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Abstract

We present a sparse representation-based method for
detecting adventitious lung sounds in low-quality aus-
cultation signals. Since the noise cannot be represented
sparsely by any bases, we can extract clear breath
sounds and adventitious sounds from noisy electronic
auscultation signals via the sparse representation. Us-
ing these clear sound components, we measure the level
of abnormality, and robustly detect adventitious sounds
with pulsating waveforms, a.k.a crackles. We have ex-
perimentally confirmed that our detection achieves an
average precision of about 85 percents regardless of
noise level.

1. Introduction

Listening to the patient’s body with a stethoscope
is a simple but effective method for physical diagno-
sis. Chest auscultation, in particular, has been a funda-
mental approach to detect heart and pulmonary disor-
ders. As the electronic stethoscope [1] becomes popu-
lar, pattern recognition techniques can contribute to de-
riving medical information from the electronic auscul-
tation signals.

Pattern recognition of lung sounds is a challeng-
ing issue because of a variety of generation mecha-
nisms of the lung sounds. The lung sound compo-
nents associated with pulmonary disorders, a.k.a rales,
are named according to their audio characteristics:
wheezes, squawks, crackles, etc. The prior works on
the analysis of lung sound signals have focused on the
characteristics of the signal components in the time and
frequency domains [12, 8, 10, 16, 2, 11]. The classi-
fication techniques use frequency spectra, waveforms,
and/or wavelet coefficients to describe the features of
the lung sounds.

Such signal features computed from the lung sound
signals, however, are not always discriminative. One

would obtain mixture of the features of the signal com-
ponents from the Fourier or wavelet coefficients, be-
cause the lung sound components are overlapping in
the time and frequency domains. It is also noticeable
that some types of pulmonary sounds such as vesicular
sounds and crackles are so faint that internal noise of the
electronic stethoscope is not negligible in many cases.

In this paper, we present a sparse representation-
based method for the detection of adventitious lung
sounds. Lung sound components can be efficiently rep-
resented by a small number of suitable basis functions.
Exploiting this fact, we have achieved the separate ex-
traction of breath sounds and adventitious sounds from
low-quality auscultation signals [13]. Section 2 pro-
vides the summary of our extraction method. In section
3, we extend this work to the detection of adventitious
sounds. We experimentally show that the detection of
the crackles is highly robust against internal noise.

2. Sparse representation-based extraction
of lung sound components

2.1. Sparse representation of lung sounds

Assume the following properties of a time signal
y(t) of lung sounds.

Assumption 1 y(t) consists of signal components
yk(t) (k = 1, . . . , K) and noise w(t).

Assumption 2 yk(t) can be expanded in a known basis
Ak (cardAk = nk).

Assumption 3 A small number of basis functions in Ak

can synthesize yk(t), and those in Ai (i �= k) cannot.

Let y be a d-dimensional vector containing d sam-
ples of y(t) at t = ti ∈ T . Define yk and w for yk(t)
and w(t) in the same manner. Let Ak be a d × nk ma-
trix whose columns are the vectors of d samples of the
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basis functions in Ak. Then, Assumption 2 states

yk = Akxk (1)

where xk is a nk-dimensional vector containing the co-
efficients for yk(t) expanded in Ak. Under Assumption
1, the discrete signal y can be represented as a linear
combination of the basis functions:

y =
∑

k

yk + w =
∑

k

Akxk + w = Ax + w (2)

Here, the vector x and the matrix A are the concatena-
tions of xk and Ak, respectively.

x = [x�
1 , . . . ,x�

K ]� (3)
A = [A1, . . . ,AK ] (4)

It follows from Assumption 3 that x has a small num-
ber of nonzero scalar components, say at most m nonze-
ros out of n =

∑
nk components. We call (2) a sparse

representation of y.

2.2. Separate extraction by sparse solution

If a discrete lung sound signal y is represented as (2)
by a sparse vector x and bases Ak of normal and adven-
titious sound signals yk, any signal component yk can
be recovered as (1). The recovered signal components
are beneficial for the detection and classification of lung
sound abnormalities.

Finding the sparse vector x can be formulated as

min
x

||y − Ax||2 s. t. ||x||0 ≤ m (5)

Here, l0 norm ||x||0 denotes the cardinality, or the num-
ber of nonzero scalar components of x. This minimiza-
tion is a combinatorial problem and hard to solve. A
common approach to this problem is to relax (5) to a
convex minimization problem with l1 norm [5, 6, 3, 4].
The solution to a convex minimization problem

min
x

||y − Ax||2 s. t. ||x||1 ≤ δ (6)

coincides with the sparse solution to (5) with over-
whelming probability. An l1-regularization problem

min
x

(
1
2
||y − Ax||22 + λ||x||1

)
(7)

also has a sparse solution equivalent to (6) with a suit-
able value of λ, which controls the sparsity of the
solution. One can find efficient algorithms for (7)
[9, 7, 15, 14].

3. Detection of adventitious components

The sparse representation-based extraction achieves
detection and classification of the adventitious sounds,
since the nonzero coefficients in xk of the sparse so-
lution indicate the existence of the k-th sound compo-
nents. For an adventitious sound component yj(t) ac-
companied by respiration, we measure its level of ab-
normality aj(t) so that it is invariant to the amplitude
scale of the auscultation signal y(t) and the noise w(t).
Let e(t) ≥ 0 be the envelope of the basic normal breath
sound component of y(t). We define the abnormality
level by simply normalizing yj(t) by e(t) as

aj(t) =
{

yj(t)/e(t) if e(t) > 0,
0 otherwise. (8)

The adventitious sounds are detected as the time seg-
ments with high abnormality levels. We have shown
that the sparse representation-based extraction can re-
cover noise-free lung sound components from a noisy
auscultation signal [13]. We expect that the evaluation
of the abnormality level as (8) using the extracted sound
components is highly robust against noise.

4. Experimental evaluation

4.1. Detection of crackles

As a practical example, we address the detection of
coarse and fine crackles from noisy auscultation signals.
While normal breath sounds are confined under 500Hz,
pulmonary adventitious sounds such as the coarse and
fine crackles have wide-ranging frequency components
because of their pulsating waveforms. Incorporating
this prior knowledge, we adopt a sinusoidal basis and a
wavelet basis for the vesicular sounds and adventitious
sounds, respectively.

Let A1 = AC and A2 = AW be a discrete cosine
transform matrix and a Daubechies wavelet transform
matrix, respectively. The sparse representation of a lung
sound signal y is written as

y = [ACAW ]
[

xC

xW

]
+ w (9)

Using the sparse solution to (6) or (7), we recover the
vesicular sound and the crackles as yC = ACxC and
yW = AW xW , respectively. Note that the matrix
multiplications by AC and AW can be performed via
O(n log n) and O(n) operations without storing n × n
matrices.

For coarse and fine crackles, we set AW to be the
Daubechies tap-10 (db10) wavelet basis. We have found
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Figure 1. Estimation of abnormality levels of (a) real auscultation signal of breath sound with
fine crackles, and (b) degraded version of (a) by adding white noise of 3dB SN ratio. First row:
original signal y. Second row: extracted signal yC with sparse frequency spectrum. Third row:
abnormality level of extracted signal yW with sparse wavelet coefficients.

in preliminary experiments that the signal extraction is
insensitive to the tap number. We have also confirmed
that the relative residual ε = ||y− (yC +yW )||2/||y||2
is no more than −20dB if one second of clear auscul-
tation sounds recorded at 44.1kHz (d =44,100) is rep-
resented as (2) with m = O(103)-sparse vector x. In
the following experiments we set m = 1, 600, which
amounts to 51.2kbps with single-precision vector x.

For the numerical solution to (7), we employ
GPSR [15] with the initial values x = 0 and λ =
10−2||A�y||∞. We repeat the minimization with a
doubled parameter λ using the sparse solution as a new
initial value of x until ||x||0 ≤ m.

4.2. Abnormality estimate

We show in Fig. 1 an example of the estimation of
abnormality levels for fine crackles in a case of inter-
stitial pneumonitis (idiopathic pulmonary fibrosis). A
clear signal yC of breath sound is extracted from the
original signal y as in Fig. 1(a). The estimated abnor-
mality levels successfully indicate the accompanying
crackles. One can detect the time segments containing
crackles by thresholding the abnormality levels. The
abnormality rarely shows nonzero levels in the time seg-
ments without crackles, which results in avoiding false
positive detections.

This property is preserved under noisy conditions.
We degraded the original signal by adding white noise
of 3dB SN ratio. We could extract the lung sound com-
ponents from the degraded signal y, and estimate the
abnormality levels as shown in Fig. 1(b). We have ex-
perimentally confirmed the similar performance of the
extraction and the abnormality level estimation on var-
ious samples of normal and abnormal lung sounds of
different subjects.

4.3. Robustness against noise

We evaluate the performance and robustness of the
detection of crackles from noisy signals. We manu-
ally segmented the signals of lung sounds with fine
and coarse crackles, and assigned the labels of ‘nor-
mal’ and ‘abnormal’ under the supervision of a doctor
of medicine. We added noise to the original signals and
calculated the precision and recall values at different
thresholds on the abnormality levels for 433 segments
with the ground truth labels.

Figure 2 shows the precision-recall curves. We have
achieved an average precision of about 85% regardless
of noise level. Since the noise cannot be represented
sparsely by any bases, our approach with the extracted
lung sound signal components can avoid false positive
detections due to noise at low threshold levels of abnor-
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Figure 2. Precision-recall curves by vary-
ing a threshold on the abnormality levels
for the detection of crackles under differ-
ent noise levels. The percentages are the
average precisions for the signals having
the indicated SN ratios.

mality to achieve high recall. As the noise increases, the
detection performs with slightly higher precision at low
recall and lower precision at high recall.

5. Concluding remarks

Sparse representation has a great potential for the de-
tection of adventitious lung sounds. Using the clear
breath sounds and adventitious sounds separately ex-
tracted from noisy auscultation signals, we can measure
the level of abnormality and robustly detect the adven-
titious sounds.

The sparse representation of auscultation signals can
also play a role of the signal classification because the
nonzero coefficients indicate the types of lung sounds.
Further research should address this classification capa-
bility for various types of lung sounds. Sparse coding
techniques would be of great help in learning bases for
the signal classification of lung sounds and enhancing
the robustness not only against internal but also against
external noises.
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