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Abstract

Networked embedded devices (IoTs) of limited
CPU, memory and power resources are revo-
lutionizing data gathering, remote monitoring
and planning in many consumer and business
applications. Nevertheless, resource limita-
tions place a significant burden on their ser-
vice life and operation, warranting cost-aware
methods that are capable of distributively
screening redundancies in device information
and transmitting informative data. We pro-
pose to train a decentralized gated network
that, given an observed instance at test-time,
allows for activation of select devices to trans-
mit information to a central node, which then
performs inference. We analyze our proposed
gradient descent algorithm for Gaussian fea-
tures and establish convergence guarantees
under good initialization. We conduct exper-
iments on a number of real-world datasets
arising in IoT applications and show that our
model results in over 1.5X service life with
negligible accuracy degradation relative to a
performance achievable by a neural network.

1 INTRODUCTION
We introduce a novel distributed inference problem for
energy-limited IoT devices, which offer exciting applica-
tions for machine learning. IoT devices augmented with
sensors are increasingly deployed in various applications
including consumer, business, infrastructure (Perera
et al., 2015) and wearable technology1 (Latré et al.,

1Sensors are embedded or implanted in various parts of
the body for activity monitoring.
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2011). These devices are capable of distributively gath-
ering data and transmitting relevant information for
system-wide monitoring and control. However, IoT
devices are CPU, memory, power and bandwidth lim-
ited, which place a significant burden on their service
life and operation. Hence, resource-aware distributed
inference are critical for viability of such systems.

Several architectures have been proposed in this context
(Viswanathan and Varshney, 1997). In the centralized
architecture, sensing devices continuously gather data
independently, and transmit it to a central node, where
the data is aggregated and processed to perform infer-
ence. For low-powered IoT devices, transmit energy
mostly dominates all other forms of battery usage (Hal-
gamuge et al., 2009; Latré et al., 2011). So, while this
architecture is simple, it can be wasteful and can sig-
nificantly deplete power of each device leading to short
service-life.

While many architectures such as serial, parallel and ad-
hoc have been proposed (Viswanathan and Varshney,
1997), our focus is on decentralized architecture that
transmits data only when necessary to the fusion center.
Our communication efficient architecture exploits the
following two observations: a) much of the gathered
data either contains no information or is redundant,
b) depending on the type of activity, some devices are
more informative than others, and it is often sufficient
to receive data from the most suitable devices rather
than all the devices.

Consequently, it makes sense for a device to transmit
information only when its data is useful for inference
relative other devices in the network (Appadwedula
et al., 2008). The fundamental challenge is that a de-
vice must not only determine whether it has useful
information, but also deduce–without the benefit of
communication—whether the data is redundant be-
cause there is another device with better information
that should transmit.

A central challenge addressed in our paper is for each
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Figure 1: Cost-aware decentralized prediction with IoT
devices: Gating functions at each device screen their local
data to eliminate redundancies in information among differ-
ent devices to conserve power while ensuring informativity
for effective inference.

device to learn to autonomously evaluate, whether its
data is critical for inference, and based on this eval-
uation, transmit information to a fusion center. The
fusion center then aggregates the received information
and makes a prediction. Naturally, our setup precludes
data sharing among devices before transmission. In
our framework, a device faces a dilemma, namely, to
determine whether or not to transmit its data agnostic
to another device’s data.

This problem has been well-studied in the context of
decentralized binary hypothesis testing for known prob-
abilistic models (Tsitsiklis and Athans, 1984; Rago
et al., 1996; Appadwedula et al., 2008). While the gen-
eral problem is considered intractable, under restrictive
assumptions of conditional independence (Rago et al.,
1996; Appadwedula et al., 2008), several works have
explicitly characterized the optimal decentralized proto-
cols for different scenarios. Nevertheless, the knowledge
of probabilistic models together with the assumption
of conditional independence can be quite restrictive
limiting their utility.

Motivated by these reasons we propose a novel learning
framework to ensure energy and communication effi-
cient inference. The benefit of a learning perspective
in contrast to optimal decentralized decision theory
is three fold. First, it allows for explicit parameteri-
zation of decision functions, that can be empirically
optimized without the knowledge of probabilistic mod-
els. Second, we can account for a wide-variety of low
to high-complexity models as well as a wide-variety of
inference problems that reflect system requirements.
Third, decentralization allows the model to consume
less energy which makes significant improvement in life-
time of IoT devices. We learn a distributed prediction
model for multi-class classification, which is agnostic to
knowledge of probabilistic models. In our model, a data
point x is specified by local observation xk for device k.
Each device is equipped with a gating function, gk(·),
which determines whether or not information from the
device is to be transmitted. A device transmitting
information, compresses its local data, xk, and outputs
hk(xk). A central node aggregates received messages
and outputs a prediction f(

∑K
k=1 hk(xk)gk(xk)). The

communication savings occurs when edge devices cease

transmission (gk(xk) = 0).

Our goal is to train prediction functions to minimize
test-time prediction loss while limiting the number of
participating devices averaged over the data points. We
propose a non-convex objective that balances training
error with device activation to jointly learn gating and
compression functions by means of gradient descent.
We analyze the effectiveness of our gradient descent
scheme to optimize our non-convex objective. Moti-
vated by our experimental results, we consider a simple
Gaussian realizable setting, we show that the SGD
algorithm is guaranteed to converge to the optimal
set of parameters if we start with a sufficiently good
initialization. While the Guassian setting is somewhat
idealistic, the considered problems are quite challeng-
ing, and existing polynomial time convergence results in
this domain use similar assumptions (Ge et al., 2017).

We conduct experiments on a number of real-world
datasets. Our key finding is that our trained model
is capable of adaptively gating instances that are ei-
ther redundant or non-informative and significantly
outperforms other methods.

2 RELATED WORK
The problem we study is related to the distributed
detection literature where the probability distributions
are generally assumed known. In particular, (Rago
et al., 1996) considered censoring sensors. The idea is
that sensors transmit their observations to the fusion
center only if they are deemed “informative”. Under
the assumption that the sensor observations are condi-
tionally independent given the hypothesis and under
a communication rate constraint, the authors showed
that each sensor should transmit if and only if its local
likelihood ratio falls outside a single interval. (Ap-
padwedula et al., 2008) extend the censoring sensors
framework and eliminate the need for joint optimization
of the censoring regions. (Tsitsiklis and Athans, 1984)
showed that finding the optimal censoring function in
distributed detection problems is intractable without
assuming conditional independence. While these stud-
ies inform us on the optimal strategies with known
distributions, we study the learning setting where such
distributions are unknown.

The learning problem of distributed prediction has been
studied by (Yang et al., 2009, 2008) in the context of hu-
man action recognition using wearable motion sensors.
The goal was to achieve high classification accuracy
while reducing communication cost between the sen-
sors and a fusion center. A sparse coding approach
was used to represent each data point in terms of a
sparse subset of samples belonging to each action class.
Each sensor computes the sparse representation and
makes a prediction based on how well the data point
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is represented by any class. Finally, the fusion center
predicts based on a majority vote.

Our model is also related to the sparsely-gated mixture-
of-experts model (Shazeer et al., 2017), where a subset
of experts is activated to predict any given data point.
The goal there is to scale up the model capacity yet
retain computational efficiency through a centralized
gating function. In contrast, our model is motivated
by distributed sensor network and utilizes distributed
gating functions to improve communication efficiency.

Our model of gating function multiplying a local com-
pression function leads to inherent non-convexity simi-
lar to that in the low-rank matrix completion model
(Jain et al., 2013; Si et al., 2016) as well as the neural
network model (Zhong et al., 2017). Inspired by suc-
cesses in analyzing above mentioned problems (Zhong
et al., 2017; Du et al., 2017), we provide local conver-
gence guarantees for our model, which can be seen as a
strict generalization of the low-rank matrix completion
in the non-linear setting as well as one hidden layer
neural network model. In particular, to prove local
strong convexity of our optimization problem, we de-
velop novel tools based on the Schur product theorem
(Horn and Johnson, 1991).

More broadly, our work belongs to an active research
area of resource-constrained machine learning. In par-
ticular, prediction costs in terms of feature acquisition
(Xu et al., 2012; Nan et al., 2016; Nan and Saligrama,
2017; Trapeznikov and Saligrama, 2013; Wang et al.,
2015), computation (Bolukbasi et al., 2017b; Wang
et al., 2017, 2014; Bolukbasi et al., 2017a) and memory
(Kumar et al., 2017; Gupta et al., 2017) have been stud-
ied. Our work focuses on reducing the communication
cost in an IoT setting.

3 PROBLEM FORMULATION
We propose a learning based framework of the canonical
decentralized detection problem (Rago et al., 1996),
which unlike our setting, consider a binary hypothesis
problem with known probabilistic models.

We consider an M-class classification problem with
labels taking values in an index set Y. A network
of K edge devices sense their environment and make
decisions as to whether to transmit the sensed data
to a fusion center. The task of the fusion center is
to aggregate information from the edge devices and
output a prediction of the class label. We assume that
the devices operate in a resource-limited environment
and must trade-off utility of local sensed information
with available resources.

We let Xk, k = 1, 2, . . . ,K denote continuous ran-
dom variables observed at each of the K devices.
Following convention, lower case xk denotes realiza-

tion of random variable Xk ∈ Xk ⊆ <D. Let X =
[X1, X2, . . . , XK ]T ∈ X ⊆ <D×K denote the random
matrix of data from all devices and P the joint distribu-
tion on the product space X ×Y . Associated with each
device is a gating function, gk : Xk → <+, which allows
for censoring device k’s data transmission. The cost of
each transmission is a device-independent constant de-
pending only on whether a transmission occurs2. So, in
this paper, we assume that gk(xk) > 0 costs the same
as gk(xk) 6= 0; therefore, our primary goal is to sparsify
such activations. For an input, xk, device k trans-
mits when gk(xk) > 0 and it transmits a compressed
statistic, using a compression function hk : Xk → <d.
The fusion center fuses received observations, f(x) ,
f((h1(x1), g1(x1)), . . . , (hK(xK), gK(xK))) ∈ <M and
outputs a predicted label by choosing the component
corresponding to the maximum score3.

Our goal is to minimize the sum of expected loss and
expected device activations. Namely, we consider a loss
function L(f(x), y) that penalizes the error between
predicted output and the true label together with the
average number of activations:

min
f,(h1,g1),...,(hK ,gK)

EPL(f((h1, g1), . . . , (hK , gK)), Y )

+ λEP
K∑
k=1

|gk(Xk)|0

where λ is a trade-off parameter that controls the
activation budget and | · |0 is the `0 norm. As
is standard practice, we choose a suitable parame-
ter λ to meet desired average activation constraint,∑K
k=1 EP [‖gk(Xk)‖0] ≤ B.

Empirical Risk: In this paper we consider the case
where full-training data is available for all devices along
with ground-truth annotations. We are given n training
data instances: (x(1), y(1)), . . . , (x(n), y(n)) with each
data point comprised of features from different devices:
x(i) = [x

(i)
1 , . . . , x

(i)
K ], and label/response y(i). For sim-

plicity we assume feature dimension, D, to be identical
across all devices. Our empirical risk objective is to
optimize the following empirical objective:

min
h0,...,hK ,g1,...,gK

n∑
i=1

L
(
f((h1, g1), . . . , (hK , gK)), y(i)

)
+ λ

n∑
i=1

K∑
k=1

|gk(xk)|0 (3.0.1)

2In low-power wireless devices, transmit energy is often
dominated by activation and less so by the actual signal
amplitude or feature output dimension particularly in low-
rate scenarios.

3As such there is no loss of generality between the gat-
ing/prediction decomposition and a generalized prediction
function that combines the two operations.
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3.1 Model Parameterization

Our proposed architecture is a prediction system com-
posed of a compression function hk and gating function
gk. Both hk and gk are linear functions with gk passed
through a non-linear activation unit; the centralized
prediction function is then the sum of the compression
functions modulated by the gating functions from all
of the sensors4. Mathematically, for each instance, x:

f(x1, x2, . . . , xk) = ψ(

K∑
k=1

hk(xk)gk(xk) + b), (3.1.1)

where hk(xk) = vTk xk + ak ∈ <d, and gk(xk) =
φ(wTk xk + bk) ∈ < is the gating output of the kth
sensor. The function φ(·) is chosen as a ReLU unit or
a sigmoid for the purpose of optimization. The func-
tion ψ(·) predicts a label based on the received gated
outputs. Since we do not impose resource constraints,
models of varying complexity are allowed.

The communication savings in this setup occurs when
gk(x

(i)
k ) = 0 and the device does not need to transmit.

We relax the `0 loss in Eq. 3.0.1 by an `1 function.
The `1 objective reduces to a summation of activation
functions due to non-negativity of gating output.

Dimensionality of Compression Output: We examine
different choices. For scenarios where feature dimension
is a significant factor of energy budget, we require a
low-dimensional output and choose d = M , which is the
number of class labels. This situation can be viewed as
each device outputting local predictions, which are then
fused at the fusion center. In other scenarios where
activation primarily contributes to the energy budget
we map different device feature vectors to independent
parts of a sufficiently large d-dimensional feature space,
so that the fusion center sees concatenated sequence of
ungated device feature vectors. We will explore these
different choices in our experiments.

Our goal is to minimize prediction error while limiting
the number of “participating” devices averaged over the
data points. Mathematically, we would like to solve
the following optimization problem:

min
h0,h1,...,hK ,g1,...,gK

n∑
i=1

L

(∑
k

hk(xik)gk(xik), y(i)

)

+ λ

n∑
i=1

K∑
k=1

gk(xk) (OPT)

where L is the loss function and λ is a multiplier to
tradeoff the accuracy with communication budget. For

4While linear model can be kernelized to incorporate
highly complex decision boundaries and activation functions,
the kernel methods suffer from substantial computational
scaling.

Figure 2: Demonstration with two devices, with mea-
surements along the different axis, and various forms of
gating for binary classification on a four Gaussian mix-
ture. Example A: positive: yellow/purple; Negative:
red/green. No linear classifier can separate data. A gated
classifier f(x1, x2) = x11x1≥0 − x2 achieves 100% accu-
racy with 25% reduced activation. Example B: positive-
yellow/green; Negative- red/purple. Vector gating with
f(x1, x2) = x11x1≥0 − 2x21x2≥0 + x2 is now required.
classification, we typically use a softmax function and
score accuracy loss by means of cross-entropy, although
other types of losses could also be considered. We solve
(OPT) by means of stochastic gradient descent (SGD).

As described earlier we tune λ to obtain the activation
functions that meet a desired budget. For a prespecified
device usage, we sweep potential values using cross val-
idation to determine the suitable λ. This is a standard
technique in many algorithms such as Lasso (Tibshirani,
1996).

Vector-Valued Gating: We generalize our model
Eq. 3.1.1 to express complex compression functions (see
Fig. 2). To do this we consider a family of piecewise lin-
ear compression functions, hij(xi), j = 1, 2, . . . , J and
construct gating vectors gi(xi) = [gi1(xi), . . . , giJ(xi)]
for device i. The compression function hi(xi) =∑
j∈J hij(xi)gij(xi) is now a superposition of linear

compression functions weighted by the gated output.
Activation is enforced through `1/`∞ penalty.

3.2 Exactness of Model with Naive Bayes

To build intuition we will show that Eq. 3.1.1 has
the form of the optimal classifier under the Naive-
Bayes assumption, namely, when the device features
are independent when conditioned on class label:
P (x1, x2, . . . , xK | y) =

∏K
i=1 P (xi | y). This is a

simplifying assumption that has been conventionally
adopted in the context of decentralized detection the-
ory as a compromise between accuracy and mathe-
matical tractability5. In this setting it is sufficient
to consider local-likelihoods for the device-wise fea-
ture mappings. The optimal gating is a function of

5For instance, this assumption is satisfied for a M-
component Gaussian mixture. Each component corresponds
to a class-label and is described by a mean-vector and co-
variance equal to identity.
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just the local-likelihood at each device. In particu-
lar, we let `i,j(xi) = logP (xi | y = j), j ∈ [M ] and
hi(xi) = [`i,1(xi), `i2(xi), . . . , `i,M (xi)]

T .
Lemma 3.1. The optimal classifier under the Naive
Bayes assumption has the form: f(x1, x2, . . . xK) =∑K

i=1 hi(xi)gi(hi(xi)) + b.

For Gaussian random variables the local likelihood
ratios are linear functions of features leading to opti-
mal classifier taking the form: f(x) =

∑K
k=1(νTk xk +

bk)gk(νTk xk + bk) + d for some fixed constant, d, vec-
tors bk and matrices νk ∈ <M×D. Mathematically,
Eq. 3.1.1 is a direct extension with arbitrary weight-
ings matrices. (Appadwedula et al., 2008) show that for
specific communication constraints, the gating function
is a two-sided threshold on the likelihood ratio but is
intractable in general even under conditional indepen-
dence. Nevertheless, as seen from Fig. 2, the proposed
parameterizations are capable of learning rules even
when independence assumptions are not satisfied. This
motivates our discriminative learning based approach.

4 ANALYSIS
We use SGD to optimize a non-convex objective func-
tion given by (OPT), and hence in general, the algo-
rithm can converge to a significantly suboptimal station-
ary point. However, in our simulations the algorithm
recovers nearly optimal solution in a few iterations,
suggesting that the problem is "easy" for "nice" data.
In this section, we formalize this intuition by study-
ing problem (OPT) in a simple realizable setting with
Gaussian data. That is, suppose there exists an opti-
mal set of parameters Θ∗ = (V ∗,W ∗, a∗, b∗) that leads
to the response variable; V ∗ = [v∗1 , . . . , v

∗
K ] ∈ <M×K ,

W ∗ = [w∗1 , . . . , w
∗
K ] ∈ <M×K , a∗ = [a1, . . . , aK ] ∈ <K ,

and b∗ = [b∗1, . . . , b
∗
K ] ∈ <K . That is,

y(x) =

K∑
k=1

(xTk v
∗
k + a∗k)φ(xTkw

∗
k + b∗k), (4.0.1)

where φ : < → < is a Sigmoid, ReLU activation etc.

Also, let each data point x(i) ∼ D whereD is a Gaussian
distribution. Without loss of generality (Wlog), we can
assume that D is 0-mean spherical normal distribution.
Considering squared loss function, the population and
the empirical risk minimization problems is:

L(V,W, a, b) =

Ex∼D(y −
K∑
k=1

(xTk vk + ak)φ(xTkwk + bk))2, (4.0.2)

L̂(V,W, a, b) =

1

n

n∑
i=1

(y(i)−
K∑
k=1

(vTk x
(i)
k + ak)φ(wTk x

(i)
k + bk))2.

To understand how gradient descent style algorithms
perform for this problem, we first show that while
the parameterization of the objective function is non-
convex, it is a strongly convex objective function in a
closed set containing the global optima.
Theorem 4.1. Let D = N(0, I) and let data points
xs, 1 ≤ s ≤ n be generated i.i.d. from D and the
response ys is given by (4.0.1) with optimal parameters
(V ∗,W ∗, a∗ = 1, b∗ = 1) s.t. ‖w∗i ‖ = 1, ‖v∗i ‖ = 1. Also,
let the activation function φ be such that |φ(z)| ≤ B|z|q,
|φ(z)− φ(z′)| ≤ L0|z − z′|, φ′(z) ≤ L1|z|p, φ′′(z) ≤ L2

for some global constants B,L0, L1, L2, p, q. Further-
more, let n ≥ CK2d2 logC d.

Then, for any fixed Θ = (V,W, a = 1, b = 1) such that
‖Θ−Θ∗‖ ≤ C0√

K
, the following holds (w.p. ≥ 1− 10K2

n100 ):

C1I � Ĥ(Θ) � C2I

where Ĥ(Θ) is the Hessian of empirical loss (4.0.2)
evaluated at Θ. C0, C, C1, C2 are global constants.

Following convention we bound the error as a polyno-
mial factor n−100 for concreteness.

Remark: Note that our result requires new analysis
and new techniques. For instance, the most closely
related setting (Zhong et al., 2017) (see Sec. 4) con-
siders the model y =

∑
i aiφ(wix). Only wi is the

optimization parameter; ai assumed constant in their
algorithm analysis, which greatly simplifies their proof.
Furthermore, x is shared across all nodes. In contrast
our model is y =

∑
i(vixi + ai)φ(wixi + bi) where both

vi and wi are optimization parameters. This objective
is difficult even when φ(·) is linear, since it would be a
bilinear expression. Technically, we need to deal with
the fact that our Hessian has cross-product terms due
to multiplication of vi and wi. In contrast (Zhang
et al., 2017) does not, which they leverage to simplify
analysis. We develop a new method of analysis based
on on Schur-Product theorem in our proof of Theorem
4.1, which can itself be of independent interest.

We now leverage Theorem 4.1 and standard arguments
to show that the standard gradient descent algorithm
converges to the global optimal in small number of
iterations. To do this in Theorem 4.2 we show strong
convexity for a fixed parameter Θt along the line joining
Θt and Θ∗ so as to leverage the analysis of standard
SGD analysis, which only requires this fact.
Theorem 4.2. Consider the setting of Theorem 4.1.
Then gradient descent method which samples new set of
points (xs, ys), 1 ≤ s ≤ n at each step and is initialized
with Θ0 s.t. ‖Θ∗−Θ0‖ ≤ C0√

K
, converges to a parameter

Θ after T -iterations such that: ‖Θ − Θ∗‖ ≤ C−C5T
4 ,

where 0 ≤ C4 ≤ 1, C5 > 0 are global constants.

Note that similar results have been shown to hold for
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one hidden layer neural networks (Zhong et al., 2017).
However, our prediction function is significantly more
complicated than a single hidden layer network and
hence, the existing results do not apply. In particular,
our Hessian structure is more complex and has several
more interdependent blocks and requires novel analysis
that is based on the Schur product theorem (Horn and
Johnson, 1991).

5 EMPIRICAL RESULTS
5.1 Synthetic dataset

We first illustrate using synthetic data that SGD can
recover the ground truth parameters from a neigh-
borhood around them. The purpose is to empirically
validate Theorem 4.2 and so no budget is enforced.

Data generation We generate n = 2000 sample data
points x(i), i = 1, . . . , n, each consists of features from
K = 2 devices and each device has 10 dimensional
features: x(i)

k ∈ <10, k = 1, 2. The features are gener-
ated from an i.i.d. standard normal distribution. We
then generate the ground truth parameters V ∗,W ∗, b∗
with each element drawn from i.i.d. standard normal
distribution. Finally, we generate the regression targets
based on: y(i) =

∑K
k=1 v

∗
kx

(i)
k φ(w∗kx

(i)
k + b∗k), where we

have a choice of using ReLU/Sigmoid function for φ.

Algorithm We perform alternating minimization with
SGD of the following objective.

min
v,w,b

n∑
i=1

(
K∑
k=1

vkx
(i)
k φ(wkx

(i)
k + bk)− y(i)

)2

.

We first fix W, b, perform 50 steps of gradient descend
for V ; then fix V and perform the same number of gradi-
ent descend steps forW, b; repeat for 500 times. Initial-
ization We iteratively minimize the objective with dif-
ferent initialization of V,W, b by simply adding a scaled
version of Gaussian noise to the ground truth parame-
ters: V0 = V ∗ + NoiseLevel×NV , where NoiseLevel is
a scalar value controlling the magnitude of the noise
and NV is drawn from standard normal distribution
with the same dimension as V ∗. Likewise we initialize
W0 and b0.

We compare the rate at which the parameters converge
to the ground truth values with ReLU and sigmoid
activations under different initialization noise levels.
We repeat each experiment for 10 times and report the
mean. We report both the loss as well as the cosine
distance of W and V from their ground truth values.
The NoiseLevel in (a) and (b) of Figure 3 are set to 1
while it is set to 4 in (c) and (d). We observe that the
when the initial parameter is close to the ground truth
they converge very quickly; this is consistent with our
analysis in Theorem 4.2. We also notice that ReLU

activation leads to faster convergence than the sigmoid.

Table 1: Summary of Datasets: number of data points
n for training and testing, sensor types, number of sensor
units K, feature dimension D measured by each sensor and
number of classes M . (*: acm = accelerometer, mgm =
magnetometer, gyr = gyroscope, geo = geomagnetic)

Dataset n(train/test) sensor type* K D M
DailySports 6080/3040 acm, gyr, mgm 5 1125 19
WARD 44735/20000 acm, gyr 5 40 13

AReM 28160/14079 received signal
strength 3 2 7

DukeReID 2828/707 camera 8 2048 707
WFRobot 3638/1818 ultrasound 4 6 4

HAR 6866/3433 acm, gyr 5 119 6

GLEAM 429/211
linear acceleration
gravity, gyr, acm

rotation vector, geo
6 18 7

GAS 9274/4636 chemical 16 8 6

5.2 Real world datasets
We test our method on eight real world datasets that
appear in diverse IoT contexts including multi-sensor
data fusion—AReM (Palumbo et al., 2016), activity
monitoring and recognition with wearable sensors—
WARD (Yang et al., 2009), DailySports (Altun et al.,
2010), smart phone based monitoring—HAR (Anguita
et al., 2013), Google Glass—GLEAM (Rahman et al.,
2015), multi-camera surveillance—DukeREID (Gou
et al., 2017), robotic navigation—WFRobot (Dheeru
and Karra Taniskidou, 2017), and gas sensor array
for chemical detection—GAS (Vergara et al., 2012)g.
Apart from GLEAM, HAR, WFROBOT datasets, all
of the other datasets have non-collocated sensors and
are equipped with individual transmitters. Our results
for these are based on equipping each sensor with a
transmitter. We summarize the datasets in Table 1.

Baseline Non-Adaptive Methods: We benchmark
energy gains against best performance obtainable with
two strong non-adaptive models.
Unconstrained Baseline Model (BaseM): In this base-
line our objective is to maximize accuracy without the
constraint on battery usage. This means that each
device can send its feature vector independently to
the fusion center. The fusion center takes the con-
catenated set of device feature vectors and outputs
a prediction. We train a fully connected neural net-
work with several hidden layers at the fusion center
to maximize accuracy. Our experiments indicate that
for the datasets under consideration, a 3 hidden layer
NN achieve top-accuracy, and additional layers tend to
overtrain. Performance on test data is then tabulated.
Limited Battery Baseline Model (LimBaseM): In this
case we combinatorially search over the best k out of
K available devices that achieve the highest accuracy
for each k with the NN architecture of BaseM. Feature
vectors from these k-devices are then concatenated at
the fusion center and the NN is trained. This approach
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(a) ReLU, NoiseLevel 1 (b) Sigmoid, NoiseLevel 1 (c) ReLU, NoiseLevel 4 (d) Sigmoid, NoiseLevel 4

Figure 3: Parameter recovery under ReLU and Sigmoid, under different initialization noise levels.

is non-adaptive in the sense that for a fixed cost level,
or k, the same subset of sensors are active for all data
points. In contrast, our method can activate different
sensors for different data points adaptively thanks to
the gating function. Note that because k sensors must
be selected, there is a possibility that accuracy can
drop due to noisy features as in DukeReiD dataset.

Baseline Adaptive Method: Greedy Entropy Model
(GreedyEntM): A naive adaptive scheme that often
works well is based on computing a local prediction
for a device followed by gating instances that have
entropy/margin of the predicted labels larger than a
threshold (Bolukbasi et al., 2017b). In this method, the
prediction probability from a device is transmitted if its
entropy is smaller than a threshold. The fusion center
sums the transmitted local prediction probabilities and
feeds it into the network to make final prediction. The
threshold is chosen based on available energy budget.

Performance Metrics: We consider two metrics: ac-
curacy achievable and total battery usage on average
across all devices to achieve that accuracy. Battery
usage for non-adaptive schemes (no gating) is com-
puted based on number of active devices. For adaptive
methods, battery usage is computed based on the av-
erage number of device activations averaged over test
examples in the test data. A battery gain of 2X in the
table implies that the battery life is twice that of the
unlimited baseline model (BaseM).

Adaptive Schemes: For our adaptive scheme we im-
plemented the model described in Eq. 3.1.1 with differ-
ent compression functions listed below.
Low-Dimensional Compression Model (LoDiM): For
this we chose the output dimension to be the number
of target classes (d = M). Our objective here is to
benchmark scenarios where output feature dimension
must also be factored into battery usage. In this sce-
nario device outputs are viewed as "local" predictions
which are then summed into a single M dimensional
vector that is fed into the fusion center network.
Concatenated Compression Model (ConCoM): Again
d = M , but the transmitted device features are con-
catenated and input to the fusion center. As described

in Sec. 3 this setup can also be viewed as a individual
predicted outputs that are mapped into independent
blocks in a KM dimensional space.
Uncompressed Concatenated Model (UnCoM): Here
d = D, i.e., the entire feature vector that is not gated
is transmitted to fusion center.

Implementation: In all our adaptive schemes we
trained an end-to-end model with (i) Gating function
using ReLU activation; (ii) Linear transformation for
the compression function and 3-layer fully connected
NN architecture as in the baseline model. We imple-
mented a conventional SGD scheme to jointly train
gating, compression function and the fusion networks.
For all the datasets, we set the number of nodes in
the hidden layers of the NNs to be (64, 16), except for
DukeReID, where we set it to (1024, 1024) due to the
high dimensional features. The hyperparameters (e.g.
learning rate, regularizer, etc.) for the baseline model
is tuned to obtain the highest accuracy. The NNs of
proposed models are trained from scratch and share
the same hyperparameters to have a fair comparison.
The only hyperparameter we fine-tuned is the training
epoch, where the number of epochs is chosen through
cross validation on the training set, and then the model
is trained on the entire training data by the epochs. A
local output vector is assumed to be transmitted if the
corresponding ReLU gating function is nonzero during
test time. In the DukeREID multi-camera dataset,
each instance is a person, who is viewed by 8 cameras
with possibly non-overlapping views. Our goal is to
recognize the person with minimal number of camera
views. The number of classes (people) consists of a
list of 707 people. The problem is quite challenging
since the training data is limited with a large number
of classes. For training and testing we used a pre-
trained Inception-v3 network, trained on Market-1501
dataset (Zheng et al., 2015), and extracted the final
layer features as inputs to each device (camera).

Baselines: Adaptive vs Non-adaptive: From the
tabulated results, it is evident that the naive adaptive
scheme (GreedyEntM) is not even competitive to the
non-adaptive baseline. Under the same level of battery
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Dataset BaseM/LimBaseM GreedyEntM UnCoM ConCoM LoDiM
Acc(%) Saving Acc(%) Saving Acc(%) Saving Acc(%) Saving Acc(%) Saving

DailySports 95.2 1x 90.1 1x 94.9 2.02x 94.9 2.09x 95.2 1.19x
83.6 2.50x 70.4 2.50x 92.7 2.98x 94.1 2.42x 92.6 1.61x

WARD 99.4 1x 96.5 1.x 99.1 1.42x 99.0 1.30x 98.1 1.33x
98.9 1.25x 94.2 1.25x 97.5 1.48x 97.3 1.55x 97.3 1.42x

AReM 75.6 1x 70.1 1x 74.9 1x 77.1 1x 69.6 1x
71.1 1.50x 66.7 1.50x 66.3 1.28x 71.5 1.58x 69.6 1.07x

Duke4ReID 87.6 1x 57.1 1.x 86.3 2.82x 85.4 2.62x 79.3 1.80x
57.5 2.67x 34.2 2.48x 85.7 2.94x 79.7 2.99x 70.5 2.41x

WFRobot 92.2 1x 69.6 1.x 93.3 1.22x 93.6 1.44x 87.0 1.21x
88.5 1.33x 74.7 1.33x 86.3 1.93x 90.4 1.93x 78.2 1.91x

HAR 98.8 1x 97.7 1.x 98.4 2.05x 98.0 1.79x 97.9 1.83x
98.4 1.67x 96.9 1.67x 97.8 2.81x 97.4 2.46x 96.6 2.55x

GLEAM 80.1 1x 78.7 1.x 80.5 1.01x 80.5 1x 79.7 1.02x
77.7 1.20x 79.2 1.20x 72.5 1.19x 75.3 1.25x 78.7 1.18x

GAS* 88.1 1x 77.7 1.x 90.3 1.51x 90.2 1.50x 89.1 1.52x
84.4 2x 72.2 2.x 84.7 2.13x 85.1 2.05x 85.6 1.97x

Table 2: Tabulation of Empirical Test Results on 8 real datasets for baseline models (BaseM, LimBaseM, GreedyEntM)
and adaptive models (low-dimensional compression (LoDiM), Concatenated Compression (ConCoM), Uncompressed Model
(UncoM). A battery gain 2X implies that the battery life is twice that of the unlimited baseline model (BaseM). For each
dataset, the highest achievable accuracy is in bold. (*We select best k sensors by random sampling since Gas has 16
sensors.)

saving, the accuracy for GreedyEntM is lower than
BaseM. Therefore, we focus on comparing with non-
adaptive baselines in the following.

Our Adaptive vs (Non-adaptive) Baselines: Our
objective is to match accuracy of BaseM with adaptive
schemes with high battery gain. Our second objective
is to benchmark highest accuracy for a similar battery
usage as the adaptive scheme. We do this by exploring
different k-device combinations (LimBaseM), with k
chosen to be comparable to the battery usage of the
top adaptive scheme, and identify device combinations
that achieves maximum accuracy with k devices6.

First, we see that we match accuracy of the baseline
with significant battery gains. In particular, as much as
2.81X gain with negligible accuracy degradation. We
see that in all cases, our method of activating sensors
in an input dependent manner out-performs the non-
adaptive best-k method even though the best-k method
benefits from concatenated device features. So the per-
formance improvement in our method can be attributed
to adaptivity realized through instance-dependent gat-
ing. Interestingly, we also see improvement in top
performance for GAS/AReM datasets even over the
unconstrained baseline (BaseM) as well. This is because
a gated classifier in the large budget region functions
as an ensemble of local predictions from the devices
leading to boosted performance.

Comparisons of Adaptive Schemes: We highlight
a few key observations that we can draw from the
table. First, we observe that UnCoM typically domi-
nates both ConCom and LoDim, achieving both high
accuracy and battery gains. This is not altogether sur-

6Note that since k is an integer we are unable to match
the battery usage exactly but are typically quite close.

prising because, except for gating, we transmit the full
device features. LoDiM linearly aggregates all of the
features into a single M -dimensional vector and per-
forms poorly on AReM and DukeReID. AReM dataset
is a low-dimensional dataset with more classes than
features, and so ConCom dominates UnCoM on AReM.
DukeReID has large number of classes and since each
class is sparsely viewed, combining features linearly
leads to poor discriminability. On the other hand, on
GLEAM dataset, the best performance is achieved by
LoDiM. This is due to the fact that the training data
is rather limited and more complex models suffer from
overfitting. Nevertheless, on other datasets, LoDiM
usually achieves comparable accuracies but with re-
duced battery gain. This implies that the gated predic-
tion performance is quite sensitive to output dimension
of compression functions. Nevertheless, if activation
energy also scales linearly with feature dimension, we
would expect a different accuracy/battery-usage trade-
off, which will favor LowDim considerably.

6 CONCLUSION
We proposed a novel learning framework for distributed
inference for IoT applications based on training a decen-
tralized gated network that, given an observed instance
at test-time, allows for activation of select devices to
transmit information to a central node, which then per-
forms inference. This approach allows IoT devices to
save energy due to reduced transmissions. We demon-
strated significant energy gains on several real-world
datasets with negligible accuracy degradation. We
presented theoretical analysis and showed that under
reasonable initialization, our SGD algorithm is guaran-
teed to converge for our non-convex objective to the
global minima in the realizable case.
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