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Abstract. In this paper, a new graph based framework for clustering
characterization is proposed. In this context, Self Organizing Map (SOM)
is one popular method for clustering and visualizing high dimensional
data, which is generally succeeded by another clustering methods (par-
titional or hierarchical) for optimizing the final partition. Recently, we
have developed a new SOM clustering method based on graph coloring
called McSOM. In the current study, we propose to automatically char-
acterize the classes obtained by this method. To this end, we propose
a new approach combining a statistical test with a maximum spanning
tree for local features selection in each class. Experiments will be given
over several databases for validating our approach.
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1 Introduction

Clustering is an important task in knowledge discovery systems. It aims to dis-
cover the best structure from unlabelled data. To this end, the principle con-
ducts a process of organizing objects into homogeneous groups. The clustering
methods can be grouped into five families including partitioning, hierarchical,
density-based, grid-based or model-based [11]. In this paper, we are interested in
models and particularly those using self-organizing map (SOM) [13]. This tech-
nique is a prominent tool for high-dimensional data analysis since it provides a
substantial data reduction that can be used for visualizing and exploring proper-
ties of data. Generally, two important issues need to be clarified after clustering
data by SOM: how to optimize the number of neurons and how to characterize
the obtained classes. To deal with the first issue, several authors have investi-
gated SOM clustering in sequential ways [17] or simultaneous ones [3]. However
these approaches don’t take into account the topological neighborhood relations
offered by SOM. For that reason, we present a recent developed method based
on coloring of graphs where more details can be found in [6]. This method is
called McSOM for Minimal coloring of SOM. It represents an extension of the
minimal graph coloring technique for clustering.
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After clustering task, it is important to select the optimal feature subset
which is relevant for characterizing each obtained class. This task is generally
done by experts or by automatic characterizing methods. In this context, several
important research topics in cluster analysis and feature weighing are discussed
in [2] [7] [8] [9]. For such approaches, the search for an optimal subset of features is
built into the clustering construction making these techniques specific of a given
learning algorithm. In [5] the authors discover the relevant features using filter
techniques by looking only at the intrinsic property of data. The disadvantage is
that this method ignores the interaction with the clustering algorithm and that
most proposed techniques are univariate thus ignoring feature dependencies.

In contrast of these weighting algorithms, we propose a graph based approach
for unsupervised feature selection. For each obtained class, our approach at-
tempts to find a ”Pivot” features using a statistical test and maps them into
a maximum spanning trees for selecting their related subset of features that
characterize this class. The rest of the paper is organized as follow: in section
2 we describe the batch version of SOM model. In section 3, we briefly present
McSOM, a recent developed approach for clustering of SOM. The section 4 will
be devoted to the used statistical test and maximum spanning trees for feature
selection. Finally, we provide experimental results on several databases and a
conclusion on our proposed work.

2 Self-Organizing Map: SOM

SOM is used nowadays through numerous domains and has been successfully ap-
plied in numerous applications. It is a very popular tool used for visualizing high
dimensional data spaces. SOM can be considered as doing vector quantization
and/or clustering while preserving the spatial ordering of the input data rejected
by implementing an ordering of the codebook vectors (also called prototype vec-
tors, cluster centroids or reference vectors) in a one or two dimensional output
space. The SOM consists of neurons organized on a regular low-dimensional grid,
called the map. More formally, the map is described by a graph (V, E). V is a set
of m interconnected neurons having a discret topology defined by E. For each
pair of neurons (c, r) on the map, the distance δ(c, r) is defined as the shortest
path between c and r on the graph. This distance imposes a neighborhood rela-
tion between neurons (Fig. 1). Each neuron c is represented by a p-dimensional
reference vector wc = {w1

c , ...., wp
c} from W (the set of all map’s neurons), where

p is equal to the dimension of the input vectors. The number of neurons may
vary from a few dozen to several thousand depending on the application.

The SOM training algorithm resembles k-means [15]. The important distinc-
tion is that in addition to the best matching reference vector, its neighbors on
the map are updated. The end result is that neighbouring neurons on the grid
correspond to neighbouring regions in the input space.

The SOM algorithm is proposed on two versions: Stochastic (on-line) or batch
(off-line) versions. In this paper, we use the second one which is deterministic
and fast. The batch version of SOM is an iterative algorithm in which the whole
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Fig. 1. Two dimensional topological map with 1-neighborhood of a neuron c. Rectan-
gular (red) with 8 neighbors and diamond (blue) with 4 neighbors.

data set is presented to the map before any adjustments are made. In each
training step, the data set is partitioned according to the Voronoi regions of
the map reference vectors. More formally, we define an affectation function f
from Rp (the input space) to C, that associates each element zi of Rp to the
neuron whose reference vector is “closest” to zi (for the Euclidean distance).
This function induces a partition P = {Pc; c = 1...m} of the set of individuals
where each part Pc is defined by: Pc = {zi ∈ Ω; f(zi) = c}. This represents the
assignment step.

Next, an adaptation step is performed when the algorithm updates the
reference vectors by minimizing a cost function, noted E(f,W). This function
has to take into account the inertia of the partition P , while insuring the topology
preserving property. To achieve these two goals, it is necessary to generalize the
inertia function of P by introducing the neighborhood notion attached to the
map. In the case of individuals belonging to Rp, this minimization can be done
in a straight way. Indeed new reference vectors are calculated as:

wt+1
r =

∑n
i=1 hrc(t)zi∑n
i=1 hrc(t)

(1)

where c = arg minr ‖zi −wr‖, is the index of the best matching unit of the data
sample zi, ‖.‖ is the distance mesure, typically the Euclidean distance, and t
denotes the time. hrc(t) is the neighborhood kernel around the winner unit c. In
practice, we often use hrc = e−

δrc
2T2 where T represents the neighborhood raduis

in the map. It is decreased from an initial value Tmax to a final value Tmin.
Consequently, hrc is a non-increasing function of time and of the distance of

unit r from the winner unit c. The new reference vector is a weighted average
of the data samples, where the weight of each data sample is the neighborhood
function value hrc(t) at its winner c.

3 Graph Coloring of SOM: McSOM

In this section, we briefly present our recently developed graph based approach
for clustering SOM. Let be Ω = {z1, z2, . . . , zn} (zi ∈ �p) a data set clustered
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with SOM into m neurons of a topological map. If we consider this map as an
undirected graph G(V, E) where V is a set of vertices (neurons) and E is a set
of edges (similarities between neurons), we can use the graph theory methods
for clustering SOM neurons. The main idea is to use neighbourhood relations to
constrain the construction of the threshold graph (indispensable for the coloring
algorithm) and the possible vertex selections during the building of the minimal
coloring of this graph.

The minimal coloring based clustering approach requires a non complete edge-
weighted graph G>θ = (V, E>θ) to return a partition Pk of W = {w1, w2,
. . . , wm} neurons (reference vectors) set. In order to incorporate the SOM neigh-
bourhood relations into the clustering problem, our first modification concerns
the construction of this non-complete graph that will be presented to the Largest
First (LF ) algorithm of Welsh and Powell [18]. This non complete edge-weighted
graph is now given by G>θ,α = (V, E>θ,α), where E>θ,α is the edge set, where
for each two vertices vi and vj in V (corresponding to (wi, wj) in the map), the
edge (vi, vj) ∈ E>θ,α if D(wi, wj) > θ or SN (wi, wj) > α where D is the dis-
similarity matrix, SN is the SOM rectangular - neighbourhood order matrix, θ
is the dissimilarity threshold and α is the SOM rectangular-neighbourhood order
threshold. This proposal offers the possibility to perform the minimal coloring
based clustering approach multiple runs, each of them increasing the value of α.

The neurons to be clustered are now depicted by a non-complete edge-weighted
graph G>θ,α. Additional modifications of the minimal coloring based clustering
approach are considered in order to improve the quality of clustering by incor-
porating the topological relations offered by SOM. The changes concern now
the LF algorithm used for coloring the graph G>θ,α. In fact, after sorting the
vertices of G>θ,α by decreasing degree, the LF algorithm starts from the vertex
of V which has the maximum degree Δ (the maximum number of edges from V ).
The algorithm colours this vertex using the color one. Then, it tries to color the
remaining vertices (by respecting the decreasing order of their degree) according
to the following principle: each vertex is placed in the first color class for which
it has no neighbours. If no such color exists, then a new color is created for it.
In the end of the algorithm, each neuron will be colored and neurons having the
same color, belong to the same class. Theoretical and practical details can be
found in [6].

4 Characterizing McSOM: G-Select

In the previous section, another way for clustering SOM using a graph coloring
based approach is presented. Once clustering done, a data partition with an
optimal number of classes is obtained. In this section, we introduce a new graph
base approach, called G-Select (for Graph based feature selection), to find the
local feature subsets that characterize each class.

4.1 Determining “Pivot” Features

The first step of G-Select aims to define the statistical test which allows to
determine the “Pivot” features. A “Pivot” feature is the most relevant one in
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a class, i.e. it is the feature which contributes most in grouping observations in
the associated class.

The statistical test for a given feature in a given class defines a test value (T )
which is simple but practically very important [14].

Let be a sample of size n, a class K found by McSOM with cardinality nK

(nK < n). The test value of a feature j in K can be defined by:

TK(j) =
μjK − μj

√
n−nK

n−1 × σ2
j

nK

(2)

Where uj is the mean value of j in the global sample, its variance is σ2
j and its

mean in the class is μjK .
T can be considered as a comparison test between means of different sets.

It is classically used to measure dissimilarity between the overall distribution
of a feature and that observed in the considered class. We note that if all fea-
tures participate in the construction of the partition, as in our case, it is not
appropriate to define a hypothetic threshold for selecting the most important
ones according to T since this value quantifies the relevance of each feature in-
dividually and independently of the other ones [14]. Thus, T will be use just
for ranking theses features and determining the best one which will serve as a
”Pivot” in the construction of tree in the next section. Subsequently, a “Pivot”
feature p∗ of one class K is defined as follow:

p∗K = arg max
1≤j≤p

|TK(j)| (3)

4.2 Maximum Spanning Tree for Characterization

In this section, we show how to automatically detect the set of features which
have a strong multiple correlation and are directly linked to the “Pivot” feature.
For that, we propose to perform a maximum spanning tree based method. This
technique requires a matrix of weights between vertices (features in our case).
We calculate, thus, a matrix of correlations for each class K, where a correlation
between two features j and j′ is defined in:

corr(j, j′) =
1

σjσj′
× 1

nK

∑

k=1

(zj
k − μjK)(zj′

k − μj′K) (4)

For each K, we can define a weighted graph GK(D, CORR) is defined, where
D is the set of all features (vertices) and CORR is the set of edges valuated
according to (4).

A maximum spanning tree G
′
K is a connected and acyclic sub-graph of GK ,

for which the sum of edge weights is maximum. This graph allows to detect
the features which are directly linked to the “Pivot” feature without using any
threshold. Fig. 2

On the left side of Fig. 2, G represents a complet graph where all features are
weighted using the correlation values. On the right, we can see the maximum
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Fig. 2. G: Original Graph; G′:Maximum spanning tree

spanning tree G′ obtained from G where are showed: the pivot feature (blue
vertex), the features linked to the pivot features (dark vertices) and the edges
which contribute to the construction of the tree (solid lines).

For constructing G
′
K of a class K, we use the optimized algorithm of Prim [4]:

Let be V and E two empty sets. First, we affect to V one feature from D. The
goal is to find the edge (j, j′) of V ×V having the maximum weight (V = (D−V ))
and to update j in V and (j, j′) in E.

The algorithm proceeds as follow:
Let be jk a selected feature from V at step k and assigned to V . We note

V ∗ = V ∪ {jk} and V
∗

= V − {jk}. Thus, at step k + 1 we seek :

max
(j,j′)∈V ∗V ∗

corr(j, j′) = max
j∈V ∗

max
j′∈V ∗

corr(j, j′) (5)

A marking procedure consists, in step k, after selecting jk, to keep for each
j ∈ V ∗ the values max

j′∈V ∗
corr(j, j′). These values are calculated by the following

updating formula :

max
j′∈V ∗

corr(j, j′) = max(max
j′∈V

corr(j, j′)corr(jk , j)) (6)

Then, in step k we memorize for each j ∈ V ∗ the following values:
- Pred(j), the farthest vertex of j in V ∗:

Pred(j) = arg max
j′∈V ∗

corr(j, j′) (7)

- L(j), the length between j and Pred(j):

L(j) = max
j′∈V ∗corr(j, j

′) (8)

Consequently, the construction of the tree is done from two vectors : Pred
and L of dimension p and from the correlation matrix CORR of dimension p×p.
After (p − 1) iterations, the (p − 1) edges are (j, Pred(j)).

Finally, for extracting the features which characterize the class K, we detect
the ”Pivot” feature p∗ according to (3) and we select then its directly linked
features from the obtained spanning tree.
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5 Results

We performed several experiments on four known problems from UCI Repos-
itory of machine learning databases [1]. They are voluntarily chosen (Table.1)
for comparing our approach (G-Select) with another characterizing clustering
methods.

Table 1. Characteristics of used databases

Data sets N p #labels

Wave 5000 40 3

Madelon 2000 500 2

Wdbc 569 30 2

Spamb 4601 57 2

Remark that the used UCI data sets include class information (labels) for
each observation. These labels are available for evaluation purposes but not
visible to the clustering algorithm. Remember that the objective was to perform
unsupervised classification that correctly identifies the underlying classes when
the number of clusters is not predefined.

In general, the result of clustering is usually assessed on the basis of some
external knowledge about how clusters should be structured. The only way to
assess the usefulness of a clustering result is indirect validation, whereby clusters
are applied to the solution of a problem and the correctness is evaluated against
objective external knowledge. This procedure is defined by [11] as ”validating
clustering by extrinsic classification” and has been followed in many other stud-
ies. Thus, two statistical-matching schemes called Purity and Rand index [10]
are used for the clustering accuracy.

5.1 Clustering Characterization

First, we give some details over the values assigned to different parameters for
all used databases. For the construction of the maps, we have used an heuristic
proposed by Kohonen [13] for automatically providing the initial number of
neurons and the dimensions (nrows×ncolumns). Thus, for Wave, Dimension =
26 × 14, for Wdbc, Dimension = 30 × 4, for Madelon, Dimension = 17 × 13
and for Spamebase, Dimension = 38 × 9. Then, we remind that the Euclidian
distance is applied to define the dissimilarity level D between two p-dimensional
referent vectors in the map. Moreover, for each SOM rectangular-neighborhood
order threshold α (chosen between 1 and the number of SOM’ rows ), McSOM
is performed multiple runs, each of them increasing the value of the dissimilarity
threshold θ. Once all neighborhood and dissimilarity threshold values passed,
the algorithm provides the optimal partitioning which maximizes Generalized
Dunn’s (DunnG) quality index [12]. This index is designed to offer a compromise
between the inter-cluster separation and the intra-cluster cohesion. So, it is more
appropriate to partition data set in compact and well-separated clusters.
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DunnG =
min

i,j,i�=j
da(Ci, Cj)

max
h

sa(Ch)
(9)

– sa(Ci) is the average distance within the cluster Ci

– da(Ci, Cj) is the between-cluster separation

We start now by analyzing Wave data set because we know a priori that it is
composed of 21 relevant features (the first ones) and 19 noisy features. The aim
is to see if G-Select is able to select just the relevant ones. We have presented this
database with all 40 features to McSOM and we have automatically obtained 3
classes with < Purity, Rand > = < 0.55, 0.6706 >. The number of classes corre-
sponds exactly to the real defined one. Then, we have applied G-Select over these
3 classes and we have obtained for each one its characterizing features. Thus,
G-Select provided for each class its “Pivot” feature which is directly linked to a
subset of features extracted from the maximum spanning tree over all features.
So, [14, *15*, 16, 17, 19] are selected for the first class, [2, 6, *7*, 8, 30] for the
second class and [1, 9, 10, *11*, 12] for the third one (the numbers between **
represent ”Pivot” features). We can see that G-Select allows the selection of 14
relevant features (with one noisy feature: 30) for the characterization. Neverthe-
less, The approach provides good rates on Purity and Rand with 0.5680 and
0.6713, respectively. Theses rates are better than those found by another weight-
ing based characterization approach (lwd-SOM: < 0.5374, 0.6068 >, lwo-SOM:
< 0.5416, 06164 >) in [8] with a minimum number of features (Table.2).

Table 2. G-Select vs lwo-SOM and lwo-SOM over Wave database

lwd-SOM lwo-SOM G-Select

Classes:[features] cl1:[6-15] cl1:[3-8,11-16] cl1:[14-17,19]
cl2:[4-10] cl2:[8-11,14-19] cl2:[2,6-8,30]
cl3:[7-19] cl3:[3-20] cl3:[1,9-12]

Purity 0.5374 0.5416 0.5680

Rand 0.6068 0.6164 0.6713

We provide in Table 3 a comparison of the quality of McSOM before and after
feature selection by G-Select over the other databases. In Table.4 we present the
results of our approach versus lwd-SOM and lwo-SOM over the same databases.

We can see from all these tables that G-Select provides:

– An automatic characterization of classes from clustering, with the selection
of an optimal number of features,

– An important elimination of noise,
– An improvement of SOM clustering after feature selection
– A good rates on Purity and Rand after selection compared to another char-

acterization based methods.
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Table 3. Clustering accuracy before and after feature selection

Data sets Before Selection After Selection

Rand Purity Rand Purity

Wdbc 0.6769 0.7979 0.8843 0.9385

Madelon 0.5085 0.5825 0.5094 0.5945

Spambase 0.5195 0.6059 0.5197 0.6624

Table 4. Local feature selection for each class. [features]; < Purity >; [*]: [49 65 106
129 242 339 344 356 443 454 476 494].

Data sets # cl lwd-SOM lwo-SOM G-Select

Wdbc 2 cl1 − cl9 : [4,24] cl1 − cl9 : [4,24] cl1:[7,8,23,28]
cl2:[3,7,8,28]

< 0.6274 > < 0.8682 > < 0.9285 >

Madelon 2 cl1:1; cl2: [91, cl1:1; cl2:[242, cl1 − cl4: [*]
281, 403-424] 417-452]
< 0.5242 > < 0.5347 > < 0.5945 >

Spamb 2 cl1:56 ; cl2:57 cl1:56 ; cl2:57 cl1:[26,32,34,55]
cl2:[27,29,31,32,

34,40,43]
< 0.6103 > < 0.6413 > < 0.6624 >

6 Conclusion and Future Work

We proposed in this paper a graph based framework for clustering and charac-
terizing Self-organizing map. The proposal concerns more particularity G-Select
which provides local feature selection from clustering obtained by a recently de-
veloped method called McSOM. in this approach we combined a statistical test
for detecting ”Pivot” features from obtained classes, with maximum spanning
tree for extracting subsets of relevant features allowing their characterization.
Some interesting issues can be raised from this work, for example the construc-
tion of graphs from several ”Pivot” features and the optimization of the proposed
approach to extend it for large databases analysis.
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