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Abstract

We propose two semiparametric versions of
the debiased Lasso procedure for the model
Yi = Xiβ0 +g0(Zi)+εi, where the parameter
vector of interest β0 is high dimensional but
sparse (exactly or approximately) and g0 is
an unknown nuisance function. Both versions
are shown to have the same asymptotic nor-
mal distribution and do not require the min-
imal signal condition for statistical inference
of any component in β0. We further develop
a simultaneous hypothesis testing procedure
based on multiplier bootstrap. Our testing
method takes into account of the dependence
structure within the debiased estimates, and
allows the number of tested components to
be exponentially high.

1 Introduction

Semiparametric regression is a longstanding statisti-
cal tool that leverages the flexibility of nonparametric
models while avoiding the “curse of dimensionality”
(see, e.g., Bickel, et al., 1998). A leading example of
semiparametric regression models is the partially lin-
ear regression

Yi = Xiβ0 + g0(Zi) + εi, i = 1, ..., n. (1)

In (1), β0 ∈ Rp is an unknown vector and g0 is
an unknown function; X := (Xi)

n
i=1 ∈ Rn×p and

Z := (Zi)
n
i=1 ∈ Rn×d are observed covariates (Xi

and Zi denote the ith row of X and Z, respectively),
Y := (Yi)

n
i=1 ∈ Rn are the response variables, ε =

(εi)
n
i=1 ∈ Rn is a noise vector with E(εi) = 0 and

E(ε2
i ) = 1, and independent of (X, Z). Throughout
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the paper, we assume that the data {Xi, Zi, Yi}ni=1

are i.i.d.. The goal of this paper is to establish sta-
tistical inference results, e.g., confidence intervals and
hypothesis testing, for the high dimensional compo-
nent β0 in presence of the nuisance function g0. In
particular, we assume that p ≥ n and β0 exhibits suf-
ficient sparsity (meaning that the ordered coefficients
in β0 decay sufficiently fast). Our method also works
when Zi is high dimensional (d ≥ n) provided that the
function classes E(Xij |Zi)s and E(Yi|Zi) belong to ex-
hibit certain sparsity features, e.g., a sparse additive
decomposition structure as defined in Raskutti, et al.,
(2012).

For statistical inference of β0 in (1), existing results
mainly focus on the regime where p increases with n
but smaller than n, for example, Li and Liang (2008),
Xie and Huang (2009), and Cheng, et al. (2015).
Sherwood and Wang (2016) allow p ≥ n but require
the minimal signal condition. Such results therefore
suffer the problems arising from the nonuniformity of
limit theory. More recently, Javanmard and Monta-
nari (2014), van de Geer, et al. (2014), and Zhang
and Zhang (2014) have proposed the debiased Lasso
for high dimensional linear models. These estimators
are non-sparse, have a limiting normal distribution,
and do not require the minimal signal condition. For
the linear model Y = Xβ0 + ε, given an initial Lasso
estimate β̂ of β0, the debiased Lasso adds a correction
term to β̂j (the jth component of β̂) to remove the
bias introduced by regularization. In particular, the
correction term takes the form of

Γ̂j
1

n
XT

(
Y −Xβ̂

)
. (2)

In (2), n−1XT
(
Y −Xβ̂

)
is the sample analogue of

the population score function E
(
XT
i (Yi −Xiβ0)

)
; Γ̂j

denotes the jth row of Γ̂ where Γ̂ is an approximate
inverse of n−1XTX, whose population counterpart is
E
(
XT
i Xi

)
. In our model (1), additional bias arises

due to the presence of g0; consequently, the standard
debiased Lasso cannot rid of the effect from g0 and thus
will not have a limiting distribution centered around
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zero. Instead, we propose two modified versions of
the debiased Lasso estimators for β0. Both versions
are shown to be asymptotically unbiased for β0, have
the same limiting (normal) distribution, and do not
require the minimal signal condition.

Our modified debiased Lasso estimators use a “non-
parametric projection” strategy to remove the impact
of g0 in (1). Such a strategy has been used in the semi-
parametric inference literature where p is assumed to
be small relative to n (e.g., Robinson, 1988; Donald
and Newey, 1994; Liang and Li, 2009). To be more
specific, by taking the conditional expectations of the
left side and the right side of (1) with respect to Zi,
we obtain

E (Yi|Zi) = E (Xi|Zi)β0 + g0(Zi) (3)

where we exploit the fact that E (εi|Zi) = 0. Sub-
tracting E (Yi|Zi) from Yi and E (Xi|Zi) + g0(Zi) from
Xi + g0(Zi) in (1) yields

Ỹi = X̃iβ0 + εi (4)

where Ỹi := Yi − E (Yi|Zi), X̃ij := Xij − E (Xij |Zi)
and X̃i :=

(
X̃ij

)p
j=1

(which is a p−dimensional row

vector).

Relating (4) to the linear model Yi = Xiβ0 + εi, given

nonparametric surrogates Ŷi := Yi−Ê (Yi|Zi) of Ỹi and

X̂ij := Xij − Ê (Xij |Zi) of X̃ij (j = 1, ..., p), we sim-

ply replace Yi with Ŷi, Xi with the row vector X̂i :=(
X̂ij

)p
j=1

, and Γ̂j with the jth row (Θ̂j) of an ap-

proximate inverse (denoted as Θ̂) of n−1
∑n
i=1 X̂

T
i X̂i

in (2). This yields our first semiparametric version of
the debiased procedure

b̂j := β̂j + Θ̂j
1

n
X̂T

(
Ŷ − X̂β̂

)
, (5)

where β̂ is an initial estimate of β0. Alternatively,

by noting that n−1X̂T
(
Ŷ − X̂β̂

)
in (5) is simply

the sample analogue of the population score function

E
(
X̃T
i εi

)
, we arrive at our second debiased procedure

b̃j := β̂j + Θ̂j
1

n
X̂T

(
Y −Xβ̂ − ĝ

)
, (6)

where ĝ is an estimate of g0.

We provide theoretical implications on the impact of
the estimation errors associated with the p nonpara-
metric surrogates Ê (Xij |Zi)s in our modified debiased

Lasso procedures when each of Ê (Xij |Zi)s concerns
a large family of (regularized) nonparametric least
squares estimators. These implications also hold true
for the surrogate Ê (Yi|Zi) (which matters to (5)) and

the surrogate ĝ(Zi) (which matters to (6)). After care-
ful theoretical analysis, we find that if the error of the
nonparametric regression per se (with respect to the
prediction norm) isOp (rn), it only contributesOp

(
r2
n

)
in the asymptotic expansions of b̂j − β0j and b̃j − β0j

for any j = 1, ..., p, where rn is related to the optimal
rate for the nonparametric regression. This result im-
plies that even with p much larger than n (and/or with
the dimension d of Zi much larger than n), the lim-
iting distribution of our modified debiased estimators
for any individual component in β0 may behave as if
the unknown conditional expectations E (Xij |Zi)s and
E (Yi|Zi) as well as the unknown function g0(Zi) were
known.

This theoretical finding motivates us to consider
a multiplier-bootstrap-based simultaneous hypothesis
testing procedure for any sub-vector of β0. This ex-
tends the method developed by Zhang and Cheng
(2017) from linear regressions to more flexible par-
tially linear regressions. Our simultaneous testing pro-
cedure takes into account of the dependence structure
within our debiased estimators, and allows the number
of tested components to be exponentially high.

We illustrate the theoretical finding with three specific
examples in terms of dim (Zi) and the function class
that E (Xij |Zi)s and E (Yi|Zi) belong to. With regard

to the specific forms of Ê (Xij |Zi)s and Ê (Yi|Zi), sev-
eral modern techniques for the projection step are con-
sidered and the rates achieved by these practical pro-
cedures are compared with the theoretical results. The
techniques discussed in the paper include the smooth-
ing splines estimator in Sobolev balls, the Lasso (Tib-
shirani, 1996) and Slope (Su and Candés, 2016) in
sparse linear regression models, and the l1−regularized
kernel ridge regression (Raskutti, et al., 2012) in sparse
additive models.

The testing procedures proposed in this paper are im-
portant for evaluations of policy interventions in social
science as well as clinical trials in precision medicine.
Suppose Ui is a binary variable that indicates whether
or not individual i receives “treatment” or not, and
Zi = (Zi1, ..., Zid) is the high dimensional vector of
control variables. Let us consider the following model:

Yi = Uiα0 +

d∑
l=1

UiZilγ0l + g0 (Zi) + εi, i = 1, ..., n.

In particular, an interesting hypothesis would be H0 :
γ01 = γ02 = · · · = γ0d = 0; that is, the interactions of
the treatment variable and the high dimensional con-
trols have no effects on the outcome of interest, Yi.

The rest of the paper is organized as follows. Section 2
presents the detailed construction of the modified de-
biased estimators for β0 and the simultaneous testing
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procedure. Section 3 establishes the main theoretical
results. The proposed method is illustrated with sim-
ulated studies and a real data example in Section 4.
All technical details are deferred to the supplementary
material.

Notation. The lq−norm of a p−dimensional vector
∆ is denoted by ‖∆‖ q for 1 ≤ q ≤ ∞. For a matrix
H ∈ Rp1×p2 , write ‖H‖∞ := maxi,j |Hij | to be the
elementwise l∞−norm of H. Let Hj denote the jth
row of H. For a matrix H ∈ Rm×m, the minimum
eigenvalue of H is denoted by Λ2

min(H) and the max-
imum eigenvalue of H is denoted by Λ2

max(H). The
L2(Pn)−norm of the vector ∆ := {∆(Xi)}ni=1, denoted

by ‖∆‖n, is given by
[

1
n

∑n
i=1 (∆(Xi))

2
] 1

2

. For func-

tions f(n) and g(n), write f(n) % g(n) to mean that
f(n) ≥ cg(n) for a universal constant c ∈ (0, ∞) and
similarly, f(n) - g(n) to mean that f(n) ≤ c′g(n) for a
universal constant c

′ ∈ (0, ∞), and f(n) � g(n) when
f(n) % g(n) and f(n) - g(n) hold simultaneously.
Also denote max{a, b} by a∨b and min{a, b} by a∧b.
As a general rule for this paper, all the c ∈ (0, ∞) con-
stants denote positive universal constants. The spe-
cific values of these constants may change from place
to place.

2 Main methodology

In this section we discuss the construction of b̂j and b̃j
in detail. Note that both (5) and (6) require estimators

for the conditional expectations, an initial estimator β̂
for β0 (and an estimator ĝ for g0 in b̃j), and also an

approximate inverse Θ̂ for n−1
∑n
i=1 X̂

T
i X̂i. We first

discuss how to obtain these aforementioned quantities.
Given b̂js and b̃js, we then present the simultaneous
inference procedure.

Estimators for the conditional expectations

For either (5) or (6), we need to estimate the con-
ditional expectations E (Xij |Zi)s (j = 1, ..., p). This
step is easily paralleable as it involves solving p inde-
pendent subproblems and each subproblem can be in
general solved with an efficient algorithm. In contrast
with (6), (5) does not require an estimate of g0 but an
estimate of E (Yi|Zi). Estimating conditional expec-
tations is widely studied in the literature on nonpara-
metric methods. For the purpose of this paper, global
properties of the nonparametric estimators Ê (Xij |Zi)s
and Ê (Yi|Zi) are the key to our analysis of the debi-
ased procedures and therefore, we focus on the follow-
ing least squares estimators

f̂j ∈ arg min
fj∈Fj

{
1

2n

n∑
i=1

(wij − fj(zi))2

}
, (7)

where wi0 = yi and wij = xij for j = 1, ..., p. Denote

f̂0(Zi) as Ê (Yi|Zi) and f̂j(Zi) as Ê (Xij |Zi).

A nonparametric regression problem like (7) is a stan-
dard setup in many modern statistics books (e.g., van
de Geer, 2000; Wainwright, 2015). Examples of (7)
include linear regression, sparse linear regression, se-
ries projection, convex regression, Lipschitz Isotonic
regression, and kernel ridge regression (KRR). In the
case of KRR, we restrict Fj in (7) to be a compact
subset of a reproducing kernel Hilbert space (RKHS)
H, equipped with a norm ‖·‖H; (7)1 can then be re-
formulated in its Lagrangian form

f̂j ∈ arg min
fj∈H

{
1

2n

n∑
i=1

(wij − fj(zi))2
+ µj ‖fj‖2H

}
(8)

where µj > 0 is a regularization parameter. In par-
ticular, smoothing spline estimators can be viewed as
special cases of KRR.

Initial estimators for β0 and g0

In a semiparametric regression model like (1), Zhu
(2017) covers a wide spectrum of function classes that
the nonparametric component g0(·) may belong to and
provides a general nonasymptotic theory for estimat-
ing β0 and g0. The estimators β̂ and ĝ in Zhu (2017)
can be used as initial estimators in (5)-(6). Given the

way β̂ is obtained in Zhu (2017), the estimated condi-

tional expectations, f̂js, come in handy as byproducts
(therefore, separate estimations for the conditional ex-

pectations are not needed in the construction of b̂j or

b̃j).

For special cases where Zi has a low dimension and
g0 belongs to the mth order Sobolev ball Sm, other
estimators for β0 and g0 are also available (see, Müller
and van de Geer, 2015; Yu, et al., 2017).

Due to the intractable limiting distribution of Lasso
type estimators, these aforementioned papers do not
provide any distributional results for their proposed
estimators. In Section 3, we take the debiased versions,
(5) and (6), of these aforementioned initial estimators
and establish the asymptotic normality of individual
components in the debiased estimators.

Estimator for the inverse of the population
Hessian

Given the estimates Ŷi of Ỹi and X̂i of X̃i via (7), we
obtain an approximate inverse Θ̂ of n−1

∑n
i=1 X̂

T
i X̂i

using the nodewise regression method proposed by

1To be more specific, we let Fj be a ball of radius R in
the norm ‖·‖H and assume R ≤ 1 throughout the asymp-
totic analysis to avoid carrying “R”s around.
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van de Geer, et al. (2014). Since our analysis in-

volves establishing
∥∥∥Θ̂j −Θj

∥∥∥
1

= op(1), as in van

de Geer, et al. (2014), we require a sparsity condi-
tion on the inverse Θ = Σ−1 of the population Hes-

sian Σ := E
(
X̃T
i X̃i

)
. Lack of sparsity in the off-

diagonal elements of Θ will cause remainder terms

like
(

Θ̂j −Θj

)
1√
n
X̃T ε in the asymptotic expansions

of
√
n
(
b̂j − β0j

)
or
√
n
(
b̃j − β0j

)
to diverge and

the resulting limiting distribution may not be well-
behaved for any practical purpose. This fact ren-
ders the method in Javanmard and Montanari (2014)
for constructing Θ̂ inapplicable as their approach is
only valid for fixed X, while our analysis accounts
for the randomness in X and the estimation errors in
Ê (Xij |Zi)s.

To apply the nodewise regression method in our con-
text, for each 1 ≤ j ≤ p, let us define

π̂j ∈ arg min
π̃j∈Rp−1

{
1

n

∥∥∥X̂j − X̂−j π̃j
∥∥∥2

2
+ λj ‖π̃j‖1

}
,

(9)
where X̂−j denotes the submatrix of X̂ without the
jth column. Let

M̂ :=


1 −π̂1,2 · · · −π̂1,p

−π̂2,1 1 · · · −π̂2,p

...
...

. . .
...

−π̂p,1 −π̂p,2 · · · 1

 .

Based on π̂j :=
{
π̂j,j′ ; j

′ 6= j
}

, for each 1 ≤ j ≤ p, we

compute

τ̂2
j :=

1

n

∥∥∥X̂j − X̂−j π̂j
∥∥∥2

2
+ λj ‖π̂j‖1

and write

T̂ 2 := diag
(
τ̂2
1 , ..., τ̂

2
p

)
.

Finally, we define Θ̂ := T̂−2M̂ .

For later presentations of the theoretical results, we
also introduce the population counterparts of the
above quantities: let πj be the population regression

coefficients of X̃ij on X̃i,−j =
{
X̃ij′ ; j

′ 6= j
}

and

M :=


1 −π1,2 · · · −π1,p

−π2,1 1 · · · −π2,p

...
...

. . .
...

−πp,1 −πp,2 · · · 1

 ,

T 2 := diag
(
τ2
1 , ..., τ

2
p

)
,

such that τ2
j := E

[(
X̃ij − X̃i,−jπj

)2
]

for j = 1, ..., p.

Simultaneous inference

From a practical viewpoint, conducting simultane-
ous inference for a collection of parameters in high-
dimensional models may be of greater interest to re-
searchers than inference of a single parameter. To be
more specific, suppose we are interested in testing the
hypothesis:

H0,G : β0j = β̃j ∀j ∈ G ⊆ {1, 2, ..., p}

against the alternative Ha,G : β0j 6= β̃j for some
j ∈ G. In particular, we allow |G| ≥ n. Zhang
and Cheng (2017) develop a bootstrap-assisted proce-
dure to conduct simultaneous inference in sparse linear
models. Here we propose similar test statistics

TG = max
j∈G

√
n
∣∣∣b̂j − β̃j∣∣∣ ,

or, TG = max
j∈G

√
n
∣∣∣b̃j − β̃j∣∣∣ ,

and a multiplier bootstrap version

WG = max
j∈G

1√
n

∣∣∣∣∣
n∑
i=1

Θ̂jX̂
T
i εi

∣∣∣∣∣ ,
where (εi)

n
i=1 are i.i.d. N (0, 1) random variables. The

bootstrap critical value is then given by

cG (α) = inf {t ∈ R : P (WG ≤ t|Y, X, Z) ≥ 1− α}

for any user-defined α ∈ (0, 1). In the case where the
variance σ2

ε of εi in (1) is unknown, we can use

WG = max
j∈G

1√
n

∣∣∣∣∣
n∑
i=1

Θ̂jX̂
T
i σ̂εεi

∣∣∣∣∣ ,
where σ̂2

ε =
∑n

i=1(Ŷi−Xiβ̂)
2

n−‖β̂‖
1

or σ̂2
ε =∑n

i=1(Yi−Xiβ̂−ĝ(Zi))
2

n−‖β̂‖
1

is an estimator for σ2
ε .

3 Theoretical results

To make the key point of this paper, we first present
the results for the case where β0 and πj are assumed
to be exactly sparse (Theorem 1). Our additional re-
sult (Theorem A.1 in the supplement) relaxes the ex-
act sparsity assumptions and allows relaxes the exact
sparsity assumptions and allows β0 and πj to be ap-
proximately sparse. Note that the (exact or approxi-
mate) sparsity of πj along with the condition 1

τ2
j
- 1

implies the sparsity of Θj =

([
E
(
X̃T
i X̃i

)]−1
)
j

.
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We begin with the following definitions. Let

s0 := |{j : β0j 6= 0}| ,

sj :=
∣∣∣{j′ 6= j, 1 ≤ j

′
≤ p : πj,j′ 6= 0

}∣∣∣ .
To simplify our notations, we assume that ‖β0‖1 - s0

and ‖πj‖1 - sj in Theorem 1 and Corollary 1. Recall
Fj in (7); for notation simplicity, we assume Fj = F
from now on. Note that this restriction can be easily
relaxed in our analysis. For any radius r̃n > 0, we
define the conditional local complexity

Gn(r̃n; F) := Eξ

[
sup

f∈Ω(r̃n;F)

∣∣∣∣∣ 1n
n∑
i=1

ξif(Zi)

∣∣∣∣∣ | {Zi}ni=1

]
,

(10)
where ξis are i.i.d. zero-mean sub-Gaussian variables
with parameter at most σ† and E (ξi|Zi) = 0 for all
i = 1, ..., n, and

Ω(r̃n; F) :=
{
f ∈ F̄ : ‖f‖n ≤ r̃n

}
,

F̄ :=
{
f = f

′
− f

′′
: f
′
, f
′′
∈ F

}
.

For any star-shaped class F̄ (that is, for any f ∈ F̄ and
α ∈ [0, 1], αf ∈ F̄ ), Lemma A8 in Section 4 guaran-

tees that the function t 7→ Gn(t;F)
t is non-increasing on

the interval (0, ∞). Therefore, there exists some large
enough r̃n > 0 that satisfies the critical inequality

Gn (r̃n; F) ≤ r̃2
n

2
; (11)

moreover, (11) has a smallest positive solution rn
(which we will refer to as the critical radius). In prac-
tice, determining the exact value of this critical radius
can be difficult; fortunately, reasonable upper bounds
on rn are often available. Here we describe two com-
mon methods from existing literature.

By a discretization argument and the Dudley’s entropy
integral, we may bound (10) by

c0

(
σ†√
n

∫ r̃n

0

√
logNn(t; Ω(r̃n; F))dt+ r̃2

n

)
for some universal constant c0 > 0, where
Nn(t; Ω(r̃n; F)) is the t−covering number of the set
Ω(r̃n; F). Let r̃n be a solution for

σ†√
n

∫ r̃n

0

√
logNn(t; Ω(r̃n; F))dt - r̃2

n. (12)

The resulting r̃n is known to yield an upper bound on
the critical radius rn for (11) (see Lemma A9 in the
supplement for a formal statement); moreover, such
bounds achieve sharp scaling on rn for a wide variety
of function classes (see e.g., Barlett and Mendelson,
2002; Koltchinski, 2006; Wainwright, 2015).

When F is a ball of radius R in the RKHS norm ‖·‖H,
we let

Ω(r̃n; F) :=
{
f ∈ F̄ : ‖f‖n ≤ r̃n, ‖f‖H ≤ 1

}
.

In this case, we can determine a good upper bound
for rn using the result in Mendelson (2002) who shows
that

Gn (r̃n; F) - σ†

√√√√ 1

n

n∑
i=1

min {r̃2
n, µ̃i}

where µ̃1 ≥ µ̃2 ≥ ... ≥ µ̃n ≥ 0 are the eigenvalues of
the underlying kernel matrix for the KRR estimate.
Consequently, we can solve for r̃nj via

σ†

√√√√ 1

n

n∑
i=1

min {r̃2
n, µ̃i} - r̃2

n.

This method above is known to yield r̃nj with sharp
scaling for various choices of kernels.

We are now ready to establish our first main result
(Theorem 1), which requires a set of assumptions (in
addition to those stated at the beginning of Section
1) listed in the supplementary material, due to space
limitations.

Theorem 1 . Under Assumptions 1-6 in the

supplementary material, if we choose λj �
√

log p
n

uniformly in j in (9), then

√
n
(
b̂j − β0j

)
σ̂j

D−→ N (0, 1) ,

√
n
(
b̃j − β0j

)
σ̂j

D−→ N (0, 1) ,

where σ̂2
j = Θ̂j

X̂T X̂
n Θ̂T

j , for each j = 1, ..., p.

Based on Theorem 1, Corollary 1 justifies the
use of multiplier bootstrap in testing H0,G even when
|G| diverges.

Corollary 1 . Suppose Assumptions 1-4 and 6 hold
while (1) in Assumption 2 and Assumption 5 are sat-

isfied with sj replaced by maxj∈G sj. Let λj �
√

log p
n

uniformly in j in (9). Assume that (log pn)7

n ≤ C1n
−c1

for some constants c1, C1 > 0, and there exists a
sequence of positive numbers αn → ∞ such that
αn

p = o(1) and αn (log p)
2

maxj=1,...,p λj
√
sj = o(1).

Then under the null H0,G, for any G ⊆ {1, 2, ..., p},
we have

sup
α∈(0,1)

|P (TG > cG(α))− α| = o(1).
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With Corollary 1, the power analysis of TG then fol-
lows from Theorem 2.4 in Zhang and Cheng (2017).
The above testing procedure can be easily adapted
for constructing simultaneous confidence intervals and
support recovery, as we will see in Sections 4.2 and 4.3.

3.1 Theoretical implication of Theorem 1

The technique where we replace Xijs by the estimated

partial residuals X̂ij = Xij − Ê (Xij |Zi) as in (5)-(6)
is called “partialling out”. Note that this technique
involves p nonparametric regressions where p ≥ n.
Moreover, the estimation error from each nonparamet-
ric regression accumulates in the approximate inverse
Θ̂ of n−1

∑n
i=1 X̂

T
i X̂i. Consequently, we first discuss

what makes the “partialling out” strategy work in the
statistical inference of β0 despite that p is high dimen-
sional.

Recall from our previous discussion that b̂j − β0j

and b̃j − β0j can be decomposed into a leading term
1
nΘjX̃

T ε and several remainder terms. The rates
of convergence for the remainder terms that are re-
lated to the nonparametric projection step depend on

maxj, j′
∣∣∣ 1
n

∑n
i=1 X̃ij

[
f̂j′ (Zi)− fj′ (Zi)

]∣∣∣ with f̂j de-

fined in (7). In particular, we show that

max
j, j′

∣∣∣∣∣ 1n
n∑
i=1

X̃ij

[
f̂j′ (Zi)− fj′ (Zi)

]∣∣∣∣∣ ≤ ct2n (13)

for any tn ≥ rn, with probability at least 1 −
exp

(
−c′nt2n + c

′′
log p

)
, for some constants c, c

′
, c
′′
>

0. For many popular function classes, the critical ra-
dius rn defined earlier gives the optimal scaling for

bounds on
∥∥∥f̂j′ − fj′∥∥∥

n
. In particular, for (7), one can

show that
max
j′

∥∥∥f̂j′ − fj′∥∥∥
n
≤ c

′′
tn (14)

for any tn ≥ rn, with probability at least 1 −
c
′

0 exp
(
−c′1nt2n + c

′

2 log p
)

.

Note that the orthogonality condition E
(
X̃ij |Zi

)
= 0

(for all j) introduced by our partialling out strategy

“reduces” the effects of the estimation errors from f̂j :
The statistical error contributed by the projection step
is r2

n instead of the optimal rate rn that one would ex-
pect from the nonparametric regression. Given this
observation, for some function h(sj , s0) of sj and s0

only (where the exact form of h is detailed in Assump-
tion 5), as long as

√
nr2
nh(sj , s0) = o(1),

the remainder terms related to (7) in the asymp-

totic expansions of
√
n
(
b̂j − β0j

)
and
√
n
(
b̃j − β0j

)

are dominated by the leading term 1√
n

ΘjX̃
T ε, which

has an asymptotic normal distribution. Note that
the above finding also holds true for the surrogate
Ŷi = Yi − Ê (Yi|Zi) (which is used in (5)) and the
surrogate ĝ(Zi) (which is used in (6)).

We illustrate the theoretical insight above with three
specific examples in terms of dim (Zi) and the function
class F that fjs belong to. To facilitate the presenta-
tion, our following discussions only concern E (Xij |Zi)s
and Ê (Xij |Zi)s; E (Yi|Zi) and Ê (Yi|Zi) can be argued
in the same fashion.

Example 1: Zi ∈ R and F ∈ Sm (the mth order
Sobolev ball). Estimating E (Xij |Zi)s via (7) or (8)
can be reduced to the smoothing spline procedure,

which achieves the sharp rate, n−
2m

2m+1 , on r2
n. In this

case, we require
√
nn−

2m
2m+1h(sj , s0) = o(1).

Example 2: Zi ∈ R and F is the class of linear combi-
nations of bounded basis functions ψl(·)s such that for

f ∈ F , f(Zi) =
∑d1
l=1 θlψl(Zi) and θ := (θl)

d1
l=1 belongs

to the l0−“ball” of “radius” k. Suppose d1 ≥ n and
d1 ≥ 4k. Then the standard Lasso procedure would
yield upper bounds with scaling k log d1

n on the quan-

tities in (13). The scaling k log d1
n almost achieves the

sharp rate,
k log

d1
k

n , on r2
n. In this case, we require

k log d1√
n

h(sj , s0) = o(1). If we use the recently proposed

Slope (Su and Candés, 2016) instead of the standard

Lasso, then the scaling
k log

d1
k

n can be attained. In this

case, we require
k log

d1
k√

n
h(sj , s0) = o(1).

Example 3: Zi ∈ Rd and F is the class of |S| := k
sparse additive nonparametric functions in the sense
that any member f in F has the following decom-
position form f(Zi) =

∑d
l=1 fl(Zil) =

∑
l∈S fl(Zil);

moreover, fl belongs to an RKHS of univariate func-
tions. We may then apply program (7) in Raskutti,
et al. (2012) to estimate E (Yi|Zi) and E (Xij |Zi)s.
If the underlying RKHS is Gm, we would require
√
nk
(
n−

2m
2m+1 ∨ log d

n

)
h(sj , s0) = o(1).

4 Experiments

In this section, we evaluate the performance of our
methods with simulation studies and a real data ex-
ample.

For the simulation studies, to generate the full covari-
ates X, we first generate X0 from the p−dimensional
normal distribution with mean 0 and variance ΣX0 =
(ΣX0,ij)

p
i,j=1, which takes three different forms:

(S1) Independent: ΣX0
= Ip;



Ying Zhu, Zhuqing Yu, Guang Cheng

(S2) AR(1): ΣX0,ij = 0.5|i−j|;

(S3) Exchangeable/Compound Symmetric: ΣX0,ii = 1
and ΣX0,ij = 0.5 if i 6= j.

The covariates {Zi}ni=1 are i.i.d. from U [0, 2]. To in-
corporate the dependence between X and Z, we set
Xi1 = X0,i1+3Zi, Xi2 = X0,i2+3Z2

i , Xi3 = X0,i3−3Zi
and Xij = X0,ij , 1 ≤ i ≤ n, 4 ≤ j ≤ p. The set of
nonzero coefficients in β0 is from a fixed realization
of s0 = 3 i.i.d. U [0, 3]. The active set is set to be
S0 = {1, 2, 3}. We consider two different non-linear
functions g0:

(G1) g0(z) = 1.5 sin(2πz);

(G2) g0(z) = z10(1 − z)4/B(11, 5) + 4z4(1 −
z)10/B(5, 11)

where B(· , ·) denotes the beta distribution. The error
terms are generated from a standard normal distribu-
tion. We estimate X̂ by regressing X on Z with the
smoothing spline method and (β̂, ĝ) are obtained from
the procedure proposed in Müller and van de Geer
(2015). As a result, the debiased estimator in our sim-
ulations concerns (6). We do not test the performance
of (5) with simulation experiments but expect it to
behave similarly as (6). Similar to Zhang and Cheng
(2017), the estimated variance σ̂2

ε is calculated as fol-
lows:

σ̂2
ε =

∑n
i=1

(
Yi −Xiβ̂ − ĝ(Zi)

)2

n−
∥∥∥β̂∥∥∥

1

.

We set the tuning parameter µ = n−2/5/10 (Müller
and van de Geer, 2015) and let λ and λj (1 ≤ j ≤ p)
be calculated from the 10-fold cross validation (van de
Geer, et al., 2014). Across all the simulations, we set
the sample size n = 100 and the number of variables
p = 500. Results in sections 4.1 and 4.2 are based on
100 replications, while those in section 4.3 are based
on 500 replications. Results in section 4.4 is based on
real data analysis.

4.1 Component-wise confidence interval

Average coverage and average length of the intervals
for individual coefficients corresponding to variables
in either S0 or Sc0 are considered. Denote CIj as a
two-sided confidence interval for β0

j . In Table 1, we
report the empirical versions of

Avgcov S0 = s−1
0

∑
j∈S0

P(β0j ∈ CIj);

Avglength S0 = s−1
0

∑
j∈S0

length(CIj);

Avgcov Sc0 = (p− s0)−1
∑
j∈Sc

0
P(0 ∈ CIj);

Avglength Sc0 = (p− s0)−1
∑
j∈Sc

0
length(CIj).

The results in Table 1 agree with our theoretical pre-
dictions. The average coverage probabilities of confi-
dence intervals for Sc0 are close to the nominal 95%
level, while those for S0 are slightly lower than 95%.
The confidence intervals for Sc0 are comparably nar-
rower than those for S0. We also notice that as the
columns in X0 become more correlated (so the inverse
Θ of the Hessian becomes less sparse), the coverage
performance becomes worse. This finding confirms
our earlier comment (in Section 2) that the sparsity
condition on the off diagonal elements of Θ plays a
crucial role in the effectiveness of the debiased ap-
proach as this condition makes remainder terms like(

Θ̂j −Θj

)
1√
n
X̃T ε small in the asymptotic expansion

of
√
n
(
b̃j − β0j

)
.

4.2 Simultaneous confidence intervals

In Table 2, we present the coverage probabilities and
interval widths for the simultaneous confidence inter-
vals for β0j , 1 ≤ j ≤ p. For each simulation run, we
record whether the simultaneous confidence interval
contains β0j for 1 ≤ j ≤ p and the corresponding
interval width. Again, it is not surprising that the
coverage probability is affected by the amount of cor-
relations between the columns in X0. Overall, both
studentized and non-studentized method provide sat-
isfactory coverage probability. When ΣX0

is the iden-
tity matrix, non-studentized method has better cover-
age; while when ΣX0

takes the form of S2 or S3, the
performance of the studentized method is better.

4.3 Support recovery

The major goal of this section is to identify signal lo-
cations of β0 in a pre-specified set G = {1, 2, . . . , p},
i.e. support recovery. Similarly as the procedure in
Zhang and Cheng (2017), we take the signal set

Ŝ0 = {j ∈ G̃ : |b̃j | > λ∗j},

where λ∗j =
√

2ω̂jj log(p)/n and ω̂jj = σ̂2
εΘ̂j

X̂T X̂
n Θ̂T

j .
Note that similar arguments as Proposition 3.1
of Zhang and Cheng (2017) implies this support recov-
ery procedure is consistent. To assess the performance,
we consider the following similarity measure

d(Ŝ0,S0) =
|Ŝ0 ∩ S0|√
|Ŝ0| · |S0|

.

Table 3 summarizes the mean and standard devia-
tion of d(Ŝ0,S0) as well as the number of false pos-
itives (FP) and false negatives (FN) normalized by
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Table 1: Average coverage probabilities and lengths
of confidence intervals at the 95% nominal level with
100 iterations; n = 100, p = 500; (i) Avgcov S0, (ii)
Avglength S0, (iii), Avgcov Sc0, (iv) Avglength Sc0

Active set S0 = {1, 2, 3}; Error ε ∼ N(0, 1)
S1 ,G1 S2, G1 S3, G1 S1, G2 S2, G2 S3, G2

i 0.896 0.857 0.693 0.887 0.823 0.683
ii 0.802 0.812 0.807 0.798 0.789 0.827
iii 0.953 0.955 0.963 0.953 0.955 0.963
iv 0.476 0.510 0.547 0.480 0.500 0.559

√
|Ŝ0| · |S0|. When the amount of correlations between

the columns in X0 increases (as in S3), the false posi-
tive rates are comparably higher.

4.4 Real data set

In this section, we illustrate our method with the data
from [2]. This data set contains the wage information
of 534 workers and their years of experience, education,
living region, gender, race, occupation and marriage
status. This data set was studied in [25] that also
concerns high dimensional partial linear models. We
consider the following model:

Yi =

14∑
j=1

Xijβ0j + g0(Zi) + εi, i = 1, ..., 534, (15)

where Yi is the ith worker’s wage, Zi is his/her year
of experience, Xijs are additional covariates and εis
are i.i.d. errors. We exhibit brief descriptions of these
covariates, their estimates and standard errors in Ta-
ble 4. In view of Table 3 in [25], our estimates are
closer to those from the unpenalized PLM. Neverthe-
less, the magnitude (in absolute value) and statistical
significance of the estimate associated with “Sales”
from our method are substantially larger than those
from the unpenalized PLM. In addition, the signs of
the estimates associated with “Hispanic”, “Married”,
and “Clerical” are opposite to those from unpenalized
PLM (although both the unpenalized PLM and our
method suggest that these variables are far from be-
ing statistically significant). Our support recovery in-
cludes education, gender, union member, management
and professional, which give a more refined subset of
variables, compared to those from PLM-SCAD and
PLM-LASSO methods in [25].

Table 2: Coverage probabilities and interval widths
for the simultaneous confidence intervals based on
the non-studentized (NST) and studentized (ST) test
statistics with 100 iterations; n = 100, p = 500; (i)
NST coverage, (ii) NST width , (iii) ST coverage, (iv)
ST width

Active set S0 = {1, 2, 3}; Error ε ∼ N(0, 1)
S1 ,G1 S2, G1 S3, G1 S1, G2 S2, G2 S3, G2

i 0.95 0.74 0.72 0.96 0.86 0.74
ii 1.05 1.09 1.12 1.06 1.06 1.12
iii 0.88 0.94 0.87 0.82 0.91 0.83
iv 0.88 0.96 1.04 0.87 0.93 1.04

Table 3: The mean and standard deviation (SD) of
d(Ŝ0,S0), and the numbers of false positives (FP) and
false negatives (FN) with 500 iterations; n = 100, p =
500; (i) Mean, (ii) SD, (iii) FP, (iv) FN

Active set S0 = {1, 2, 3}; Error ε ∼ N(0, 1)
S1 ,G1 S2, G1 S3, G1 S1, G2 S2, G2 S3, G2

i 0.96 0.97 0.94 0.97 0.97 0.94
ii 0.07 0.06 0.08 0.07 0.06 0.08
iii 0.09 0.06 0.13 0.09 0.07 0.12
iv 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Real data example

Variable Description b̂j(SE)
X1 Number of years of eduction 0.638(0.095)
X2 1 = Southern region, 0 = other -0.569(0.433)
X3 1 = Female, 0 = male -1.992(0.422)
X4 1 = Union member, 0 = nonmember 1.379(0.525)
X5 1 = White, 0 = other 0.726(0.582)
X6 1 = Hispanic, 0 = other 0.365(0.994)
X7 1 = Management, 0 = other 2.956(0.758)
X8 1 = Sales, 0 = other -1.058(0.823)
X9 1 = Clerical, 0 = other -0.135(0.663)
X10 1 = Service, 0 = other -0.702(0.659)
X11 1 = Professional, 0 = other 1.762(0.694)
X12 1 = Manufacturing, 0 = other 1.086(0.544)
X13 1 = Construction, 0 = other 0.511(0.958)
X14 1 = Married, 0 = other 0.103(0.408)
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