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ABSTRACT 
By analyzing the features unfit for parallel computation and low power 
implementation, a VLSI architecture of JPEG-LS encoder for lossless 
image compression is proposed in this paper. It functionally consists of 
four parts: Mode decision module, clock controller, three linear parallel 
pipelines, and a two-tier data packer. Computations are organized in a 
fully pipelined style in these modules, so that real time data processing 
can be achieved. The clock management scheme with four interlaced 
clock domains and a dedicated clock controller is applied to ensure the 
bottleneck calculation, reduce the clock frequency on non-critical paths, 
and shut off the working clocks of idle modules, which reduces 15.7% 
of overall power consumption. The proposed JPEG-LS encoder with the 
features of low power and high processing speed, has been applied in a 
wireless endoscopy system. 
Index terms: JPEG-LS, fully pipelined architecture, clock management 
scheme, real time data processing, low power application. 

I.  INTRODUCTION 
Lossless image compression is mainly used in areas that 
require high quality image processing, such as high speed 
scanning, medical image processing, remote sensing 
image processing, etc. Due to the rapid development of 
image sensor technology, large volumes of data need to 
be processed in near real time, which puts a great 
challenge to the storage capacity, bandwidth, and 
transmitting power of the entire system. Hence, a high 
speed, low power lossless image encoder with high 
compression efficiency is crucial to solve these problems. 

Among various existing lossless compression 
schemes, JPEG-LS is the newly ITU/ISO standard for 
lossless image compression. The relatively low 
complexity algorithm, low storage requirement, while 
efficient compression capability of JPEG-LS makes it 
ideal for hardware implementation [1].   

In this paper, a high data processing rate, low power 
consumption JPEG-LS encoder is proposed, in which a 
parallel fully pipelined architecture with dedicated clock 
management scheme is applied. This paper is organized 
as follows. In Section 2, we give an overview of 
JPEG-LS algorithm, the features unfit for parallel 
computation and low power application when 
implemented in hardware is also analyzed. In Section 3, 
the architecture of the encoder and the clock management 
scheme is elaborated. In Section 4, the implementation 
details and power analysis are described. Finally, 
conclusions are given in Section 5. 

II.  OVERVIEW OF JPEG-LS 
JPEG-LS is based on modeling and coding to achieve 

compression. Its data processing follows a raster scan 
sequence, which is just consistent with the way most 
image sensors release image data. The causal template 
used in JPEG-LS is depicted in Figure 1, where x denotes 
the current pixel which to be compressed, a, b, c and d are 
its neighboring pixels, the relative positions of which are 
shown in the figure. Ix, Ra, Rb, Rc and Rd denote the 
intensities of x, a, b, c and d respectively. The 
compression of a single pixel includes mode decision, 
prediction, context modeling, and entropy coding. 

c b d
a x current pixel  

Figure 1: A causal template used in JPEG-LS 

A. Mode decision 
When Ra=Rb=Rc=Rd is detected, the encoder enters Run 
mode, otherwise it goes into Regular mode. In Run mode, 
the number of continuous pixels which equal to Rb, i.e. 
run length, is counted until it comes across an unmatched 
pixel or the end of a line, when the encoder goes into 
Interrupt mode.  
B. Prediction and context modeling 
In Regular mode, prediction consists of fixed prediction 
and adaptive prediction. MED predictor [2] is applied for 
fix prediction. Adaptive prediction value depends on 
results of context modeling. The vector {Rd-Rb, Rb-Rc, 
Rc-Ra} is quantized and mapped into a smaller subset of 
365 contexts, we use an integer q which ranges from 
0~364 to indicate these contexts. Each q indexes a context 
look up table, where the statistics of previous coding 
errors are collected. The adaptive prediction value is 
calculated according to the context statistics, and the 
context statistics are updated with the prediction error 
subsequently. 

In Interrupt mode, the interrupt pixel is also 
predicted and context modeled similarly, but with only 
two contexts.  
C. Entropy Coding 
The prediction errors in Regular mode and Interrupt mode, 
as well as the run length in Run mode are encoded by 
Golomb-Rice coder [3][4] respectively, in which a 
parameter k is also dependent upon the context statistics. 

In terms of hardware implementation, an encoder 
with a pipelined architecture has to be realized for real 
time data processing, so as to avoid the large storage 
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consumption for buffering image data between image 
sensor and compression circuit. However, due to the poor 
parallelizability in the algorithm itself, the 
implementation of JPEG-LS in a parallel architecture is 
difficult. Once two continuous pixels get a same context, 
the computation for the second pixel must wait for the 
completion of the first one, for the updating of the context 
history. In [5], a limited parallelism is obtained only when 
the computations do not depend on previous ones. In [6] 
and [7], more on-chip memory and logic gates are 
sacrificed to exchange for higher processing rates. 
However, none of the three methods can realize real time 
data processing, and the methods in both [6] and [7] 
suffer from degradation of compression rates. 

Furthermore, a single pixel is to be in an exclusive 
mode only, Regular, Run or Interrupt. If the pipeline is 
arranged in a normal style, the three modes would be 
working simultaneously, which results in a high power 
consumption of the encoder. 

III.  ARCHITECTURE OF ENCODER 
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Figure 2: Proposed architecture for JPEG-LS encoder 

For the purpose of real time data processing and low 
power application, a fully pipelined architecture with a 
clock management scheme is proposed for the JPEG-LS 
encoder, which is shown in Figure 2. The encoder 
consists of four parts: 1) mode decision module, 2) clock 
controller, 3) three parallel pipelines, including regular 
pipeline, run pipeline and interrupt pipeline, 4) two-tier 
data packer. These modules work in four different 
interlaced clock domains, the generations of which are 
under the control of the dedicated clock controller. The 
clock management scheme ensures the performance of 
bottleneck calculations. It also helps to reduce the clock 
frequency on non-critical paths, as well as control the 
shutting down of the working clock for each module, so 
as to reduce the overall power consumption. 
A. Mode Decision module 
The mode decision module works in the High clk domain. 
It consists of a single port SRAM for buffering one row 
of a frame, and a FSM including four states. The SRAM 
is used to buffer data in the current row, which would be 
used as neighboring pixels of data in the next row. The 
fours states of the FSM are designed to realize the 
following operations: 

State 1: Receive data from image sensor (or the 
previous stage), and the received data is the current pixel 
to be compressed. Update Ra, Rb and Rc, and read out the 
value of Rd from SRAM. 

State 2: Write the current Ix to the corresponding 
address. The original data is no more contributing for the 
subsequent processing, and thus gets overwritten. 
Determine which mode the current pixel should enter 
according to the values of Ix and its neighboring pixels. 
Run length is to be counted if in Run mode. 

State 3: Change the address and the WE/RD line of 
the SRAM to get prepared for reading the next Rd. 

State 4: Wait for the synchronization signal from the 
image sensor. Go back to State 1 if valid.  
B. Clock Controller 
This design contains four different interlaced clock 
domains given by dashed lines as shown in Figure 2. 
Mode decision module and the bottleneck of regular 
pipeline work in High clk domain. The other parts of 
regular pipeline work in Regular clk domain. Run 
pipeline, interrupt pipeline and tier-1 of data packer work 
in Run clk domain. And tier-2 of data packer works in the 
Main clk domain. The task of the clock controller is to 
control the generation and working states of the three 
clocks, that is Main clk, Regular clk and Run clk. The 
architecture of the clock controller is depicted in Figure 3. 
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Figure 3: Architecture of the clock controller 

The Main clk is generated by four division of High 
clk through two T flip-flops, and then sent to Regular clk 
/Run clk generation circuit for processing respectively. 
The Regular clk generation circuit is shown in the dashed 
block diagram in figure 3. If a pixel in Regular mode 
occurs, the port ‘Regular mode’ valid would appear to be 
‘1’, otherwise ‘0’ appeared. Reg 1 to Reg n compose a 
n-bit right shift register. The information about the 
validness of Regular mode is passed down through the 
right shift register and keeps valid for n clock cycles 
because of the OR gate. The latch and AND gate compose 
a typical clock gated circuit. n denotes the number of the 
stages in regular pipeline. Thus, the clock generation 
circuit can provide adequate clock cycles for all the 
computations in regular pipeline, as well as shut down the 
clock immediately unless another pixel in Regular mode 
occurs. Run clk generation circuit works in the same way 
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as the Regular clk generation circuit, but it has to provide 
clock for three modules, and the value of n is the overall 
latency of the three modules.  
C. Parallel pipelines 
In this design, regular pipeline, run pipeline and interrupt 
pipeline which are parallel to each other, can work 
simultaneously for accessing a high data processing rate. 
The three pipelines work in different clock domain. The 
parallelized structure ensures that the idle pipeline can be 
shut down immediately for power saving, while not 
affecting other pipeline’s normal working state. 

The regular pipeline is arranged for three stages and 
thus has a latency of three clock cycles (see Figure 4). In 
the first stage, fixed prediction value and context of the 
current pixel are calculated, the second stage is used to 
look up the context table according to the context q, 
calculate the parameters for Golomb-Rice encoder, and 
update the context table. A Golomb-Rice encoder is 
implemented in the third stage. After the three steps, the 
input pixel has been transformed into a variable length 
code. 
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Figure 4: Block diagram of regular pipeline 

Regular pipeline works in the Main clk domain 
mostly. The computations in the second stage involves 
reading and writing to context table. Therefore, High clk 
is used as an assistant clock. Since the frequency of High 
clk is four times of Main clk, the computations can be 
partitioned into four intervals. The second stage 
comprises of four blocks of single port synchronous 
SRAM for buffering parameters A, B, C and N, a 4-state 
FSM as control unit, and logic circuits for updating 
parameters and calculation of Golomb-Rice encoding 
parameters. In the four states of the FSM, the following 
computations are performed under High clk sequentially: 
Read out the values of parameters A, B, C and N 
according to the context q; Calculate the final residual 
according to N and the result of fixed prediction, calculate 
Golomb-Rice encoding parameter k according to N and A, 
and then update N and A; Calculate Golomb-Rice 
encoding parameter MErrval according to k, B and the 
final residual, then update B and C; Write the updated A, 
B, C and N to their corresponding storage cell of the 
SRAM. 

The architecture of Golomb-Rice encoder is given in 
Figure 5. The encoder has three inputs, n is the data to be 
encoded, k is a parameter used in encoding procedure, 
and limit is a parameter to restrict the maximum length of 
the output code, which is set to 32 in JPEG-LS. n and k 

are corresponding to MErrval and k mentioned in the 
second stage respectively. The basic design principle of 
the Golomb-Rice encoder is to left shift 32’h0001 as high 
bits, and combine it with low bits. After combination, the 
result is stored in a 32-bit register CODE, and the length 
of the valid bits in CODE is indicated by register 
LENGTH. The comparison result of value1 and value3 
denotes whether the length of the code would exceed 32 
bits, and the three MUXs choose (n,k) or (n,limit) to 
encode with according to the comparison result. 
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Figure 5: Architecture of Golomb-Rice encoder 

The latency of run pipeline is one clock cycle, 
during which run length is encoded with two outputs 
generated, indicating the variable length code and the 
length of valid bits respectively. Interrupt pipeline has a 
latency of three clock cycles, the tasks in each stage are 
similar to that in the regular pipeline. Since there are only 
two contexts existed, registers are used instead of SRAM 
in the second stage, and thus High clk is unnecessary. 
Interrupt mode always follows the Run mode, so both of 
the two pipelines are assigned to work in Run clk domain.   
D. Two-tier data packer 

The task of the data packer is to convert variable 
length compressed data into 32-bit fixed length data 
stream, for the convenience of storage and transportation. 
The data packer consists of two tiers. Tier-1 works in Run 
clk domain, Tier-2 in Main clk domain, and both with 
pipelined architectures. 

Tier-1 of the data packer is used to combine the data 
from run pipeline with that from interrupt pipeline. The 
two pipelines have latencies of one clock cycle and three 
clock cycles respectively. The variable length code and 
the valid length generated by run pipeline are delayed for 
two clock cycles firstly, and then packed as high bits. 
This structure can avoid the confusion under the 
circumstances that a new packing occurs when the 
previous packing hasn’t finished yet. 

Tier-2 of the data packer combines the data from 
Tier-1 with that from regular pipeline, and output the 
packed data in 32-bit fixed length code stream. The two 
outputs from regular pipeline are delayed for one cycle, 
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and then combined as low bits. 
IV.  IMPLEMENTATIONS AND POWER 

ANALYSIS 
The proposed JPEG-LS encoder has been applied in the 
wireless endoscopy capsule system in [8]. In the system, 
OMINIVISION OV7648 is used as image sensor, which 
can provide an image with a maximum resolution of 
64 ×480×8 bits. The digital circuits in the capsule work 
under a system clock of 40MHz, and the frequency of the 
sensor’s output pixel clock is 10MHz. The function of the 
whole digital part has been verified by Xilinx 
xc2v1000-4fg256 [9] (FPGA).  

Implemented in UMC 0.18 μm 1P6M standard 
CMOS technology, the total scale of the JPEG-LS 
encoder is 17.6k logic gates, plus 18k bits on-chip SRAM 
(640×8 bits for mode decision, 365×34 bits for regular 
pipeline). In Table 1, a comparison of the proposed 
implementation with other implementations available in 
academic is offered. It can be easily observed that our 
implementation outperforms in logic scale and on-chip 
MEM. usage as well. The processing speed in [7] is a 
little higher. However, the implementation in [7] is not 
compliant with the JPEG-LS algorithm, and two identical 
structures, which are used to access high processing speed, 
result in much more hardware overhead.  

Under the High clk of 40MHz, the encoder can 
compress an image with a resolution of 640×480×8 bits 
in 31 ms. For a single pixel, the compression is in real 
time with a latency of 6 Main clk cycles or 24 High clk 
cycles. The value of n for Regular clk and Run clk 
generation circuit is set to 3 and 4 respectively.  

Table 2: Power analysis of 3 different images 
 Regular clk 

domain (mw) 
Run clk 

domain (μw) 
Overall 
(mw) 

Saving 

lenna 2.82/2.95 12.8/556.8 7.17/8.32 13.8% 
baboon 2.82/2.96 13.7/558.1 7.19/8.35 13.9% 
black 0.24/0.42 10.3/552.4 4.47/5.68 21.3% 

The Power consumption results of post layout 
simulations using Synopsys VCS and PrimePower [10] is 
shown in Table 2, including the power consumption in 
Regular clk domain, Run clk domain and the overall 
power consumption. Three images with different smooth 
quality are tested under the 40MHz High clk with 1.8 V 
supply voltage. The data before and after ‘/’ are the 
simulation results with and without clock management 

respectively. The average power consumption is reduced 
to 15.7 %. 

V.  CONCLUSIONS 
By analyzing the features unfit for parallel computation 
and low power implementation, a low power, fully 
pipelined VLSI architecture of JPEG-LS encoder for 
lossless image compression is proposed in this paper. The 
parallel, fully pipelined structure ensures a real time data 
processing of the encoder. The dedicated clock 
management scheme ensures the bottleneck calculation, 
as well as reduces the clock frequency on non-critial 
paths, and shuts down the working clock of idle modules, 
which reduces 15.7% of overall power consumption. The 
proposed JPEG-LS encoder has been applied in a wireless 
endoscopy capsule system, the whole digital part of the 
capsule has passed the FPGA-based verification and been 
taped out. 

REFERENCES 
[1] M. J. Weinberger, G. Sapiro and G. Seroussi, “The LOCO-I Lossless 
image compression algorithm: Principle and standardization into 
JPEG-LS,” IEEE Trans. on Image Processing, vol. 9, pp. 1309-1324, 
Aug. 2000. 
[2] S.A.Martucci, “Reversible compression of HDTV images using 
median adaptive prediction and arithmetic coding,” Proc. IEEE intern’l 
Symp. On Circuits and Syst., pp. 1310-1313, 1990. 
[3] Golomb S W. “Run-length encodings,” IEEE Trans. Inform. Theory, 
vol. IT-12, pp. 399-401, July 1966. 
[4] Rice R F. “Some practical universal noiseless coding techniques,” 
Tech. Rep. JPL- 79-22, Jet Propulsion Laboratory, Pasadena, CA, Mar. 
1979. 
[5] A. Savakis and M. Pioriun, “Benchmarking and Hardware 
Implementation of JPEG-LS,” ICIP’02, Rochester, NY, Sep. 2002. 
[6] M. Klimesh, V. Stanton, and D. Watola, “Hardware Implementation 
of a Lossless Image Compression Algorithm Using a Field 
Programmable Gate Array,” NASA JPL TMO Progress Report 42-144, 
2001. 
[7] M. Ferretti, M. Boffadossi, "A Parallel Pipelined Implementation of 
LOCO-I for JPEG-LS," 17th International Conference on Pattern 
Recognition (ICPR'04), vol. 1, pp. 769-772. 2004. 
[8] Xiang Xie, GuoLin Li, and XinKai Chen, “A Low Power Digital IC 
Design Inside the Wireless Endoscopy Capsule,” Asian Solid-State 
Circuits Conference (A-SSCC 2005), pp. 217-220, 2005. 
[9] www.xilinx.com 
[10] www.synopsys.com 
 

 
Table1: Characteristics of proposed implementation and other implementations 

Work Technology Logic area 
(eq. gates) 

MEM. Usage (bits) Operating 
Frequency (MHz) 

Processing speed 
(pixel/clock) Context table Image buf. 

Proposed UMC 0.18μm 17.6k 365×34 1 row 10(Main clk) / 40(High clk) 1 
[5] - 49457 2k 2 rows 66 0.0364 
[6] Xilinx XCV50 - - 2 rows 12 0.1108 
[7] STM 0.13μm 53096 2×368×38 2 rows - 1.4 
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