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Appendices

6.1 Proof of Theorem [4.1]

We first decompose the population Hessian as:
H(©) = H(0") + (H(©) — H(6")) + (ﬁ(@) - H(@)) . (6.1.1)

Using Wey!l’s inequality, we have:

Awin(H(0)) > Auin(H(07)) — [ H(O) — H(©%)||2 — | H(O) — H(O)]1,
Amax(H(0)) < e (H(0)) + | H(©) — H(©") |2 + |H(©) — HO)]5.  (6.1.2)

Theorem now follows by combining Lemma [6.1] Lemma and Lemma [6.5)

Below we present the above mentioned lemmas that are critical to the proof.

Lemma 6.1. Consider setting of Theorem[4.1] Let H(©*) be the Hessian of ([£.0.2). Then,
Cil 2 H(O") = Cal,

where Cy, Cy are global constants.

Proof. The Hessian evaluated at W*, V* a*,b* is positive semi-definite as it can be written as an outer product
form H(0*) = E,.pQQT, where

G(af wi + b7)z

olaTuwi +17)
Q= : (6.1.3)

(@{ v} +a})d' (@] wi + bi)a

(wh vk + ai)d (Thwic + b )Tk

To prove positive definiteness of H(0*) we invoke the Schur-Product theorem on Hadamard product of matrices(see
Theorem 5.2.1 in [Horn and Johnson| (1991))).

Theorem 6.2 (Theorem 5.2.1 of [Horn and Johnson| (1991))). If A and B are positive semi-definite, then so is
Ao B. If, in addition, B is positive definite and A has no diagonal entry equal to 0, then Ao B is positive definite.

We also need Theorem 5.3.4 Horn and Johnson| (1991) to obtain a lower bound of eigenvalues of Hadamard
product of matrices.

Theorem 6.3 (Theorem 5.3.4 of [Horn and Johnson| (1991)). Let A and B be two n x n positive definite matrices.
It follows that any eigenvalue of the Hadamard product A o B satisfies:

A(A o B) > [min a;;|Amin(B)

i€[n]

We first note that for two random vectors U and Z the Hadamard product E[UU” o ZZ7] can be lower bounded
with respect to the PSD cone as follows:

E[UUT 0 ZZ"] = B[UUT] o E[Z]|E[Z7)
To show this we note that:

E[(UU” — EUIE[UT]) o (227 — EIZIE[Z"])] = 0
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This means that:
E[UUT 0 ZZT] = E[UUT] o E[Z|E[ZT]| + E[UIE[UT] 0 (E[ZZT]| — E[Z]E[Z7])] = E[UUT] o E[Z|E[Z7]

where the last inequality follows because the second term in the 2nd expression is positive semi-definite being a
Hadamard product of two PSD matrices.

Consequently, it follows from the Schur Product theorem that if E[UUT] = 0, then E[UUT o ZZT] = 0.
Furthermore, we can lower bound the eigenvalues of E[UU7T o ZZ7] by considering the smallest eigenvalues of
E[UUT] o E[Z|E[ZT].

We let b; = a; = 1 for simplicity. To invoke Theorem we set:
T1 p(afwi +1)
TK d(xwi +1)
U= 7 = 6.1.4
(T vi + Ve ¢'(@lwi +1) (614
(rRvi + Dok ¢ (ajwic +1)

and note that H(0*) = E[UUT0ZZT]. Consequently, we are left to establish that E[UU”] is definite. Furthermore,
from Theorem we know that so long as E[Z?] is bounded away from zero, we can also characterize the smallest
eigenvalue of H(©*). In particular,

)\min(H(@*))2min{miinE[qbi(x;frwf+1)]2,miinE[¢’i(x;frwf+1)]2} Amin(E[UTT]) (6.1.5)

Note that min; E[¢; (27w} + 1)]?, min; E[¢} (2] w} + 1)]? is a constant dependent only on ¢ and |Jw}|.

Now, we will show that Apin (E[UUT]) > 1/v/3. To prove this result we first express the minimim eigenvalue as
follows:

Amin (E[UUT]) = min Egp [(c7, Nl (6.1.6)
K 2
= n}%n E.wp ( Z xicr + (xf v + 1)3:%%) (6.1.7)
k=1
K 2
= rrgn Ezup ( ; zi (e +er) + (xzv,’g)xfek) (6.1.8)
K 2 K 2
= H}%HEJCND(ZI“{(CI@ + ek)) —&—]EmND(Z(x{vZ)xgek) (6.1.9)
k=1 k=1
K
+2E,p ( S af (e +en)(ah v;;)z{ek) (6.1.10)
k=1
K K )
:H}%nEzND<Z$£(Ck+€k ) —HEIND(Z TE vk mkek) (6.1.11)
k=1 k=1

where  denotes the set {c,e : Zszl llex]|? + |lex]|> = 1}. The last equality follows by Isserlis’ theorem for
zero-mean Gaussian random variables, which states that odd-order moments for Gaussian random variables are
zero. In particular Isserlis’ Theorem asserts that, for Jointly Gaussian random variables X1, X5, X3,..., Xon:

E[ X1 Xy Xon] = > []EIX:X;] =) []Cov(Xi X;), (6.1.12)
E[ X1 Xy Xon_1] =0, (6.1.13)
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where the notation ) [[ means summing over all distinct ways of partitioning X, ..., Xa, into pairs X;, X; and
each summand is the product of the n pairs

We substitute dy, = ¢ + ex and e, = dj. — ¢ and obtain:

K K
2
IND(Z@"{ (dy) ) +Em~p(z zp o)t (dy _Ck))
k=1 k=1
K 2
> |[d30%5 + Eann (Y (@l vi)el (e — ), (6.1.14)
k=1

where d, ¢ are such that Zszl Idi — ckl|® + |lck|* = 1.

Denote fi = ¢ — di for notational simplicity. Expanding we obtain:

K

Eoop (Y (@ vi)af fk) ZEM ()22 () ) + 3 ()T GHT(F)E (6.115)

k=1 ik

Using independence of x;, z) for j # k, by using Isserlis’ and Stein’s Theorem, and by using Cauchy-Schwartz
inequality, we have:

K 9 K 2
wW(Z i v (fr) ) =2 [loplPl1fl® + <Z(UZ)Tfk> : (6.1.16)
k=1 k=1

k

Using ||vf|| > 1, Vk, we have:

K K
R = EIND(;DC (di) ) —I—IEmND(; zivp)xrk (fr ) Z lld||? + 22 ldi — cil)?
> 2+Z [CA 22 lell?, (6.1.17)
k=1 k=1

where second inequality follows from Zszl ldk — ckl|® + ||ck||> = 1. Using triangle inequality, we have:

K K K
Dol = || 1= el = | D llewll?
k=1

k=1 k=1

Combining the above observation with (6.1.17) and denoting a = Zkl,(zl llek|I? < 1, we have:

R>24+(V/1—-a2—-a)*>—2a% =3 —2a% —2a\/1 — a2
=2-22%+(V1-a2—a)?>1/V3, (6.1.18)

where the last inequality follows by considering two cases |a| < 1/2/3 and o > +/2/3.

Lower bound on Hessian’s eigenvalues now follows by combining |6.1.5} [6.1.11] and (6.1.18]). A similar argument
leads to the desired upper bound on Hessian’s eigenvalue Apyax(H(©%)). O

Lemma 6.4 (Smoothness of Hessian near optimum). Consider setting of Theorem . Then the following holds:
1H(©) = H(©%)|l2 < VK - Ci(|V = V*||p + [W = W¥|[p),

where Cy is a global constant.
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Proof. Let A = V2L(W,V) — V2L(W*,V*) be the difference in Hessian. We study the different blocks of A
separately. Consider:

Avi,vj = a:~D [(¢Z¢j ¢:¢;) SL’Z.’EZ] P

where we use the short hand notation ¢; = ¢(zfw; + 1) and ¢} = ¢(xTw} + 1).

We can bound the norm as follows,
10| = 1B [(6:65 — 6765) wsoT] |
p [|6id; — 97 05| |=] allz] B]]
max K, ihi — &F o |aT o |t
H H 1“5” 1 D[|¢¢J d)z(b]l' ) H jﬁ”
Eonp (6 = 6511651 + |65 [1¢5 — ¢51) |27 o2 B]]
~p [(Lola] (wi — w])|Bla} w;|?

< max Ei~
lell=1,]18]|=1

< max
HaH:LHﬁH 1

< max E,
llel|=1,|8]|=1

+Bla] w}|"Lolz] (w; — w)|) [« of 2] B]]

< - max  LoB ([lwi — willw;||? + llw; — wjllw][17) el
llell=1,118l1=1

= LoB (|lwi — w] [[[lw;[|* + [lw; — wj [ [[wi]?) , (6.1.19)

where we used triangle inequality and assumption on ¢ given in the Lemma statement.

Next consider A, ., for i # j:

Aw;w; =Eunp [(:L'T’UZ{,C ;P — xr ijU;(bi*(b;*) le'jT] ,
Similarly, we can bound the norm of the above quantity as follows,
||sz‘,wj|| = ||E$ND [(xTle U]¢ (b - 'T z ] j¢/*¢/*) €TiT } ||
Eonp [|2] via] v;dis; — af viaivi o7 o [lof oflaj 8]
Eonp [(|27 vigi(¢)j v — 7 ) v))]
¢raT ol @ vid, — 2l o)) el alle? B]
<  max [Ez. [(w v; ’*xv + '*:13 *
max Eaep[ (1T ullgl] (6 = o5 1T osl + 167 12T (0 — v3)])
+ 165 l1aT 031 (165 — 9112l vil + I l1aT (vs = v?)1) ) T ol ]

Bpmop | (|27 vilLalaT wil? (Lale] (w; — w))l[2] v

= max
llell=1,]|8]|=1

< max
lefl=1,]8]|=1

< max
lell=1,]I8]=1

+Lafafwi Pl (v — o)) + LalaTwi Pl v | (Lol (w; — w))l |2 v
+hmwﬁhﬂw—mW)@amﬁﬂ
< ol Ealws I (Zallw; = wllesl + Ll 17 lo; = o5 1)
o+ Ll 111 (Lallws — w Nlesl) + La e |7 s = o7 ). (6.1.20)

When ¢ = j, consider

Awi,wi = :nND

K
T " T
E Thopdr —y | @ vidf vzl |
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We can bound the norm as follows,

K
I [ S mfvz¢Z||vai||¢;'|<xfa>2]
L k=1

[N
o [leel|=1

T lel=1

B K
< max E,p (Z oul (v — o) + | - ¢7;|x£v2|> |x?vi||¢;’|<xz’a>2]
L \k=1

< ma
llal=1

K
X Eynp (Z Blaj wy|?||zf (ve — vF)|
k=1

+Lo|wk (wr, — wi)llog vi) | vil La (2] 0)?]

K
< (Z Bllwk|*lox — v + Lollwg. — wznv;:n> ol L. (6.1.21)
k=1

Next we consider:
A, v, = Eonp [(2] vidid; — 2] v} ¢7°03) i) |
where ¢ # j. The norm of the above quantity can be bound as follows,

1yl = o B (Jalvidi(8; = 67) + 65 (a7 (v — w6} + T (6] - 1)) o 8]

< g  Bewp | (|25 vilLalg wil” Lol (w; — wj)l

+ BlaTw|? (Jaf (vi = v} Lalal wil? + [oT v} | Lolo] (wi = w)) ) 2Tl BI]

< LoLilloilllewslPlleo; — will + Bllw 14 (EalwillPJos = o7 | + Lallof |l — wi ). (6.1.22)

Now, consider:
K
Awi,vi = EJZND [(Z ﬂUka(bk - y) ¢;$szT‘| ’
k=1

We can bound the norm of the above quantity as follows,

K
[Auwill = max Eop |13 afvnds - x%vmngbﬂ(x?a)?]

X
—

] >

= s Eer || xf(vk—vz>¢k+x£vz<¢k—¢z>||¢;|(x?a>2]

1

M= 7

< max Eop | 3 (o (o — o) Blef el + e il Lofo (we — wp)l) Lafa wip(oT )
all=
Lk=1
K
< (Z Bl o =+ Lol 10— w;u) Ly (6.1.23)
k=1

Lemma now follows by using Gershgorin’s theorem along with (6.1.19)), (6.1.20)), (6.1.21)), (6.1.22)), and (6.1.23)),
and the assumption that ||w;|| <2 and |Jv;|| < 2.

That is,

S [P N 1 N (Vi e (6.1.24)
JFi JFi

S (7 [ A [ N [V S (6.1.25)
e JFi

<VEKCL(|W = W*||lp + IV = V*||p), (6.1.26)

where C7 > 0 is a global constant. O

IA] < max{max [| Ay, u,
3

max [ A,
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Lemma 6.5 (Concentration of Hessian). Consider setting of Theorem . Then, the empirical Hessian of
[4.0.2)) satisfies the following (w.p. > 1 — 10K?/n10):

(logn)“ - d

|H(©) - H(©)|: <K -C N

where C' > 0 is a global constant.

Proof. Let A= H(©) — 13" | H*(©), where H*(0) is the Hessian of s-th data point. Then A can be written
as a block matrix with various blocks Ay, v, A, ;5 Dw;w;s D, w;> and Ay, o, and Ay, o, for all 4,5 s.t. i # j.

We first consider A,, ., for all 4, j, which is given by:
1 - S 1SS s\T T
Ay, = n Z 07 95(@7) (@) — Eanpldidjzizj], (6.1.27)
s=1

where we use the shorthand notation ¢§ = ¢(wl'z$ + 1), ¢ = ¢p(w] z; + 1). Since w; is fixed wrt data points,
with probability > 1 — K/n'% wl'x$ < Clogn,Vs,i and some constant C' > 0. Similarly, ||z$||* < d+ C+/dlogn
with probability at least 1 — 1/n1% and a constant C' > 0. Now, using the requirement ¢(z) along with standard
Matrix Chernoff bound, we have (w.p. > 1 —1/n!%):

B2(logn)i*tt - d
vn '

[Avivillz <

Using a similar argument for all remaining blocks, we get (w.p. > 1 — 10K?2/n!%):

(logn)¢ - d

Al < K-
” H2— C \/ﬁ ’

where C' > 0 is a global constants. O

6.2 Proof of Lemma 1

We briefly sketch the proof here. It follows along similar lines as [Rago et al.| (1996)); |Appadwedula et al.| (2008).
For simplicity of exposition we consider two devices, a and b and binary classification. Let g,(z), g»(x) be gating
functions that take binary values corresponding to whether or not devices transmit. Assume that both classes
are equiprobable. Let x,, x; denote device feature realizations corresponding to the two devices for an instance
& = [zq,xp] and pa(x4), ga(x4) the class-conditional likelihoods for device a under the two classes. Similarly,
po(2), qp(zp) for device b. Due to conditional independence, the joint class conditional probability is the product
of the class-conditional marginals.

We let Yap(xa, Tp), Ya(xa), Yu(zp), o denote the binary classification rule when both devices transmit, only device
a transmits, only device b transmits, and no device transmits respectively. They take a binary value with zero
denoting the first class and one denoting the second class. Note that these cases are mutually exclusive. For
this reason, the error probability, P. can be written sum of four terms and the fusion rules can be derived in a
straightforward manner. Error occurs when the fusion rule classifies as class one while the true class is zero and
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vice versa. So we have,

P [ [ suteaenbateompalemldrade, + [ [ gue)gnm) - vusle))au @) (w)dzade,
[ [ gutea) 1= gu(an)) v (wlpa (w)n(an)dadn
+ [ [ gutan) 1= o)1 = b)) aaea)as(a)dada
+ [ [0 = guta gtz vn(enlpa(ealps o) doaday
+ [ [0 ga@aanten (1 = o)) o) drada
oo [ [ @)1~ gu(en)pa(ea)pnln)drada
+ =) [ (0= @)1 = o)) auea)as(on)drada

Let us first consider the last two terms corresponding to both devices being inactive.

Case 0: Clearly, the optimal fusion rule for given gatings, g,, gs is to select the minimum of the two terms, namely,

P

0=0
//u—%umu—%wmmumMum%mbz //u—%@mu—%@m%wmwmw%mb

P

This can be further simplified notice the conditional independence of the two features. Consequently, we obtain:

f(l - ga(za))Pa(xa)dfa
f(l — 9a(2a))qa(Ta)dza

J (1= gy(xs))py () day,
J (1= gy(zp))qp(xp)day,

log + log 20 (6.2.1)

In a similar fashion we can see that the optimal fusion rule in other cases are:

Case 1: ga(2a) = gb(zp) =1

Yap=0
pa(xa)pb(xb) z Qa(xa)qb(xb)
Yap=1
which, is precisely the likelihood ratio test, namely,
Yab=0
Lo(za) + Lo(zp) z 0
Yapr=1
where, £,(z,) = log Z;gz;, Oy(zp) = log %

Case 2: gq(xq) = 1 —gp(zp) = 1 where device 2 is inactive. In this case the central processor receives measurement
Zq:
$a=0
pa(l’a)/(l — go(@))pp(ap)day 2 qa(fva)/(l — g () qp (s ) day

Ya=1
Again, this is just a likelihood ratio test, namely,
Ya=0
J @ — gy(@))pp(@p)day

J (@ = go(@p)) g (xp)dzs ¢a<:1

Lo(xzq) — log 0
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Case 3: gp(xp) = 1 — ga(z4) = 1 where device 1 is now inactive. In this case the central processor receives
measurement x,. This case is similar to case 2.

Note that we can combine the four cases and write the fusion rule compactly as follows:

f(@a,xp) = la(2a)ga(2a) + ()95 (xp) + 10 (1 = ga(2a)) + (1 = go(2s))

H/\\/O
o

where 74,7, are the first and second terms in Eq. and are constants independent of x, and x;. The reason
follows from linearity of the likelihood ratio test under conditional independence.

Consequently, we are left to show that g,(z,) and g,(xp) are also functions of the local likelihood ratios. To do
this we again examine our objective function It is composed of the error probability plus a linear activation
penalty (g, + g»). For a fixed gating function gy, the fusion rules described above we see that, for a fixed z,, the
expressions are a affine-linear function in g,(z4.)pa(Za), 9a(%a)qa(Ta) and Agq (o) (Pa(za) + qa(Ta)-

In a similar fashion as before the problem can be analyzed in an analogous manner to the cases already considered
above. The optimal gating function can therefore be expressed in terms of the likelihood ratios.
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