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Abstract

Iris recognition in less constrained environments is

challenging due to the degraded iris images. This pa-

per proposes a novel method fusing multiple cues for

iris recognition in the non-ideal imagery. The covari-

ance matrices are used to represent local iris texture

property, which capture the correlation of spatial co-

ordinates, intensities, 1st and 2nd-order partial deriva-

tives. The covariance matrices are symmetric positive

definite (SPD) which form a Riemannian space rather

than a Euclidean one. In the Log-Euclidean framework,

the space of SPD matrices is equipped with a linear

space structure so that in the logarithmic domain the

Euclidean operations are applicable. This enables us

to compute the logarithms of covariance matrices, lead-

ing to the Log-Euclidean covariance matrices (LECM),

which can be handled in common Euclidean operations.

The ordinal measure is further used to represent the or-

der relation of iris texture by comparing LECMs at dif-

ferent positions. We finally perform iris matching based

on the Hamming distance in which the noise effects

are considered. Experiments on challenging databases

show the effectiveness of the proposed method.

1 Introduction

The iris texture of human beings has unique and sta-

ble biological structure which is very suitable for iden-

tity recognition [4]. In recent years iris recognition has

attracted increasing research interests [3]. Iris recog-

nition in ideal images has achieved considerable ad-

vances. However, in order to capture high-quality iris

images, the subjects are required to be motionless and

be highly cooperative. This greatly limits deployment

of iris recognitions in widespread scenarios. Iris recog-

nition in less constrained environments [7, 9] has re-

cently received great research interests, where the sub-

jects are less cooperative or are ideally unaware of the

presence of such recognition systems.

The iris images captured in less constrained environ-

ments are far from ideal. They are degraded due to

large severe occlusion, strong specular reflection, illu-

mination changes and image blurring [9]. The state-of-

the-art work focuses on fusion of multiple image cues

and/or multiple modality for improving the identifica-

tion performance. In [14], the periocular texture and

iris texture are independently used to produce match-

ing scores and are then combined for score level fusion.

Tan et al. [13] proposed a multi-modal fusion method

which combined the features extracted on the iris data

and eye data. Santos and Hoyle [11] also fused recog-

nition results of several methods that extract iris texture

via wavelet and periocular texture via SIFT descriptors.

Proença et al. [10] proposed a recognition method that

fuse MPEG-7 color and shape descriptors. They also in-

vestigated combination of various classifiers for boost-

ing the recognition performance.

This paper introduces a novel method for represent-

ing iris texture by combining various image cues in the

non-ideal imagery. We propose the Log-Euclidean co-

variance matrices (LECM) for modeling the local corre-

lation of multiple cues, e.g., the spatial coordinates, in-

tensities, 1st and 2nd-order image derivatives. Further-

more, we use the ordinal measures for extracting the or-

der relationship of LECM features at different positions.

The iris matching algorithm is based on the Hamming

distance which considers the noise factors. Section 2

presents in detail the proposed iris recognition method.

Section 3 describes the experimental results, followed

by the conclusion in section 4.

2 Proposed method for iris recognition

An iris recognition system usually consists of sev-

eral stages of iris imaging, preprocessing as well as iris

coding and matching. In this paper we use our method

proposed in [5] for preprocessing.
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2.1 Overview of the proposed method

Fig. 1 shows an overview of the proposed method.

Given an original iris image, we localize the inner and

outer iris boundaries, eyelids and specular highlights

and then obtain the normalized iris image and the bi-

nary mask image [5]. For each pixel we compute a

covariance matrix of raw image features in the neigh-

boring region. The covariance matrices are transformed

via logarithmic operations from the Riemannian space

to an Euclidean space of symmetric matrices. After vec-

torization of the resulting symmetric matrices, we ob-

tain the Log-Euclidean covariance matrices (LECM) for

characterizing the local texture properties. To further

model the order relationship of iris texture, we encode

the LECM’s with ordinal measures. The iris matching

method excludes the occluded or corrupted pixels via

the mask image obtained previously.

Normalized iris image

Normalized mask image Covariance encoding with 

ordinal measures and iris 

matching considering  the 

mask image

For each pixel compute a 

covariance matrix of raw 

image features

 Compute the logarithms 

of  the covariance 

matrices which are then 

vectorized

Figure 1: Overview of the proposed method

2.2 Log-Euclidean covariance matrices

The covariance matrix captures the correlation of

various image cues [8]. The covariance matrices can be

computed efficiently via integral images. In addition,

it is not sensitive to noise, scale and rotation variation

and illumination changes. However, the distance be-

tween two covariance matrices involved in [8] are con-

cerned with affine-invariant Riemannian metric which

are computationally intensive [2]. In this paper, we pro-

pose Log-Euclidean Covariance Matrices for represent-

ing the local iris properties.

Let I(z), z ∈ Ω, be pixel intensity at the spatial posi-

tion z = (x, y), where Ω denotes the image region and

x, y denote the horizontal and vertical coordinates. We

first extract the raw features for every pixel in the image

f(z) =
[

x y I(z) Ix(z) Iy(z) Ixx(z) Iyy(z)
]T

(1)

where Ix(resp. Iy) denotes the 1st-order partial deriva-

tive with respect to x(resp. y) and Ixx(resp. Iyy)

denotes the 2nd-order partial derivative. Other image

cues, e.g., gradient orientation or texture, can also be

included in the raw features. Define Ωr(z) the image

region centered at z

Ωr(z) =
{

z
′ = (x′, y′) : ||z− z

′||∞ ≤ r
}

(2)

where || · ||∞ denotes the Euclidean infinity norm and r
is a constant. The covariance matrix P(z) at the pixel z

is computed as

P(z) =
1

|Ωr(z)|

∑

z
′∈Ωr(z)

(f(z′)− f̄(z))(f(z′)− f̄(z))T

(3)

where |Ωr(z)| and f̄(z) denote the number and mean

vector of the raw features in Ωr(z), respectively.

From the normalized iris image, we obtain a tensor-

valued image P(z), z ∈ Ω, where each pixel is as-

sociated with a SPD matrix. Because the space of

SPD matrices is a Riemannian space, the common Eu-

clidean operations are not applicable. Thanks to the

Log-Euclidean framework, we can avoid computational

intensive operations in the Riemannian space and han-

dle the SPD matrices in the common Euclidean way. In

the following, we briefly introduce the theory of Log-

Euclidean metrics and one may refer to [2] for details.

Let S(n) and SPD(n) be the spaces of n×n symmetric

matrices and n×n symmetric positive definite matrices,

respectively. For any S ∈ S(n), the exponential of S is

defined as

exp(S) = I+ S+ · · ·+ S
k/k! + · · · (4)

where I denotes the identity matrix, Sk denotes the ma-

trix power and exp(S) ∈ SPD(n). Conversely, for

any matrix P ∈ SPD(n), there is a unique matrix

S ∈ S(n) for which P = exp(S). The matrix S is

called the logarithm of P and is represented by S =
logP. The exponential map exp : S(n) 7→ SPD(n)
is diffeomorphism. In the Log-Euclidean framework,

SPD(n) is Lie group that has a linear space structure;

rather than direct , computationally inefficient manipu-

lations in the Riemannian space, the SPD matrices can

be equivalently handled in the logarithmic domain with

Euclidean operations.

Hence, we compute the logarithm of the SPD matrix

P(z) (without ambiguity, we may appropriately omit

the argument z). The SPD matrix P has a unique eigen-

decomposition P = Udiag{λ1, . . . , λn}U
T , where U

is an orthonormal matrix composed of eigen-vectors of

P and diag{λ1, . . . , λn} denotes the diagonal matrix

with the eigen-values λi of P as its diagonal entries.

Through the eigen-decomposition form of a SPD matrix

P, its logarithm can be efficiently computed as

logP = Udiag
{

log(λ1), . . . , log(λn)
}

U
T (5)

Due to symmetry, logP(z) has n(n+1)/2 free param-

eters. We pack the upper triangular part of logP(z),
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obtaining the LECM v(z) in vector form

v(z) =
[

logP11 logP21 logP22 . . . logPnn

]

(6)

where logPij denotes the (i, j)th entry of logP. Note

that the LECMs can now be handled with common Eu-

clidean operations.

2.3 Ordinal encoding of LECM and iris
matching

Ordinal measures qualitatively represent the relative

order or rank of quantities at varying positions. Sun

and Tan [12] first studied the ordinal measures based

iris recognition and obtained very promising results.

For simplicity, we only consider the order relation of

two LECM features that are d pixels apart. Let v(z)
and v(z′) be the LECM features at spatial position

z = (x, y) and z
′ = (x + d, y), respectively. We de-

fine the following binary code b(z) for characterizing

the local iris texture

b(z) =

n(n+1)/2
∑

i=1

2i−1H(vi(z), vi(z
′)) (7)

where n = 7 denotes the raw feature dimension, vi(z)
denotes entry i in the vector v(z) and H(vi(z), vi(z

′)
is the Heaviside step function which equals unitary if

vi(z) > vi(z
′) and equals zero otherwise.

Note that b(z) is computed from the raw features

within the square region Ωr(z). According to the mask

image, we can compute the effective iris region rate

(EIRR) of η(z) of Ωr(z). It is computed as the black

pixel number divided by the square region area, reflect-

ing the percentage of iris pixles that are not occluded or

corrupted. The degree of importance of b(z) can thus

be evaluated by the quantity η̃(z) = min(η(z), η(z′)).
To represent the texture properties of the over-

all iris image I , we utilize the ordinally encoded

LECM features bI(zi), i = 1, . . . ,m sampled reg-

ularly with horizontal and vertical strides s pixels.

Let η̃I(zi) be the corresponding degree of impor-

tance of bI(zi). The model of iris image I(z) can

thus be represented by
{

bI(zi), η̃
I(zi)

}

i=1,...,m
. Let

{

bJ(zi), η̃
J (zi)

}

i=1,...,m
be the model of iris image J .

The similarity ρ(I, J) between the two iris images is

defined as

ρ(I, J) =
1

CI,J

m
∑

i=1

w(zi)b
I(zi)⊕ bJ(zi) (8)

where w(zi) = min(η̃I(zi), η̃
J (zi)), CI,J =

∑m
i=1 w(zi) and ⊕ denotes the bit-wise exclusive or op-

eration.

3 Experiments

We first use the UBIRIS.v2 database [9], one of the

most challenging iris databases, for performance eval-

uation. The iris images were captured under the con-

dition of visible lighting, at-the-distance and on-the-

move. They are far from ideal due to various noise

effects, e.g., illumination changes, obstruction, image

blurring, and specular reflections etc. We select a train-

ing set (RS) of 500 iris images and a test set (ES) of

1000 images which are not present in the RS.

Iris matchings of one-against-all are performed and

two measures are used to evaluate the recognition per-

formance: the Decidability Index (DI) and Equal Error

Rates (EER). Higher DI indicates better discriminabil-

ity of a biometric system while lower EER indicates

higher accuracy of a recognition algorithm. Three pa-

rameters are involved in our method: r in LECM, d in

ordinal encoding and the stride s in dense feature sam-

pling. Fig. 2(a) shows DI versus r and d when s=2

(solid red), 4 (dashed blue) and 8 (dot-dashed green), re-

spectively. Overall DI grows when s lowers; for fixed s,

DI tends to increase with larger r and d, reaching maxi-

mum at some point and then decreases. Fig. 2(b) shows

the histogram of the EIRRs of the iris images in the

RS; on average 29.3 percent of pixels are occluded or

corrupted. This may partly explain why smaller strides

are beneficial because with small s we can utilize as

many effective regions as possible. Among the top five

triples that have highest DI values, we select the triple

(s=2, r=8, d=16) with smallest EER for evaluation in

the test set. The result as listed in Table 1 is obtained

via 3593 intra-class comparisons and 495907 inter-class

comparisons. It is better than that obtained by our previ-

ous method which ranked among the best in Noisy Iris

Challenge Evaluation–Part II (NICE.II) [6].

The CASIA-IrisV3 database [1], obtained under near

infrared illumination, is also used for our experiments.

In the CASIA-IrisV3, we are interested in the CASIA-

Iris-Lamp subset because it contains varying illumina-

tions which causes high nonlinear deformation of iris

texture. We also select a training set of 500 images and

a test set of 1000 images. Fig. 3 shows the performance

of the proposed method in the training set. We see from

Fig. 3(a) that though overall DI grows with decrease of

s, the degree of growth is small compared to that in the

UBIRIS.v2 database. The reason may be that the EIRRs

are large as shown in Fig. 3(b), indicating that the por-

tion of effective iris region is large (on average 15.2 per-

cent of pixels are occluded or corrupted) and therefore

insignificant improvements are achieved with smaller

s. We finally select the triple of s=4, r=12, d=16 for

testing and the result is listed in Table 1. The result is
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Figure 2: Performance in the RS from UBIRIS.v2
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Figure 3: Performance in the RS from CASIA-IrisV3

Table 1: Performance in the test sets

Iris databases (Comparisons Num) DI EER

UBIRIS.v2 (Intra:3593,Inter:495907) 1.5572 0.1809

CASIA-IrisV3 (Intra:9366, Inter:490134) 5.3221 0.0008

obtained via 9366 intra-class comparisons and 490134

inter-class comparisons. It is significantly better than

that in UBIRIS.v2. We owe this superior performance

to the better quality of the iris images in CASIA-IrisV3.

4 Conclusion

We present a novel method for iris-based human

identification in non-ideal imagery. The main contribu-

tion of the paper is combination of multiple image cues,

including spatial coordinates, intensities, 1st and 2nd-

order derivatives as well as order relationship of iris tex-

ture. This combination is achieved via ordinal encoding

of the Log-Euclidean covariance matrices. The exper-

iments show the effectiveness of the proposed method.

The future work concerns extensive evaluation of our

method with a very large number of iris images. Fusion

of our method with other recognition modality is also of

our interest for boosting the recognition performance.
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