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ABSTRACT

In this paper, a novel Structure-Constrained Low-Rank and
Partial Sparse Representation algorithm for image classifica-
tion is proposed. First, a Structure-Constrained Low-Rank
dictionary learning algorithm is proposed, which imposes
both structure and low-rank restriction on the coefficient ma-
trix. Second, under the assumption that the representation of
test sample is sparse and correlated with the learned represen-
tation of training samples, we concatenate training samples
and test samples to form a data matrix and find a low-rank
and sparse representation of the data matrix over learned
dictionary by low-rank matrix recovery technique. Experi-
mental results demonstrate the effectiveness of the proposed
algorithm.

Index Terms— sparse representation, low-rank represen-
tation, dictionary learning, image classification

1. INTRODUCTION

The recent studies show that sparsity is a ubiquitous property
exhibited by many real-world signals such as audio and im-
ages, and sparsity also acts as a strong prior for solving the
ill-posed inverse problems [1]. Thus sparse representation,
has drawn considerable interest in recent years [2] and is ex-
tensively used in image processing [3,4]. The problem solved
by sparse representation is to approximate the given signal by
sparse linear combinations of elements on a basis or an over-
complete dictionary. Sparse representation achieves inspiring
performance on image classification. Sparse representation
based classification (SRC) [5] takes all training samples as
dictionary. However, to obtain a high recognition accuracy,
the size of dictionary should be large while the optimization
is computationally expensive. Some dictionary learning algo-
rithm is therefore proposed to learn a compact and discrimi-
native dictionary [6–8].

Low rank matrix recovery, which determines a low-rank
matrix from given data matrix, has received an increasing
amount of interest in recent years. It has been successfully
applied to a variety of applications, such as image clas-
sification [9–12], background modeling from surveillance

video [13], matrix completion [14] and subspace cluster-
ing [15].

Recently some image classification algorithms based
on low-rank and sparse representation have been proposed.
Ma [9] proposed a discriminative low-rank dictionary learn-
ing for sparse representation (DLRD-SR), which learns low-
rank class-specific sub-dictionary of every class and com-
bines all sub-dictionaries to form a dictionary. However,
the low-rankness of each class-specific sub-dictionary leads
to a decrease of the representative power of the dictionary.
Zhang [10] proposed a structured low-rank representation
for image classification, which assumes that the coefficient
matrix should be both low-rank and sparse, Zhang also con-
structed an structured ideal representation based on the label
information of training samples and encouraged the coeffi-
cient matrix to be close to the ideal representation. However,
the magnitude of the ideal representation is hard to approx-
imate and this method can only find low-rank and sparse
representation of test samples after all test samples are re-
ceived, which is not a practical way.

In this paper, a novel Structure-Constrained Low-Rank
and Partial Sparse Representation (SC-LCPSR) algorithm,
which is consisted of a Structure-Constrained Low-Rank
Dictionary Learning algorithm and a Low-Rank and Partial
Sparse Representation algorithm, for image classification is
proposed. First, SC-LCPSR learns a structured discriminative
dictionary by low-rank and structure constraint on the coeffi-
cient matrix and then a data matrix is formed by combining
test sample and training samples, and the low-rank and sparse
representation of the data matrix under the learned dictionary
is found on the assumption that the representation of test
sample is sparse and correlated with the learned represen-
tation of training samples. Further, the proposed algorithm
handles one test sample every time, which is a more practical
way, and it is also applicable to the situation that multiple test
samples are received at the same time.

The rest of this paper is organized as follows. Some re-
lated work is reviewed in Section 2. The proposed algorithm
is introduced in Section 3. Experimental results is demon-
strated in Section 4. Finally Section 5 concludes this paper.
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2. RELATED WORK

In most image processing and computer vision applications,
the given data matrix X can be decomposed as a low-rank
component and a sparse component. Candès et.al proposed
Robust PCA [13] to model this kind of data:

argmin
Z,E

rank(Z) + λ∥E∥0 s.t. X = Z + E (1)

However, to find the solution of (1) is NP-hard. It is proved
in [13] that if the rank of Z is low enough and E is sparse
enough, (1) can be relaxed into a convex problem:

argmin
Z,E

∥Z∥∗+λ∥E∥1 s.t. X = Z + E (2)

where ∥Z∥∗ is the nuclear norm of Z (i.e. the sum of singular
value).

This model implicitly assumes that the underlying data
structure is a single low-rank subspace. When the data is
drawn from a union of multiple subspaces, which is com-
mon in image classification, the recovery may be inaccurate.
Lin [16] proposed a more general rank minimization problem
Low-Rank Representation (LRR) to solve this problem, and
LRR is defined as follows:

argmin
Z,E

∥Z∥∗+λ∥E∥1 s.t. X = DZ + E (3)

where D is a dictionary that linearly spans the data space.
Sparse Representation (SR) is also a powerful tool and

has attracted significant research interest recently. But as ob-
served in [17], SR focus on local structure of data for the
sparsest representation of each data vector is found individ-
ually and no global constraint on it, while LRR is better at
capturing the global structure of the data matrix.

Let’s considerate a simple example.

argmin
Z

R(Z) X = XZ (4)

where R(Z) denotes low-rank or sparse constraint on Z.
When we solve problem (4) via SR directly, a trial solution
Z = I is found, which is the most sparse solution but it is use-
less, an additional condition diag(Z) = 0 is needed to find
the solution we pursuit [15], while the optimization prob-
lem (4) can be solved under low-rank constraint directly [16].
This characteristic of LLR is extensively used in subspace
segmentation. Image classification can also benefit from it,
especially taking the sparsity of the coefficient matrix into
consideration at the same time.

3. STRUCTURE-CONSTRAINED LOW-RANK AND
PARTIAL SPARSE REPRESENTATION

In this section, we will introduce the proposed Structure-
Constrained Low-Rank and Partial Sparse Representation

(SC-LCPSR). The proposed SC-LCPSR is consisted of two
parts, a Structure-Constrained Low-Rank Dictionary Learn-
ing algorithm and a Low-Rank and Partial Sparse Represen-
tation algorithm.

3.1. Structure-Constrained Low-Rank Dictionary Learn-
ing

Let Xt = [Xt
1,Xt

2, . . . ,Xt
Nc] ∈ Rp×Ns, where Xt

i denotes
training samples from the ith class, Nc means number of
classes, Ns means number of samples and Ns =

∑Nc
i=1 Ni,

where Ni denotes the number of samples from the ith class.
Low-rank representation decomposes the matrix Xt

i into a
low-rank component DZt

i and noise Ei, i.e.,Xt
i = DZt

i + Ei,
with respect to a dictionary D. It’s assumed that every atom of
D is associated with a class, or every class contributes several
atoms in D, i.e.,D = [D1,D2, . . . ,DNc]. Consequently Xt

i

tends to be represented by atoms associated with the ith class.
Based on the above discussion, it’s possible to learn a dis-

criminative dictionary D, a low-rank representation Zt
i and

noise E with given training samples from the ith class Xt
i un-

der some constrain on Zt
i. The objective function is formu-

lated as follows:

argmin
Zt
i,Ei,D

∑Nc
i=1 α∥Zt

i∥∗+
∑Nc

i=1 γ∥Ei∥l

s.t. Xt
i = DZt

i + Ei

πΩi(Z
t
i) = 0

(5)

where ∥Ei∥l indicates certain regularization strategy, such as
∥Ei∥2F for the data is slightly perturbed, ∥Ei∥1 for random
corruptions and ∥Ei∥2,1 for sample-specific corruptions, here,
∥E∥l is set to be ∥E∥1; α and γ are parameters that balance
the two term; Ωi denotes the rows in Zt

i corresponding to Di,
πΩi : Rm×n → Rm×n is a linear operator that keeps the
entry in Ωi unchanged and sets those outside Ωi zeros. The
constraint πΩi(Z

t
i) = 0 incorporates the label information in

training samples and also makes Zt
i sparse.

The optimization of (5) can be divided into two subprob-
lem. The first subproblem is to compute Zt

i and Ei with D
fixed, while the second subproblem is to solve D with given
Zt
i and Ei.

The solution of Zt
i and Ei can be found by alternatively

solving each pair of Zt
i and Ei via Inexact Augmented

Lagrange Multiplier(ALM) [18] in partial augmented La-
grangian function below:

argmin
Ji,Zt

i,Ei

α∥Ji∥∗+γ∥Ei∥1+ < Y2,Zt
i − Ji >

+ < Y1,Xt
i − DZt

i − Ei > +
µ

2
(∥Xt

i − DZt
i − Ei∥2F+∥Zt

i − Ji∥2F )

(6)

where for updating Zt
i the constraint πΩi(Z

t
i) = 0 should be

enforced after optimization.
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Zt and E are formed by concatenating all Zt
i and Ei to-

gether respectively, i.e., Zt = [Zt
1,Zt

2, . . . ,Zt
Nc] and E =

[E1,E2, . . . ,ENc]. And the dictionary is updated as follows:

D := θD + (1− θ)(Xt − E)(Zt)† (7)

where (Zt)† denotes the pseudo-inverse of Zt, 0 ≤ θ ≤ 1 is a
parameter controls the updating step.

The calculation is described in Algorithm 1. Where
Sαµ−1 [S] means soft-thresholding on S.

Algorithm 1 Structure-Constrained Low-Rank Dictionary
Learning Algorithm
Input:

Initialized dictionary D; Dictionary updating parameter
θ; Parameters for Inexact ALM

Output:
D, Zt, E

1: while not converged do
2: for i = 1 → Nc do
3: Ji=0, Zt

i=0, Ei=0, Y1=0, Y2=0
4: while not converged do
5: (U,S,V) = svd(Zt

i + Y2/µ)
6: Ji := USαµ−1 [S]VT

7: Zt
i := (DT D+I)−1(DT Xt

i−DT Ei+Ji+(DT Y1−
Y2)/µ)

8: πΩi(Z
t
i) = 0

9: Ei := Sγµ−1(Xt
i − DZt

i + Y1/µ))
10: Y1 := Y1 + µ(Xt

i − DZt
i − Ei)

11: Y2 := Y2 + µ(Zt
i − Ji)

12: µ = min(µmax, ρµ)
13: end while
14: end for
15: Zt = [Zt

1,Zt
2, . . . ,Zt

Nc]
16: E = [E1,E2, . . . ,ENc]
17: D := θD + (1− θ)(Xt − E)(Zt)†

18: end while

3.2. Low-Rank and Partial Sparse Representation

There are several methods to obtain coefficient z, given a test
sample x and learned dictionary D, such as sparse representa-
tion. But as mentioned above, the sparsity criterion captures
only the local structure of x. The low-rankness captures the
global structure of data, but test sample is given one by one in
most cases, hence it is inappropriate to wait for the test sam-
ples to form a matrix. In this subsection, we proposed a Low-
Rank and Partial Sparse Representation algorithm(LRPSR) to
capture not only the local structure of x but also the global
structure of x and Xt. This algorithm process one test sample
every time which is a more practical way, and actually this al-
gorithm also applies to the situation that multiple test samples
are received at the same time.

It is assumed that the test sample from ith class is highly
correlated with the training samples that also come from ith

class Xt
i, hence the coefficient z should be correlated with

Zt
i, but i is unknown. Consequently, we consider that z is

correlated with Zt and the correlation leads to low-rankness.
The test sample x and training samples Xt are concate-

nated to form a matrix X, i.e., X = [Xt, x]. X can be de-
composed into low-rank component DZ and noise E, i.e.,
X = DZ+E and Z can be divided into two parts, Z = F+W,
where F means the fixed part and F = [Zt, 0], W denotes the
coefficient of x and W = [0, z]. By adding low-rank and
sparse constrain, the objective function is formulated as fol-
lows:

argmin
Z,W,E

α∥Z∥∗+β∥W∥1+γ∥E∥1

s.t. X = DZ + E
Z = F + W
πΩ(W) = 0

(8)

where πΩ(W) = 0 sets all entries in W to zero except
columns corresponding to test samples.

The problem (8) can be optimized via Inexact ALM when
it is rewritten as partial augmented Lagrangian function:

argmin
J,Z,W,E

α∥J∥∗+β∥W∥1+γ∥E∥1+

< Y1,X − DZ − E > + < Y2,Z − J >

+ < Y3,Z − F − W > +
µ

2
(∥Z − J∥2F

+∥Z − F − W∥2F+∥X − DZ − E∥2F )

(9)

where for updating W the constraint πΩ(W) = 0 should be
enforced after shrinkage.

The calculation is described in Algorithm 2

4. EXPERIMENTS

In this section, we evaluate our algorithm on two database:
Extended Yale B [19] and Caltech-101 [20]. Our approach is
compared with SRC [5], LC-KSVD [7], DLRD-SR [9] and
Zhang’s method [10]. The dictionary is initialized with ran-
domly selected samples from each class.

4.1. Evaluation on Extended Yale B

In this subsection, we conduct experiments on Extended Yale
B database, which comprises 2414 face images of 38 peo-
ple, with 64 images per person and 192 × 168 pixels per im-
age. This database is challenging for its varying illumination
condition and expression. 1900 images, 50 per person, are
randomly selected for training and the rest for testing. Each
image is projected onto a 504-dimensional vector with a ran-
domly generated matrix from zero-mean normal distribution.

We compare our approach with SRC, LC-KSVD, DLRD-
SR and Zhang’s method with a 570-column dictionary, 15
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Algorithm 2 Low-Rank and Partial Sparse Representation
Algorithm via Inexact ALM
Input:

Test sample x; Learned dictionary D; Training samples
Xt and coefficient Zt; Parameters for Inexact ALM

Output:
Z, E

1: X = [Xt, x], F = [Zt, 0]
2: J = 0, Z = 0, W = 0, E = 0, Y1 = 0, Y2 = 0, Y3 = 0
3: while not converged do
4: (U, S,V) = svd(Z + Y2/µ)
5: J := USαµ−1 [S]VT

6: W := Sβµ−1 [Z − F + Y3/µ]
7: πΩ(W) = 0
8: Z := (DT D + 2I)−1(DT X − DT E + J + F + W +

(DT Y1 − Y2)/µ)
9: E := Sγµ−1(X − DZ + Y1/µ))

10: Y1 := Y1 + µ(X − DZ − E)
11: Y2 := Y2 + µ(Z − J)
12: Y3 := Y3 + µ(Z − F − W)
13: µ = min(µmax, ρµ)
14: end while

each class. We measure the performance of SRC using two
different dictionary size (15 training samples per class and
all training samples per class). The comparative results are
shown in Table 1. The proposed method, by taking advan-
tage of label information of training samples in dictionary
learning phase and the correlation between test sample and
training samples in solving the coefficient, outperforms SRC,
LC-KSVD, DLRD-SR and Zhang’s method.

Table 1. Performance comparisons on the Extended Yale B
Method Accuracy
SRC(15) 86.9%
SRC(all) 97.0%

LC-KSVD 89.1%
DLRD-SR 90.5%

Zhang’s 93.8%
SC-LRPSR 97.8%

4.2. Evaluation on Caltech-101

The Caltech-101 database is consist of more than 9000 im-
ages from 102 classes (i.e. 101 object classes such as vehi-
cles, animals, flowers, tress, etc. and a background class).
The number of images in each class varies from 31 to 800.
The experiment is conducted with spatial pyramid features of
the images and 30 images is randomly selected as training
samples every class.

We evaluate our approach and compare with SRC, LC-
KSVD, DLRD-SR and Zhang’s method. We measure the

performance of SRC using two different dictionary size (15
training samples per class and all training samples per class).
The comparative results are shown in Table 2. The pro-
posed method outperforms SRC, LC-KSVD, DLRD-SR and
Zhang’s method. Figure 1 shows some examples from classes
which achieve 100% classification accuracy.

Table 2. Performance comparisons on the Caltech 101
Method Accuracy
SRC(15) 64.9%
SRC(all) 70.7%

LC-KSVD 73.6%
DLRD-SR 71.2%

Zhang’s 73.6%
SC-LRPSR 78.3%

(a) accordion acc=100%

(b) scissors acc=100%

(c) stopsign acc=100%

(d) sunflower acc=100%

(e) yin-yang acc=100%

Fig. 1. examples from classes with 100% classification accu-
racy of the Caltech-101

5. CONCLUSION

In this paper, a novel Structure-Constrained Low-Rank and
Partial Sparse Representation algorithm for image classifica-
tion is proposed. The label information is fully exploited in
dictionary learning step by imposing a structure constraint on
coefficient matrix, which will also induce sparsity of coeffi-
cient matrix. Then a sparse and low-rank representation of
test sample is computed via Low-Rank and Partial Sparse
Representation under the assumption that the test sample is
highly correlated with training samples. The experimental re-
sults confirm that our method is competitive compared with
the state-of-the-art methods.
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