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Abstract

In this paper we propose a novel approach for the audio-
based detection of events. The approach adopts the bag of
words paradigm, and has two main advantages over other
techniques present in the literature: the ability to automat-
ically adapt (through a learning phase) to both short, im-
pulsive sounds and long, sustained ones, and the ability to
work in noisy environments where the sounds of interest are
superimposed to background sounds possibly having simi-
lar characteristics.

The proposed method has been experimentally validated
on a large database of sounds, including several kinds of
background noise, which are superimposed to the sounds to
be recognized. The obtained performance has been com-
pared with the results of another audio event detection al-
gorithm from the literature, showing a significant improve-
ment.

1. Introduction

While audio analysis has been traditionally focused
mostly on the recognition of the speech and on the identifi-
cation of the speaker, in the recent years several researchers
have proposed audio-based systems for the automatic de-
tection of abnormal or dangerous events. Such systems can
be an inexpensive addition to existing video surveillance in-
frastructures, where video analytics solutions based on ob-
ject tracking algorithms [?] are often used; in fact, many
IP cameras are already predisposed to connect to a micro-
phone, making available an audio stream together with the
video stream. But audio event detection can be useful on
its own, for example in contexts where video information is
not feasible (e.g. large unlit areas at night, or environments
with too many obstacles on the line of sight). Finally, there
are some events that have a very distinctive audio signature,
but are not so easy to spot on a video: for instance, a gun-
shot, or a person screaming. For these reasons, in the recent
years the research community has shown a growing interest

towards these applications.
One of the open problems in the design and implemen-

tation of a reliable and general audio event detector is that
the properties characterizing the different events of interest
might be evident at very diverse time scales: compare, for
instance, an impulsive sound like a gunshot with a sustained
sound, like a scream, that can have a duration of several sec-
onds; so it is not easy to find a set of features that can acco-
modate both kinds of situations. Also, in real applications
there is often the problem that the sounds of interest are
superimposed to a significant level of background sounds;
thus it might be difficult to separate the noise to be ignored
from the useful sounds to be recognized.

In [2] Clavel et al. propose a method for gunshot de-
tection, that operates by dividing the audio stream into 20
milliseconds frames, and computing for each frame a vec-
tor with such features as short-time energy, Mel-Frequency
Cepstral Coefficients (MFCC) and spectral statistical mo-
ments. The vectors are classified using a Gaussian Mixture
Model (GMM). Then, the final decision is taken over 0.5
seconds intervals using a Maximum A Posteriori (MAP)
decision rule. Vacher et al. in [12] also adopt a GMM
classifier, with wavelet-based cepstral coefficients as fea-
tures, for the detection of screams and broken glass. Rouas
et al. [10] use MFCC features and a combination of the
GMM and Support Vector Machine (SVM) classifiers for
detecting screams in outdoor environments. Their method
uses an adaptive thresholding on sound intensity for lim-
iting the number of false detections. Gerosa, Valenzise et
al. [4, 13] propose a system for the detection of gunshots
and screams which specifically address the ambient noise
problem. Their method uses two parallel GMM classifiers
trained to separate screams from noise and gunshots from
noise. The paper by Ntalampiras et al. [8] proposes a two
stage classifier: the first stage is used to discriminate be-
tween vocalic sounds (such as screams and normal speech)
and impulsive sounds (such as gunshots or explosions); then
specific second stage GMM classifiers are activated, using
different features for the two kinds of sounds, to provide
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the final classification of the sound. Conte et al. [3] present
a method with two classifiers that operate at different time
scales; the method uses a quantitative estimation of the re-
liability of each classification to combine the classifier de-
cisions and to reduce the false detections by rejecting the
classifications that are not considered sufficiently reliable.
Chin and Burred [1] propose a system in which the audio is
represented as a sequence of symbols, each corresponding
to a spectral shape observed over a 10 millisecond window.
To these sequences, they apply Genetic Motif Discovery,
a technique introduced for the analysis of gene sequences,
in order to discover subsequences that can be used to rec-
ognize the audio events of interest. The algorithm is able
to consider subsequences of different lengths for different
classes, and the subsequences may contain wildcard ele-
ments that can be used to skip variable symbols due to the
background noise.

In this paper we present an audio event detection system
that is based on the bag of words approach, commonly used
for the categorization of textual documents [6], and recently
applied with success to video-based object detection and
other similar problems [11]. The proposed method uses a
two level description: first-level features are computed on a
very short time interval, and are somewhat analogous to the
words of a text; second-level features characterize a longer
time interval, and are constructed by means of a learning
process, on the basis of the actual sounds to be recognized.
Finally, a classifier is trained on second level features, so as
to learn which of them are significant for the recognition of
a particular event class and which ones are irrelevant. This
architecture is thus able to work on a longer time scale, but
still remains able to give the right weight to short relevant
sounds; furthermore, the presence of background noise has
a reduced impact because the classifier can learn to ignore
the second level features that are due to the background.

2. The proposed method
The system described in this paper is devoted to au-

dio event detection; given M classes of sounds of interest
C1, . . . , CM , each represented by a finite set of examples,
and an audio stream, the goal of the system is to find if (and
where) there are occurrences of the sounds of interest within
the stream. The audio stream usually contains other sounds
not belonging to the classes of interest, that are considered
as background sounds; we will indicate as C0 the class con-
taining all the background sounds.

In the bag of words approach, the datum to be classi-
fied is represented by detecting the occurrence of local, low-
level features (words) and constructing a vector whose di-
mensionality corresponds to the number of possible words,
and whose elements are indicators of the presence of the
corresponding words, or a count of their occurrences. For
instance, in text characterization the low-level features are

the actual natural language words of a document (after re-
moving suffixes, articles etc.), and the whole document is
represented by a (high dimensional) vector of word occur-
rences; such vectors are then classified using traditional Pat-
tern Recognition tools.

For the extension of these approaches to Computer Vi-
sion, the words are replaced either by small fixed-size im-
age patches, or by salient points (e.g. SIFT features). Since
the space of the possible words is huge (theoretically infi-
nite), a quantization is performed using a training set; the
result is a codebook that allows to associate each low-level
feature with one word chosen from a finite set.

The overall architecture of the proposed method is
shown in Fig. 1. The K-Means clustering (blue box) is used
only during the training phase of the system, while the other
modules (green boxes) of the pipeline are used both in the
training and in the test phases. Each phase of the proposed
method is explained in detail in the following.

2.1. First-level features

The input audio stream, sampled at a rate Fs, is divided
in groups of N partially overlapped frames, with L PCM
samples per frame. Every frame is built by forward shifting
the previous one of L/4 samples.

For each frame, a first-level feature vector is computed.
In particular, we have considered a set of 11 features from
the literature on audio event detection belonging to the cat-
egory of the spectral features, namely spectral centroid,
spectral spread, spectral rolloff, spectral flux [5, 9], of the
energy features, namely total energy, sub-band energy ra-
tios (for 4 sub-bands), volume [5, 7], of the instantaneous
temporal feature, namely the zero-crossing rate [5, 9]. Fol-
lowing, we report a brief description of the first-level fea-
tures.

2.1.1 Spectral centroid and spectral spread

In digital signal processing, the spectral centroid (SC) and
the spectral spread (SS) are measures for characterising the
distribution of the frequency components of a signal. The
spectral centroid is defined as the ”center of mass” of the
spectrum and is computed as follows:

SC =

∑LF

i=1 i
Fs

LF
|X(i)|∑LF

i=1 |X(i)|
, (1)

while the spectral spread is computed as the dispersion of
the frequency components of the signal around the centroid:

SS =

√√√√√∑LF

i=1

[
i Fs

LF
− SC

]2
|X(i)|∑LF

i=1 |X(i)|
, (2)

where LF and |X(k)| are the length and the module of the
FFT of the imput signal x(n), respectively.

82



Figure 1: System architecture of the proposed method. The modules used in both the training and the operative phases are
shown in green, while the blue module is used only during the training phase. The values of the parameters Fs, L, N and K
used for the experimental validation are also reported.

2.1.2 Spectral rolloff

The spectral rolloff is a measure of the skewness of the spec-
trum and is defined as the frequency fro at which the P% of
the spectral components of the signal is at lower frequency.
In our case, we consider P = 90 and determine the value
fro from the following relation:

fro∑
i=1

|X(i)| = P

100

Fmax∑
i=1

|X(i)| . (3)

2.1.3 Spectral flux

The spectral flux (SF) indicates how quickly the spectral
information of a signal is changing and it is computed by
considering the squared-difference between the spectra of
two consecutive audio frames, as reported in the following
equation:

SF =

LF∑
i=1

[Xn(i)−Xn−1(i)]
2
. (4)

2.1.4 Energy ratios in sub-bands

The energy ratios in sub-bands (ERSB) give a rough ap-
proximation of the energy distribution of the spectrum. We
divided the spectrum of the signal into four sub-bands,

which are reported in Eq. 6, and for each sub-band we com-
puted the ratio between the energy contained in that sub-
band and the overall energy of the audio frame.

ERSBn =

∑kn2

i=kn1
|X(i)|2∑Fmax

i=1 |X(i)|2
, (5)

where

[kn1
, kn2

] =


[1, 630], n = 1

[631, 1720], n = 2

[1721, 4400], n = 3

[4401, 22000], n = 4

. (6)

2.1.5 Volume and energy

We calculate the volume feature (V) as the root mean square
(RMS) of the amplitude value of the samples in an audio
frame:

V =

√√√√ 1

L

L∑
i=1

x(i)2, (7)

while the energy (E) is the squared-sum of the amplitude
value of the audio samples:

E =
L∑

i=1

x(i)2. (8)
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2.1.6 Zero crossing rate

The zero crossing rate (ZCR) is the rate of the sign-changes
along a frame and is especially used to characterise percus-
sive sounds and environmental noise. For a frame x(i) of L
samples, the ZCR is computed as follows:

ZCR =
1

2L

L∑
i=1

|sgn(x(i+ 1))− sgn(x(i))| (9)

2.2. Second-level features (Aural words)

In order to derive a finite set of aural words that play the
role of the words in a textual document, we have performed
a quantization of the vector space of the first-level features
using the well known K-Means clustering algorithm during
the training phase of the system. Since this algorithm re-
quires as a parameter the desired number of clusters K, a
grid search is conducted to find the value that maximizes
the final classification accuracy.

It is worth noting that the method only requires unlabeled
samples for performing the clustering; thus for the training
set it is not necessary to have a ground truth with a granu-
larity of a single frame; this can be a significant advantage
over other methods, greatly reducing the human labor time
required to train the event detection system on a new set of
sounds.

The output of the K-Means algorithm is the set of cluster
centroids, which constitutes the codebook of the system:

CB = (w1, . . . , wK) (10)

Conceptually, the entries wi in the codebook can be thought
as the elementary words that can be detected in the input
data to be classified; we call them aural words, to empha-
size the fact that they are related to atomic, perceptual units
of hearing, and not to linguistic units.

In the same way as the topic of a document cannot be
inferred from a single word, but for a larger body of text it
can be reasonably estimated in many cases by considering
the presence or the absence of a certain number of relevant
words, we assume that a single aural word is not sufficient
to classify a sound event, but the presence or the absence of
certain specific words over a longer time interval may lead
to a reliable classification. Thus, in order to perform the
classification, we build a second-level feature vector as fol-
lows: first, the input is divided into (partially overlapping)
intervals ofN frames, so that an interval covers a time scale
sufficient to recognize also sustained sounds (in our exper-
iments we have used 3 seconds intervals, chosen by testing
several values of N and selecting the one providing the best
results). For each frame of the interval, the first-level fea-
ture vector vi is computed (with i = 1, . . . , N ).

Then, for each frame, the codebook is searched for the
word that is closest to vi; let us denote as bi the index of

this word:

bi = argmin
j
|vi − wj | for j ∈ {1, . . . ,K} (11)

Finally, the second-level feature vector
U = (u1, . . . , uK) is defined as follows:

uj =
N∑
i=1

δ (bi, j) for j ∈ {1, . . . ,K} (12)

where δ (·) is the Kronecker delta.
Thus, the second-level feature vector is the histogram of

the occurrences of the aural words detected in the interval
as shown in Fig. 1.

2.3. The classifier

The second-level feature vectors are used to train a Sup-
port Vector Machine (SVM) classifier, using a labeled train-
ing set, with a ground truth defined at a time scale corre-
sponding to an interval.

The choice of the SVM classifier is motivated by the
ability of this algorithm to find a hyperplane separating the
classes to be recognized that is maximally stable, in the
sense that it maximizes the margin between the decision
boundary and the training samples, so as to avoid overfit-
ting on small training sets. We have used the original, lin-
ear version of the SVM, and not the kernelized one, since it
provided satisfactory results in our experiments.

The SVM (like other classifiers based on discriminant
analysis, but differently from distance-based classifiers like
the Nearest Neighbor) is able to construct a decision func-
tion that gives only a subset of the input features a non zero
weight; in this way it can learn which are the aural words
that are really discriminants for the events of interest, and
ignore the others.

Since SVM is a binary classifier (i.e. it works on a two-
classes problem), our system is organized so as to have
several SVM instances operating in parallel, as shown in
Fig. 1. Namely, we have M + 1 classifiers (where M is the
number of the classes to be recognized); classifier i (with
i = 0, . . . ,M ) is trained using as positive examples the
samples from classCi and as negative examples all the other
classes. Given a second-level feature vector, the classifiers
produce an output and a score; if at least one classifier yields
a positive output, the vector is assigned to the class with the
maximum score (which might be the background class C0,
and so no event is reported); if all classifiers give a negative
output, the vector is assigned to C0.

3. Experimental results
3.1. The dataset

The experimental validation of the system has been car-
ried out considering a typical audio surveillance application
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that involves the recognition of the following three classes
of abnormal audio events: scream, broken glass and gun-
shot. From the user perspective the system should raise an
alarm only in presence of an abnormal audio event, while
the sounds produced by any other source should be assigned
to the background noise class.

Since at the best of our knowledge, there are no public
datasets available for benchmarking purposes, we build a
dataset with audio clips sampled at 32 KHz and 16 bits of
resolution. The dataset contains sound samples collected
from the Internet and other sounds that we recorded in dif-
ferent environment conditions. In particular, in our database
we included 278 audio clips belonging to the three classes
of abnormal sounds defined above. Furthermore, in order
to test the robustness of our system with respect to the pres-
ence of other typical background sounds from indoor and
outdoor environments, we inserted in the dataset also 173
clips representative of the following classes: rain, whistles,
child cheerings, crowds, vehicles, household appliances,
applauses, bells.

Other key requisites for an audio surveillance system are
the ability of detecting the events of interest (hereinafter
foreground sounds) when the source is at different distances
from the microphone and when the relevant sound is over-
lapped to one or more background noises. Thus, in order to
account for this variability we defined and adopted a proce-
dure for creating a new dataset of audio clips obtained by
mixing foreground sounds with background noises. Specif-
ically, all the sounds in our datasets were first normalized
to the same reference amplitude value. Then, each audio
sample f̂ of the new dataset was obtained as:

f̂ = α · f +
r∑

j=1

βj · bj (13)

where α and βj are random variables uniformely distributed
in the ranges [0.25, 1.00] and [0, 0.15], respectively; f
and bj are normalized audio samples belonging to the fore-
ground and background classes, both randomly chosen, and
r is randomly chosen in the interval [1, 3]. With the sum op-
erator in equation 13 we represent the operator that allows
to mix two signals by calculating the average value, while
the product of the signal with a float scalar allows to repre-
sent the attenuation of the amplitude of the signal in order
to simulate a sound source at certain distance from the mi-
crophone. It is worth pointing out that for the generation of
the background noise samples for the new dataset, we did
not consider the first addend in the previous equation.

The audio files in the final dataset are organized into four
classes: background noise (BN), broken glass (BG), gun-
shot (GS) and scream (S). We partitioned the dataset into a
training set and a test set composed by 1000 and 1500 audio
clips for each class, respectively.

3.2. Performance evaluation

For the experimental evaluation of our system we used
the following values of Fs = 32kHz, L = LF = 1024,
N = 372, K = 1024, M = 3. The accuracy obtained on
the test set by the method is 95.8% confirming the validity
of the proposal. Furthermore, the confusion matrix reported
in Table 1 shows that all the considered classes were de-
tected with accuracies above 96% with the only exception
of the BG class whose accuracy is about 3% below. We can
also note that most misclassification errors over the three
foreground sounds (BG, GS, S) are directed to the BN, con-
sequently being missed detections.

BN BG GS S
BN 0.961 0.032 0.004 0.003
BG 0.060 0.937 0.003 0.000
GS 0.021 0.011 0.968 0.000
S 0.030 0.005 0.000 0.965

Table 1: The confusion matrix of the proposed method over
the test set. The entry at the row i and column j represents
the fraction of samples belonging to the i-th class and at-
tributed by the system to the j-th class.

It can be interesting also to focus on the performance
indices computed by aggregating the foreground classes
in a macro-class; such analysis is interesting from the fi-
nal user perspective. In fact, the indices calculated in this
way, and reported in Table 2, provide a more immediate
insight of the reliability of the system in the detection of
abnormal events. We notice again that the performance are
very balanced among the two considered macro-classes as
the confusion matrix is almost symmetric. We also obtain
Recall = 96.3% and Precision = 98.7%.

BN BG + GS + S
BN 0.961 0.039

BG + GS + S 0.037 0.963

Table 2: The confusion matrix of the proposed method over
the test set when the three classes of interest related to ab-
normal events are reported as aggregated (BG + GS + S).

3.3. Performance comparison

In order to estimate the advantage introduced by the pro-
posed architecture based on the bag of words approach,
over a more classical architecture, we report here the per-
formance obtained by a system using the same set of fea-
tures adopted in this paper at the first level, but using a LVQ
classifier. It has to be noted that this architecture is derived
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by the one presented in [3] that already showed good per-
formance on a similar problem.

The LVQ classifier was trained, using the same set of
features, in order to discriminate among the four consid-
ered classes, i.e. the three foreground classes plus the back-
ground noise class. The considered system classifies audio
chunks of 32ms (frames); the answers at the frame level
are aggregated on a 3 seconds interval so that the system
attributes the audio clip under test to the class Ci obtaining
the highest score zi = (ni− n̂i)/n̂i, where ni is the number
of frames in the interval assigned by the LVQ classifier to
Ci and n̂i is a threshold that has to be passed by ni in order
to consider the i-th class as a candidate. Note also that in
case zi < 0 for ∀i = 1, ...,M the sample is attributed to the
background class C0.

In our tests we determined the following optimal values
of n̂BN = 252, n̂BG = 120, n̂GS = 22, n̂S = 55, from
the analysis of the ROC curves over the training set. The
LVQ based classification system reported an overall accu-
racy over the test set of 79.2% that is significantly below
the accuracy obtained by the proposed method. The per-
formance obtained on all the classes are in the confusion
matrix in Table 3.

BN BG GS S
BN 0.773 0.103 0.099 0.025
BG 0.137 0.749 0.106 0.009
GS 0.081 0.128 0.785 0.007
S 0.026 0.034 0.078 0.862

Table 3: The confusion matrix of the system using the LVQ
classifier over the test set.

4. Conclusions

In this paper we described a system for the detection of
events of interest through audio recognition. The proposed
method adopts the bag of aural words approach that is in-
spired by the classical bag of words approach used for tex-
tual document categorization. Although the metodology is
rather general and can be adopted for the recognition of any
type of audio event, the performance assessment described
in this paper has been carried out on a significant dataset of
audio samples referred to the domain of audio surveillance,
where the aim is to raise an alarm only in presence of the
sound produced by a scream, a broken glasses or a gunshot.
The results obtained are very convincing thus confirming
the feasibility of the approach, above all when the perfor-
mance are compared with the results obtained adopting the
same audio features with a LVQ classifier.
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