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Abstract 
Kernel PCA as a nonlinear feature extractor has proven powerful as a 
preprocessing step for classification algorithms. But it can also be con­
sidered as a natural generalization of linear principal component anal­
ysis. This gives rise to the question how to use nonlinear features for 
data compression, reconstruction, and de-noising, applications common 
in linear PCA. This is a nontrivial task, as the results provided by ker­
nel PCA live in some high dimensional feature space and need not have 
pre-images in input space. This work presents ideas for finding approxi­
mate pre-images, focusing on Gaussian kernels, and shows experimental 
results using these pre-images in data reconstruction and de-noising on 
toy examples as well as on real world data. 

1 peA and Feature Spaces 
Principal Component Analysis (PC A) (e.g. [3]) is an orthogonal basis transformation. 
The new basis is found by diagonalizing the centered covariance matrix of a data set 
{Xk E RNlk = 1, ... ,f}, defined by C = ((Xi - (Xk))(Xi - (Xk))T). The coordi­
nates in the Eigenvector basis are called principal components. The size of an Eigenvalue 
>. corresponding to an Eigenvector v of C equals the amount of variance in the direction 
of v. Furthermore, the directions of the first n Eigenvectors corresponding to the biggest 
n Eigenvalues cover as much variance as possible by n orthogonal directions. In many ap­
plications they contain the most interesting information: for instance, in data compression, 
where we project onto the directions with biggest variance to retain as much information 
as possible, or in de-noising, where we deliberately drop directions with small variance. 

Clearly, one cannot assert that linear PCA will always detect all structure in a given data set. 
By the use of suitable nonlinear features, one can extract more information. Kernel PCA 
is very well suited to extract interesting nonlinear structures in the data [9]. The purpose of 
this work is therefore (i) to consider nonlinear de-noising based on Kernel PCA and (ii) to 
clarify the connection between feature space expansions and meaningful patterns in input 
space. Kernel PCA first maps the data into some feature space F via a (usually nonlinear) 
function <II and then performs linear PCA on the mapped data. As the feature space F 
might be very high dimensional (e.g. when mapping into the space of all possible d-th 
order monomials of input space), kernel PCA employs Mercer kernels instead of carrying 
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out the mapping <I> explicitly. A Mercer kernel is a function k(x, y) which for all data 
sets {Xi} gives rise to a positive matrix Kij = k(Xi' Xj) [6]. One can show that using 
k instead of a dot product in input space corresponds to mapping the data with some <I> 
to a feature space F [1], i.e. k(x,y) = (<I>(x) . <I>(y)). Kernels that have proven useful 
include Gaussian kernels k(x, y) = exp( -llx - Yll2 Ie) and polynomial kernels k(x, y) = 
(x·y)d. Clearly, all algorithms that can be formulated in terms of dot products, e.g. Support 
Vector Machines [1], can be carried out in some feature space F without mapping the data 
explicitly. All these algorithms construct their solutions as expansions in the potentially 
infinite-dimensional feature space. 

The paper is organized as follows: in the next section, we briefly describe the kernel PCA 
algorithm. In section 3, we present an algorithm for finding approximate pre-images of 
expansions in feature space. Experimental results on toy and real world data are given in 
section 4, followed by a discussion of our findings (section 5). 

2 Kernel peA and Reconstruction 
To perform PCA in feature space, we need to find Eigenvalues A > 0 and Eigenvectors 
V E F\{O} satisfying AV = GV with G = (<I>(Xk)<I>(Xk)T).1 Substituting G into the 
Eigenvector equation, we note that all solutions V must lie in the span of <I>-images of the 
training data. This implies that we can consider the equivalent system 

A( <I>(Xk) . V) = (<I>(Xk) . GV) for all k = 1, ... ,f (1) 

and that there exist coefficients Q1 , ... ,Ql such that 

l 
V = L i=l Qi<l>(Xi) (2) 

Substituting C and (2) into (1), and defining an f x f matrix K by Kij := (<I>(Xi)· <I>(Xj)) = 
k( Xi, X j), we arrive at a problem which is cast in terms of dot products: solve 

fAa = Ko. (3) 

where 0. = (Q1, ... ,Ql)T (for details see [7]). Normalizing the solutions V k , i.e. (Vk . 

Vk) = 1, translates into Ak(o.k .o.k) = 1. To extract nonlinear principal components 
for the <I>-image of a test point X we compute the projection onto the k-th component by 
13k := (Vk . <I> (X)) = 2:f=l Q~ k(x, Xi). Forfeature extraction, we thus have to evaluate f 
kernel functions instead of a dot product in F, which is expensive if F is high-dimensional 
(or, as for Gaussian kernels, infinite-dimensional). To reconstruct the <I>-image of a vector 
X from its projections 13k onto the first n principal components in F (assuming that the 
Eigenvectors are ordered by decreasing Eigenvalue size), we define a projection operator 
Pn by 

(4) 
k=l 

If n is large enough to take into account all directions belonging to Eigenvectors with non­
zero Eigenvalue, we have Pn<l>(Xi) = <I>(Xi). Otherwise (kernel) PCA still satisfies (i) that 
the overall squared reconstruction error 2:i II Pn<l>(Xi) - <I>(xdll2 is minimal and (ii) the 
retained variance is maximal among all projections onto orthogonal directions in F. In 
common applications, however, we are interested in a reconstruction in input space rather 
than in F. The present work attempts to achieve this by computing a vector z satisfying 
<I>(z) = Pn<l>(x). The hope is that for the kernel used, such a z will be a good approxi­
mation of X in input space. However. (i) such a z will not always exist and (ii) if it exists, 

I For simplicity, we assume that the mapped data are centered in F. Otherwise, we have to go 
through the same algebra using ~(x) := <I>(x) - (<I>(x;»). 
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it need be not unique.2 As an example for (i), we consider a possible representation of F. 
One can show [7] that <I> can be thought of as a map <I> (x) = k( x, .) into a Hilbert space 1{ k 
of functions Li ai k( Xi, .) with a dot product satisfying (k( x, .) . k(y, .)) = k( x, y). Then 
1{k is caHed reproducing kernel Hilbert space (e.g. [6]). Now, for a Gaussian kernel, 1{k 
contains aHlinear superpositions of Gaussian bumps on RN (plus limit points), whereas 
by definition of <I> only single bumps k(x,.) have pre-images under <1>. When the vector 
P n<l>( x) has no pre-image z we try to approximate it by minimizing 

p(z) = 1I<I>(z) - Pn<l>(x) 112 (5) 

This is a special case of the reduced set method [2]. Replacing terms independent of z by 
0, we obtain 

p(z) = 1I<I>(z)112 - 2(<I>(z) . Pn<l>(x)) + 0 (6) 

Substituting (4) and (2) into (6), we arrive at an expression which is written in terms of 
dot products. Consequently, we can introduce a kernel to obtain a formula for p (and thus 
V' % p) which does not rely on carrying out <I> explicitly 

n l 

p(z) = k(z, z) - 2 L f3k L a~ k(z, Xi) + 0 (7) 
k=l i=l 

3 Pre-Images for Gaussian Kernels 
To optimize (7) we employed standard gradient descent methods. If we restrict our attention 
to kernels of the form k(x, y) = k(llx - Y1l2) (and thus satisfying k(x, x) == const. for all 
x), an optimal z can be determined as foHows (cf. [8]): we deduce from (6) that we have 
to maximize 

l 

p(z) = (<I>(z) . Pn<l>(x)) + 0' = L Ii k(z, Xi) + 0' (8) 
i=l 

where we set Ii = L~=l f3ka: (for some 0' independent of z). For an extremum, the 

gradient with respect to z has to vanish: V' %p(z) = L~=l lik'(llz - xi112)(Z - Xi) = O. 
This leads to a necessary condition for the extremum: z = Li tJixd Lj tJj, with tJi 
,ik'(llz - xiIl2). For a Gaussian kernel k(x, y) = exp( -lix - Yll2 jc) we get 

L~=l Ii exp( -liz - xil1 2 jC)Xi 
z= l ~ 

Li=l liexp(-llz - xil12jc) 

We note that the denominator equals (<I>(z) . P n<l>(X)) (cf. (8». Making the assumption that 
Pn<l>(x) i= 0, we have (<I>(x) . Pn<l>(x)) = (Pn<l>(x) . Pn<l>(x)) > O. As k is smooth, we 
conclude that there exists a neighborhood of the extremum of (8) in which the denominator 
of (9) is i= O. Thus we can devise an iteration scheme for z by 

L~=l Ii exp( -llzt - xill 2 jC)Xi 
Zt+l = l 

Li=l li exp(-lI z t - xil12jc) 
(10) 

Numerical instabilities related to (<I>(z) . Pn<l>(x)) being smaH can be dealt with by restart­
ing the iteration with a different starting value. Furthermore we note that any fixed-point 
of (10) will be a linear combination of the kernel PCA training data Xi. If we regard (10) 
in the context of clustering we see that it resembles an iteration step for the estimation of 

2If the kernel allows reconstruction of the dot-product in input space, and under the assumption 
that a pre-image exists, it is possible to construct it explicitly (cf. [7]). But clearly, these conditions 
do not hold true in general. 
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the center of a single Gaussian cluster. The weights or 'probabilities' T'i reflect the (anti-) 
correlation between the amount of cP (x) in Eigenvector direction Vk and the contribution 
of CP(Xi) to this Eigenvector. So the 'cluster center' z is drawn towards training patterns 
with positive T'i and pushed away from those with negative T'i, i.e. for a fixed-point Zoo the 
influence of training patterns with smaner distance to x wi11 tend to be bigger. 

4 Experiments 
To test the feasibility of the proposed algorithm, we run several toy and real world ex­
periments. They were performed using (10) and Gaussian kernels of the form k(x, y) = 
exp( -(llx - YI12)/(nc)) where n equals the dimension of input space. We mainly focused 
on the application of de-noising, which differs from reconstruction by the fact that we are 
allowed to make use of the original test data as starting points in the iteration. 

Toy examples: In the first experiment (table 1), we generated a data set from eleven Gaus­
sians in RIO with zero mean and variance u2 in each component, by selecting from each 
source 100 points as a training set and 33 points for a test set (centers of the Gaussians ran­
domly chosen in [-1, 1]10). Then we applied kernel peA to the training set and computed 
the projections 13k of the points in the test set. With these, we carried out de-noising, yield­
ing an approximate pre-image in RIO for each test point. This procedure was repeated for 
different numbers of components in reconstruction, and for different values of u. For the 
kernel, we used c = 2u2 • We compared the results provided by our algorithm to those of 
linear peA via the mean squared distance of an de-noised test points to their correspond­
ing center. Table 1 shows the ratio of these values; here and below, ratios larger than one 
indicate that kernel peA performed better than linear peA. For almost every choice of 
nand u, kernel PeA did better. Note that using alllO components, linear peA is just a 
basis transformation and hence cannot de-noise. The extreme superiority of kernel peA 
for small u is due to the fact that all test points are in this case located close to the eleven 
spots in input space, and linear PeA has to cover them with less than ten directions. Ker­
nel PeA moves each point to the correct source even when using only a sman number of 
components. 

n=1 2 3 4 5 6 7 8 9 
0.05 2058.42 1238.36 846.14 565.41 309.64 170.36 125.97 104.40 92.23 
0.1 10.22 31.32 21.51 29.24 27.66 2:i.5:i 29.64 40.07 63.41 
0.2 0.99 1.12 1.18 1.50 2.11 2.73 3.72 5.09 6.32 
0.4 1.07 1.26 1.44 1.64 1.91 2.08 2.22 2.34 2.47 
0.8 1.23 1.39 1.54 1.7U 1.8U 1.96 2.10 2.25 2.39 

Table 1: De-noising Gaussians in RIO (see text). Performance ratios larger than one indi­
cate how much better kernel PeA did, compared to linear PeA, for different choices of the 
Gaussians' std. dev. u, and different numbers of components used in reconstruction. 

To get some intuitive understanding in a low-dimensional case, figure 1 depicts the results 
of de-noising a half circle and a square in the plane, using kernel peA, a nonlinear au­
toencoder, principal curves, and linear PeA. The principal curves algorithm [4] iteratively 
estimates a curve capturing the structure of the data. The data are projected to the closest 
point on a curve which the algorithm tries to construct such that each point is the average 
of all data points projecting onto it. It can be shown that the only straight lines satisfying 
the latter are principal components, so principal curves are a generalization of the latter. 
The algorithm uses a smoothing parameter whic:h is annealed during the iteration. In the 
nonlinear autoencoder algorithm, a 'bottleneck' 5-layer network is trained to reproduce the 
input values as outputs (i.e. it is used in autoassociative mode). The hidden unit activations 
in the third layer form a lower-dimensional representation of the data, closely related to 
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PCA (see for instance [3]). Training is done by conjugate gradient descent. In all algo­
rithms, parameter values were selected such that the best possible de-noising result was 
obtained. The figure shows that on the closed square problem, kernel PeA does (subjec­
tively) best, followed by principal curves and the nonlinear autoencoder; linear PeA fails 
completely. However, note that all algorithms except for kernel PCA actually provide an 
explicit one-dimensional parameterization of the data, whereas kernel PCA only provides 
us with a means of mapping points to their de-noised versions (in this case, we used four 
kernel PCA features, and hence obtain a four-dimensional parameterization). 

kernel PCA nonlinear autoencoder Principal Curves linear PCA 

~It%i 1J;:qf~~ 

I::f;~.;~,: '~ll 
Figure 1: De-noising in 2-d (see text). Depicted are the data set (small points) and its 
de-noised version (big points, joining up to solid lines). For linear PCA, we used one 
component for reconstruction, as using two components, reconstruction is perfect and thus 
does not de-noise. Note that all algorithms except for our approach have problems in 
capturing the circular structure in the bottom example. 

USPS example: To test our approach on real-world data, we also applied the algorithm 
to the USPS database of 256-dimensional handwritten digits. For each of the ten digits, 
we randomly chose 300 examples from the training set and 50 examples from the test 
set. We used (10) and Gaussian kernels with c = 0.50, equaling twice the average of 
the data's variance in each dimensions. In figure 4, we give two possible depictions of 

1111 II iI 111111 fill 
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Figure 2: Visualization of Eigenvectors (see 
text). Depicted are the 2°, ... , 28 -th Eigen­
vector (from left to right). First row: linear 
PeA, second and third row: different visual­
izations for kernel PCA. 

the Eigenvectors found by kernel PCA, compared to those found by linear PCA for the 
USPS set. The second row shows the approximate pre-images of the Eigenvectors V k , 

k = 2°, ... ,28, found by our algorithm. In the third row each image is computed as 
follows: Pixel i is the projection of the <II-image of the i-th canonical basis vector in input 
space onto the corresponding Eigenvector in features space (upper left <II(el) . V k , lower 
right <II (e256) . Vk). In the linear case, both methods would simply yield the Eigenvectors 
oflinear PCA depicted in the first row; in this sense, they may be considered as generalized 
Eigenvectors in input space. We see that the first Eigenvectors are almost identical (except 
for signs). But we also see, that Eigenvectors in linear PeA start to concentrate on high­
frequency structures already at smaller Eigenvalue size. To understand this, note that in 
linear PCA we only have a maximum number of 256 Eigenvectors, contrary to kernel PCA 
which gives us the number of training examples (here 3000) possible Eigenvectors. This 
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Figure 3: Reconstruction of USPS data. Depicted are the reconstructions of the first digit 
in the test set (original in last column) from the first n = 1, ... ,20 components for linear 
peA (first row) and kernel peA (second row) case. The numbers in between denote the 
fraction of squared distance measured towards the original example. For a small number 
of components both algorithms do nearly the same. For more components, we see that 
linear peA yields a result resembling the original digit, whereas kernel peA gives a result 
resembling a more prototypical 'three' 

also explains some of the results we found when working with the USPS set. In these 
experiments, linear and kernel peA were trained with the original data. Then we added (i) 
additive Gaussian noise with zero mean and standard deviation u = 0.5 or (ii) 'speckle' 
noise with probability p = 0.4 (i.e. each pixel flips to black or white with probability 
p/2) to the test set. For the noisy test sets we computed the projections onto the first n 
linear and nonlinear components, and carried out reconstruction for each case. The results 
were compared by taking the mean squared distance of each reconstructed digit from the 
noisy test set to its original counterpart. As a third experiment we did the same for the 
original test set (hence doing reconstruction, not de-noising). In the latter case, where 
the task is to reconstruct a given example as exactly as possible, linear peA did better, 
at least when using more than about 10 components (figure 3). This is due to the fact 
that linear peA starts earlier to account for fine structures, but at the same time it starts 
to reconstruct noise, as we will see in figure 4. Kernel PCA, on the other hand, yields 
recognizable results even for a small number of components, representing a prototype of 
the desired example. This is one reason why our approach did better than linear peA for the 
de-noising example (figure 4). Taking the mean squared distance measured over the whole 
test set for the optimal number of components in linear and kernel PCA, our approach did 
better by a factor of 1.6 for the Gaussian noise, and 1.2 times better for the 'speckle' noise 
(the optimal number of components were 32 in linear peA, and 512 and 256 in kernel 
PCA, respectively). Taking identical numbers of components in both algorithms, kernel 
peA becomes up to 8 (!) times better than linear peA. However, note that kernel PCA 
comes with a higher computational complexity. 

5 Discussion 
We have studied the problem of finding approximate pre-images of vectors in feature space, 
and proposed an algorithm to solve it. The algorithm can be applied to both reconstruction 
and de-noising. In the former case, results were comparable to linear peA, while in the 
latter case, we obtained significantly better results. Our interpretation of this finding is as 
follows. Linear peA can extract at most N components, where N is the dimensionality of 
the data. Being a basis transform, all N components together fully describe the data. If the 
data are noisy, this implies that a certain fraction of the components will be devoted to the 
extraction of noise. Kernel peA, on the other hand, allows the extraction of up to f features, 
where f is the number of training examples. Accordingly, kernel peA can provide a larger 
number of features carrying information about the structure in the data (in our experiments, 
we had f > N). In addition, if the structure to be extracted is nonlinear, then linear peA 
must necessarily fail , as we have illustrated with toy examples. 

These methods, along with depictions of pre-images of vectors in feature space, provide 
some understanding of kernel methods which have recently attracted increasing attention. 
Open questions include (i) what kind of results kernels other than Gaussians will provide, 
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Figure 4: De-Noising of USPS data (see text). The left half shows: top: the first occurrence 
of each digit in the test set, second row: the upper digit with additive Gaussian noise (0' = 
0.5), following five rows: the reconstruction for linear PCA using n = 1,4,16,64,256 
components, and, last five rows: the results of our approach using the same number of 
components. In the right half we show the same but for 'speckle' noise with probability 
p = 0.4. 

(ii) whether there is a more efficient way to solve either (6) or (8), and (iii) the comparison 
(and connection) to alternative nonlinear de-noising methods (cf. [5]). 
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