

Introducing HTML5
Bruce Lawson and Remy Sharp

New Riders

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.newriders.com

To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2011 by Remy Sharp and Bruce Lawson

Project Editor: Michael J. Nolan

Development Editor: Jeff Riley/Box Twelve Communications

Technical Editors: Patrick H. Lauke (www.splintered.co.uk),

Robert Nyman (www.robertnyman.com)

Production Editor: Cory Borman

Copyeditor: Doug Adrianson

Proofreader: Darren Meiss

Compositor: Danielle Foster

Indexer: Joy Dean Lee

Back cover author photo: Patrick H. Lauke

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in

any form by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the publisher. For informa-

tion on getting permission for reprints and excerpts, contact permissions@

peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis without war-

ranty. While every precaution has been taken in the preparation of the book,

neither the authors nor Peachpit shall have any liability to any person or

entity with respect to any loss or damage caused or alleged to be caused

directly or indirectly by the instructions contained in this book or by the com-

puter software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish

their products are claimed as trademarks. Where those designations appear

in this book, and Peachpit was aware of a trademark claim, the designa-

tions appear as requested by the owner of the trademark. All other product

names and services identifi ed throughout this book are used in editorial

fashion only and for the benefi t of such companies with no intention of

infringement of the trademark. No such use, or the use of any trade name, is

intended to convey endorsement or other affi liation with this book.

ISBN 13: 978-0-321-68729-6

ISBN 10: 0-321-68729-9

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.splintered.co.uk
www.newriders.com
www.robertnyman.com

CONTENTS
 Introduction ix

 CHAPTER 1 Main structure 1
The <head> . 2

Using new HTML5 structural elements 6

Styling HTML5 with CSS 10

When to use the new HTML5 structural

elements . 13

Summary . 21

 CHAPTER 2 Text 23
Structuring main content areas 24

Adding blogposts and comments 29

Working with HTML5 outlines 30

Understanding WAI-ARIA 48

Even more new structures! 51

Redefi ned elements 56

Global attributes. 61

Features not covered in this book 64

Summary . 66

 CHAPTER 3 Forms 67
We HTML, and now it s us back 68

New input types 68

CONTENTSvi

New attributes . 74

Putting all this together 79

Backwards compatibility with legacy browsers . . . 82

Styling new form fi elds and error messages 83

Overriding browser defaults 84

Using JavaScript for DIY validation 85

Avoiding validation 86

Summary . 89

 CHAPTER 4 Video and Audio 91
Native multimedia: why, what, and how? 92

Codecs—the horror, the horror 98

Rolling custom controls 102

Multimedia accessibility 110

Summary .113

 CHAPTER 5 Canvas 115
Canvas basics118

Drawing paths122

Using transformers: pixels in disguise 124

Capturing images 126

Pushing pixels .130

Animating your canvas paintings 134

Summary .140

 CHAPTER 6 Data Storage 141
Storage options 142

Web Storage. .143

CONTENTS vii

Web SQL Databases152

Summary .162

 CHAPTER 7 Offl ine 163
Pulling the plug: going offl ine 164

The cache manifest 164

How to serve the manifest168

The browser-server process 168

applicationCache171

Using the manifest to detect connectivity172

Killing the cache. 174

Summary .174

 CHAPTER 8 Drag and Drop 175
Getting into drag 176

Interoperability of dragged data 180

How to drag any element182

Adding custom drag icons 183

Accessibility .184

Summary .186

 CHAPTER 9 Geolocation 187
Sticking a pin in your visitor 188

API methods . .190

How it works under the hood: it’s magic195

Summary .196

CONTENTSviii

 CHAPTER 10 Messages, Workers, and Sockets 197
Chit chat with the Messaging API 198

Threading using Web Workers 200

Web Sockets: working with streaming data 212

Summary .216

And fi nally... .216

 Index 217

INTRODUCTION
Welcome to the Remy and Bruce show. We’re two developers

who have been playing with HTML5 since Christmas 2008—

experimenting, participating in the mailing list, and generally

trying to help shape the language as well as learn it.

Because we’re developers, we’re interested in building things.

That’s why this book concentrates on the problems that HTML5

can solve, rather than an academic investigation of the lan-

guage. It’s worth noting, too, that although Bruce works for

Opera Software, which began the proof of concept that eventu-

ally led to HTML5, he’s not part of the specifi cation team there;

his interest is as an author using the language.

Who’s this book for?
No knowledge of HTML5 is assumed, but we expect you’re

an experienced (X)HTML author, familiar with the concepts of

semantic markup. It doesn’t matter whether you’re more familiar

with HTML or XHTML doctypes, but you should be happy cod-

ing any kind of strict markup.

While you don’t need to be a JavaScript ninja, you should have

an understanding of the increasingly important role it plays in

modern web development, and terms like DOM and API won’t

make you drop this book in terror and run away.

Still here? Good.

What this book isn’t
This book is not a reference book. We don’t go through each

element or API in a linear fashion, discussing each fully and then

moving on. The specifi cation does that job in mind-numbing,

tear-jerking, but absolutely essential detail.

INTRODUCTIONx

What the specifi cation doesn’t try to do is teach how to use

each element or API or how they work in the context of each

other. We’ll build up examples, discussing new topics as we go,

and return to them later when there are new things to note.

You’ll also realise, from the title and the fact that you’re comfort-

ably holding this book without requiring a forklift, that this book

is not comprehensive. Explaining a specifi cation that needs 900

pages to print (by comparison, the fi rst HTML spec was three

pages long) in a medium-sized book would require Tardis-like

technology—which would be cool—or microscopic fonts—

which wouldn’t.

What do we mean by HTML5?
This might sound like a silly question, but there is an increasing

tendency amongst standards pundits to lump all exciting new

web technologies into a box labeled HTML5. So, for example,

we’ve seen SVG (Scalable Vector Graphics) referred to as “one

of the HTML5 family of technologies,” even though it’s an inde-

pendent W3C graphics spec that’s 6 years old.

Further confusion arises from the fact that the offi cial W3C spec

is something like an amoeba: Bits split off and become their own

specifi cations, such as Web Sockets or Web Storage (albeit from

the same Working Group, with the same editors).

So what we mean in this book is “HTML5 and related specifi ca-

tions that came from the WHATWG “ (more about this exciting

acronym soon). We’re also bringing a “plus one” to the party—

Geolocation—which has nothing to do with our defi nition of

HTML5, but we include simply for the reason that it’s really cool,

we’re excited about it, and it’s part of the New Wave of Exciting

Technologies for Making Web Apps.

Who? What? When? Why?
A short history of HTML5

History sections in computer books usually annoy us. You don’t

need to know about ARPANET or the history of HTTP to under-

stand how to write a new language.

INTRODUCTION xi

Nonetheless, it’s useful to understand how HTML5 came about,

because it will help you understand why some aspects of HTML5

are as they are, and hopefully pre-empt (or at least soothe) some

of those “WTF? Why did they design it like that?” moments.

How HTML5 nearly never was
In 1998, the W3C decided that they would not continue to

evolve HTML. The future, they believed (and so did your

authors) was XML. So HTML was frozen at version 4.01 and a

specifi cation was released called XHTML, which was an XML

version of HTML requiring XML syntax rules like quoting attri-

butes, closing some tags while self-closing others, and the like.

Two fl avours were developed (well, actually three, if you care

about HTML Frames, but we hope you don’t because they’re

gone from HTML5). There was XHTML Transitional, which was

designed to help people move to the gold standard of XHTML

Strict.

This was all tickety-boo—it encouraged a generation of develop-

ers (or at least the professional-standard developers) to think

about valid, well-structured code. However, work then began

on a specifi cation called XHTML 2.0, which was a revolutionary

change to the language, in the sense that it broke backwards-

compatibility in the cause of becoming much more logical and

better-designed.

A small group at Opera, however, was not convinced that XML

was the future for all web authors. Those individuals began

extracurricular work on a proof-of-concept specifi cation that

extended HTML forms without breaking backward-compatibility.

That spec eventually became Web Forms 2.0, and was subse-

quently folded into the HTML5 spec. They were quickly joined

by individuals from Mozilla and this group, led by Ian “Hixie”

Hickson, continued working on the specifi cation privately with

Apple “cheering from the sidelines” in a small group that called

itself the WHATWG (Web Hypertext Application Technology

Working Group, www.whatwg.org). You can see this genesis still

in the copyright notice on the WHATWG version of the spec

“© Copyright 2004–2009 Apple Computer, Inc., Mozilla Foun-

dation, and Opera Software ASA” (note that you are licensed to

use, reproduce, and create derivative works).

Hickson moved from Opera to Google, where he continued to

work full-time as editor of HTML5 (then called Web Applications 1.0).

www.whatwg.org

INTRODUCTIONxii

In 2006 the W3C decided that they had perhaps been over-

optimistic in expecting the world to move to XML (and, by

extension, XHTML 2.0): “It is necessary to evolve HTML incre-

mentally. The attempt to get the world to switch to XML, includ-

ing quotes around attribute values and slashes in empty tags

and namespaces, all at once didn’t work.” said Tim Berners-Lee

(http://dig.csail.mit.edu/breadcrumbs/node/166).

The resurrected HTML Working Group voted to use the WHATWG’s

Web Applications spec as the basis for the new version of HTML,

and thus began a curious process whereby the same spec was

developed simultaneously by the W3C (co-chaired by Sam Ruby of

IBM and Chris Wilson of Microsoft, and latterly Ruby, Paul Cotton

of Microsoft and Maciej Stachowiak of Apple), and the WHATWG,

under the continued editorship of Hickson.

The process has been highly unusual in several respects.

The fi rst is the extraordinary openness; anyone could join

the WHATWG mailing list and contribute to the spec. Every

email was read by Hickson or the core WHATWG team (which

included such luminaries as the inventor of JavaScript and

Mozilla CTO Brendan Eich, Safari and WebKit Architect David

Hyatt, and inventor of CSS and Opera CTO Håkon Wium Lie).

In search of the Spec

Because the HTML5 specifi cation is being developed by both the W3C and WHATWG, there are diff erent

versions of the spec.

www.w3.org/TR/html5/ is the offi cial W3C snapshot, while http://dev.w3.org/html5/spec/ is the latest edi-

tor’s draft and liable to change.

For the WHATWG version, go to http://whatwg.org/html5 but beware: this is titled “HTML5 (including next

generation additions still in development)” and there are hugely experimental ideas in there such as the

<device> element. Don’t assume that because it’s in this document it’s implemented anywhere or even

completely thought out yet. This spec does, however, have useful annotations about implementation sta-

tus in diff erent browsers.

There’s a one-page version of the compete WHATWG specifi cations called “Web Applications 1.0” that

incorporates everything from the WHATWG at http://www.whatwg.org/specs/web-apps/current-work/

complete.html but it might kill your browser as it’s massive with many scripts.

Confused? http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F lists and

describes these diff erent versions.

Geolocation is not a WHATWG spec and lives at http://www.w3.org/TR/geolocation-API/

www.w3.org/TR/html5/
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://www.w3.org/TR/geolocation-API/
http://dig.csail.mit.edu/breadcrumbs/node/166
http://dev.w3.org/html5/spec/
http://whatwg.org/html5
http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F

INTRODUCTION xiii

Good ideas were implemented and bad ideas rejected, regard-

less of who the source was or who they represented, or even

where those ideas were fi rst mooted. Good ideas were adopted

from Twitter, blogs, IRC.

In 2009, the W3C stopped work on XHTML 2.0 and diverted

resources to HTML5 and it was clear that HTML5 had won

the battle of philosophies: purity of design, even if it breaks

backwards-compatibility, versus pragmatism and “not breaking

the Web.” The fact that the HTML5 working groups consisted of

representatives from all the browser vendors was also impor-

tant. If vendors were unwilling to implement part of the spec

(such as Microsoft’s unwillingness to implement <dialog>, or

Mozilla’s opposition to <bb>) it was dropped; Hickson has said

“The reality is that the browser vendors have the ultimate veto

on everything in the spec, since if they don’t implement it, the

spec is nothing but a work of fi ction” (http://www.webstandards.

org/2009/05/13/interview-with-ian-hickson-editor-of-the-html-

5-specifi cation/). Many participants found this highly distasteful:

Browser vendors have hijacked “our Web,” they complained with

some justifi cation.

It’s fair to say that the working relationship between W3C and

WHATWG has not been as smooth as it could be. The W3C

operates a consensus-based approach, whereas Hickson con-

tinued to operate as he had in the WHATWG—as benevolent

dictator (and many will snort at our use of the word benevolent
in this context). It’s certainly the case that Hickson had very fi rm

ideas of how the language should be developed.

The philosophies behind HTML5
Behind HTML5 is a series of stated design principles

(http://www.w3.org/TR/html-design-principles). There are

three main aims to HTML5:

• Specifying current browser behaviours that are

interoperable

• Defi ning error handling for the fi rst time

• Evolving the language for easier authoring of web

applications

http://www.webstandards.org/2009/05/13/interview-with-ian-hickson-editor-of-the-html-5-specification/
http://www.webstandards.org/2009/05/13/interview-with-ian-hickson-editor-of-the-html-5-specification/
http://www.webstandards.org/2009/05/13/interview-with-ian-hickson-editor-of-the-html-5-specification/
http://www.w3.org/TR/html-design-principles

INTRODUCTIONxiv

Not breaking exiting Web pages
Many of our current methods of developing sites and applica-

tions rely on undocumented (or at least unspecifi ed) features

incorporated into browsers over time. For example, XMLHttp-
Request (XHR) powers untold numbers of Ajax-driven sites.

It was invented by Microsoft, and subsequently reverse-

engineered and incorporated into all other browsers, but had

never been specifi ed as a standard (Anne van Kesteren of

Opera fi nally specifi ed it as part of the WHATWG). Such a vital

part of so many sites left entirely to reverse-engineering! So one

of the fi rst tasks of HTML5 was to document the undocumented,

in order to increase interoperability by leaving less to guesswork

for web authors and implementors of browsers.

It was also necessary to unambiguously defi ne how browsers

and other user agents should deal with invalid markup. This

wasn’t a problem in the XML world; XML specifi es “draconian

error handling” in which the browser is required to stop render-

ing if it fi nds an error. One of the major reasons for the rapid

ubiquity and success of the Web (in our opinion) was that even

bad code had a fi ghting chance of being rendered by some

or all browsers. The barrier to entry to publishing on the Web

was democratically low, but each browser was free to decide

how to render bad code. Something as simple as

<i>Hello mum!</i>

(note the mismatched closing tags) produces diff erent DOMs

in diff erent browsers. Diff erent DOMs can cause the same CSS

to have a completely diff erent rendering, and they can make

writing JavaScript that runs across browsers much harder than

it need be. A consistent DOM is so important to the design of

HTML5 that the language itself is defi ned in terms of the DOM.

In the interests of greater interoperability, it’s vital that error han-

dling be identical across browsers, thus generating the exact

same DOM even when confronted with broken HTML. In order

for that to happen, it was necessary for someone to specify it.

As we said, the HTML5 specifi cation is well over 900 pages

long if printed out, but only 300 or so of those are of relevance

to web authors (that’s you and us); the rest of it is for implemen-

tors of browsers, telling them exactly how to parse markup,

even bad markup.

NOTE There is an HTML5

spec that deals with just

the aspects relevant to web

authors, generated automatically

from the main source available

at http://dev.w3.org/html5/

markup/.

http://dev.w3.org/html5/markup/
http://dev.w3.org/html5/markup/

INTRODUCTION xv

Web applications
An increasing number of sites on the Web are what we’ll call

web applications; that is, they mimic desktop apps rather that

traditional static text-images-links documents that make up

the majority of the Web. Examples are online word proces-

sors, photo editing tools, mapping sites, etc. Heavily powered

by JavaScript, these have pushed HTML 4 to the edge of its

capabilities. HTML5 specifi es new DOM APIs for drag and drop,

server-sent events, drawing, video, and the like. These new

interfaces that HTML pages expose to JavaScript via objects in

the DOM make it easier to write such applications using tightly

specifi ed standards rather than barely documented hacks.

Even more important is the need for an open standard (free to

use and free to implement) that can compete with proprietary

standards like Adobe Flash or Microsoft Silverlight. Regardless

of what your thoughts are on those technologies or companies,

we believe that the Web is too vital a platform for society, com-

merce, and communication to be in the hands of one vendor.

How diff erently would the renaissance have progressed if Cax-

ton held a patent and a monopoly on the manufacture of print-

ing presses?

Don’t break the Web
There are exactly umpty-squillion web pages already out there,

and it’s imperative that they continue to render. So HTML5 is

(mostly) a superset of HTML 4 that continues to defi ne how

browsers should deal with legacy markup such as , <cen-
ter>, and other such presentational tags, because millions of web

pages use them. But authors should not use them, as they’re

obsolete. For web authors, semantic markup still rules the day,

although each reader will form her own conclusion as to whether

HTML5 includes enough semantics, or too many elements.

As a bonus, HTML5’s unambiguous parsing rules should ensure

that ancient pages will work interoperably, as the HTML5 parser

will be used for all HTML documents. (No browser yet ships with

an HTML5 parser by default, although at time of writing Firefox

has an experimental HTML5 parser that can be switched on from

about:confi g by changing the preference html5.enable to true.)

INTRODUCTIONxvi

What about XML?
HTML5 is not an XML language (it’s not even an SGML lan-

guage, if that means anything important to you). It must be

served as text/html. If, however, you need to use XML, there is

an XML serialisation called XHTML5. This allows all the same

features, but (unsurprisingly) requires a more rigid syntax (if

you’re used to coding XHTML, this is exactly the same as you

already write). It must be well-formed XML and it must be served

with an XML MIME type, even though Internet Explorer 8 and its

antecedents can’t process it (it off ers it for downloading rather

than rendering it). Because of this, we are using HTML rather

than XHTML syntax in this book.

HTML5 support
HTML5 is moving very fast now, and even though the spec went

to fi rst fi nal draft in October 2009, browsers were already imple-

menting HTML5 support (particularly around the APIs) before

this date. Equally, HTML5 support is going to continuously

increase as the browsers start rolling out the features.

This book has been written between November 2009 and May

2010. We’ve already amended chapters several times to take into

account changes in the specifi cation, which is looking (dare we

say it?) pretty stable now. (We will regret writing that, we know!)

Of course, instances where we say “this is only supported in

browser X” will rapidly date—which is a good thing.

Let’s get our hands dirty
So that’s your history lesson, with a bit of philosophy thrown in.

It’s why HTML5 sometimes willfully disagrees with other specifi ca-

tions—for backwards-compatibility, it often defi nes what browsers

actually do, rather than what an RFC specifi es they ought to do.

It’s why sometimes HTML5 seems like a kludge or a compro-

mise—it is. And if that’s the price we have to pay for an interoper-

able open Web, then your authors say “viva pragmatism!”

Got your seatbelt on?

Let’s go.

This page intentionally left blank

CHAPTER 4
Video and

Audio
Bruce Lawson and Remy Sharp

A LONG TIME AGO, in a galaxy that feels a very long

way away, multimedia on the Web was limited to tinkling

MIDI tunes and animated GIFs. As bandwidth got faster

and compression technologies improved, MP3 music

supplanted MIDI and real video began to gain ground.

All sorts of proprietary players battled it out—Real Player,

Windows Media, and so on—until one emerged as the vic-

tor in 2005: Adobe Flash, largely because of the ubiquity

of its plugin and the fact that it was the delivery mecha-

nism of choice for YouTube.

HTML5 provides a competing, open standard for delivery

of multimedia on the Web with its native video and audio

elements and APIs. This chapter largely discusses the

<video> element, as that’s sexier, but most of the markup

and scripting are applicable for both types of media.

INTRODUCING HTML592

Native multimedia: why, what, and how?
In 2007, Anne van Kesteren wrote to the Working Group:

“Opera has some internal experimental builds with an imple-
mentation of a <video> element. The element exposes a simple
API (for the moment) much like the Audio() object: play(),
pause(), stop(). The idea is that it works like <object> except
that it has special <video> semantics much like has image
semantics.”

While the API has increased in complexity, van Kesteren’s origi-

nal announcement is now implemented in all the major brows-

ers, and during the writing of this book Microsoft announced

forthcoming support in Internet Explorer 9.

An obvious companion to a <video> element is an <audio>

element; they share many similar features, so in this chapter

we discuss them together and only note the diff erences.

<video>: Why do you need
a <video> element?
Previously, if developers wanted to include video in a web

page, they had to make use of the <object> element, which is

a generic container for “foreign objects.” Due to browser incon-

sistencies, they would also need to use the previously invalid

<embed> element and duplicate many parameters. This resulted

in code that looked much like this:

<object width=”425” height=”344”>
<param name=”movie” value=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”></param>
<param name=”allowFullScreen”
value=”true”></param>
<param name=”allowscriptaccess”
value=”always”></param>
<embed src=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”
type=”application/x-shockwave-flash”
allowscriptaccess=”always”
allowfullscreen=”true” width=”425”
height=”344”></embed>
</object>

CHAPTER 4 : VIDEO AND AUDIO : NATIVE MULTIMEDIA: WHY, WHAT, AND HOW? 93

This code is ugly and ungainly. Worse than that is the fact that

the browser has to pass the video off to a third-party plugin;

hope that the user has the correct version of that plugin (or has

the rights to download and install it, or the knowledge of how

to); and then hope that the plugin is keyboard accessible—along

with all the other unknowns involved in handing the content to a

third-party application.

Plugins can also be a signifi cant cause of browser instability

and can create worry in less technical users when they are

prompted to download and install newer versions.

Whenever you include a plugin in your pages, you’re reserving

a certain drawing area that the browser delegates to the plugin.

As far as the browser is concerned, the plugin’s area remains a

black box—the browser does not process or interpret anything

that is happening there.

Normally, this is not a problem, but issues can arise when your

layout overlaps the plugin’s drawing area. Imagine, for example,

a site that contains a movie but also has JavaScript or CSS-based

dropdown menus that need to unfold over the movie. By default,

the plugin’s drawing area sits on top of the web page, meaning

that these menus will strangely appear behind the movie.

Problems and quirks can also arise if your page has dynamic

layout changes. If the dimensions of the plugin’s drawing area

are resized, this can sometimes have unforeseen eff ects—a

movie playing in the plugin may not resize, but instead simply

be cropped or display extra white space. HTML5 provides a

standardised way to play video directly in the browser, with no

plugins required.

One of the major advantages of the HTML5 video element is

that, fi nally, video is a full-fl edged citizen on the Web. It’s no lon-

ger shunted off to the hinterland of <object> or the non-validat-

ing <embed> element.

So now, <video> elements can be styled with CSS; they can be

resized on hover using CSS transitions, for example. They can

be tweaked and redisplayed onto <canvas> with JavaScript. Best

of all, the innate hackability that open web standards provide

is opened up. Previously, all your video data was locked away;

your bits were trapped in a box. With HTML5 multimedia, your

bits are free to be manipulated however you want.

NOTE <embed> is fi nally

standardised in HTML5; it

was never part of any previous

fl avour of (X)HTML.

INTRODUCING HTML594

What HTML5 multimedia isn’t good for
Regardless of the somewhat black and white headlines of the

tech journalists, HTML5 won’t “kill” all plugins overnight. There

are use-cases for plugins not covered by the new spec.

Copy protection is one area not dealt with by HTML5—unsur-

prisingly, given that it’s a standard based on openness. So

people who need DRM are probably not going to want to use

HTML5 video or audio, as they will be as easy to download to

a hard drive as an is now. Some browsers off er simple

context-menu access to the URL of the video, or even to save

the video. (Of course, you don’t need us to point out that DRM is

a fools’ errand, anyway. All you do is alienate your honest users

while causing minor inconvenience to dedicated pirates.)

There is a highly nascent <device> element rudimentarily speci-

fi ed for “post-5” HTML, but there is no support in browsers for

it. Plugins remain the best option for a browser to transmit video

and audio from the user’s machine to a web page such as Daily

Mugshot or Chat Roulette. After shuddering at the unimaginable

loneliness that a world without Chat Roulette would represent,

consider also the massive amount of content out there that will

require plugins to render it for a long time to come.

Anatomy of the video element
At its simplest, including video on a page in HTML5 merely

requires this code:

<video src=turkish.ogv></video>

The .ogv fi le extension is used here to point to an Ogg Theora video.

Similar to <object>, you can put fallback markup between the

tags, for older Web browsers that do not support native video.

You should at least supply a link to the video so users can

download it to their hard drives and watch it later on the operat-

ing system’s media player. Figure 4.1 shows this code in a mod-

ern browser and fallback content in a legacy browser.

<h1>Video and legacy browser fallback</h1>
<video src=leverage-a-synergy.ogv>
 Download the How to
 ¬ leverage a synergy video
</video>

NOTE So long as the http

end point is a streaming

resource on the web, you can

just point the <video> or

<audio> element at it to

stream the content.

CHAPTER 4 : VIDEO AND AUDIO : NATIVE MULTIMEDIA: WHY, WHAT, AND HOW? 95

However, this example won’t actually do anything just yet. All you

can see here is the fi rst frame of the movie. That’s because you

haven’t told the video to play, and you haven’t told the browser to

provide any controls for playing or pausing the video.

autoplay
You can tell the browser to play the video or audio automatically,

but you almost certainly shouldn’t, as many users (and particu-

larly those using assistive technology, such as a screen reader)

will fi nd it highly intrusive. Users on mobile devices probably

won’t want you using their bandwidth without them explicitly

asking for the video. Nevertheless, here’s how you do it:

<video src=leverage-a-synergy.ogv autoplay>
</video>

controls
Providing controls is approximately 764 percent better than

autoplaying your video. See Figure 4.2. You can use some sim-

ple JavaScript to write your own (more on that later) or you can

tell the browser to provide them automatically:

<video src=leverage-a-synergy.ogv controls>
</video>

Naturally, these diff er between browsers, in the same way

that form controls do, for example, but you’ll fi nd nothing

too surprising. There’s a play/ pause toggle, a seek bar, and

volume control.

FIGURE 4.1 HTML5 video in a

modern browser and fallback

content in a legacy browser.

INTRODUCING HTML596

Notice that these controls appear when a user hovers over a

video or when she tabs to the video. It’s also possible to tab

through the diff erent controls. This native keyboard accessibility

is already an improvement on plugins, which can be tricky to tab

into from surrounding HTML content.

If the <audio> element has the controls attribute, you’ll see them

on the page. Without the attribute, nothing is rendered visually

on the page at all, but is, of course, there in the DOM and fully

controllable via JavaScript and the new APIs.

poster
The poster attribute points to an image that the browser will use

while the video is downloading, or until the user tells the video

to play. (This attribute is not applicable to <audio>.) It removes

the need for additional tricks like displaying an image and then

removing it via JavaScript when the video is started.

If you don’t use the poster attribute, the browser shows the fi rst

frame of the movie, which may not be the representative image

you want to show.

height, width
These attributes tell the browser the size in pixels of the video.

(They are not applicable to <audio>.) If you leave them out, the

browser uses the intrinsic width of the video resource, if that is

available. Otherwise it is the intrinsic width of the poster frame,

if that is available. Otherwise it is 300 pixels.

If you specify one value, but not the other, the browser adjusts

the size of the unspecifi ed dimension to preserve the video’s

aspect ratio.

FIGURE 4.2 The default controls

in Firefox 3.6 (similar in all modern

browsers).

NOTE Browsers have dif-

ferent levels of keyboard

accessibility. Firefox’s native

controls don’t appear when

JavaScript is disabled (the con-

textual menu allows the user to

stop and start the movie, but

there is the issue of discover-

ability, and it doesn’t seem pos-

sible to choose these options

without JS.) Opera’s accessible

native controls are always pres-

ent when JavaScript is disabled,

regardless of whether the con-
trols attribute is specifi ed.

Chrome and Safari have issues

with keyboard accessibility. We

anticipate increased keyboard

accessibility as manufacturers

iron out teething problems.

CHAPTER 4 : VIDEO AND AUDIO : NATIVE MULTIMEDIA: WHY, WHAT, AND HOW? 97

If you set both width and height to an aspect ratio that doesn’t

match that of the video, the video is not stretched to those

dimensions but is rendered “letter-boxed” inside the video ele-

ment of your specifi ed size while retaining the aspect ratio.

loop
The loop attribute is another Boolean attribute. As you would

imagine, it loops the media playback.

preload
Maybe you’re pretty sure that the user wants to activate the

media (he’s drilled down to it from some navigation, for example,

or it’s the only reason to be on the page), but you don’t want to

use autoplay. If so, you can suggest that the browser preload

the video so that it begins buff ering when the page loads in the

expectation that the user will activate the controls.

<video src=leverage-a-synergy.ogv controls preload>
</video>

There are three spec-defi ned states of the preload attribute. If

you just say preload, the user agent can decide what to do. A

mobile browser may, for example, default to not preloading until

explicitly told to do so by the user.

1. preload=auto (or just preload)

A suggestion to the browser that it should begin downloading

the entire fi le. Note that we say “suggestion.” The browser may

ignore this—perhaps because it detected very slow connection

or a setting in a mobile browser “Never preload media” to save

the user’s bandwidth.

2. preload=none

This state suggests to the browser that it shouldn’t preload the

resource until the user activates the controls.

3. preload=metadata

This state suggests to the browser that it should just prefetch

metadata (dimensions, fi rst frame, track list, duration, and so

on) but that it shouldn’t download anything further until the user

activates the controls.

NOTE The specifi cation for

preload changed in March

2010 and is not implemented any-

where as of April 2010.

INTRODUCING HTML598

src
As on an , this attribute points to the fi le to be displayed.

However, because not all browsers can play the same formats,

in production environments you need to have more than one

source fi le. We’ll cover this in the next section. Using a single

source fi le with the src attribute is only really useful for rapid

prototyping or for intranet sites where you know the user’s

browser and which codecs it supports.

Codecs—the horror, the horror
Early drafts of the HTML5 specifi cation mandated that all browsers

should at least have built-in support for multimedia in two codecs:

Ogg Vorbis for audio and Ogg Theora for movies. Vorbis is a codec

used by services like Spotify, among others, and for audio samples

in games like Microsoft Halo, it’s often used with Theora for video

and combined together in the Ogg container format.

However, these codecs were dropped from the HTML5 spec

after Apple and Nokia objected, so the spec makes no rec-

ommendations about codecs at all. This leaves us with a

fragmented situation. Opera and Firefox support Theora and

Vorbis. Safari doesn’t, preferring instead to provide native sup-

port for the H.264 video codec and MP3 audio. Microsoft has

announced that IE9 will also support H.264, which is also sup-

ported on iPhone and Android. Google Chrome supports Theora

and H.264 video, and Vorbis and MP3 audio. Confused?

As we were fi nishing this book, Google announced it is open-

sourcing a video codec called VP8. This is a very high-quality

codec, and when combined with Vorbis in a container format

based on the Matroska format, it's collectively known as "webM".

Opera, Firefox and Chrome have announced it will support it. IE9

will, if the codec is separately installed. VP8 will be included in Ado-

be's Flash Player and every YouTube video will be in webM format.

Like Theora, it's a royalty-free codec. In this chapter, you can

substitute .ogv examples with .webm for high quality video, once

browser support is there.

The rule is: provide both royalty-free (webM or Theora) and

H.264 video in your pages, and both Vorbis and MP3 audio so

CHAPTER 4 : VIDEO AND AUDIO : CODECS—THE HORROR, THE HORROR 99

that nobody gets locked out of your content. Let’s not repeat the

mistakes of the old “Best viewed in Netscape Navigator” badges

on websites.

Multiple <source> elements
To do this, you need to encode your multimedia twice: once

as Theora and once as H.264 in the case of video, and in both

Vorbis and MP3 for audio.

Then, you tie these separate versions of the fi le to the media

element. Instead of using the single src attribute, you nest

separate <source> elements for each encoding with appropriate

type attributes inside the <audio> or <video> element and let the

browser download the format that it can display.

Note that in this case we do not provide a src attribute in the

media element itself:

1 <video controls>

2 <source src=leverage-a-synergy.ogv type=’video/ogg;
 ¬ codecs=”theora, vorbis”’>

3 <source src=leverage-a-synergy.mp4 type=’video/mp4;
 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>

4 <p>Your browser doesn’t support video.

5 Please download the video in <a href=leverage-a-
¬ synergy.ogv>Ogg or <a href=leverage-a-
¬ synergy.mp4>mp4 format.</p>

6 </video>

Line 1 tells the browser that a video is to be inserted and to give

it default controls. Line 2 off ers an Ogg Theora video and uses

the type attribute to tell the browser what kind of container for-

mat is used (by giving the fi le’s MIME type) and what codec was

used for the encoding of the video and the audio stream. We

could also off er a WebM video here as a high-quality royalty-

free option. Notice that we used quotation marks around these

parameters. If you miss out on the type attribute, the browser

downloads a small bit of each fi le before it fi gures out that it

is unsupported, which wastes bandwidth and could delay the

media playing.

INTRODUCING HTML5100

Line 3 off ers an H.264 video. The codec strings for H.264 and

AAC are more complicated than those for Ogg because there

are several profi les for H.264 and AAC. Higher profi les require

more CPU to decode, but they are better compressed and take

less bandwidth.

Inside the <video> element is our fallback message, including

links to both formats for browsers that can natively deal with

neither video type but which is probably on top of an operat-

ing system that can deal with one of the formats, so the user

can download the fi le and watch it in a media player outside

the browser.

OK, so that’s native HTML5 video for all users of modern brows-

ers. What about users of legacy browsers—including Internet

Explorer 8 and older?

Video for legacy browsers
Older browsers can’t play native video or audio, bless them. But

if you’re prepared to rely on plugins, you can ensure that users

of older browsers can still experience your content in a way that

is no worse than they currently get.

Remember that the contents of the <video> element can contain

markup, like the text and links in the previous example? Because

the MP4 fi le type can also be played by the Flash player plugin,

you can use the MP4 movie in combination as a fallback for Inter-

net Explorer 8 and older versions of other browsers.

The code for this is as hideous as you’d expect for a transitional

hack, but it works everywhere a Flash Player is installed—which

is almost everywhere. You can see this nifty technique in an

article called “Video for Everybody!” by its inventor, Kroc Camen

http://camendesign.com/code/video_for_everybody.

Alternatively, you could host the fallback content on a video

hosting site and embed a link to that between the tags of a

video element:

<video controls>
 <source src=leverage-a-synergy.ogv type=’video/ogg;
 ¬ codecs=”theora, vorbis”’>
 <source src=leverage-a-synergy.mp4 type=’video/mp4;
 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>
<embed src=”http://www.youtube.com/v/cmtcc94Tv3A&hl=
¬ en_GB&fs=1&rel=0” type=”application/x-shockwave-flash”

NOTE The content

between the tags is fall-

back content only for browsers

that do not support the

<video> element at all. A

browser that understands

HTML5 video but can’t play any

of the formats that your code

points to will not display the

“fallback” content between the

tags. This has bitten me on the

bottom a few times. Sadly, there

is no video record of that.

http://camendesign.com/code/video_for_everybody

CHAPTER 4 : VIDEO AND AUDIO : CODECS—THE HORROR, THE HORROR 101

¬ allowscriptaccess=”always” allowfullscreen=”true”
¬ width=”425” height=”344”>
</video>

You can use the html5media library http://static.etianen.com/

html5media/ to hijack the <video> element and automagically

add necessary fallback by adding one line of JavaScript in the

head of your page.

Encoding royalty-free video and audio

Ideally, you should start the conversion from the source format itself, rather than recompressing an already

compressed version. Double compression can seriously reduce the quality of the fi nal output.

On the audio side of things, the open-source audio editing software Audacity (http://audacity.sourceforge.

net/) has built-in support for Ogg Vorbis export. For video conversion, there are a few good choices.

For .WebM, there are only a few encoders at the moment, unsurprisingly for such a new codec. See

www.webmproject.org/tools/ for the growing list.

The free application evom (http://thelittleappfactory.com/evom/) can make Ogg Theora on a Mac

through a nice graphical interface. Windows and Mac users can download Miro Video Converter

(www.mirovideoconverter.com/), which allows you to drag a fi le into its window for conversion into

Theora or H.264 optimised for diff erent devices such as iPhone, Android Nexus One, PS2, and so on.

The free VLC (www.videolan.org/vlc/) can convert fi les to Ogg on Windows or Linux. OggConvert

(http://oggconvert.tristanb.net/) is a useful utility for Linux users.

Alternatively, the Firefox extension Firefogg and its associated website http://fi refogg.org/ provides an

easy web-based conversion. TinyOgg (http://tinyogg.com/) converts Flash video to Ogg for download,

and can even be fed a YouTube URL.

The conversion process can also be automated and handled server-side. For instance in a CMS environment,

you may not be able to control the format in which authors upload their fi les, so you may want to do compres-

sion at the server end. The open-source ff mpeg library (http://ff mpeg.org/) can be installed on a server to bring

industrial-strength conversions of uploaded fi les (maybe you’re starting your own YouTube-killer?)

If you’re worried about storage space and you’re happy to share your media fi les (audio and video) under

one of the various CC licenses, have a look at the Internet Archive (www.archive.org/create/) which will

convert and host them for you. Just create a password and upload, then use a <video> element on your

page but link to the source fi le on their servers.

Sending differently-compressed
videos to handheld devices
Video fi les tend to be large, and sending very high-quality video

can be wasteful if sent to handheld devices where the small

screen sizes make high quality unnecessary. There’s no point in

sending high-defi nition video meant for a widescreen monitor to

www.webmproject.org/tools/
www.mirovideoconverter.com/
www.videolan.org/vlc/
www.archive.org/create/
http://static.etianen.com/html5media/
http://static.etianen.com/html5media/
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://thelittleappfactory.com/evom/
http://oggconvert.tristanb.net/
http://firefogg.org/
http://tinyogg.com/
http://ffmpeg.org/

INTRODUCING HTML5102

a handheld device screen. Compressing a video down to a size

appropriate for a small screen can save a lot of bandwidth, mak-

ing your server and—most importantly—your mobile users happy.

HTML5 allows you to use the media attribute on the source ele-

ment, which queries the browser to fi nd out screen size (or num-

ber of colours, aspect ratio, and so on) and send diff erent fi les

that are optimised for diff erent screen sizes.

This functionality and syntax is borrowed from the CSS Media

Queries specifi cation dev.w3.org/csswg/css3-mediaqueries/) but

is part of the markup, as we’re switching source fi les depending

on device charateristics. In the following example, the browser

is “asked” if it has a min-device-width of 800px—that is, does it

have a wide screen. If it does, it receives hi-res.ogv; if not, it is

sent lo-res.ogv:

<video controls>
 <source src=hi-res.ogv ... media=”(min-device-width:
 ¬ 800px)”>
 <source src=lo-res.ogv>
</video>

Also note that you should still use the type attribute with codecs

parameters and fallback content previously discussed. We’ve

just omitted those for clarity.

Rolling custom controls
One truly spiffi ng aspect of the media element, and therefore

the audio and video elements, is that the JavaScript API is super

easy. The API for both audio and video descend from the same

media API, so they’re nearly exactly the same. The only diff er-

ence in these elements is that the video element has height and

width attributes and a poster attribute. The events, the methods,

and all other attributes are the same. With that in mind, we’ll

stick with the sexier media element: the <video> element for our

JavaScript discussion.

As you saw at the start of this chapter, Anne van Kesteren talks

about the new API and that we have new simple methods such

as play(), pause() (there’s no stop method: simply pause and

and move to the start), load(), and canPlayType(). In fact, that’s

all the methods on the media element. Everything else is events

and attributes.

NOTE We use

min-device-width

rather than min-width to cater

to devices that have a viewport

into the content—that is, every

full-featured smartphone

browser, as this gives us the

width of the viewport display.

CHAPTER 4 : VIDEO AND AUDIO : ROLLING CUSTOM CONTROLS 103

Table 4.1 provides a reference list of media attributes and events.

TABLE 4.1 Media Attributes and Events

ATTRIBUTES METHODS

error state load()

error canPlayType(type)

network state play()

src pause()

currentSrc addTrack(label, kind, language)

networkState

preload events

buffered loadstart

ready state progress

readyState suspend

seeking abort

controls error

controls emptied

volume stalled

muted play

tracks pause

tracks loadedmetadata

playback state loadeddata

currentTime waiting

startTime playing

duration canplay

paused canplaythrough

defaultPlaybackRate seeking

playbackRate seeked

played timeupdate

seekable ended

ended ratechange

autoplay

loop

video specifi c

width

height

videoWidth

videoHeight

poster

INTRODUCING HTML5104

Using JavaScript and the new media API you can create and

manage your own video player controls. In our example, we

walk you through some of the ways to control the video element

and create a simple set of controls. Our example won’t blow

your mind—it isn’t nearly as sexy as the video element itself

(and is a little contrived!)—but you’ll get a good idea of what’s

possible through scripting. The best bit is that the UI will be all

CSS and HTML. So if you want to style it your own way, it’s easy

with just a bit of web standards knowledge—no need to edit an

external Flash player or similar.

Our hand-rolled basic video player controls will have a play/pause

toggle button and allow the user to scrub along the timeline of

the video to skip to a specifi c section, as shown in Figure 4.3.

Our starting point will be a video with native controls enabled.

We’ll then use JavaScript to strip the native controls and add our

own, so that if JavaScript is disabled, the user still has a way to

control the video as we intended:

<video controls>
 <source src=”leverage-a-synergy.ogv” type=”video/ogg” />
 <source src=”leverage-a-synergy.ogv” type=”video/mp4” />
 Your browser doesn’t support video.
 Please download the video in <a href=”leverage-a-
 ¬ synergy.ogv”>Ogg or <a href=”leverage-a-
 ¬ synergy.mp4”>MP4 format.
</video>
<script>
var video = document.getElementsByTagName(‘video’)[0];
video.removeAttribute(‘controls’);
</script>

FIGURE 4.3 Our simple but

custom video player controls.

CHAPTER 4 : VIDEO AND AUDIO : ROLLING CUSTOM CONTROLS 105

Play, pause, and toggling playback
Next, we want to be able to play and pause the video from a

custom control. We’ve included a button element that we’re

going to bind a click handler and do the play/pause functionality

from. Throughout my code examples, when I refer to the play

variable it will refer to the button element:

<button class=”play” title=”play”>►</button/>

We’re using BA;, which is a geometric XML entity that looks
like a play button. Once the button is clicked, we’ll start the

video and switch the value to two pipes using ▐, which

looks (a little) like a pause, as shown in Figure 4.4.

For simplicity, I’ve included the button element as markup, but

as we’re progressively enhancing our video controls, all of

these additional elements (for play, pause, scrubbing, and so on)

should be generated by the JavaScript.

In the play/pause toggle we have a number of things to do:

1. If the video is currently paused, start playing, or if the video

has fi nished then we need to reset the current time to 0,

that is, move the playhead back to the start of the video.

2. Change the toggle button’s value to show that the next

time the user clicks, it will toggle from pause to play or play

to pause.

3. Finally, we play (or pause) the video:

if (video.paused || video.ended) {
 if (video.ended) {
 video.currentTime = 0;
 }
 this.innerHTML = ‘ ’; // ▐▐ doesn’t need
 ¬ escaping here
 this.title = ‘pause’;
 video.play();
} else {
 this.innerHTML = ‘ ’; // ►
 this.title = ‘play’;
 video.pause();
}

The problem with this logic is that we’re relying entirely on our

own script to determine the state of the play/pause button.

What if the user was able to pause or play the video via the

FIGURE 4.4 Using XML

entities to represent play and

pause buttons.

INTRODUCING HTML5106

native video element controls somehow (some browsers allow

the user to right click and select to play and pause the video)?

Also, when the video comes to the end, the play/pause button

would still show a pause icon. Ultimately we need our controls

to always relate to the state of the video.

Eventful media elements
The media elements fi re a broad range of events: when play-

back starts, when a video has fi nished loading, if the volume has

changed, and so on. So, getting back to our custom play/pause

button, we strip the part of the script that deals with changing its

visible label:

if (video.ended) {
 video.currentTime = 0;
}
if (video.paused) {
 video.play();
} else {
 video.pause();
}
// which could be written as: video[video.paused ? ‘play’ :
¬ ‘pause’]();

In the simplifi ed code if the video has ended, we reset it, then

toggle the playback based on its current state. The label on

the control itself is updated by separate (anonymous) func-

tions we’ve hooked straight into the event handlers on our

video element:

video.addEventListener(‘play’, function () {
 play.title = ‘pause’;
 play.innerHTML = ‘ ’;
}, false);
video.addEventListener(‘pause’, function () {
 play.title = ‘play’;
 play.innerHTML = ‘ ’;
}, false);
video.addEventListener(‘ended’, function () {
 this.pause();
}, false);

Now whenever the video is played, paused, or has reached the

end, the function associated with the relevant event is fi red,

making sure that our control shows the right label.

NOTE In these examples

we’re using the

addEventListener DOM

level 2 API, rather than the

attachEvent, which is specifi c

to Internet Explorer up to ver-

sion 8. The upcoming IE9 will

support video, but it thankfully

also supports the standardised

addEventListener, so our

code will work there, too.

CHAPTER 4 : VIDEO AND AUDIO : ROLLING CUSTOM CONTROLS 107

Now that we’re handling playing and pausing, we want to show

the user how much of the video has downloaded and therefore

how much is playable. This would be the amount of buff ered

video available. We also want to catch the event that says how

much video has been played, so we can move our visual slider

to the appropriate location to show how far through the video

we are, as shown in Figure 4.5. Finally, and most importantly,

we need to capture the event that says the video is ready to

be played, that is, there’s enough video data to start watching.

Monitoring download progress
The media element has a “progress” event, which fi res once the

media has been fetched but potentially before the media has

been processed. When this event fi res, we can read the video.
seekable object, which has a length, start(), and end() method.

We can update our seek bar (shown in Figure 4.5 in the second

frame with the whiter colour) using the following code (where

the buff er variable is the element that shows how much of the

video we can seek and has been downloaded):

video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 var endVal = this.seekable && this.seekable.length ?
 ¬ this.seekable.end() : 0;
 buffer.style.width = (100 / (this.duration || 1) *
 ¬ endVal) + ‘%’;
}

The code binds to the progress event, and when it fi res, it gets

the percentage of video that can be played back compared to

the length of the video. Note that the keyword this refers to the

FIGURE 4.5 Our custom video

progress bar, including seekable

content and the current playhead

position.

INTRODUCING HTML5108

video element, as that’s the context in which the updateSeekable

function will be executed, and the duration attribute is the length

of the media in seconds

However, there’s sometimes a subtle issue in Firefox in its video

element that causes the video.seekable.end() value not to

be the same as the duration. Or rather, once the media is fully

downloaded and processed, the fi nal duration doesn’t match

the video.seekable.end() value. To work around this issue, we

can also listen for the durationchange event using the same

updateSeekable function. This way, if the duration does change

after the last process event, the durationchange event fi res and

our buff er element will have the correct width:

video.addEventListener(‘durationchange’, updateSeekable,
¬ false);
video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 buffer.style.width = (100 / (this.duration || 1) *
 (this.seekable && this.seekable.length ? this.seekable.
 ¬ end() : 0)) + ‘%’;
}

When the media fi le is ready to play
When your browser fi rst encounters the video (or audio) element

on a page, the media fi le isn’t ready to be played just yet. The

browser needs to download and then decode the video (or audio)

so it can be played. Once that’s complete, the media element will

fi re the canplay event. Typically this is the time you would initialise

your controls and remove any “loading” indicator. So our code to

initialise the controls would typically look like this:

video.addEventListener(‘canplay’, initialiseControls,
¬ false);

Nothing terribly exciting there. The control initialisation enables

the play/pause toggle button and resets the playhead in the

seek bar.

However, sometimes this event won’t fi re right away (or at least

when you’re expecting it to fi re). Sometimes the video suspends

download because the browser is trying to save downloading

too much for you. That can be a headache if you’re expecting

the canplay event, which won’t fi re unless you give the media

element a bit of a kicking. So instead, we’ve started listening

NOTE The events to

do with loading fi re in the

following order: loadstart,

durationchange,

loadeddata, progress,

canplay, canplaythrough.

CHAPTER 4 : VIDEO AND AUDIO : ROLLING CUSTOM CONTROLS 109

for the loadeddata event. This says that there’s some data that’s

been loaded, though not particularly all the data. This means

that the metadata is available (height, width, duration, and so

on) and some media content—but not all of it. By allowing the

user to start to play the video at the point in which loadeddata

has fi red, it forces browsers like Firefox to go from a suspended

state to downloading the rest of the media content, allowing it to

play the whole video. So, in fact, the correct point in the event

cycle to enable the user interface is the loadeddata:

video.addEventListener(‘loadeddata’, initialiseControls,
¬ false);

Preloading metadata

A recent addition to the media element is the preload attribute

(so new that it’s not supported in browsers right now). It allows devel-

opers to tell browsers only to download the header information about

the media element, which would include the metadata. If support for

this attribute does make its way into browsers, it stands to reason we

should listen for the loadedmetadata event over the loadeddata

event if you wanted to initalise the duration and slider controls of

the media.

Fast forward, slow motion, and reverse
The spec provides an attribute, playbackRate. By default the

assumed playbackRate is 1, meaning normal playback at the

intrinsic speed of the media fi le. Increasing this attribute speeds

up the playback; decreasing it slows it down. Negative values

indicate that the video will play in reverse.

Not all browsers support playbackRate yet (only Webkit-based

browsers support it right now), so if you need to support fast for-

ward and rewind, you can hack around this by programmatically

changing currentTime:

function speedup(video, direction) {
 if (direction == undefined) direction = 1; // or -1 for
 ¬ reverse

 if (video.playbackRate != undefined) {
 video.playbackRate = direction == 1 ? 2 : -2;
 } else { // do it manually

INTRODUCING HTML5110

 video.setAttribute(‘data-playbackRate’, setInterval
 ¬ ((function () {
 video.currentTime += direction;
 return arguments.callee; // allows us to run once
 ¬ and setInterval
 })(), 500));
 }
}

function playnormal(video) {
 if (video.playbackRate != undefined) {
 video.playbackRate = 1;
 } else { // do it manually
 clearInterval(video.getAttribute(‘data-playbackRate’));
 }
}

As you can see from the previous example, if playbackRate

is supported, you can set positive and negative numbers to

control the direction of playback. In addition to being able to

rewind and fast forward using the playbackRate, you can also

use a fraction to play the media back in slow motion using

video.playbackRate = 0.5, which plays at half the normal rate.

Multimedia accessibility
We’ve talked about the keyboard accessibility of the video

element, but what about transcripts, captions for multimedia?

After all, there is no alt attribute for video or audio as there is

for . The fallback content between the tags is only meant

for browsers that can’t cope with native video; not for people

whose browsers can display the media but can’t see or hear it

due to disability or situation (for example, in a noisy environment

or needing to conserve bandwidth).

The theory of HTML5 multimedia accessibility is excellent. The

original author should make a subtitle fi le and put it in the con-

tainer Ogg or MP4 fi le along with the multimedia fi les, and the

browser will off er a user interface whereby the user can get

those captions or subtitles. Even if the video is “embedded”

on 1,000 diff erent sites (simply by using an external URL as the

source of the video/audio element), those sites get the subtitling

CHAPTER 4 : VIDEO AND AUDIO : MULTIMEDIA ACCESSIBILITY 111

information for free, so we get “write once, read everywhere”

accessibility.

That’s the theory. In practice, no one knows how to do this; the

spec is silent, browsers do nothing. That’s starting to change; at

the time of this writing (May 2010), the WHATWG have added a

new <track> element to the spec, which allows addition of vari-

ous kinds of information such as subtitles, captions, description,

chapter titles, and metadata.

The WHATWG is specifying a new timed text format called

WebSRT (www.whatwg.org/specs/web-apps/current-work/

multipage/video.html#websrt) for this information, which is one

reason that this shadowy 29th element isn’t in the W3C version

of the spec. The format of the <track> element is

<track kind=captions src=captions.srt>

But what can you do right now? There is no one true approach

to this problem, but here we’ll present one possible (albeit

hacky) interim solution.

Bruce made a proof of concept that displays individual lines of a

transcript, which have been timestamped using the new HTML5

data-* attributes:

<article class=transcript lang=en>
<p>Hello, good evening and
¬ welcome.
Let’s welcome Mr Last
¬ Week, singing his poptabulous hit &ldquot;If I could turn
¬ back time!&rdquot;
</p>
...
</article>

JavaScript is used to hide the transcript <article>, hook into the

timeupdate event of the video API, and overlay spans as plain

text (therefore stylable with CSS) over (or next to) the video

element, depending on the current playback time of the video

and the timestamps on the individual spans. See it in action at

http://dev.opera.com/articles/view/accessible-html5-video-with-

javascripted-captions/. See Figure 4.6.

www.whatwg.org/specs/web-apps/current-work/multipage/video.html#websrt
www.whatwg.org/specs/web-apps/current-work/multipage/video.html#websrt
http://dev.opera.com/articles/view/accessible-html5-video-withjavascripted-captions/
http://dev.opera.com/articles/view/accessible-html5-video-withjavascripted-captions/

INTRODUCING HTML5112

The data-* attributes (custom data attributes)

HTML5 allows custom attributes on any element. These can be used to pass information to local scripts.

Previously, to store custom data in your markup, authors would do something annoying like use classes:

<input class=”spaceship shields-5 lives-3 energy-75”>. Then your script would need to

waste time grabbing these class names, such as shields-5, splitting them at a delimiter (a hyphen in this

example) to extract the value. In his book, PPK on JavaScript (New Riders, ISBN 0321423305), Peter Paul

Koch explains how to do this and why he elected to use custom attributes in some HTML4 pages, making

the JavaScript leaner and easier to write but also making the page technically invalid. As it’s much easier

to use data-shields=5 for passing name/value pairs to scripts, HTML5 legitimises and standardises this

useful, real-world practice.

We’re using data-begin and data-end; they could just as legitimately be data-start and data-finish,

or (in a diff erent genre of video) data-ooh-matron and data-slapandtickle. Like choosing class or id

names, you should pick a name that matches the semantics.

Custom data attributes are only meant for passing information to the site’s own scripts, for which there are

no more appropriate attributes or elements.

The spec says “These attributes are not intended for use by software that is independent of the site that

uses the attributes” and are therefore not intended to pass information to crawlers or third-party parsers.

That’s a job for microformats, microdata, or RDFa.

When the data-* attributes are fully supported in a browser, JavaScript can access the properties using

element.dataset.foo (where the data-foo attribute contains the value). Support can be emulated

using JavaScript by extending the HTMLElement object, which typically isn’t possible in IE9 alpha release

and below, which you can see here: http://gist.github.com/362081. Otherwise scripts can access the val-

ues via the get/setAttribute methods. The advantage of the dataset property over setAttribute is

that it can be enumerated, but also, when fully implemented in browsers, setting a dataset attribute auto-

matically sets the content attribute on the element giving you a shorthand syntax for setting custom data.

For more information, see the spec http://dev.w3.org/html5/spec/Overview.html#custom-data-attribute.

FIGURE 4.6 The script

superimposes the caption

over the video as delectable

selectable text.

http://gist.github.com/362081
http://dev.w3.org/html5/spec/Overview.html#custom-data-attribute

CHAPTER 4 : VIDEO AND AUDIO : SUMMARY 113

The BBC has a similar experiment at http://open.bbc.co.uk/

rad/demos/html5/rdtv/episode2/ that takes in subtitles from an

external JavaScript fi le http://open.bbc.co.uk/rad/demos/html5/

rdtv/episode2/rdtv-episode2.js, which is closer to the vision of

HTML5, but it doesn’t have the side eff ect of allowing search

engines to index the contents of the transcript.

Silvia Pfeiff er, a contractor for Mozilla, has some clever demos

using HTML5 videos and some extra extensions (that are not

part of the spec) at www.annodex.net/~silvia/itext/.

Summary
You’ve seen how HTML5 gives you the fi rst credible alternative

to third-party plugins. The incompatible codec support currently

makes it harder than using plugins to simply embed video in a

page and have it work cross-browser.

On the plus side, because video and audio are now regular ele-

ments natively supported by the browser (rather than a “black

box” plugin) and off er a powerful API, they’re extremely easy to

control via JavaScript. With nothing more than a bit of web stan-

dards knowledge, developers can easily build their own custom

controls, or do all sorts of crazy video manipulation with only a

few lines of code. As a safety net for browsers that can't cope, we

recommend that you also add links to download your video fi les

outside the <video> element.

There are already a number of ready-made scripts available that

allow you to easily leverage the HTML5 synergies in your own

pages, without having to do all the coding yourself. The Kaltura

player (http://www.html5video.org/) is an open source video

player that works in all browsers. jPlayer (http://www.happyworm.

com/jquery/jplayer/) is a very liberally-licensed jQuery audio

player that degrades to Flash in legacy browsers, can be styled

with CSS and can be extended to allow playlists.

Accessing video with JavaScript is more than writing new play-

ers. In the next chapter, you’ll learn how to manipulate native

media elements for some truly amazing eff ects. Or at least, our

heads bouncing around the screen—and who could conceive of

anything amazinger than that?

www.annodex.net/~silvia/itext/
http://www.html5video.org/
http://www.happyworm.com/jquery/jplayer/
http://www.happyworm.com/jquery/jplayer/
http://open.bbc.co.uk/rad/demos/html5/rdtv/episode2/
http://open.bbc.co.uk/rad/demos/html5/rdtv/episode2/
http://open.bbc.co.uk/rad/demos/html5/rdtv/episode2/rdtv-episode2.js
http://open.bbc.co.uk/rad/demos/html5/rdtv/episode2/rdtv-episode2.js

This page intentionally left blank

INDEX 217

INDEX
C
Camen, Kroc, 100

cancelEvent function, 179

canplaythrough and canplay events, 108

canPlayType method, 102–103

<canvas> element/canvases, 54

accessibility, 139

animating paintings, 134–137

basics, 118–119

capturing images, 126–129

data URLs, saving to, 132–133

drawing applications, 115–116

drawing state, 137

fi ll styles, gradients and patterns, 118–122

Harmony application, 115, 117

MS Paint replication, 115–116

paths, 122–124

pixels, pushing, 130–132

rectangles, 118

gradients and patterns, 118–120

rendering text, 138–139

resizing canvases, 122

transformation methods, 124–126

case sensitivity, pattern attribute, 78

<center> element, 60

character encoding, UTF-8, 2

charset=”utf-8” attribute, XHTML and XML versus

HTML5, 2

checkValidity attribute, 86

checkValidity method, 85–86

Chisholm, Wendy, 51

cite attribute, 28

<cite> element, 58

classes

attributes, 6, 8

names, Google index research, 6

clear attribute, 147

clearInterval method, 127

clearRect method, 125

clearWatch method, 190

codecs, 98–99

color input type, 74

Comet, 212, 215

<command> element, 62, 65

comments as nested articles, 29–30

A
<a> element, 54

accessibility. See also WAI-ARIA

canvas element, 139

dragging and dropping, 184–185

multimedia, 110–113

outlining algorithm, 36–37

Accessible Rich Internet Applications. See WAI-ARIA

addEventListener method, 106–110, 199, 208

<address> element, 58

animating paintings, 134–137

APIs, retained-mode versus immediate mode, 124

<applet> element, 60

ARIA (Accessible Rich Internet Applications).

See WAI-ARIA

aria-* attribute, 63

aria-grabbed attribute, 185

aria-required attribute, 76

aria-valuenow attribute, 81–82

<article> element, 20–21, 37–42, 52, 54, 58, 111

block-level links, 38

comments as nested articles, 29–30

Asian languages, 55

<aside> element, 17, 19–20, 33, 52, 54

attributes attribute, 63

Audacity software, 101

<audio> element, 54, 94, 96, 99–100

autocomplete attribute, 74, 78

autofocus attribute, 75

autoplay attribute, 95

B
 element, 59

Baranovskiy, Dmitry, 124

base64 encoded assets, 133

beginPath method, 122–123

<big> element, 60

object> element, 92–93

<blink> element, 60

block-level elements, 38, 54

<blockquote> element, 28, 34–35

<body> element, 3–4, 5, 27–28, 34

boldface, element, 59

bug reports, 12

<button> element, 54, 68

INDEX218

Contacts API, 70

<content> element, 9

content models, 54

contenteditable attribute, 61

contentWindow object, 199

context object, canvas attribute, 126

contextmenu attribute, 62

controls attribute, 54, 95–96

cookies, 142–143

Coordinated Universal Time (UTC), 26

coords object, 191

copyrights, <small> element, 18, 24, 60

Cotton, Paul, xii

createElement method, 121

createPattern method, 119–121, 126

createRadialGradient method, 120

Crockford, Douglas, 148

CSS (Cascading Style Sheets), 10

<body> element requirement, 11

display:inline, 54

headers and footers for body and articles, 27–28

IE, 5, 11–12

outlines, 35–36

WAI-ARIA, 50

CSS Basic User Interface module, 83

CSS Media Queries specifi cation, 102

D
data-* attribute, 62, 112

data storage

cookies, 142

Web SQL Databases, 142, 152–162

Web Storage API, 142–151

data URLs, 132–133

<datalist> element, 74–75

date input type, 70–71

dates, machine-readable, 26

datetime attribute, 26

datetime input type, 71

Davis, Daniel, 55

<dd> element, 57

defi nition lists, 57

 element, 54

delete method, 68

Designing with Progressive Enhancement: Building
the Web that Works for Everyone, 51

<details> element, 34, 52–54

<device> element, 94

disclaimers, <small> element, 18, 24, 60

display:block, 12

display:inline, CSS, 54

<div> element, HTML 4, 7–8

<dl> element, 57

DOCTYPE, 2

<!doctype html> tags, 2

dragend event, 184

draggable attribute, 62

dragging and dropping

accessibility, 184–185

basics, 176–179

custom drag icons, 183

dragged data, interoperability, 180–182

enabling elements for dragging, 182–183

DragonFly plug-in, 150

dragover event, 178

dragstart event, 179, 183–185

draw function, 136

drawImage method, 126–130

dropEffect method, 185

<dt> element, 57

durationchange event, 108

E
Eich, Brendan, xii

 element, 54–55, 58–60

email input type, 69–70, 82

<embed> element, 54, 64, 92–93

embedded content models, 54

emphasis eff ect, 54–55, 58–59

enableHighAccuracy method, 194

end method, 107

error handling, 192–193

event object, 198–199

executeSql method, 154, 158–161

F
“fat footers,” 19–20

Faulkner, Steve, 50

ff mpeg library, 101

<fieldset> element, 34, 68, 86

<figcaption> element, 53

<figure> element, 34, 53

fi ll styles, gradients and patterns, 118–122

fillRect method, 119

fillStyle method, 119–121

fillText method, 138–139

Firebug plug-in, 149

Firefogg software, 101

Firefox Contacts addon, 70

fl ow content models, 54

 element, 60

<footer> element, 16, 18–20, 28

forEach method, 156

INDEX 219

form attribute, 68

<form> element/forms

<button> element, 68

comments, 79

<datalist> element, 74–75

date pickers, 83

delete, 68

<fieldset> element, 68

form fi elds, 83

get, 68

<input> element, 68

onchange, 81

type=...autocomplete, 74, 78

type=...autofocus, 75

type=color, 74

type=date, 70–71

type=datetime, 71

type=email, 68–69, 82

type=...list, 74–75

type=...max, 74, 78

type=...min, 74, 78

type=month, 71

type=...multiple, 69, 74, 76

type=number, 72, 82

type=...pattern, 74, 76–78

type=...placeholder, 75–76

type=range, 72–73, 80

type=...required, 69, 76

type=search, 73

type=...step, 74, 78–79

type=tel, 73, 82

type=text, 68–69

type=time, 71

type=url, 70, 82

type=week, 72

update, 68

validation

built-in, 68

JavaScript, 68

<keygen> element, 68

<label> element, 68

<meter> element, 68, 80

new types, 68

<object> element, 68

<output> element, 68

post, 68

<progress> element, 68, 80

<select> element, 68

sliders with values, 80–83

<textarea> element, 68

validation elements, 85–86

formats, consistent use, 3

formnovalidate attribute, 87

frames, removed from HTML5, 60

furigana/ruby, 55

G
geolocation API, xii, 187–195

get method, 68

getAttribute method, 112

getCurrentPosition method, 189–194

getData method, 178–180

getImageData method, 130–132

getItem method, 146–148, 151

getTime method, 156

getTweets method, 156

“The Guardian” case study, 42–47

H
h1..h6 elements, 54

H.264 specifi cation, 98–101

Harmony application, 115, 117

<head> element, 2–4, 12

<header> element, 13–15

heading content models, 54

height attribute, 96–97

<hgroup> element, 13, 33–34

Hickson, Ian, iii, xi–xiii, 6, 175

hidden attribute, 62

highlighter pen eff ect, 54–55

hiragana alphabet, 55–56

Hiroshi Ichikawa, 212

<hr> element, 59–60

HSLA color picker, 88–89

<html> tags

importance, 4–5

optional tags, 3–4

primary language declaration, 4–5

HTML5

<content> element, 9

history, x

<http://html5.validator.nu> tag, 5

philosophies, xiii

W3C specifi cation, x

WHATWG (Web Hypertext Application Technology

Working Group) specifi cation, x–xiv

XML and XHTML, xi-xii, xvi, 2–3,

“The HTML5 <ruby> element in words of one

syllable or less,” 55

html5 shiv, 54

html5canvas library, 118

HTMLElement object, 112

<http://html5.validator.nu> tags, 5

Hyatt, David, xii

http://html5.validator.nu
http://html5.validator.nu

INDEX220

I
<i> element, 59

Ichikawa, Hiroshi, 212

IDs, names in Google index research, 6

<iframe> element, 54, 60

 element, 54, 94

importScripts method, 207, 210

“Incite a riot,” 58

inline elements, 54

<input> element

forms, 68

onchange attribute, 81

type attribute

autocomplete, 74, 78

autofocus, 75

color, 74

date, 70–71

datetime, 71

email, 68–69, 82

list, 74–75

max, 74, 78

min, 74, 78

month, 71

multiple, 69, 74, 76

number, 72, 82

pattern, 74, 76–78

placeholder, 75–76

range, 72–73, 80

required, 69, 76

search, 73

step, 74, 78–79

tel, 73, 82

text, 68–69

time, 71

url, 70, 82

week, 72

<ins> element, 54

INSERT statements, 156–157

insertId attribute, 158

interactive content models, 54

Internet Archive, 101

“Introduction to WAI-ARIA,” 51, 184

italics, <i> element, 59

item attribute, 63

itemprop attribute, 63

J
Japanese language, 55–56

JavaScript

<body> element requirement, 11

degrees to radians conversion, 120

element validation, 85–86

focus command, tabindex attribute, 63

form validation, 68

Modernizr library, 82

IE application of CSS to HTML5, 11–12

IE Print Protector, 12

library, 75

media API, 102–104

Modernizr library, 82

outlines, 31

pattern attribute, 77

polyfi lling, 75

PPK on JavaScript, 112
jQuery library, 134

jQuery Visualize, 139

JSON library, 148

K
Keith, Jeremy, 58

key method, 146–147

<keygen> element, 54, 64–65, 68

Koch, Peter-Paul, 112, 141–142

L
<label> element, 54, 68

Langridge, Stuart, 54

legacy browsers

backwards compatibiity, 82–83

<body> element requirement, 11

input type problems, 68–79

multimedia elements, 100–101

<script> element, JavaScript default, 11

styling, 12

videos, 94–98

legal restrictions, <small> element, 18, 24, 60

Lemon, Gez, 51, 184

Levithan, Steven, 76

list input type, 74–75

lists

defi nition lists, 57

ordered lists, 56–57

unordered lists, 16

load method, 102–103

loadeddata event, 108–109, 128

loadstart event, 108

localStorage method, 143–144, 146, 149–150, 200

loop attribute, 97

M
machine-readable data

dates and times, 16

microdata attribute, 65

INDEX 221

MAMA crawler, Opera, 6

<mark> element, 54–55

<marquee> element, 60

max attribute, 74, 78

maximumAge method, 194

media. See also <audio> element; <video> element

accessibility, 110–113

attributes, 102–104

codecs, 98–100

H.264 specifi cation, 98–101

handheld devices, 101–102

legacy browsers, 100–101

software, 101

<source> elements, multiple, 99–100

custom controls, 102–110

events, 102–104, 106–108

HTML5 shortcomings, 94

Internet Archive, 101

methods, 102–104

royalty-free, 101

media attribute, 102

<menu> element, 54, 62, 65

message property, 193

Messaging API, 198–200

<meta charset=utf-8> tags, 2

<meta> tags, XHTML and XML versus HTML5, 2–3

metadata content models, 54

<meter> element, 65, 68, 80

microdata attribute, 65

Microsoft Word 2007 outline view, 30

Mill, Bill, 134

min attribute, 74, 78

Miro Video Converter, 101

Modernizr library, 82

month input type, 71

moveTo method, 123

MS Paint replication, 115–116

multimedia. See media

multiple attribute, 69, 74, 76

N
Nas, Will, 73

<nav> element, 15–18, 33, 54

Newhouse, Mark, 16

Nitot, Tristan, 130–131

novalidate attribute, 87

number input type, 72, 82

NVDA screen reader, 51

O
<object> element, 54, 68

offl ine

applicationCache, 164, 171–172, 174

browser-server process, 168–171

CACHE MANIFEST, 164–167

FALLBACK, 165–167, 172–173

killing caches, 174

NETWORK, 167

serving manifests, 168

Ogg Theora and Vorbis codecs, 98, 101

OggConvert software, 101

 element, 16, 56–57

onchange attribute, 81

ondragover event, 177

ondrop event, 177–178

onforminput event, 80

oninputchange event, 88–89

onload event, 121

onmessage event handler, 199, 202–206, 209–210,

213–215

open attribute, 53

openDatabase method, 154–155

ordered lists, 56–57

outlines/outlining algorithm

accessibility, 36–37

<article> element, 37–42

case study, 42–47

<hgroup> element, 33–34

JavaScript implementation, 31

Microsoft Word 2007 outline view, 30

<section> element, 31–33, 37–41, 41–42

sectioning content, 31

sectioning roots, 34–35

styling with CSS, 35–36

tool at gsnedders.html5.org/outliner/, 31–32

<output> element, 68, 80–81

P–Q
The Paciello Group, ARIA information, 50–51

paragraph-level thematic breaks, <hr> element,

59–60

Parker, Todd, et al, 51

path API/paths, 122–124

pattern attribute, 74, 76–78

pause method, 102–103

Pfeiff er, Silvia, 113

phrasing content models, 54

Pieters, Simon, 12

placeholder attribute, 75–76

play method, 102–103

playbackRate attribute, 109–110

INDEX222

polyfi lling, 75

post method, 68

poster attribute, 96

postMessage method, 198–199, 202–210, 213

PPK on JavaScript, 112
preload attribute, 97, 109

processing.js library, 134

<progress> element, 65, 68, 80

progress event, 108

pubdate attribute, 27

public-key cryptography, 65

putImageData method, 132

R
radians, 120

range input type, 72–73, 80

Raphael library, 124

rectangles, gradients and patterns, 118–120

regular expressions, 76–77

removeItem method, 147

required attribute, 69, 76

Resig, John, 12, 134

restore method, 137

reversed attribute, 57

RGBA color picker, 88

role attribute, 63

role=main tags, WAI-ARIA, 9

rotate method, 124–126

Rouget, Paul, 130–131

rowAffected attribute, 158

rows attribute, 158

<rp> element, 55–56

<rt> element, 55–56

Ruby, Sam, xiv

<ruby> element, 55–56

S
save method, 137

saveTweets method, 156

scalar measurements, 65

scale method, 124

scoped attribute, 65

screen readers

HTML5 and ARIA, 51

problems, 64

<script> element, 11

search input type, 73

Searchhi script, 54

<section> element, 18, 33, 37–42, 54, 85–86

sectioning content, 18, 31

models, 54

sectioning roots, 34–35

<select> element, 54, 68

SELECT statements, 158

sessionStorage method, 143–151

setAttribute method, 112

setCustomValidity method, 84–85

setData method, 179–181

setDragImage method, 183

setInterval method, 125, 127, 203

setItem method, 146–148, 151

setOnline method, 173

setTimeout method, 203

sidebars, 17–18

Silverlight, 118

<small> element, 18, 24

<source> element, 99–100

spellcheck attribute, 63

SQLite, 152

src attribute, 98

Stachowiak, Maciej, xii

start attribute, 56

start method, 107

step attribute, 74, 78–79

strokeRect method, 119

strokeStyle method, 119

 element, 55, 59

<style scoped> element, 65

subject attribute, 63

<summary> element, 52

SVG (Scalable Vector Graphics) API, x, 54, 124,

swapCache method, 171–172

syntax, consistent use, 3

T
tabindex (+”-1”) attribute, 63–64, 185

“Taming Lists,” 16

<td> element, 34

tel input type, 73, 82

testOnline method, 173

<textarea> element, 54, 68, 85–86

time

machine-readable, 26

UTC (Coordinated Universal Time), 26

<time> element, 16, 26–27

time input type, 71

timeout method, 194

timestamp object, 191

timeupdate event, 111, 128

TinyOgg software, 101

toDataURL method, 132–133

transaction method, 161–162

transform method, 124

INDEX 223

translate method, 124–126, 137–138

Twitter API, 155–161

2D canvas API, 115, 117, 124

type attribute

<input> element, 54

autocomplete, 74, 78

autofocus, 75

color, 74

date, 70–71

datetime, 71

email, 68–69, 82

list, 74–75

max, 74, 78

min, 74, 78

month, 71

multiple, 69, 74, 76

number, 72, 82

pattern, 74, 76–78

placeholder, 75–76

range, 72–73, 80

required, 69, 76

search, 73

step, 74, 78–79

tel, 73, 82

text, 68–69

time, 71

url, 70, 82

week, 72

<menu> element, 54

U
 element, 16

Universal Design for Web Applications, 51

unordered lists, 16

update method, 68

updateSeekable function, 108

url input type, 70, 82

usemap attribute, 54

UTC (Coordinated Universal Time), 26

UTF-8 character encoding, 2

V
valid attribute, 86

validation

ARIA, 49

avoiding, 86–87

built-in for forms, 68

custom messages, 84–85

elements with JavaScript, 85–86

<http://html5.validator.nu> tag, 5

pros and cons, 5

validity attribute, 86

van Kesteren, Anne, xiv, 92, 102,

<video> element, 54

attributes, 95–98

legacy browsers, 100–101

reasons needed, 92–93

sources, 99–100

“Video for Everybody!”, 100

VLC software, 101

VoiceOver screen reader, 51

W
W3C

Geolocation API, 187

HTML5 specifi cation, xiv

WAI-ARIA (Web Accessibility Initiative’s Accessible

Rich Internet Applications) suite, 48–49

attributes

aria-required, 76

aria-valuenow, 81–82

document landmarks and structure, 49–50

HTML5, combining with, 50

information not built into HTML5, 50

resources, 50–51

role=main tags, 9

screen readers, 51

specifi cation, 51

transitional accessibility, 81–82

watchPosition method, 189–194

Web Applications 1.0, xi-xii

“A Web Developer’s Responsibility,” 12

Web Sockets API, x, 212–215

Web SQL Databases, 142, 152–162, 208

Web Storage API, x, 142–151

Web Workers API, 198, 200–211

WebKit browsers, 82

week input type, 72

WHATWG (Web Hypertext Application Technology

Working Group), 111

width attribute, 96

willValid attribute, 86

Wilson, Chris, xiv

window object, 198–199

ws:// server protocol:, 213

X–Z
XHTML versus XML and HTML5, 2–3

XML versus HTML5 and XHTML, 2–3

XMLHttpRequest object, 198, 203, 210, 212

http://html5.validator.nu

	Contents
	Introduction
	CHAPTER 4 Video and Audio
	Native multimedia: why, what, and how?
	Codecs—the horror, the horror
	Rolling custom controls
	Multimedia accessibility
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Z

