € F, we can view fj/ — [ as functions of Z only. Meanwhile,

n; is a function of X only, so E ()N(U|Zl) =0(i=1,..,n,j=1,..,p) implies that
E iy (Zi)|Zi] = Jy(Z)E | X|2:] = (2R [ % |2 7 =0, (33)

Furthermore, E {nijfj/(Zi)} = 0. As for (15), we apply Lemma A5 with (13) and obtain the (31)
and (32).

In terms of ’% "y (7712] - 7']2)
j=1,...,p, an application of standard tail bounds for sub-Exponential variables yields

'izn: <7712] _73'2) =0p ( loi,p) :

i=1
Moreover, by (22) and the choice \; = 8P for j =1,...,p, we have

n ?

. logp [logp [logp
A 175l = Op (mjaxsj n) +0, ( . ) O (m]axsj -

Putting the pieces together, we have (24).
Next we show (25) and (26). Note that

, we note that by Assumption 1 and the definition of 7;;, for

H@)._@.H MM <M+HWH 11
O R THA\#2 72
J i lh J i T

T°
J

where the first term is O, (sj\/ 1°§p> by (22) and the fact that %]2 = T]-Q + 0p(1) while & 31 [by

Assumption 2]. For the second term, we have ||7;||; = O(s;) and

11 logp P
oo e 2]

j n J
Therefore, we have (25). Similarly, we can obtain (26) by exploiting

. 175 = mlly 11
|6, -85, < 2t |- )

11



We now show (28). Note that

~ XTX
6, = —

A

LX B (XX

7

<lei-ef, |5 +rea,

‘ o

By (15), we have

A

’XTX XTXH _ HXT(XX)‘ N (XX)TXH N (XX)T(XX)H
n n - n n
(o] o o [o.¢]
1
- 0, (rgv O§p>. (34)

Moreover, by standard tail bounds for sub-Exponential variables, we have

logp
=0, ( . ) . (35)
o
Consequently, we obtain (28).

Finally we show (27). Using the facts that ©,E (XlTXZ) = ef, O;E (XTX,) @? =0,;,0;, =

[ -ea5)

n

712 and O ; = 12, we have
J J
6,E (XT%,) 67 - 0y,
6~ 6,5 (S7X) (6,6, + 20,2 (37.%) (6, 7+ 5 (75—,
=\ A 2 2
=(0; ~ ©))E (X/X;) (6, - 0)" + 5 — 5.
J j
Note that

(0, - ©,)E (X7 %) (6, - 0;)" < A}

Applying (26) yields the claim. O

Lemma A4. Let U € R™P! be a sub-Gaussian matrix with parameter oy and each row be
independently sampled. For some positive constants, a, a, o/, and b, that only depend on oy and
the eigenvalues of Xy = E(UI'U;) for i = 1, ...,n, we have

UA| 3 3a /1

lwalz §|1A||§+ %BPLIA|Z, forall A € R
n

UA 2 /1

NPT IIAH% for all A € R
n n

with probability at least 1 — ¢j exp(—bn).
Remark. This result follows from Lemmas 12, 13 and 15 in Loh and Wainwright (2012).

Lemma A5. Suppose {v;}j_; are i.i.d. sub-Gaussian variables with parameter at most o, and
E (v;|Z;) = 0. Let F be a star-shaped function class. Then, there are positive universal constants

(¢, c1, c2) such that for any t,, > r, (where r, is the critical radius),

1 n

Z vi [ (Z;)

=1

sup <ct? (36)

FEF AN, <tn |

12



with probability at least 1 — ¢1 exp (—czni—%). If F concerns a ball of a RKHS H equipped with a

norm |||, then for any f € F and t, > r,,, we have

1 n ’ "
~ 2 uif(Z)| < ctullflly + e tallfll, (37)
i=1

’ ’ 2
with probability at least 1 — ¢; exp (—cyzé—g).

Remark. The proof for bound (36) follows the proof for Lemma 13.2 in Wainwright (2015). The
second bound (37) follows from Lemma 1 in Raskutti et al. (2012). If || f||,, < 1 and ||f][,, 2 tn,

then |1 320, vif ()

< c3t? with probability at least 1 — cll exp (—c;n%) ]
Lemma A6 (LRE condition). Suppose Assumptions 1, 3, and (20) hold. Then, for any

Aj € CI(ry)) = {A € R 1 |A e y (38)

1 =3 ’AJ(M)

[J(m;) is the support of 7;] and every j = 1,..., p, we have

X%
AT = w4 (39)

with probability at least 1 — cexp (—c/nt% + ¢ log p) for any t, > r,, where k1 = cz)A2 (3) for

min

. /
some universal constant ¢, > 0.

Proof. By elementary inequalities, we have

XT X_, XT.X_. XT X . —XT X .
’AJT N > (AT A —|A]T< —m T ]>Aj
n n n
XT.X_. XT X_ T
T—j—J —Jj=J - J 2
> fapitta |- [0 18l
XT.X_ XT(X_;,—X_ X i —X_)TX_;
> A}“ J JAj _(‘ ]( J J)| + ( J J) J ||AJ”%
n n
o0 (o]
XT X_ XT(X_;—X_))
> AT —J JA' o —J J J A 2
> AT, > A
(X=X )X e[S = X)X =X e
- ~ 113 - . 113
oo (o]

We first bound

RN
XT (X ;-X_
n

Note that in terms of the (I, I')th element of the matrix

XTj(X*J'_X*j)
n

’ o

j), for any t, > ry,, we have

1 ~rn A -
XX — X,
X - %)

Lemma A5 and (13) imply that, for any ¢, > r,,
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1 ~ ~ ~
max |~ X/ (X, — X,)| < cot2 (40)
Lmn
with probability at least 1—c; exp (—cant? + c3logp). To bound the term H (X _X’J)TTL(X*J —X-i) ’ ,
o0
we have R S ~
X i —X_ )" (X, —X_ A 2 /
H< = X J)| < max |, (2) - (2| < ot (1)
n o l n
with probability at least 1 — c’l exp (—C;nti + cé log p).
XT X,
To bound A]-T - ~A;| from below, we apply the second result in Lemma A4; since this

result holds for all A; € RP~!| we can specialize it to any A; in the restricted sets specified in (38).

Putting everything above together and choosing ¢, = ry, V lo% yields
TXTjX*J 2 2 logp 2
ATZEEENG 2 k(D) [0 - o (22 v ) (42)

with probability at least 1 — cexp (—c’nt% + ¢ log p). As a result, the cone condition [|7; — m;[|; <
4,/55 ||7t; — ]|, implied by (38) along with condition (20) yields (39).0

n

Lemma A7 (Upper bound on max; H%XTJUJHOO) Suppose (||7;[l, V1)r2 =0 ( 1°gp>, Assump-

tions 1 and 3 hold. Then, we have max;—1,. H%XZJUJHOO 2 max;; E [%)N(IT (f(j — )N(,jwjﬂ 10%

with probability at least 1 — cll exp (—6,2 log p) — c;) exp (—cilnt,% + c::) log p).
Proof. Recall the definition of u; in (23) and
X_j=X_;-E(Xj|2)+E(X|2)

, we note that in order

%XlT(Xz/ - Xz/)

where X,j =X_; —E(X_;|Z). For any | # j, after expanding ‘%XZTUJ

. 2
) v (2) = 1,(2)]
A ~ n ~
(I =1,..,p, 1 # 7), maxi—1__p i#j ‘%n;*-r(Xl — X1)|, and max;—1__p i£j ‘%XlTnj‘. In particular,
the first two terms are bounded in (41) and (40); the fourth term can be bounded by a standard

sub-Exponential concentration inequality; for the third term, we evoke (33) and the argument that
is used to bound (40), which yields

A

to bound max; H%XZUJH , we need to bound max;
(o]

; max;

" 2
max < iy,

1 7.6 .
1 =1 (X1 — X3)

n

with probability at least 1 — clll exp (—cgnt,% + cg log p). Putting the pieces together and choosing

th =175V logp , the claim in Lemma A7 follows. [J

Lemma AS8. Let the shifted function class F be star-shaped. Then the function t M

is non-increasing on (0, 00); as a result, the critical inequality has a smallest positive solution (the
critical radius).

14



Remark. This is Lemma 13.1 in Wainwright (2015).
Lemma A9: Let N,(t; Q(r,; F)) denote the t—covering number of the set
s F)={f €F : |fl, <7}

in the £2(P,,) norm. Then the smallest positive solution (the critical radius) to the critical inequality
is bounded above by any 7, € (0, of] such that

’ 7 9
C " T

< log Ny (t; Q(Fn; F))dt < 2.
\/ﬁ/ 72 \/Og n(t7 Q(Fn; ))dt = 4ot

4201

Remark. This result has been established in van der Vaart and Wellner (1996), van de Geer
(2000), Barlett and Mendelson (2002), Koltchinski (2006), Wainwright (2015), etc.

Lemma A10 (Approximately sparse m;). Suppose Assumptions 1, 2(i) regarding A2, (%), 3,

and 6 hold. T (|||, v 1)r2 = O (\/1051’), A 7/ 1222, and
logp log p
Il (B2 v 12 ) < o [EPAZ, (5 (43)

for some sufficiently small constant ¢ > 0, then,
, (44)
i1l

;S

m?XHﬁj—Wsz = 0 (Aj\/?ﬁr Aj

max H7Ar] —7Tj||1 = 0O, Ajsj 4+ ([ Ajsj (|7 s¢e + ||7j,5¢ . (45)
J il Tilly
Proof. Let Aj = 7; — m;. The basic inequality and the choice of A; yield that HAJVSCT <
Tilly
3 HA‘j’STj X +4 ’ Wj’sczj - Consequently,
HAJH <4‘AJ‘,ST. +4’7Tj,5% S4\/‘%’7'“%“ +4’7ij5% (46)
1 —J 1 i ll1 2 —J 1
Moreover, we have
Yoo mal = Y Imal 2158
I=1,...p, %] leSt,
and therefore s; < 1]71 |7;ll,- Putting the pieces together yields
A5, < 4vzi imsl [[As ], + 4 s, | (")
Therefore, for any vector Aj satisfying (47), applying (42) yields
XD X ~ 2 lo 271
7= J 2 -1 gpP ., 2 ogp ., 2
Aj ]TAj > HA]HQ {ClAmin(Z> — CaT; Hﬂ'j”l ( n \/’I”n>} —C3 7Tj75%j ) ( n \/Tn) .
(48)
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With the choice of

~3 [logp
2 e
(Amin(z)) ’ ijsij 1 n N T% =0 ’
under condition (43), we have
p XTX_ ;. <12
AT—R| > (@) || Ay

for any Aj such that HAJHQ > 6*. We can then apply Theorem 1 in Negahban, et. al (2010) to
obtain (44). By (46), we also obtain (45). O

A.4 Proof for Theorem A.1
For Theorem A.1, we apply (44) and (45) when proving Lemma A3 and obtain

1
72
j

Q\L}‘ =
I
@)
3
“E
"
&
v
N~
+
0
/-~
=
Q
"
=
<
=
s
N~ —

B
o

Héj_@jul = Op

<.

log p
XBla) +0y (mfx (Hmui Vil )y =, )

log p
40y (max (s 2 v ) (72 v <E2) ).

(=
(e
(
(
6 -6y, = 0y (maxy) +0, (m;xx (sl sl v 1) ﬁ )
+ 0y (max (I gl v s l,) (72 <E2)),
|
|
(=

=
B

lo
2 2 2\ 10gp
x B, ) + O, (mase (1 1y 3 v 1 3) 57

log p 2
4 0p (e (s s 3 v s 13) (72 v <52

[logp 2 9, logp
+ O, m]ax (H’]Tj”l V1) - + m]ax <H7Tj”1 vV 1) ('rn vV n) ,

o0

lo
3 2 gp
+ o, (m?x(uwj”lvuﬂj\l) ('rn\/ : ))

Now, we adopt the same argument as in the proof for Theorem 1 with the following minor dif-
ferences: in showing the remainder terms Ey — E4 and Eé — Eé are op (ﬁ) as well as that

@j XZX (:)f - O;E (XZTX}) @ﬂ = 0p(1), we apply the above rates and Assumptions 4A-5A (which
replace Assumptions 4-5). Putting these pieces together gives the claims in Theorem A.1. O
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