
A Low Power, Fully Pipelined JPEG-LS Encoder for Lossless Image Compression

Xiaowen Li1, Xinkai Chen1, Xiang Xie1, Guolin Li1, Li Zhang1, Chun Zhang2, Zhihua Wang2
1Dept. of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China

2Institute of Microelectronics, Tsinghua University, Beijing, 100084, P. R. China

ABSTRACT
By analyzing the features unfit for parallel computation and low power
implementation, a VLSI architecture of JPEG-LS encoder for lossless
image compression is proposed in this paper. It functionally consists of
four parts: Mode decision module, clock controller, three linear parallel
pipelines, and a two-tier data packer. Computations are organized in a
fully pipelined style in these modules, so that real time data processing
can be achieved. The clock management scheme with four interlaced
clock domains and a dedicated clock controller is applied to ensure the
bottleneck calculation, reduce the clock frequency on non-critical paths,
and shut off the working clocks of idle modules, which reduces 15.7%
of overall power consumption. The proposed JPEG-LS encoder with the
features of low power and high processing speed, has been applied in a
wireless endoscopy system.
Index terms: JPEG-LS, fully pipelined architecture, clock management
scheme, real time data processing, low power application.

I. INTRODUCTION
Lossless image compression is mainly used in areas that
require high quality image processing, such as high speed
scanning, medical image processing, remote sensing
image processing, etc. Due to the rapid development of
image sensor technology, large volumes of data need to
be processed in near real time, which puts a great
challenge to the storage capacity, bandwidth, and
transmitting power of the entire system. Hence, a high
speed, low power lossless image encoder with high
compression efficiency is crucial to solve these problems.

Among various existing lossless compression
schemes, JPEG-LS is the newly ITU/ISO standard for
lossless image compression. The relatively low
complexity algorithm, low storage requirement, while
efficient compression capability of JPEG-LS makes it
ideal for hardware implementation [1].

In this paper, a high data processing rate, low power
consumption JPEG-LS encoder is proposed, in which a
parallel fully pipelined architecture with dedicated clock
management scheme is applied. This paper is organized
as follows. In Section 2, we give an overview of
JPEG-LS algorithm, the features unfit for parallel
computation and low power application when
implemented in hardware is also analyzed. In Section 3,
the architecture of the encoder and the clock management
scheme is elaborated. In Section 4, the implementation
details and power analysis are described. Finally,
conclusions are given in Section 5.

II. OVERVIEW OF JPEG-LS
JPEG-LS is based on modeling and coding to achieve

compression. Its data processing follows a raster scan
sequence, which is just consistent with the way most
image sensors release image data. The causal template
used in JPEG-LS is depicted in Figure 1, where x denotes
the current pixel which to be compressed, a, b, c and d are
its neighboring pixels, the relative positions of which are
shown in the figure. Ix, Ra, Rb, Rc and Rd denote the
intensities of x, a, b, c and d respectively. The
compression of a single pixel includes mode decision,
prediction, context modeling, and entropy coding.

c b d
a x current pixel

Figure 1: A causal template used in JPEG-LS

A. Mode decision
When Ra=Rb=Rc=Rd is detected, the encoder enters Run
mode, otherwise it goes into Regular mode. In Run mode,
the number of continuous pixels which equal to Rb, i.e.
run length, is counted until it comes across an unmatched
pixel or the end of a line, when the encoder goes into
Interrupt mode.
B. Prediction and context modeling
In Regular mode, prediction consists of fixed prediction
and adaptive prediction. MED predictor [2] is applied for
fix prediction. Adaptive prediction value depends on
results of context modeling. The vector {Rd-Rb, Rb-Rc,
Rc-Ra} is quantized and mapped into a smaller subset of
365 contexts, we use an integer q which ranges from
0~364 to indicate these contexts. Each q indexes a context
look up table, where the statistics of previous coding
errors are collected. The adaptive prediction value is
calculated according to the context statistics, and the
context statistics are updated with the prediction error
subsequently.

In Interrupt mode, the interrupt pixel is also
predicted and context modeled similarly, but with only
two contexts.
C. Entropy Coding
The prediction errors in Regular mode and Interrupt mode,
as well as the run length in Run mode are encoded by
Golomb-Rice coder [3][4] respectively, in which a
parameter k is also dependent upon the context statistics.

In terms of hardware implementation, an encoder
with a pipelined architecture has to be realized for real
time data processing, so as to avoid the large storage

19061-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

consumption for buffering image data between image
sensor and compression circuit. However, due to the poor
parallelizability in the algorithm itself, the
implementation of JPEG-LS in a parallel architecture is
difficult. Once two continuous pixels get a same context,
the computation for the second pixel must wait for the
completion of the first one, for the updating of the context
history. In [5], a limited parallelism is obtained only when
the computations do not depend on previous ones. In [6]
and [7], more on-chip memory and logic gates are
sacrificed to exchange for higher processing rates.
However, none of the three methods can realize real time
data processing, and the methods in both [6] and [7]
suffer from degradation of compression rates.

Furthermore, a single pixel is to be in an exclusive
mode only, Regular, Run or Interrupt. If the pipeline is
arranged in a normal style, the three modes would be
working simultaneously, which results in a high power
consumption of the encoder.

III. ARCHITECTURE OF ENCODER

Mode
Decision

Clock
Controller

Regular
Pipeline

Run
Pipeline

Interrupt
Pipeline

Tier-2

Tier-1

Data Packer

High clk domain

Run clk domain

Main clk domain
Regular clk domain
& High clk domain

Image Data

Sync. signal

Compressed
bitstream

Figure 2: Proposed architecture for JPEG-LS encoder

For the purpose of real time data processing and low
power application, a fully pipelined architecture with a
clock management scheme is proposed for the JPEG-LS
encoder, which is shown in Figure 2. The encoder
consists of four parts: 1) mode decision module, 2) clock
controller, 3) three parallel pipelines, including regular
pipeline, run pipeline and interrupt pipeline, 4) two-tier
data packer. These modules work in four different
interlaced clock domains, the generations of which are
under the control of the dedicated clock controller. The
clock management scheme ensures the performance of
bottleneck calculations. It also helps to reduce the clock
frequency on non-critical paths, as well as control the
shutting down of the working clock for each module, so
as to reduce the overall power consumption.
A. Mode Decision module
The mode decision module works in the High clk domain.
It consists of a single port SRAM for buffering one row
of a frame, and a FSM including four states. The SRAM
is used to buffer data in the current row, which would be
used as neighboring pixels of data in the next row. The
fours states of the FSM are designed to realize the
following operations:

State 1: Receive data from image sensor (or the
previous stage), and the received data is the current pixel
to be compressed. Update Ra, Rb and Rc, and read out the
value of Rd from SRAM.

State 2: Write the current Ix to the corresponding
address. The original data is no more contributing for the
subsequent processing, and thus gets overwritten.
Determine which mode the current pixel should enter
according to the values of Ix and its neighboring pixels.
Run length is to be counted if in Run mode.

State 3: Change the address and the WE/RD line of
the SRAM to get prepared for reading the next Rd.

State 4: Wait for the synchronization signal from the
image sensor. Go back to State 1 if valid.
B. Clock Controller
This design contains four different interlaced clock
domains given by dashed lines as shown in Figure 2.
Mode decision module and the bottleneck of regular
pipeline work in High clk domain. The other parts of
regular pipeline work in Regular clk domain. Run
pipeline, interrupt pipeline and tier-1 of data packer work
in Run clk domain. And tier-2 of data packer works in the
Main clk domain. The task of the clock controller is to
control the generation and working states of the three
clocks, that is Main clk, Regular clk and Run clk. The
architecture of the clock controller is depicted in Figure 3.

Latch

High clk
Main clk

Regular clk

Run clk

Regular mode
valid

Run mode
valid

Regular clk
generation

Run clk
generation

Reg1 Reg2 Regn

Figure 3: Architecture of the clock controller

The Main clk is generated by four division of High
clk through two T flip-flops, and then sent to Regular clk
/Run clk generation circuit for processing respectively.
The Regular clk generation circuit is shown in the dashed
block diagram in figure 3. If a pixel in Regular mode
occurs, the port ‘Regular mode’ valid would appear to be
‘1’, otherwise ‘0’ appeared. Reg 1 to Reg n compose a
n-bit right shift register. The information about the
validness of Regular mode is passed down through the
right shift register and keeps valid for n clock cycles
because of the OR gate. The latch and AND gate compose
a typical clock gated circuit. n denotes the number of the
stages in regular pipeline. Thus, the clock generation
circuit can provide adequate clock cycles for all the
computations in regular pipeline, as well as shut down the
clock immediately unless another pixel in Regular mode
occurs. Run clk generation circuit works in the same way

1907

as the Regular clk generation circuit, but it has to provide
clock for three modules, and the value of n is the overall
latency of the three modules.
C. Parallel pipelines
In this design, regular pipeline, run pipeline and interrupt
pipeline which are parallel to each other, can work
simultaneously for accessing a high data processing rate.
The three pipelines work in different clock domain. The
parallelized structure ensures that the idle pipeline can be
shut down immediately for power saving, while not
affecting other pipeline’s normal working state.

The regular pipeline is arranged for three stages and
thus has a latency of three clock cycles (see Figure 4). In
the first stage, fixed prediction value and context of the
current pixel are calculated, the second stage is used to
look up the context table according to the context q,
calculate the parameters for Golomb-Rice encoder, and
update the context table. A Golomb-Rice encoder is
implemented in the third stage. After the three steps, the
input pixel has been transformed into a variable length
code.

Variable

C

Variable

B

Variable

A

Control Unit
4-state FSM

High clk

values of current
pixel and

neighboring pixels

Variable
length code

Fixed
prediction
& Context
modeling

Variable Updating

Buf. for
Variable N

Golomb
-Rice

encoder

A B C

Main clk

Golomb-
Rice

parameter
calculator

Figure 4: Block diagram of regular pipeline

Regular pipeline works in the Main clk domain
mostly. The computations in the second stage involves
reading and writing to context table. Therefore, High clk
is used as an assistant clock. Since the frequency of High
clk is four times of Main clk, the computations can be
partitioned into four intervals. The second stage
comprises of four blocks of single port synchronous
SRAM for buffering parameters A, B, C and N, a 4-state
FSM as control unit, and logic circuits for updating
parameters and calculation of Golomb-Rice encoding
parameters. In the four states of the FSM, the following
computations are performed under High clk sequentially:
Read out the values of parameters A, B, C and N
according to the context q; Calculate the final residual
according to N and the result of fixed prediction, calculate
Golomb-Rice encoding parameter k according to N and A,
and then update N and A; Calculate Golomb-Rice
encoding parameter MErrval according to k, B and the
final residual, then update B and C; Write the updated A,
B, C and N to their corresponding storage cell of the
SRAM.

The architecture of Golomb-Rice encoder is given in
Figure 5. The encoder has three inputs, n is the data to be
encoded, k is a parameter used in encoding procedure,
and limit is a parameter to restrict the maximum length of
the output code, which is set to 32 in JPEG-LS. n and k

are corresponding to MErrval and k mentioned in the
second stage respectively. The basic design principle of
the Golomb-Rice encoder is to left shift 32’h0001 as high
bits, and combine it with low bits. After combination, the
result is stored in a 32-bit register CODE, and the length
of the valid bits in CODE is indicated by register
LENGTH. The comparison result of value1 and value3
denotes whether the length of the code would exceed 32
bits, and the three MUXs choose (n,k) or (n,limit) to
encode with according to the comparison result.

<<

32'h0001

<<

>>

k

n

<

-

limit

9

-1

CODE

value1

value2

value4

value3

+

k
value11

LENGTH

0
1

0
1

XOR
OR

k

8

01

Figure 5: Architecture of Golomb-Rice encoder

The latency of run pipeline is one clock cycle,
during which run length is encoded with two outputs
generated, indicating the variable length code and the
length of valid bits respectively. Interrupt pipeline has a
latency of three clock cycles, the tasks in each stage are
similar to that in the regular pipeline. Since there are only
two contexts existed, registers are used instead of SRAM
in the second stage, and thus High clk is unnecessary.
Interrupt mode always follows the Run mode, so both of
the two pipelines are assigned to work in Run clk domain.
D. Two-tier data packer

The task of the data packer is to convert variable
length compressed data into 32-bit fixed length data
stream, for the convenience of storage and transportation.
The data packer consists of two tiers. Tier-1 works in Run
clk domain, Tier-2 in Main clk domain, and both with
pipelined architectures.

Tier-1 of the data packer is used to combine the data
from run pipeline with that from interrupt pipeline. The
two pipelines have latencies of one clock cycle and three
clock cycles respectively. The variable length code and
the valid length generated by run pipeline are delayed for
two clock cycles firstly, and then packed as high bits.
This structure can avoid the confusion under the
circumstances that a new packing occurs when the
previous packing hasn’t finished yet.

Tier-2 of the data packer combines the data from
Tier-1 with that from regular pipeline, and output the
packed data in 32-bit fixed length code stream. The two
outputs from regular pipeline are delayed for one cycle,

1908

and then combined as low bits.
IV. IMPLEMENTATIONS AND POWER

ANALYSIS
The proposed JPEG-LS encoder has been applied in the
wireless endoscopy capsule system in [8]. In the system,
OMINIVISION OV7648 is used as image sensor, which
can provide an image with a maximum resolution of
64 ×480×8 bits. The digital circuits in the capsule work
under a system clock of 40MHz, and the frequency of the
sensor’s output pixel clock is 10MHz. The function of the
whole digital part has been verified by Xilinx
xc2v1000-4fg256 [9] (FPGA).

Implemented in UMC 0.18 μm 1P6M standard
CMOS technology, the total scale of the JPEG-LS
encoder is 17.6k logic gates, plus 18k bits on-chip SRAM
(640×8 bits for mode decision, 365×34 bits for regular
pipeline). In Table 1, a comparison of the proposed
implementation with other implementations available in
academic is offered. It can be easily observed that our
implementation outperforms in logic scale and on-chip
MEM. usage as well. The processing speed in [7] is a
little higher. However, the implementation in [7] is not
compliant with the JPEG-LS algorithm, and two identical
structures, which are used to access high processing speed,
result in much more hardware overhead.

Under the High clk of 40MHz, the encoder can
compress an image with a resolution of 640×480×8 bits
in 31 ms. For a single pixel, the compression is in real
time with a latency of 6 Main clk cycles or 24 High clk
cycles. The value of n for Regular clk and Run clk
generation circuit is set to 3 and 4 respectively.

Table 2: Power analysis of 3 different images
 Regular clk

domain (mw)
Run clk

domain (μw)
Overall
(mw)

Saving

lenna 2.82/2.95 12.8/556.8 7.17/8.32 13.8%
baboon 2.82/2.96 13.7/558.1 7.19/8.35 13.9%
black 0.24/0.42 10.3/552.4 4.47/5.68 21.3%

The Power consumption results of post layout
simulations using Synopsys VCS and PrimePower [10] is
shown in Table 2, including the power consumption in
Regular clk domain, Run clk domain and the overall
power consumption. Three images with different smooth
quality are tested under the 40MHz High clk with 1.8 V
supply voltage. The data before and after ‘/’ are the
simulation results with and without clock management

respectively. The average power consumption is reduced
to 15.7 %.

V. CONCLUSIONS
By analyzing the features unfit for parallel computation
and low power implementation, a low power, fully
pipelined VLSI architecture of JPEG-LS encoder for
lossless image compression is proposed in this paper. The
parallel, fully pipelined structure ensures a real time data
processing of the encoder. The dedicated clock
management scheme ensures the bottleneck calculation,
as well as reduces the clock frequency on non-critial
paths, and shuts down the working clock of idle modules,
which reduces 15.7% of overall power consumption. The
proposed JPEG-LS encoder has been applied in a wireless
endoscopy capsule system, the whole digital part of the
capsule has passed the FPGA-based verification and been
taped out.

REFERENCES
[1] M. J. Weinberger, G. Sapiro and G. Seroussi, “The LOCO-I Lossless
image compression algorithm: Principle and standardization into
JPEG-LS,” IEEE Trans. on Image Processing, vol. 9, pp. 1309-1324,
Aug. 2000.
[2] S.A.Martucci, “Reversible compression of HDTV images using
median adaptive prediction and arithmetic coding,” Proc. IEEE intern’l
Symp. On Circuits and Syst., pp. 1310-1313, 1990.
[3] Golomb S W. “Run-length encodings,” IEEE Trans. Inform. Theory,
vol. IT-12, pp. 399-401, July 1966.
[4] Rice R F. “Some practical universal noiseless coding techniques,”
Tech. Rep. JPL- 79-22, Jet Propulsion Laboratory, Pasadena, CA, Mar.
1979.
[5] A. Savakis and M. Pioriun, “Benchmarking and Hardware
Implementation of JPEG-LS,” ICIP’02, Rochester, NY, Sep. 2002.
[6] M. Klimesh, V. Stanton, and D. Watola, “Hardware Implementation
of a Lossless Image Compression Algorithm Using a Field
Programmable Gate Array,” NASA JPL TMO Progress Report 42-144,
2001.
[7] M. Ferretti, M. Boffadossi, "A Parallel Pipelined Implementation of
LOCO-I for JPEG-LS," 17th International Conference on Pattern
Recognition (ICPR'04), vol. 1, pp. 769-772. 2004.
[8] Xiang Xie, GuoLin Li, and XinKai Chen, “A Low Power Digital IC
Design Inside the Wireless Endoscopy Capsule,” Asian Solid-State
Circuits Conference (A-SSCC 2005), pp. 217-220, 2005.
[9] www.xilinx.com
[10] www.synopsys.com

Table1: Characteristics of proposed implementation and other implementations

Work Technology Logic area
(eq. gates)

MEM. Usage (bits) Operating
Frequency (MHz)

Processing speed
(pixel/clock) Context table Image buf.

Proposed UMC 0.18μm 17.6k 365×34 1 row 10(Main clk) / 40(High clk) 1
[5] - 49457 2k 2 rows 66 0.0364
[6] Xilinx XCV50 - - 2 rows 12 0.1108
[7] STM 0.13μm 53096 2×368×38 2 rows - 1.4

1909

