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Relationship between visual complexity and

aesthetics: application to beauty prediction of

photos

Litian Sun Toshihiko Yamasaki Kiyoharu Aizawa

The University of Tokyo

Abstract. Automatic evaluation of visual content by its aesthetic merit
is becoming exceedingly important as the available volume of such con-
tent is expanding rapidly. Complexity is believed to be an important
indicator of aesthetic assessment and widely used. However, psychologi-
cal theories concerning complexity are only verified on limited situations,
and the relationship between complexity and aesthetic experience on ex-
tensive scope of application is not yet clear. To this end, we designed
an experiment to test human perception on the complexity of various
photos. Then we propose a set of visual complexity features and show
that the complexity level calculated from the proposed features have
a near-monotonic relationship with human beings’ beauty expectation
on thousands of photos. Further applications on beauty predication and
quality assessment demonstrate the effectiveness of proposed method.

Keywords: Aesthetic assessment, visual complexity, beauty prediction

1 Introduction

The image processing and computer vision community has made great efforts
to explore computational methods to make aesthetic decisions similar to human
beings. Prediction of photograph aesthetic scores is an undoubtedly challenging
problem. To understand how persons perceive visually pleasing stimuli, psychol-
ogists proposed many theories, in which complexity has been known to be an
important indicator for aesthetic assessment.

Pioneers in computational aesthetics as D. E. Berlyne [1, 2] suggested that the
aesthetic appeal of a pattern seems to depend on the arousing and de-arousing
influence of its collative or structural properties, and that arousing quality is
a direct linear function of complexity, or the amount of information, whereas
pleasantness is generally related to these determinants in an inverted-U manner.
Specifically, aesthetic appeals increase with complexity until an optimal level of
arousal is reached, and after this point, further increase in complexity would elicit
a drop in preference level. Psychologists have conducted a lot of experiments to
verify or evaluate Berlyne’s theory. Many have successfully observed an inverted-
U function between complexity and aesthetic experience concerning architecture
[3, 4], while some only observes the ascending part of the curve [5], and some
shows no support for an inverted U relation between preference and entropy [6].
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The role that complexity plays in aesthetic preference prediction is also em-
phasized in the recent processing fluency theory [7, 8] which goes further to ex-
plore the reason behind the relationship. It suggests that aesthetic experience is
a function of the perceiver’s processing dynamics: the more fluently the perceiver
can process an image, the more positive is their aesthetic response. Fluency the-
ory works well in predicting aesthetic effects due to many low-level features such
as preferences for larger and more highly contrastive displays. However, fluency
theory does not square well with the Berlyne’s inverted-U results, in that it
indicates a monotonic decrease in preference as a function of complexity.

Although complexity is regarded as an important indicator for aesthetic as-
sessment, the relationship between complexity and aesthetic appeal is still de-
batable and further verification is necessary. The main difficulty in psychological
experiments is the limitation of sample size, leading to the problem of insufficient
complexity range. Empirical experiments would become time-costing for partici-
pants when the sample size numbered in thousands. Thus empirical experiments
could not yield a general guideline for aesthetic assessment. Furthermore, the
application scope of psychology theories is not clear, as complexity may vary
greatly for intra and extra-category images.

Despite the lack of large-scale verification and compelling evidence in psy-
chological theories, complexity has already been widely used for aesthetic classi-
fication for photo [9], art [10, 11], and web-page design [12]. Mean gradient value
is considered as measurement of complexity in some works [11, 13, 14]. Following
a similar idea, features related to the file size of compressed image have been
found to be a good approximation of judgements of visual complexity and effi-
cient in aesthetic classification task [9, 15], because compression algorithms such
as JPEG and fractal compression generate good abstraction of lines, colors, rep-
etition information of images. Nevertheless, previous complexity measurements
did not take the other factors that may influence human sensation on complex-
ity, such as curvature, object number, object size, pattern regularity, and pattern
organizations.

In this work, we evaluate the role of complexity played in aesthetic assess-
ment and intend to verify the Berlyne’s inverted-U curve on thousands of photos
through computational methods. We use the public database AVA (Aesthetic Vi-
sual Analysis) [16] 1, which is derived from online phtograph challenges, with a
rich variety of content. As the aesthetic preference of each image is voted 200
times averagely, the difference between individuals is greatly alleviated. AVA
contains photos of 8 categories, with 5000 photos in each category. We first de-
signed a small-scale preliminary experiment to test whether human sensation on
complexity is congruous. Then we proposed a set of visual complexity features
which is capable to summarize organization, statistical and distribution infor-
mation of patterns in a photo, and applied gradient boost trees regression on
these features to set up the complexity model. After that we calculated complex-
ity levels for large-scale photo database, and analysed the relationship between
beauty expectation and complexity level. As application, we used the proposed

1 http://www.lucamarchesotti.com/ava/
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visual complexity features to predict beauty scores using gradient boost trees
regression, and to determine aesthetic quality using random forest as classifier.

The remainder of this article is organized as follows. The preliminary exper-
iment is illustrated in Section 2. The visual complexity features are described in
detail and used to train a complexity model in Section 3. The relationship be-
tween complexity and aesthetic experience is discussed in Section 4. The applica-
tion of the proposed visual complexity features in beauty prediction is presented
in Section 5. Finally, conclusions are given in Section 6.

2 Preliminary experiment on subjective complexity

We selected 10 photos from 2500 training samples of each category from AVA
dataset, making it 80 photos in all. The images were selected as evenly dis-
tributed along the aesthetic ratings ranges. Specifically, although in online pho-
tograph challenges photos could be aesthetically rated from 1 to 10, the aver-
age beauty scores of the 2500 photos in the training set of “Animal” category
vary from 2.62 to 8.25. So we sampled photos with the beauty score interval as
(8.25 − 2.62)/10 ≈ 0.56. In this way we managed to collect photos of different
aesthetic ratings from various categories.

Five participants (2 female and 3 male, aged from 23 to 28) attended this
study. All were graduate students with normal or corrected-to-normal vision.

As depicted in Fig. 1, 10 images from the same category were shown at one
time. And the participants were asked to choose a complexity level for these
images from 5 options: 1 (very simple), 2 (simple), 3 (medium), 4 (complex)
and 5 (very complex). Photos were shown by category in an alphabetic order:
“Animal”, “Architecture”, “Cityscape”, “Floral”, “Fooddrink”, “Portrait” and
“Stilllife”. Photos were arranged randomly to eliminate any possible pattern
between complexity and aesthetic score.

For each image, we calculated the mean and standard deviation of complexity
level provided by the five participants. The complexity levels of the 80 images
averaged over 5 participants ranged from 1.4 to 5.0, and the standard deviation
ranged from 0 to 1.33. As for the image that participants had most different rat-
ings, at least two persons agreed with the same complexity level. This indicates
that complexity is measurable for human beings. Fig. 2 shows example images
labelled with different complexity levels.

To better understand how participants disagree on complexity levels, we show
the distribution of standard deviation along the average complexity score in
Fig. 3. Participants tend to agree with extreme complexity levels. The standard
deviation is low for very simple or very complex images, while high for medium
images.

Table 1 shows the average degree of disagreement of participants concerning
different categories. People tend to agree with the complexity level of images
from “Cityscape”, “Landscape” and “Portrait” categories, while disagreement
falls onto categories such as “Floral” and “Animal”.
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Fig. 1: Interface of complexity level labelling experiment for the “Animal” cate-
gory.

Fig. 2: Example images of 5 complexity levels labelled by participants. The av-
erage complexity levels are rounded to integers, and from left to right they are
1(very simple), 2 (simple), 3 (medium), 4 (complex) and 5 (very complex). Im-
ages from the same column share the same averaged complexity level.

Table 1: Average of standard deviation value for different categories.

Animal Architecture Cityscape Floral Fooddrink Landscape Portrait Stilllife

0.7302 0.6931 0.4102 0.8260 0.6914 0.5871 0.5690 0.7694



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV-14 submission ID 17 5

1 2 3 4 5
0

0.4

0.8

1.2

1.61.6

Average complexity score

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f 
c
o
m

p
le

x
it
y
 s

c
o
re

Fig. 3: Distribution of mean and standard deviation of complexity level labelled
for 80 images.

3 Visual complexity model

In this section we illustrate how the visual complexity features are extracted and
trained to evaluate image complexity. Complexity is the degree of difficulty in re-
construction of description of an image. Visual complexity is correlated to factors
like distribution of color, texture and edges, curvature, object number, object
size, pattern regularity, pattern organizations, etc. We prepare low-level features
like line segments, contour, and texture using the method of [17], sharpness us-
ing [18], and color information is represented in CIECAM02 color space. Then
three categories of complexity information are extracted. Organization handles
an image as a whole, and summarized the way in which the patterns are spatially
distributed in the image. Statistics complexity treats an image as abstractions
of object or texture patches. We count the number of objects and calculate the
similarity between object and texture patches using mean and standard devia-
tion values of certain information, such as curvature degree, texture regularity,
etc. Distribution complexity regards an image as pixels, and measures the differ-
ences between distributions of a photo and a pure noise image using divergence.
A total of 114-dimension feature is summarized in Table 2.

3.1 Organization

Organization is calculated using the orthogonal variant moments (OVM) method
in [19], which is designed to be sensitive to specific perturbations such as trans-
formation, and tolerant to certain extent of unexpected disturbance at the same
time. As for an image I(x, y), OVM generates a 5-D vector: fovm = (A,Lx, Ly, Dx, Dy),
where A is the average value of input. (Lx) and (Ly) are orthogonal components
of the surface area. (Dx) and (Dy) represent the position of object in the image.
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Table 2: Summary of complexity features

Category Short Name Dimension

Organization

Line segment 20
Color 25
Sharpness 5
Relative color 10

Statistics

Eclipse fitness 10
Object number 1
Curvature 8
Texture entropy 1
Texture area 2

Distribution
Line orientation 10
Texture orientation 10
Color distribution 12

Detailed calculation process is listed as below.

η =
1

height× width
A = η

∫ ∫

I(x, y)dxdy (1)

Lx = η

∫ ∫

√

1 +

(

∂I

∂x

)2

dxdy Ly = η

∫ ∫

√

1 +

(

∂I

∂y

)2

dxdy (2)

Dx = η

∫ ∫

(x+ dx)I(x, y)dxdy Dy = η

∫ ∫

(y + dy)I(x, y)dxdy (3)

To extract organization of a photo, we calculate OVM vectors from line seg-
ments, color, sharpness, and relative color information separately. The edge map
generated by [17] is split into four parts using different thresholds. In this way,
pattern displayed with different intensity or importance would be separated.
Color information is divided into hue (including hue angle, hue eccentricity, hue
composition), chroma, lightness. According to Moon-Spencer model [20], color
harmony is closely related to the relative color. We focus on the surrounding
region of contour lines. For each circular region with center point on the contour
lines, the main relative hue and relative chroma is calculated as the difference
between the most dominant color and the second most dominant color. To im-
prove the computation efficiency, the contour lines are down sampled into center
points. In this way, we obtain the relative information along the contour lines
and its organization is summarized using OVM.

3.2 Statistics

To statistically measure visual complexity, we use contour information to count
the number of objects, and to calculate characteristics of objects contour such as
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extent of fit to an ellipse, angular orientation, circularity, solidity, degree of curve
and relative size compared with the whole picture. The circularity is represented
by the ratio of the minor and major axes of the ellipses. Solidity is the ratio
of contour area to its convex hull area. The degree of curve is measured as the
ratio of the contour length to the perimeter of its minimum enclosing rectangular.
These parameters of continuous lines in the contour map are summarized using
mean and standard deviation values.

As curves are believed to be more complex than straight lines, we extract
the curvature from contour using method in [21]. Granularity and regularity of
texture is measured using area statistics and entropy.

3.3 Distribution

Another important measurement of visual complexity is distribution. Distribu-
tion information is represented as the combination of the histogram and its
differences from histograms of templates fdb = [H,D]. Take the orientation of
line segments for example, orientation ranged in [0,180) is cumulated and nor-
malized into a histogram with 8 bins, H = [h1, h2, ..., hk] , k = 8. The differences
between the orientation histogram of line segments and those of the reference
images, R, is measured using chi-square divergence. We choose two reference his-
tograms. One with an averaged distribution in histogram represents the extreme
noisy situation. And another reference histogram with only one bin valued 1 and
all the other bins valued 0 represents the extreme regular situation. Divergence
with the two reference histograms characterize the irregular or regular degree of
orientation distribution. Detailed calculation is illustrated as following.

D = [d1, d2] , di =

k
∑

j=1

(
hj

ri,j
− 1)2hj (4)

R1 = [r1,1, r1,2, ..., r1,k] , r1,i =
1

k
(5)

R2 = [r2,1, r2,2, ..., r2,k] , r2,i =

{

0, if i 6= m
1, if i = m

, where m = argmax
i

hi (6)

The color distribution is summarized into complexity feature in a similar
way. As the hue composition ranges from 0 to 400, we set the histogram with 10
bins.

3.4 Training the complexity model

As complexity is a continuous variable, a regression rather than classification
would be a better choice to train complexity model from previously illustrated
features. We employed gradient boosted trees for regression. Parameters such
as the count of boosting iterations and maximal depth of each decision tree in
the ensemble is optimized through 5-fold validation. Accuracy of regression is
measured using root-mean-square error (RMSE).
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To test and compare with other complexity features, we randomly select 10
out of the 80 photos labelled with complexity level in the experiment for testing
and the left 70 photos are used for training. We conducted such training and
testing 5 times. And the performance is measured by averaging the RMSEs in
the 5-fold test.

We compare the proposed visual complexity features with compression file
size related features proposed in [9] and sum of gradient features used in [14]. The
average RMSE for the proposed feature in the random 5-fold test is 0.35/0.83
(training/testing), while it is 0.47/1.05 by [9], and 0.45/0.89 by [14]. The pro-
posed features outperform the comparison methods in random 5-fold test.

In order to model the perceived complexity using the labelled complexity
levels as accurate as possible, we split the 80 photos according to the standard
deviation of complexity scores. The lower the standard deviation values, average
complexity score is a better approximation of the actual visual complexity. So
we only use photos with low rating disturbance for training, and expect the
predicted complexity level is within the variance range of testing photos. We
use the 70 photos with standard deviation less than 0.90 for training, and the
left 10 photos with standard deviation vary from 0.90 to 1.33 for testing. The
prediction accuracy and maximum absolute error are listed in Table 3.

Table 3: Comparison of visual complexity features in regression.

Feature
Training Testing

RMSE Max err RMSE Max err

Human perception 0.63 0.89 1.09 1.33
Proposed visual complexity feature 0.31 0.82 0.68 1.26

Compression file size related feature [9] 0.60 1.58 0.73 1.75
Sum of gradient [14] 0.29 0.80 0.69 1.39

Complexity levels are in the range of [1,5].

The worst complexity prediction using proposed visual complexity features in
testing has the absolute error of 1.26, which is less than the maximum standard
deviation (1.33) of complexity level labelled by participants. And for the training
set, the absolute error of the worst prediction is also lower than the maximum
standard deviation (0.89). Thus, we prepare a visual complexity model that
could model human beings’ sensation of complexity very well.

4 Relationship between complexity and beauty

In this section we apply the visual complexity model obtained in Section 3 to the
training sets in AVA dataset (each category has 2500 training photos), calculate
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the expectation of aesthetic score, and explore its relationship with complexity
level.

We calculate the visual complexity level for photos from the training sets
in AVA data. As illustrated in Table 1, participants tend to agree with the
complexity for photos from “Cityscape” category, so we expect more accurate
complexity evaluation on “Cityscape” category than other categories. Example
photos from “Cityscape” category with different complexity levels are shown in
Fig. 4.

Fig. 4: Example photos from “Cityscape” category of 5 complexity levels cal-
culated by proposed visual complexity model. The two images from the same
column share the same complexity level.

The complexity level calculated using our proposed method is rounded to
integrate levels. We employ one-way analysis of variance (ANOVA) to compare
the expectation of beauty experience along with complexity level. ANOVA re-
sults suggest that the beauty score distribution of at least one complexity level
is significantly different from those of other complexity levels (p < .05 for each
category), and box plots for all 8 categories are shown in the left of Fig. 5.

Due to the large variance ranges, the differences between the beauty score
means of different complexity level is not clear. To further test the statistical
significance of beauty score expectations, we conduct multiple comparison, group
by group t-test, and show the results in the right part of Fig. 5. Beauty score
expectations of the complexity level coloured as red are significantly different
from the one coloured as blue.

Ascending trends could be observed on the right column of Fig. 5 in “Cityscape”
and “Landscape” categories, and descending trends are shown in “Floral” and
“Fooddrink” categories, while in the other categories only weak ascending or de-
scending trends could be observed. In “Portarit” and “Architecture” categories,
we could only observe the ascending trend for the middle 3 complexity levels.
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And in “Animal” category, the descending trend is not clear for complexity levels
4 and 5.

For “Cityscape” and “Landscape” categories, the ascending trends have clear
statistical significance, except that aesthetic assessment expectations of photos
with intermediate complexity levels may be easily confused with those of adjacent
complexity level. Taking “Cityscape” category for example, mean beauty score of
simple photos (complexity level 2) is significantly different from those of extreme
simple, complex and extreme complex photos (complexity levels of 1, 4 and 5),
while it is hard to tell mean beauty scores of simple photos from that of medium
photos (complexity level 2 and 3).

We evaluate the relationship between aesthetic experience and complexity
level on AVA dataset training photos (each category has 2500 training pho-
tos). Based on our results, we only observed ascending or descending parts of
Berlyne’s invert-U curve for different categories. As for the ascending trends
in “Architecture”, “Cityscape” and “Landscape”, this is because buildings or
landscape scenes are already complex considering the lines and components and
few photographer would like to produce too complex photos in these categories.
Thus the optimal complexity level in the Berlynes inverted-U curve may be not
included in the photo, and the drop of aesthetic experience when complexity
level is higher than the optimal level is not observed. As “Animal”, “Floral” and
“Fooddrink” categories in which most photos focus on single or small number
of objects, the descending trends of beauty expectation is understandable. Too
complex photo would lead to distraction and difficulty to focus onto the content
of the photo. Simple photo is better to express the beauty of these categories.
However “Portrait” and “Stilllife” categories are a little different, as photos con-
vey more semantic meanings and are difficult to model by only low level features.

5 Application in beauty prediction

As verified in Section 5, visual complexity is closely related to aesthetic experi-
ence of photos. In this section we try to predict beauty scores for photos using
visual complexity features.

Visual complexity features are first extracted as illustrated in Section 3. We
employ gradient boosted tree to train the regression model. Parameters are op-
timized through 5-fold validation similar to Section 3.4. The regression accuracy
is measured using RMSE, and the correlation coefficient between the predicted
beauty score and the one labelled by human beings. As shown in Table 4, the
proposed visual complexity features outperforms compression file size related
features in [9] and sum of gradient used in [14]. Considering the fact that beauty
scores range from 1 to 10 and the average error of the proposed method is 0.70
for the best case (“Landscape” category) and 0.97 for the worst case (“Animal”
category), the proposed method is capable of giving a reasonable estimation of
aesthetic experience with.

We also tested the visual complexity features under the high/low quality
classification task. Photos are divided into high or quality class by introducing
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(a) “Animal”
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(b) “Architecture”
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(c) “Cityscape”
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(d) “Floral”
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(e) “Fooddrink”
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(f) “Landscape”
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(g) “Portrait”
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(h) “Stilllife”

Fig. 5: Relationship between aesthetic experience and complexity level. Distri-
bution of beauty experience along complexity level is represented by box plot in
the left. And the difference significance is shown in the right.

Table 4: Comparison of beauty prediction results

Category
Proposed method Compression related [9] Sum of Gradient [14]

RMSE Correlation RMSE Correlation RMSE Correlation

Animal 0.97 0.16 0.74 0.22 1.05 0.04
Architecture 0.83 0.21 0.71 0.17 0.94 0.06
Cityscape 0.83 0.30 0.82 0.18 0.82 0.13
Floral 0.83 0.21 0.77 0.18 0.88 0.01
Fooddrink 0.74 0.31 0.80 0.20 0.83 0.04
Landscape 0.70 0.38 0.85 0.15 0.76 0.12
Portrait 0.74 0.26 0.78 0.15 0.84 0.07
Stilllife 0.78 0.23 0.72 0.24 0.83 0.04

Beauty scores are in the range of [1,10].
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a threshold parameter δ. Photos with beauty scores higher than 5.5 + δ is con-
sidered as of high quality, while photos with beauty scores lower than 5.5 − δ
is considered as of low quality. Higher δ leads to more unambiguous training
samples making the classification easier, and when δ = 0 the whole training set
is used. We employ random forests as classifier. The maximum tree depth is set
as 5, and the maximum number of trees in the forest is set as 100.

We set the threshold δ as [1.0, 0.9, ..., 0.1, 0.0]. For δ = 1, there are several hun-
dreds of photos left for each category, which is large enough to test the proposed
method. And the performance is shown in Fig. 6. These results are consistent
with the performance in regression task. Visual complexity features have best
performance for photos from “Landscape” category, and worst performance for
“Portrait” category. This is because features indicating complexity in landscape
photos mostly refer to more objects, and complex topographies and landforms
could be easily summarized through organization and statistical features. On
the contrary, the complexity of portrait photos which are mainly human faces is
difficult to measure using only low-level features. Semantic interpretations are
necessary, and familiarity may be a predominate factor in complexity detection.

The proposed visual complexity features averagely outperform 8.5% com-
pression related features in [9] and 14.7% over sum of gradient in [14] for the
“Landscape” category, and for the “Portrait” category 3.9% over compression
related features in [9] and 6.8% over sum of gradient in [14].

6 Conclusions

Through a small-scale experiment, we found that human beings’ judgement on
complexity levels are congruous, hence complexity levels of photo is measur-
able. We proposed a set of visual complexity features and trained them into
complexity model. And then we calculated complexity level for large-scale photo
database to explore the relationship between beauty expectation and complexity
level. Our analysis confirmed the ascending part of Berlyne’s inverted-U curve
and the importance of complexity in aesthetic assessment. The proposed visual
complexity features are proved to be efficient in both beauty prediction and
quality classification tasks.

In future work, we intend to enrich the definition of complexity to better
model human beings’ complexity sensation and include semantic features such
as familiarity. To improve the accuracy of complexity model, we would collect
complexity labels in a crowd-sourcing way. We would like to further explore the
role that complexity played in aesthetic assessment and try to predict aesthetic
ranks for photos.
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(c) “Cityscape”
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(d) “Floral”
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(f) “Landscape”
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(g) “Portrait”
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Fig. 6: Performance comparisons on high/low-quality classification task.
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