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Abstract

A residual network may be regarded as a discretization of an ordinary differential
equation (ODE) which, in the limit of time discretization, defines a continuous-
depth network. Although important steps have been taken to realize the advantages
of such continuous formulations, most current techniques assume identical lay-
ers. Indeed, existing works throw into relief the myriad difficulties of learning
an infinite-dimensional parameter in a continuous-depth neural network. To this
end, we introduce a shooting formulation which shifts the perspective from pa-
rameterizing a network layer-by-layer to parameterizing over optimal networks
described only by a set of initial conditions. For scalability, we propose a novel
particle-ensemble parameterization which fully specifies the optimal weight tra-
jectory of the continuous-depth neural network. Our experiments show that our
particle-ensemble shooting formulation can achieve competitive performance. Fi-
nally, though the current work is inspired by continuous-depth neural networks, the
particle-ensemble shooting formulation also applies to discrete-time networks and
may lead to a new fertile area of research in deep learning parameterization.

1 Introduction

Deep neural networks (DNNs) are closely related to optimal control (OC) where the sought-for
control variable corresponds to the parameters of the DNN [24, 23, 19]. To be able to talk about
an optimal control requires the definition of a control cost, i.e., a norm on the control variable.
We explore the ramifications of such a control cost in the context of DNN parameterization. For
simplicity, we focus on continuous formulations in the spirit of neural ODEs [13]. However, both
discrete and continuous OC formulations exist [12, 4, 37]; our approach could be developed for both.

Initial work on continuous DNN formulations was motivated by the realization that a ResNet
[20, 21] resembles Euler forward time-integration [19, 23]. Specifically, the forward pass of some
input vector x̃ ∈ Rd through a network with L layers, specified as x(0) = x̃ and x(j + 1) =
x(j) + f(x(j), θ(j)), j = 0, 1, . . . , L, closely relates to an explicit Euler [36] discretization of the
ODE

ẋ(t) = f(t,x(t), θ(t)), x(0) = x̃, 0 ≤ t ≤ T . (1.1)
In the continuous DNN formulation, we seek an optimal θ such that the terminal prediction given by
x(T ), i.e., the solution to Eq. (1.1) at time T , minimizes `(x(T )) for a task-specific loss function `.

Although Eq. (1.1) with time-varying parameter θ(t) can be considered as a neural network with an
infinite number of layers, current implementations of ODE-inspired networks largely assume the
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Figure 1: Optimization in the neural ODE (NODE) framework [13] (left) amounts to a forward pass with the
gradient computed via backpropagation ( ). Optimization under the shooting principle (middle) turns the
forward-backward system into a forward second-order system, where we essentially run the backpropagation
equation forward. We use a Hamiltonian particle ensemble (right) consisting of K (position, momentum) pairs
(qj ,pj) to make shooting efficient. Note that we write θ = θ({(qj ,pj)}Kj=1) since θ satisfies a compatibility
equation which involves all K particles. In shooting θ is time-dependent, in standard NODE θ(t) = θ ∀t.

parameters θ are fixed in time, i.e., ∀t : θ(t) = θ [13, 14], or follow some prescribed dynamics [44].
Instead, we explore time-varying θ(t) by employing regularization (i.e., a control cost) to render the
estimation well-posed and to assure regularity of the resulting flow. Specifically, (for a single data
point) we propose minimizing over θ the regularized loss

E(θ) =

∫ T

0

R(θ(t)) dt+ γ `(x(T )), γ ∈ R+, subject to Eq. (1.1) , (1.2)

where R is a real-valued complexity measure of θ corresponding to the control cost. We will mostly
work with the Frobenius norm but R(θ(t)) can be more general (see Appendix B).

Instead of directly optimizing over the set of time-dependent θ(t) as in standard ResNets, we restrict
the optimization set to those θ which are critical points of E(θ), thereby dramatically reducing the
number of parameters. In doing so, one can describe the optimization task as an initial value problem.
Namely, we show that we can rewrite the loss in Eq. (1.2) solely in terms of the input x(0) and a
corresponding finite-dimensional momentum variable, p(0). Such an approach, just like optimizing
the initial speed of a mass particle to reach a given point, is called a shooting method in numerical
analysis [30] and control [10], giving its name to our new formulation.

The first two panels of Fig. 1 illustrate the difference between the optimization of a neural ODE
(NODE) via [13] and our shooting formulation. Since in practice, we have multiple inputs x̃i, i =
1, . . . , n, there is an initial momentum vector pi corresponding to each of them. If the shooting
formulation is to scale up to a large sample size n, we must take care that the parameterization does
not grow linearly with n. To this end, we propose what we call the Hamiltonian particle-ensemble
parameterization. It is a finite set of particles, where each particle is a (position, momentum) pair.
The initial conditions of these particle pairs {(qj ,pj)}Kj=1 (where K � n) completely determine
θ(t). This is illustrated in the rightmost panel of Fig. 1. Once the optimized set of particles has been
computed, the computational efficiency of the forward model, similarly to NODE [13], is retained for
vector fields f that are linear in their parameters θ(t).

Our contributions are as follows: 1) We introduce a shooting formulation for DNNs, amounting to
an initial-value formulation for neural network parameterization. This allows for optimization over
the original network parameter space via optimizing over the initial conditions of critical networks
only; 2) We propose an efficient implementation of the shooting approach based on a novel particle-
ensemble parameterization in which a set of initial particles (the (position, momentum) pairs) describe
the space of putative optimal network parameters; 3) We propose the UpDown model which gives rise
to explicit shooting equations; 4) We prove universality for the flows of the UpDown vector field and
demonstrate in experiments its good performance on several prediction tasks.

2 Related work

We draw inspiration from two separate branches of research: 1) continuous formulations of neural
networks [13] and 2) shooting approaches for deformable image registration [38, 27, 29].

Continuous-depth neural networks. Continuous equivalents of ResNets [20, 21] have been
developed in [32, 19], but naïve implementations are memory-demanding since backpropagation
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requires differentiating through the numerical integrator. Two approaches can address this unfavorable
memory footprint. NODE [13] does not store intermediate values in the forward pass, but recomputes
them by integrating the forward model backward. This is easily possible only if the forward model is
numerically invertible and the formulation is time-continuous [17]1. Instead, checkpointing [17] is a
general approach to reduce memory requirements by selectively recomputing parts of the forward
solution [18]. Our work can easily be combined with these numerical approaches.

Solving implicit equations. A recent line of works, including deep equilibrium models [6] and
implicit residual networks [31], has shown that it may not always be necessary to freely parameterize
all the layers in the network. Specifically, in [6] and [31], the parameters of each layer are defined
via an implicit equation motivated by weight tying thus improving expressiveness and reducing the
number of parameters while decreasing the memory footprint via implicit differentiation. Instead,
our work increases expressiveness and reduces the number of parameters via particle-based shooting.

Invertibility and expressiveness. Based on similarity with continuous time integration, constraining
the norm of a layer in a ResNet will result in an invertible network such as in [8, 22]. Invertibility is
also explored in [42], where it is enforced (as in our setting) via a penalty of the norm. These works
show that standard learning tasks can be performed on top of a one-to-one transformation. Recent
theoretical developments [43] show that indeed capping a NODE or i-ResNet [8] with a single linear
layer gives universal approximation for non-invertible continuous functions. Further, expressiveness
can be increased by moving to more complex models, e.g., by introducing additional dimensions
as explored in augmented NODE [14]. In [44] (AnodeV2), Zhang et al. treat time-dependent θ(t).
Weights are evolved jointly with the state of the continuous DNN. While this weight evolution could,
in principle, also be captured by a learned weight network, the authors argue that this would result
in a large increase in parameters and therefore opt for explicitly parameterizing these evolutions
(e.g., via a reaction diffusion equation). In contrast, our method does not rely on learning a separate
weight-network or on explicitly specifying a weight evolution. Instead, our evolving weights are a
direct consequence of the shooting equations which, in turn, are a direct consequence of penalizing
network parameters (the control cost) over time; a large increase in parameters does not occur.

Hamiltonian approaches. Toth et al. [35] proposed Hamiltonian generative networks to learn the
Hamiltonian governing the evolution of a physical system. Specifically, they learn Hamiltonian vector
fields in the latent space of an image encoder-decoder architecture. Sæmundsson et al. [33] also learn
the underlying dynamics of a system from time-dependent data, starting from a discrete Lagrangian
combined with a variational integrator. This motivates particular network structures; e.g., Newtonian
networks where the potential energy is learned via a neural network. Although sharing common
tools, our work completely differs from this line of research in the sense that we exploit Hamiltonian
mechanics to parameterize general continuous neural networks. In principle, our work applies to
most network architectures and is not specific to physical data.

Finally, we mention that shooting approaches have been applied successfully in other areas such
as diffeomorphic image matching [27, 38, 29]. However, the decisive difference here is in the
dimensionality of the underlying space: in diffeomorphic image registration, the data are points in a
3D volume i.e., d = 3; for DNNs applications, data points usually lie in a much higher-dimensional
space, i.e., d is very large.

3 Shooting formulation of ODE-inspired neural networks

We consider, for simplicity, a supervised learning task where the input and target spaces are X ⊂ Rd
and Y , resp., and sampled data are denoted by {(x̃i, ỹi)}ni=1 ⊂ X × Y . The goal is to learn the
weight θ(t) in the following flow equation

ẋi(t) = f(xi(t), θ(t)), xi(0) = x̃i, 0 ≤ t ≤ T, i = 1, . . . , n (3.1)

such that it minimizes the loss
∑n
i=1 `(xi(T ), ỹi) for some loss function `. In existing works,

the weight is chosen independent of time, i.e., θ(t) = θ [13], or specific evolution equations are
postulated for it [25, 44]. Such strategies show the difficulty of addressing infinite dimensional
parameterizations of time-dependent θ and the need for regularization for well-posedness [16, 25, 19].

1In a discrete setting, resolving the forward model in the backward direction generally requires costly solving
of implicit equations. This can be done (it is, e.g., done for invertible ResNets [8]). In general, an explicit
numerical solution for forward time-integration becomes implicit in the backward direction and vice versa.
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Instead of parameterizing θ(t) directly, we aim at penalizing θ(t) according to the regularity of
f(·, θ(t)) to arrive at a well-posed problem. Specifically, we consider a regularization term R(θ(t))
(discussed in §3.1) and propose to minimize over θ

En(θ) =

∫ T

0

R(θ(t)) dt+ γ

n∑
i=1

`(xi(T ), ỹi), γ ∈ R+, subject to Eq. (3.1) . (3.2)

Note that upon discretizing the time t (i.e., having a number of parameters proportional to the number
of timesteps) this is similar to a ResNet with weight decay. For a ResNet or a NODE, optimization
is based on computing the parameter gradient via a forward pass followed by backpropagation (see
left panel of Fig. 1).

Optimality equations. The optimality conditions for Eq. (3.2) in continuous time are:
ẋi(t)− f(xi(t), θ(t)) = 0, xi(0) = x̃i, Data evolution
ṗi(t) + ∂xf(xi(t), θ(t))

>(pi) = 0, pi(T ) = −γ∇`(xi(T ), ỹi), Adjoint evolution
∂θR(θ(t))−

∑n
i=1 ∂θf(xi(t), θ(t))

>(pi(t)) = 0 . Compatibility
(3.3)

The first equation describes evolution of the input data and the second equation is the adjoint
equation solved backward in time in order to compute the gradient with respect to the parameters. At
convergence, the third equation is also satisfied. This last equation encodes the optimality of the layer
at timestep t, as it is the case for an argmin layer or weight tying [2]. Its left hand side corresponds
to the gradient with respect to the parameter θ, but as we shall see it will allow us to compute θ
directly via our (position, momentum) pairs in our particle shooting formulation. The shooting
approach simply replaces the optimization set by the set of critical points of Eq. (3.2) expressed in
these optimality conditions. That is, we only optimize over solutions fulfilling Eq. (3.3).

Shooting principle. The shooting method is standard in optimal control [10] and can be formulated
as follows: since, at optimality, the system in Eq. (3.3) is satisfied, one can turn this system into a
forward model defined only by its initial conditions {(xi(0),pi(0))}ni=1 which specify the entire
trajectory of optimal parameters. We evolve both the data and adjoint evolution equations forward
in time and compute at each time, t, θ(t) from the compatibility Eq. (3.3) via the current values of
{(xi(t),pi(t))}ni=1. We refer to the forward model defined by Eq. (3.3) as the shooting equations.
Unfortunately, this initial-condition parameterization still requires all initial conditions xi(0) and
their corresponding momenta pi(0) for i = 1, . . . , n. Since this does not scale to very large datasets,
we propose an approximation using a collection of particles, as described next.

Hamiltonian particle ensemble. In the limit and ideal case where the data distribution is known, the
optimality equations can be approximated using a collection of particles which follow the Hamiltonian
system (see Appendix A). We thus consider a collection of particles {(qj ,pj)}Kj=1 ∈ Rd × Rd that
drive the evolution of the entire population {xi}ni=1 ⊂ Rd through the following forward model

ẋi(t)− f(xi(t), θ(t)) = 0, xi(0) = x̃i Data evolution
q̇j(t)− f(qj(t), θ(t)) = 0,
ṗj(t) + ∂qf(qj(t), θ(t))

>(pj(t)) = 0,

∂θR(θ(t))−
K∑
j=1

∂θf(qj(t), θ(t))
>(pj(t)) = 0 ,

 Hamiltonian equations
(3.4)

with initial conditions {(qj(0),pj(0))}Kj=1, where the gradient with respect to this new parameteri-
zation is computed via backpropagation, and typically K � n. This set of (position, momentum)
pairs is termed the Hamiltonian particle ensemble. As the number of particles is reduced, so are
the number of free parameters, see Appendix C. Indeed, varying the Hamiltonian particle ensemble
allows for controlling the tradeoff between reconstruction and network complexity. Note that the main
difference to the shooting formulation of Eq. (3.3) is that the parameterization, θ(t), is now retrieved
from the shooting equations as specified by the particle collection. The original data samples, x̃i, are
simply propagated via these parameters.

3.1 Choices of regularization, parameterization and conserved quantities

The main computational bottleneck in the forward model of Eq. (3.4) is the implicit parameterization
of θ by the last equation. Making it explicit is key to render shooting computationally tractable.
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Linear in parameter2 - quadratic penalty. In the simplest case, the space of functions f is a
linear space parameterized by θ(t). In this case, a quadratic penalty amounts to a kinetic penalty.
Specifically, as a motivating example, consider the forward model

f(x(t), θ(t)) = A(t)σ(x(t)) + b(t), (3.5)

where σ is a component-wise activation function, A ∈ L2([0, 1],Rd2), b ∈ L2([0, 1],Rd) and θ(t) =
[A(t), b(t)]. With the quadratic regularizer R(θ(t)) = 1

2 Tr
(
A(t)>MAA(t)

)
+ 1

2b(t)
>Mbb(t),

where MA, Mb are positive definite matrices, the particle shooting equations are{
q̇j(t) = A(t)σ(qj(t)) + b(t),

ṗj(t) = −dσ(qj(t))
>A(t)>pj(t),

{
A(t) = MA

−1(−
∑K
j=1 pj(t)σ(qj(t))

>)

b(t) = Mb
−1(−

∑K
j=1 pj(t)) ,

(3.6)

with given initial conditions (pj(0),qj(0)). We emphasize that θ(t) is explicitly defined by
{(pj(t),qj(t))}Kj=1 and the computational cost is reduced to matrix multiplications.

As is well-known [3], the Hamiltonian flow preserves the Hamiltonian function. In the “linear in
parameter - quadratic penalty” case, this preserved quantity, denoted

H(p(t),q(t)) = R(θ(t)),

corresponds to a (kinetic) energy of the system of particles. As a first consequence, the objective
functional can be rewritten as

H(p(0),q(0))) + γ

n∑
i=1

`(xi(T ), ỹi) .

This clearly allows for direct optimization on (p(0),q(0)), i.e., shooting. As a second consequence,
since the vector field has constant norm (its squared norm is the Hamiltonian), it gives a quantitative
bound on the regularity of the flow map at time t = T explicit in terms of H(p(0),q(0)). In addition
(Appendix A), the Rademacher complexity of the generated flows with bounded H(p(0),q(0))) can
also be controlled.

Nonlinear in parameter and non-quadratic penalty. A standard ResNet structure uses vector
fields of the type (in convolutional form or not)

f(x(t), θ(t)) = θ1(t)σ(θ2(t)x(t) + b2(t)) + b1(t) , (3.7)

where θ1(t) ∈ L(Rd′ ,Rd) and θ2(t) ∈ L(Rd,Rd′). We will refer to Eq. (3.7) as the single-hidden-
layer vector field. This model can also be handled in our shooting approach since the shooting
equations in Eq. (3.3) are completely specified by the Hamiltonian

H(p,q, θ) = R(θ)− p>f(q, θ).

Automatic differentiation can be used (see Appendix D) to implement the forward model

q̇(t) =
∂H

∂p
(p(t),q(t), θ(t)), ṗ(t) = −∂H

∂q
(p(t),q(t), θ(t)), θ(t) ∈ arg minH(p(t),q(t), θ(t)).

(3.8)
Note that a necessary condition for solving the third equation above is in fact the compatibility
equation in Eq. (3.4). Important bottlenecks appear since the third equation is nonlinear and potentially
associated with a non-convex optimization problem. This could be addressed by unrolling the
optimization corresponding to the last equation, resulting in increased computational cost. In addition,
in this nonlinear case, the Hamiltonian function is no longer (in general) equal to R(θ(t)) even in the
quadratic regularization setting. Therefore, results on the smoothness or Rademacher complexity
would no longer be guaranteed as for the linear - quadratic penalty case. Last, quadratic regularization
has no known theoretical results for the Rademacher complexity of functions generated by Eq. (3.7)
with bounded norm. Norms for which the Rademacher complexity of this class of functions is
known [15] to be bounded are called Barron norms, which are non-smooth and non-convex, and
which would add to the difficulty. To circumvent these issues while retaining expressiveness and
theoretical guarantees in the linear parameterization setting, we next introduce the UpDown model.

2Obviously, an affine function of the parameters also works similarly.
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3.2 The UpDown model

The key idea is to transform the vector field of Eq. (3.7) into a model which is linear in parameters on
which the quadratic regularization can be applied. To this end, we introduce the additional state

v(t) = θ2(t)x(t) + b2(t)

which we differentiate with respect to time to obtain

v̇(t) = θ̇2(t)x(t) + ḃ2(t) + θ2(t)ẋ(t) .

Replacing ẋ(t) by its formula, we get

v̇(t) = θ̇2(t)x(t) + ḃ2(t) + θ2(t)(θ1(t)σ(v(t)) + b1(t)) .

Now overloading on notation slightly, we use the additional state variable v(t) to propose the
following ODE system, denoted the UpDown model:

ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)) , (3.9)

with x(t) ∈ Rd, v(t) ∈ Rαd and introducing the (integer-valued) inflation factor α ≥ 1. For the data
evolution, xi(0) are given by the data {x̃i}. We parameterize the vi(0) using an affine map gΘ, i.e.,

vi(0) = gΘ(xi(0)) = Θ12(xi(0)) + b12,

where Θ12 ∈ L(Rd,Rαd) and b12 ∈ L(Rαd). In Appendix E, we prove the following theorem:

Theorem 1. Given a time-dependent vector field defined on a compact domain C of Rd, which is
time continuous and Lipschitz, we denote by ϕ(T,x(0)) its flow at time T from starting value x(0).
Then, there exists a parameterization of the UpDown model for which its solution is ε-close to the flow,
supx(0)∈C ‖ϕ(T,x(0))− x(T )‖ ≤ ε.

Notably, in the proof, the dimension of the hidden state v is used twice: first, for having a sufficient
number of neurons in Eq. (3.7) to approximate a stationary vector field (standard universality property
of multilayer perceptron) and, second, for approximating time-dependent vector fields. Therefore, at
the cost of introducing a possibly large number of dimensions, the UpDown model is universal in the
class of time-dependent NODEs. As shown in Appendix E, this universality result transfers to our
shooting formulation. Due to its additional dimensions, it is also likely to be universal in the space of
functions (i.e., not necessarily injective). We focus on the UpDown model in our experiments. Note
also that while we derived our theory for vector-valued evolutions for simplicity, similar linear in
parameter evolution equations can for example be derived for convolutional neural networks.

4 Experiments

Our goal is to demonstrate that it is possible to learn DNNs by optimizing only over the initial
conditions of critical networks. This is made possible via shooting and efficient via our particle
parameterization. A key difference to prior work is that our approach allows to capture time-dependent
(i.e., layer-dependent in the discrete setting) parameters without discretizing these parameters at
every time-point. Comparisons to other NODE like methods are not straightforward due to hyper-
parameters and different implementations. For consistency, we therefore provide four different
formulations (based on the UpDown model of §3.2).

• The static direct model forgoes the Hamiltonian particle ensemble, and instead directly optimizes
over time-constant parameters: θ(t) = θ for all t. Everything else, including the UpDown model,
stays unchanged. This model is most closely related to NODE [13] and augmented NODE [14].

• We call our proposed shooting model dynamic with particles. It is parameterized via a set of
initial conditions of (position, momentum) pairs, which evolve over time and fully specify θ(t).

• The static with particles model is similar to the static direct model. However, instead of directly
optimizing over a time-constant θ, it uses a set of (position, momentum) pairs (i.e., particles, as in
our dynamic with particles model above) to parameterize θ indirectly.
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• Finally, we consider the dynamic direct model which uses a piece-wise time-constant θ(t).
It essentially chains together multiple static direct models and is closely related to a discrete
ResNet in the sense that multiple blocks (we use five) are used in succession. However, each
block involves time-integrating the UpDown model. While the dynamic with particles model
captures θ(t) indirectly via particles and shooting, the dynamic direct model requires many more
parameters as it represents θ(t) directly. We show results for the dynamic direct model for a
subset of the experiments.

All experiments use the UpDown model with quadratic penalty function R. Detailed experimental
settings, including weights for the quadratic penalty function, can be found in Appendix F.

Simple 1D function regression. We approximate a simple quadratic-like function y = x2 + 3/(1 +
x2) which is non-invertible. We use 15 particles for our experiments. Fig. 2 shows the test loss and
the network complexity, as measured by the log Frobenius norm integrated over time [28], for the
different models as a function of the inflation factor α (cf. §3.2). On average, the dynamic with
particles model shows the best fits with the lowest complexity measures, indicating the simplest
network parameterization. Note that the static with particles approach results in the lowest complexity
measures only because it cannot properly fit the function as indicated by the high test loss. Additional
results for a cubic function y = x3 are in Appendix G.

Spiral. Next, we revisit the spiral ODE example of [13] following the nonlinear dynamics ẋ = Ax3,
x ∈ R2 (where the power is component-wise). We fix x(0) = [2, 0]T , use A = [−0.1, 2.0;−2,−0.1]
and evolve the dynamics for time T = 10. The training data consists of snippets from this trajectory,
all of the same length. We use an L2 norm loss (calculated on all intermediate time-points) and 25
particles. Our goal is to show that we can obtain the best fit to the training data due to our dynamic
model. Fig. 3 (top) shows that we can indeed obtain similar or better fits (lower losses) for a similar
number of parameters while achieving the lowest network complexity measures. Fig. 3 (bottom)
shows the corresponding results for the validation data consisting of the original long trajectory
starting from initial value x(0). Interestingly, by pasting together short-range solutions we are
successful in predicting the long-range trajectory despite training on short-range trajectory snippets.

Concentric circles. To study the impact of the inflation factor α in a classification regime, we
replicate the concentric circles setting of [14]. The task is learning to separate points, sampled
from two disjoint annuli in R2. While we are less interested in the learned flow (as in [14]), we
study how often the proposed UpDown (dynamic with particles) model perfectly fits the training data
as a function of α. To the right, we show the success rate over 50 training runs for three choices
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[%
]

α = 5 α = 10 α = 20
of α and 20 particles. Notably, the effect of α is only visible if the
classification loss is down-weighted so that the regularization, R,
dominates. Otherwise, for the tested α, the model always fits the
data. The experiment is consistent with [14], where it is shown that
increasing the space on which an ODE is solved allows for easy
separation of the data and leads to less complex flows. The latter
is also observed for our model.

Rotating MNIST. Here, we are given sequences of a rotating MNIST digit (along 16 angles,
linearly spaced in [0, 2π]). The task is learning to synthesize the digit at any rotation angle,
given only the first image of a sequence. We replicate the setup of [40] and consider ro-
tated versions of the digit “3”. We identify each rotation angle as a time point ti and ran-
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Figure 3: Fit for spiral (short- and long-range). Losses for the different models as well as the time-integral of
log2 of the Frobenius norm complexity measure. Lower is better for both measures. The * symbol indicates how
many outliers were removed and α denotes the inflation factor.

MSE ± σ

†GPPVAE-DIS 0.0309 ± 0.00002
†GPPVAE-JOINT 0.0288 ± 0.00005
†ODE2VAE 0.0194 ± 0.00006
†ODE2VAE-KL 0.0184 ± 0.0003

Ours (stat. direct) 0.0126 ± 0.0064
Ours (stat. w particles) 0.0125 ± 0.0063
Ours (dyn. w particles) 0.0122 ± 0.0064

↔ Test time point

Figure 4: Left: Image (per-pixel) MSE (measured at the marked time point) averaged over all testing sequences
of the rotated MNIST dataset. Right: Two testing sequences and predictions (marked blue) for all 16 time points
when the image at t = 0 is given as input (marked red). Results marked with † are taken from [40].

domly drop four time points of each sequence during training. One fixed time point is consis-
tently left-out and later evaluated during testing. We use the same convolutional autoencoder
of [40] with the UpDown model operating in the internal representation space after the encoder.

Static direct

Static with particles

Dynamic with particles

During training, the encoder receives the first image of a sequence
(always at angle 0◦), the UpDown model integrates forward to the desired
time points, and the decoder decodes these representations. As loss, we
measure the mean-squared-error (MSE) of the decoder outputs. Fig. 4
lists the MSE (at the left-out angle), averaged over all testing sequences
and shows two example sequences with predictions for all time points
(100 particles, α = 10).

While all UpDown variants substantially lower the MSE previously re-
ported in the literature, they exhibit comparable performance. To better
understand the differences, we visualize the internal representation space
of the autoencoder by projecting all 16 internal representations (i.e., the
output of the UpDown models after receiving the output of the encoder)
of each testing image onto the two largest principal components, shown
to the right (different colors indicate the different rotation angles). This
qualitative result shows that allowing for a time-dependent parameter-
ization leads to a more structured latent space of the autoencoder.

Bouncing balls. Finally, we replicate the “bouncing balls” experiment of [40]. This is similar to the
rotating MNIST experiment, but the underlying dynamics are more complex. In particular, we are
given 10,000 (training) image sequences of bouncing balls at 20 different time points [34]. The task
is learning to predict, after seeing the first three images of a sequence, future time points. We use
the same convolutional autoencoder of [40] and minimize image (per-pixel) MSE (using all 20 time
points for training). Our UpDown model operates in the internal representation space of the encoder
(50-dimensional in our experiments3). In test mode, the network receives the first three image of a

3We did not further experiment with this hyperparameter, so potentially better results can be obtained.
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Figure 5: Left: Image (per-pixel) MSE for predicting 10 time points ahead (after receiving the first three
inputs of a sequence), averaged over all testing sequences (numbers in parentheses indicate the MSE when
additionally averaged over all prediction time points). Results marked with † are taken from [40]. Right: Two
testing sequences with predictions (marked blue).

sequence and predicts 10 time points ahead. We measure the image (per-pixel) MSE and average the
results (per time point) over all 500 testing sequences. For model selection, we rely on the provided
validation set. Our UpDown (dynamic with particles) model uses 100 particles. Fig. 5 (left) lists the
averaged MSE per time point, plotted against the approaches listed in [40]. Fig. 5 (right) shows
two testing sequences with predictions (the three input time points are not shown). Results for the
UpDown static and static with particles model are � 0.0154 and � 0.0150, respectively.

Computational cost. The computational cost of the UpDown model consists in storing the particles
and running forward the model for the collection of particles and the data. Hence, computational cost
scales linearly in the number of particles. To get rid of this linear relationship (in case only a forward
pass is needed), the ODE can be discretized in time and the ResNet with its weights is obtained.

5 Discussion and Conclusions

We demonstrated that it is possible to parameterize DNNs via initial conditions of (position, momen-
tum) pairs. While our experiments are admittedly still simple, results are encouraging as they show
that 1) the particle-based approach can achieve competitive performance over direct parameterizations
and that 2) time-dependent parameterizations are useful for obtaining simpler networks and can be
realized with significantly fewer parameters using particle-based shooting.

Our work opens up many different follow-up questions and formulations. For example, we presented
our approach for a model with continuous dynamics, but the particle and the shooting formalism can
also be applied to discrete-time models. Further, we focused, for simplicity, on continuous variants of
multi-layer perceptrons, but similar linear-in-parameter models can be formulated for convolutional
neural networks. Models that are nonlinear in their parameters hold the promise for connections
with optimal mass transport theory and to theoretical complexity results, which we touched upon
for our UpDown model. Indeed, this change of paradigm in the parameterization may result in new
quantitative results on network generalization properties. Lastly, how well the approach generalizes
to more complex problems, how many particles are needed to switch from a standard deep network to
its shooting formulation, and how optimizing over critical points of the original optimization problem
via shooting relates to network generalization will be fascinating to explore.

Source code is available at: https://github.com/uncbiag/neuro_shooting

Broader Impact

One goal of this work is to enrich the understanding of continuous depth neural networks and
to open a different (or alternative) perspective on its parameterization. Specifically, we shift the
parameterization of deep neural networks from a layer-by-layer perspective to an initial-value
perspective and Hamiltonian dynamics. At this point, our work is conceptual and theoretical in
nature; broader impact emerges most likely as a consequence of better understanding the role of
neural network parameterizations.
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