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Abstract 

A goal of statistical language modeling is to learn the joint probability 
function of sequences of words. This is intrinsically difficult because of 
the curse of dimensionality: we propose to fight it with its own weapons. 
In the proposed approach one learns simultaneously (1) a distributed rep­
resentation for each word (i.e. a similarity between words) along with (2) 
the probability function for word sequences, expressed with these repre­
sentations. Generalization is obtained because a sequence of words that 
has never been seen before gets high probability if it is made of words 
that are similar to words forming an already seen sentence. We report on 
experiments using neural networks for the probability function, showing 
on two text corpora that the proposed approach very significantly im­
proves on a state-of-the-art trigram model. 

1 Introduction 
A fundamental problem that makes language modeling and other learning problems diffi­
cult is the curse of dimensionality. It is particularly obvious in the case when one wants to 
model the joint distribution between many discrete random variables (such as words in a 
sentence, or discrete attributes in a data-mining task). For example, if one wants to model 
the joint distribution of 10 consecutive words in a natural language with a vocabulary V of 
size 100,000, there are potentially 10000010 - 1 = 1050 - 1 free parameters. 

A statistical model of language can be represented by the conditional probability of the 
next word given all the previous ones in the sequence, since P( W'[) = rri=l P( Wt Iwf-1), 
where Wt is the t-th word, and writing subsequence w[ = (Wi, Wi+1, ... , Wj-1, Wj). 

When building statistical models of natural language, one reduces the difficulty by taking 
advantage of word order, and the fact that temporally closer words in the word sequence are 
statistically more dependent. Thus, n-gram models construct tables of conditional proba­
bilities for the next word, for each one of a large number of contexts, i.e. combinations of 
the last n - 1 words: p(wtlwf-1) ~ P(WtIW!=~+l)' Only those combinations of succes­
sive words that actually occur in the training corpus (or that occur frequently enough) are 
considered. What happens when a new combination of n words appears that was not seen 
in the training corpus? A simple answer is to look at the probability predicted using smaller 
context size, as done in back -off trigram models [7] or in smoothed (or interpolated) trigram 
models [6]. So, in such models, how is generalization basically obtained from sequences of 
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words seen in the training corpus to new sequences of words? simply by looking at a short 
enough context, i.e., the probability for a long sequence of words is obtained by "gluing" 
very short pieces of length 1, 2 or 3 words that have been seen frequently enough in the 
training data. Obviously there is much more information in the sequence that precedes the 
word to predict than just the identity of the previous couple of words. There are at least two 
obvious flaws in this approach (which however has turned out to be very difficult to beat): 
first it is not taking into account contexts farther than 1 or 2 words, second it is not taking 
account of the "similarity" between words. For example, having seen the sentence Th e 
cat i s wa l k ing i n t he b e droom in the training corpus should help us general­
ize to make the sentence A d og was r u nning in a room almost as likely, simply 
because "dog" and "cat" (resp. "the" and "a", "room" and "bedroom", etc ... ) have similar 
semantics and grammatical roles . 

1.1 Fighting the Curse of Dimensionality with its Own Weapons 
In a nutshell , the idea of the proposed approach can be summarized as follows: 

1. associate with each word in the vocabulary a distributed "feature vector" (a real­
valued vector in ~m), thereby creating a notion of similarity between words, 

2. express the joint probability function of word sequences in terms of the feature 
vectors of these words in the sequence, and 

3. learn simultaneously the word feature vectors and the parameters of thatfitnction. 

The feature vector represents different aspects of a word: each word is associated with a 
point in a vector space. The number of features (e.g. m = 30,60 or 100 in the experiments) 
is much smaller than the size of the vocabulary. The probability function is expressed as a 
product of conditional probabilities of the next word given the previous ones, (e.g. using 
a multi-layer neural network in the experiment). This function has parameters that can be 
iteratively tuned in order to maximize the log-likelihood of the training data or a regularized 
criterion, e.g. by adding a weight decay penalty. The feature vectors associated with each 
word are learned, but they can be initialized using prior knowledge. 

Why does it work? In the previous example, if we knew that dog and cat played simi­
lar roles (semantically and syntactically), and similarly for (t h e ,a), (b edroom,room), 
(i s ,was ), (runni ng,wa l k i ng), we could naturally generalize from The cat i s 
wa l k i ng i n t h e b e droom to A d og was runn i ng i n a room and likewise 
to many other combinations. In the proposed model, it will so generalize because "simi­
lar" words should have a similar feature vector, and because the probability function is a 
smooth function of these feature values, so a small change in the features (to obtain similar 
words) induces a small change in the probability : seeing only one of the above sentences 
will increase the probability not only of that sentence but also of its combinatorial number 
of "neighbors" in sentence .Ipace (as represented by sequences of feature vectors). 

1.2 Relation to Previous Work 

The idea of using neural networks to model high-dimensional discrete distributions has 
already been found useful in [3] where the joint probability of Zl ... Zn is decomposed 
as a product of conditional probabilities: P(Zl = Zl, " ', Zn = Zn) = Oi P(Zi = 
zilgi(Zi-l, Zi-2, ... , Zl)), where g(.) is a function represented by part of a neural network, 
and it yields parameters for expressing the distribution of Zi. Experiments on four VCI 
data sets show this approach to work comparatively very well [3, 2]. The idea of a dis­
tributed representation for symbols dates from the early days of connectionism [5]. More 
recently, Hinton's approach was improved and successfully demonstrated on learning sev­
eral symbolic relations [9] . The idea of using neural networks for language modeling is not 
new either, e.g. [8] . In contrast, here we push this idea to a large scale, and concentrate on 
learning a statistical model of the distribution of word sequences, rather than learning the 
role of words in a sentence. The proposed approach is also related to previous proposals 



of character-based text compression using neural networks [11]. Learning a clustering of 
words [10, 1] is also a way to discover similarities between words. In the model proposed 
here, instead of characterizing the similarity with a discrete random or deterministic vari­
able (which corresponds to a soft or hard partition of the set of words), we use a continuous 
real-vector for each word, i.e. a distributed feature vector, to indirectly represent similarity 
between words. The idea of using a vector-space representation for words has been well 
exploited in the area of information retrieval (for example see [12]), where vectorial fea­
ture vectors for words are learned on the basis of their probability of co-occurring in the 
same documents (Latent Semantic Indexing [4]). An important difference is that here we 
look for a representation for words that is helpful in representing compactly the probabil­
ity distribution of word sequences from natural language text. Experiments indicate that 
learning jointly the representation (word features) and the model makes a big difference in 
performance. 

2 The Proposed Model: two Architectures 
The training set is a sequence Wi ... WT of words Wt E V, where the vocabulary V is a 
large but finite set. The objective is to learn a good model f(wt,· . . , Wt-n) = P(wtlwi-i), 
in the sense that it gives high out-of-sample likelihood. In the experiments, we will report 
the geometric average of l/P(wtlwi-i), also known as perplexity, which is also the ex­
ponential of the average negative log-likelihood. The only constraint on the model is that 

for any choice of wi- i , Ei~i f(i, Wt-i, Wt-n) = 1. By the product of these conditional 
probabilities, one obtains a model of the joint probability of any sequence of words. 

The basic form of the model is described here. Refinements to speed it up and extend it 
will be described in the following sections. We decompose the function f (Wt, .. . , Wt-n) = 
P( Wt Iwi- i ) in two parts: 

1. A mapping C from any element of V to a real vector C(i) E Rm . It represents 
the "distributed feature vector" associated with each word in the vocabulary. In 
practice, C is represented by a I V I x m matrix (of free parameters). 

2. The probability function over words, expressed with C. We have considered two 
alternative formulations : 

(a) The direct architecture: a function 9 maps a sequence of feature 
vectors for words in context (C(Wt-n),·· · , C(wt-d) to a probabil­
ity distribution over words in V. It is a vector function whose i-th 
element estimates the probability P(Wt = ilwi- i ) as in figure 1. 
f(i, Wt-i,·· · , Wt-n) = g(i, C(Wt-i),· ·· , C(Wt-n)). We used the "soft­
max" in the output layer of a neural net: P( Wt = ilwi- i ) = ehi / E j eh;, 
where hi is the neural network output score for word i . 

(b) The cycling architecture: a function h maps a sequence of feature 
vectors (C(Wt-n),···, C(Wt-i), C(i)) (i.e. including the context words 
and a candidate next word i) to a scalar hi, and again using a soft-
max, P(Wt = ilwi- i ) = ehi /Ejeh;. f(Wt,Wt-i,· · ·,Wt-n) = 
g(C(Wt), C(wt-d,··· ,C(Wt-n)). We call this architecture "cycling" be­
cause one repeatedly runs h (e.g. a neural net), each time putting in input the 
feature vector C(i) for a candidate next word i. 

The function f is a composition of these two mappings (C and g), with C being shared 
across all the words in the context. To each of these two parts are associated some pa­
rameters. The parameters of the mapping C are simply the feature vectors themselves 
(represented by a IVI x m matrix C whose row i is the feature vector C(i) for word i) . The 
function 9 may be implemented by a feed-forward or recurrent neural network or another 
parameterized function, with parameters (). 
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Figure 1: "Direct Architecture": f(i, Wt-l, ·", Wt-n) = g(i, C(Wt-l),···, C(Wt-n)) 
where 9 is the neural network and C(i) is the i-th word feature vector. 

Training is achieved by looking for ((), C) that maximize the training corpus penalized log­
likelihood: L = ~ ~t logpw. (C(Wt-n),···, C(Wt-l)j ()) + R((), C), where R((), C) is a 
regularization term (e.g. a weight decay ).11()11 2 , that penalizes slightly the norm of (). 

3 Speeding-up and other Tricks 
Short list. The main idea is to focus the effort of the neural network on a "short list" 
of words that have the highest probability. This can save much computation because in 
both of the proposed architectures the time to compute the probability of the observed 
next word scales almost linearly with the number of words in the vocabulary (because 
the scores hi associated with each word i in the vocabulary must be computed for prop­
erly normalizing probabilities with the softmax). The idea of the speed-up trick is the 
following: instead of computing the actual probability of the next word, the neural net­
work is used to compute the relative probability of the next word within that short list. 
The choice of the short list depends on the current context (the previous n words). We 
have used our smoothed trigram model to pre-compute a short list containing the most 
probable next words associated to the previous two words. The conditional probabilities 
P(Wt = ilht ) are thus computed as follows, denoting with ht the history (context) before 
Wt. and Lt the short list of words for the prediction of Wt. If i E Lt then the probabil-
ity is PNN(Wt = ilWt E Lt , ht)Ptrigram(Wt E Ltlht ), else it is Ptrigram(Wt = ilht ), 
where PNN(Wt = ilWt E Lt , ht) are the normalized scores of the words computed by 
the neural network, where the "softmax" is only normalized over the words in the short 
list Lt, and Ptrigram(Wt E Ltlht ) = ~iEL. Ptrigram(ilht), with Ptrigram(ilht) standing 
for the next-word probabilities computed by the smoothed trigram. Note that both L t and 
Ptrigram(Wt E Ltlht ) can be pre-computed (and stored in a hash table indexed by the last 
two words). 

Table look-up for recognition. To speed up application of the trained model, one can 
pre-compute in a hash table the output of the neural network, at least for the most frequent 
input contexts. In that case, the neural network will only be rarely called upon, and the 
average computation time will be very small. Note that in a speech recognition system, one 
needs only compute the relative probabilities of the acoustically ambiguous words in each 
context, also reducing drastically the amount of computations. 

Stochastic gradient descent. Since we have millions of examples, it is important to con­
verge within only a few passes through the data. For very large data sets, stochastic gradient 
descent convergence time seems to increase sub-linearly with the size of the data set (see 
experiments on Brown vs Hansard below). To speed up training using stochastic gradient 



descent, we have found it useful to break the corpus in paragraphs and to randomly permute 
them. In this way, some of the non-stationarity in the word stream is eliminated, yielding 
faster convergence. 

Capacity control. For the "smaller corpora" like Brown (1.2 million examples), we have 
found early stopping and weight decay useful to avoid over-fitting. For the larger corpora, 
our networks still under-fit. For the larger corpora, we have found double-precision com­
putation to be very important to obtain good results. 

Mixture of models. We have found improved performance by combining the probability 
predictions of the neural network with those of the smoothed trigram, with weights that 
were conditional on the frequency of the context (same procedure used to combine trigram, 
bigram, and unigram in the smoothed trigram). 

Initialization of word feature vectors. We have tried both random initialization (uniform 
between -.01 and .01) and a "smarter" method based on a Singular Value Decomposition 
(SVD) of a very large matrix of "context features". These context features are formed 
by counting the frequency of occurrence of each word in each one of the most frequent 
contexts (word sequences) in the corpus. The idea is that "similar" words should occur 
with similar frequency in the same contexts. We used about 9000 most frequent contexts, 
and compressed these to 30 features with the SVD. 

Out-of-vocabulary words. For an out-of-vocabulary word Wt we need to come up with 
a feature vector in order to predict the words that follow, or predict its probability (that 
is only possible with the cycling architecture). We used as feature vector the weighted 
average feature vector of all the words in the short list, with the weights being the relative 
probabilities ofthose words: E[C(wt)lhtl = Ei C(i)P(wt = ilht ). 

4 Experimental Results 
Comparative experiments were performed on the Brown and Hansard corpora. The Brown 
corpus is a stream of 1,181,041 words (from a large variety of English texts and books). 
The first 800,000 words were used for training, the following 200,000 for validation (model 
selection, weight decay, early stopping) and the remaining 181,041 for testing. The number 
of different words is 47, 578 (including punctuation, distinguishing between upper and 
lower case, and including the syntactical marks used to separate texts and paragraphs). 
Rare words with frequency:::; 3 were merged into a single token, reducing the vocabulary 
size to IVI = 16,383. 

The Hansard corpus (Canadian parliament proceedings, French version) is a stream of 
about 34 million words, of which 32 millions (set A) was used for training, 1.1 million 
(set B) was used for validation, and 1.2 million (set C) was used for out-of-sample tests. 
The original data has 106, 936 different words, and those with frequency:::; 10 were merged 
into a single token, yielding IVI = 30,959 different words. 

The benchmark against which the neural network was compared is an interpolated or 
smoothed trigram model [6]. Let qt = l(Jreq(Wt-l,Wt-2)) represent the discretized fre­
quency of occurrence of the context (Wt-l, Wt-2) (we used l(x) = r -log((l + x)/T)l 
where x is the frequency of occurrence of the context and T is the size of the training cor­
pus). A conditional mixture of the trigram, bigram, unigram and zero-gram was learned on 
the validation set, with mixture weights conditional on discretized frequency. 

Below are measures of test set perplexity (geometric average of 1/ p( Wt Iwi-1 ) for dif­
ferent models P. Apparent convergence of the stochastic gradient descent procedure was 
obtained after around 10 epochs for Hansard and after about 50 epochs for Brown, with 
a learning rate gradually decreased from approximately 10-3 to 10-5 . Weight decay of 
10-4 or 10-5 was used in all the experiments (based on a few experiments compared on 
the validation set). 

The main result is that the neural network performs much better than the smoothed 



trigram. On Brown the best neural network system, according to validation perplexity 
(among different architectures tried, see below) yielded a perplexity of 258, while the 
smoothed trigram yields a perplexity of 348, which is about 35% worse. This is obtained 
using a network with the direct architecture mixed with the trigram (conditional mixture), 
with 30 word features initialized with the SVD method, 40 hidden units, and n = 5 words 
of context. On Hansard, the corresponding figures are 44.8 for the neural network and 54.1 
for the smoothed trigram, which is 20.7% worse. This is obtained with a network with the 
direct architecture, 100 randomly initialized words features, 120 hidden units, and n = 8 
words of context. 

More context is useful. Experiments with the cycling architecture on Brown, with 30 
word features, and 30 hidden units, varying the number of context words: n = 1 (like the 
bigram) yields a test perplexity of 302, n = 3 yields 291 , n = 5 yields 281 , n = 8 yields 
279 (N.B. the smoothed trigram yields 348). 

Hidden units help. Experiments with the direct architecture on Brown (with direct input 
to output connections), with 30 word features, 5 words of context, varying the number of 
hidden units: 0 yields a test perplexity of 275, 10 yields 267, 20 yields 266, 40 yields 265, 
80 yields 265. 

Learning the word features jointly is important. Experiments with the direct architec­
ture on Brown (40 hidden units, 5 words of context), in which the word features initialized 
with the SVD method are kept fixed during training yield a test perplexity of 345.8 whereas 
if the word features are trained jointly with the rest of the parameters, the perplexity is 265. 

Initialization not so useful. Experiments on Brown with both architectures reveal that the 
SVD initialization of the word features does not bring much improvement with respect to 
random initialization: it speeds up initial convergence (saving about 2 epochs), and yields 
a perplexity improvement of less than 0.3 %. 

Direct architecture works a bit better. The direct architecture was found about 2% better 
than the cycling architecture. 

Conditional mixture helps but even without it the neural net is better. On Brown, the 
best neural net without the mixture yields a test perplexity of 265, the smoothed trigram 
yields 348, and their conditional mixture yields 258 (i.e., better than both). On Hansard 
the improvement is less: a neural network yielding 46.7 perplexity, mixed with the trigram 
(54.1), yields a mixture with perplexity 45.1. 

5 Conclusions and Proposed Extensions 
The experiments on two corpora, a medium one 0.2 million words), and a large one (34 
million words) have shown that the proposed approach yields much better perplexity than 
a state-of-the-art method, the smoothed trigram, with differences on the order of 20% to 
35%. 

We believe that the main reason for these improvements is that the proposed approach 
allows to take advantage of the learned distributed representation to fight the curse of di­
mensionality with its own weapons: each training sentence informs the model about a 
combinatorial number of other sentences. Note that if we had a separate feature vector 
for each "context" (short sequence of words), the model would have much more capacity 
(which could grow like that of n-grams) but it would not naturally generalize between the 
many different ways a word can be used. A more reasonable alternative would be to ex­
plore language units other than words (e.g. some short word sequences, or alternatively 
some sub-word morphemic units). 

There is probably much more to be done to improve the model, at the level of architecture, 
computational efficiency, and taking advantage of prior knowledge. An important priority 
of future research should be to evaluate and improve the speeding-up tricks proposed here, 
and find ways to increase capacity without increasing training time too much (to deal with 



corpora with hundreds of millions of words). A simple idea to take advantage of temporal 
structure and extend the size of the input window to include possibly a whole paragraph, 
without increasing too much the number of parameters, is to use a time-delay and possibly 
recurrent neural network. In such a multi-layered network the computation that has been 
performed for small groups of consecutive words does not need to be redone when the 
network input window is shifted. Similarly, one could use a recurrent network to capture 
potentially even longer term information about the subject of the text. 

A very important area in which the proposed model could be improved is in the use of prior 
linguistic knowledge: semantic (e.g. Word Net), syntactic (e.g. a tagger), and morpho­
logical (radix and morphemes). Looking at the word features learned by the model should 
help understand it and improve it. Finally, future research should establish how useful the 
proposed approach will be in applications to speech recognition, language translation, and 
information retrieval. 
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