

The J2EE

™

 Tutorial

Second Edition

Stephanie Bodoff
Eric Armstrong

Jennifer Ball
Debbie Bode Carson

Ian Evans
Dale Green
Kim Haase

Eric Jendrock

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

J2EETutorial.book Page iii Thursday, June 3, 2004 10:26 AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the infor-
mation or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

The J2EE tutorial / Stephanie Bodoff ... [et al.].-- 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-24575-X (pbk. : alk. paper)

1. Java (Computer program language) 2. Business--Data processing. I. Bodoff, Stephanie.

QA76.73.J38J32 2004
005.2'762--dc22 2004005648

Copyright © 2004 by Sun Microsystems

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published simulta-
neously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-24575-X
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRW—0807060504
First printing, June 2004

J2EETutorial.book Page iv Thursday, June 3, 2004 10:26 AM

v

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved. U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its
supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise Java-
Beans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run
Anywhere,” and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc., in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical,
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR (Federal Acquisition Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise Java-
Beans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run
Anywhere,” et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc., aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent
(articles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux,
pour des armes nucléaires, des missiles, des armes biologiques et chimiques, ou du nucléaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des
pays sous embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de
ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont
régi par la législation américaine en matière de contrôle des exportations (“U .S. Commerce Depart-
ment’s Table of Denial Orders” et la liste de ressortissants spécifiquement désignés (“U.S. Treasury
Department of Specially Designated Nationals and Blocked Persons”), sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DE-
CLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

J2EETutorial.book Page v Thursday, June 3, 2004 10:26 AM

J2EETutorial.book Page vi Thursday, June 3, 2004 10:26 AM

vii

Foreword . xxxv

About This Tutorial. xxxvii

Chapter 1 Overview . 1

Distributed Multitiered Applications 2

J2EE Components 3
J2EE Clients 4
Web Components 6
Business Components 6
Enterprise Information System Tier 8

J2EE Containers 8

Container Services 8
Container Types 9

Web Services Support 10

XML 11
SOAP Transport Protocol 11
WSDL Standard Format 12
UDDI and ebXML Standard Formats 12

Packaging Applications 12
Development Roles 14

J2EE Product Provider 14
Tool Provider 14
Application Component Provider 15
Application Assembler 15
Application Deployer and Administrator 16

J2EE 1.4 Platform APIs 16

Enterprise JavaBeans Technology 17
Java Servlet Technology 18
JavaServer Pages Technology 18

Contents

J2EETutorial.book Page vii Thursday, June 3, 2004 10:26 AM

viii

C

ONTENTS

Java Message Service API 18
Java Transaction API 18
JavaMail API 18
JavaBeans Activation Framework 19
Java API for XML Processing 19
Java API for XML-Based RPC 19
SOAP with Attachments API for Java 20
Java API for XML Registries 20
J2EE Connector Architecture 20
JDBC API 21
Java Naming and Directory Interface 21
Java Authentication and Authorization Service 22
Simplified Systems Integration 22

Sun Java System Application Server Platform Edition 8 23

Technologies 24
Tools 25
Starting and Stopping the Application Server 25
Starting the Admin Console 27
Starting the deploytool Utility 27
Starting and Stopping the PointBase Database Server 28
Debugging J2EE Applications 28

Chapter 2 Understanding XML . 31

Introduction to XML 31

What Is XML? 31
Why Is XML Important? 36
How Can You Use XML? 38

Generating XML Data 41

Writing a Simple XML File 41
Defining the Root Element 42
Writing Processing Instructions 46
Introducing an Error 48
Substituting and Inserting Text 49
Creating a Document Type Definition 52
Documents and Data 57
Defining Attributes and Entities in the DTD 57
Referencing Binary Entities 64
Defining Parameter Entities and Conditional Sections 66
Resolving a Naming Conflict 70
Using Namespaces 71

J2EETutorial.book Page viii Thursday, June 3, 2004 10:26 AM

C

ONTENTS

ix

Designing an XML Data Structure 74

Saving Yourself Some Work 74
Attributes and Elements 75
Normalizing Data 77
Normalizing DTDs 78

Summary 79

Chapter 3 Getting Started with Web Applications 81

Web Application Life Cycle 84
Web Modules 86

Packaging Web Modules 88
Deploying Web Modules 89
Listing Deployed Web Modules 92
Updating Web Modules 92
Undeploying Web Modules 95

Configuring Web Applications 95

Mapping URLs to Web Components 96
Declaring Welcome Files 97
Setting Initialization Parameters 98
Mapping Errors to Error Screens 99
Declaring Resource References 99

Duke’s Bookstore Examples 100
Accessing Databases from Web Applications 100

Populating the Example Database 101
Creating a Data Source in the Application Server 102
Specifying a Web Application’s Resource Reference 103
Mapping the Resource Reference to a Data Source 104

Further Information 104

Chapter 4 Java API for XML Processing. 105

The JAXP APIs 105
An Overview of the Packages 106
The Simple API for XML APIs 107

The SAX Packages 109

The Document Object Model APIs 110

The DOM Packages 111

The Extensible Stylesheet Language Transformations APIs 111

The XSLT Packages 112

Using the JAXP Libraries 113
Where Do You Go from Here? 113

J2EETutorial.book Page ix Thursday, June 3, 2004 10:26 AM

x

C

ONTENTS

Chapter 5 Simple API for XML . 115

When to Use SAX 116
Echoing an XML File with the SAX Parser 117

Creating the Skeleton 118
Importing Classes 118
Setting Up for I/O 119
Implementing the ContentHandler Interface 119
Setting up the Parser 120
Writing the Output 121
Spacing the Output 122
Handling Content Events 123
Compiling and Running the Program 128
Checking the Output 129
Identifying the Events 129
Compressing the Output 132
Inspecting the Output 134
Documents and Data 135

Adding Additional Event Handlers 135

Identifying the Document’s Location 136
Handling Processing Instructions 137
Summary 139

Handling Errors with the Nonvalidating Parser 139
Displaying Special Characters and CDATA 147

Handling Special Characters 147
Handling Text with XML-Style Syntax 148
Handling CDATA and Other Characters 149

Parsing with a DTD 149

DTD’s Effect on the Nonvalidating Parser 149
Tracking Ignorable Whitespace 151
Cleanup 152
Empty Elements, Revisited 153
Echoing Entity References 153
Echoing the External Entity 154
Summarizing Entities 154

Choosing Your Parser Implementation 155
Using the Validating Parser 155

Configuring the Factory 155
Validating with XML Schema 156
Experimenting with Validation Errors 159
Error Handling in the Validating Parser 161

J2EETutorial.book Page x Thursday, June 3, 2004 10:26 AM

C

ONTENTS

xi

Parsing a Parameterized DTD 162

DTD Warnings 163

Handling Lexical Events 164

How the LexicalHandler Works 164
Working with a LexicalHandler 165

Using the DTDHandler and EntityResolver 171

The DTDHandler API 171
The EntityResolver API 172

Further Information 173

Chapter 6 Document Object Model . 175

When to Use DOM 176

Documents Versus Data 176
Mixed-Content Model 177
A Simpler Model 178
Increasing the Complexity 179
Choosing Your Model 181

Reading XML Data into a DOM 182

Creating the Program 182
Additional Information 186
Looking Ahead 188

Displaying a DOM Hierarchy 189

Convert DomEcho to a GUI App 189
Create Adapters to Display the DOM in a JTree 195
Finishing Up 204

Examining the Structure of a DOM 205

Displaying a Simple Tree 205
Displaying a More Complex Tree 207
Finishing Up 213

Constructing a User-Friendly JTree from a DOM 213

Compressing the Tree View 213
Acting on Tree Selections 219
Handling Modifications 228
Finishing Up 228

Creating and Manipulating a DOM 228

Obtaining a DOM from the Factory 228
Normalizing the DOM 231
Other Operations 233
Finishing Up 237

J2EETutorial.book Page xi Thursday, June 3, 2004 10:26 AM

xii

C

ONTENTS

Validating with XML Schema 237

Overview of the Validation Process 237
Configuring the DocumentBuilder Factory 238
Validating with Multiple Namespaces 239

Further Information 243

Chapter 7 Extensible Stylesheet Language Transformations 245

Introducing XSL, XSLT and XPath 246

The JAXP Transformation Packages 246

How XPath Works 247

XPath Expressions 247
The XSLT/XPath Data Model 248
Templates and Contexts 249
Basic XPath Addressing 249
Basic XPath Expressions 250
Combining Index Addresses 251
Wildcards 251
Extended-Path Addressing 252
XPath Data Types and Operators 252
String-Value of an Element 253
XPath Functions 253
Summary 257

Writing Out a DOM as an XML File 257

Reading the XML 258
Creating a Transformer 259
Writing the XML 262
Writing Out a Subtree of the DOM 263
Summary 264

Generating XML from an Arbitrary Data Structure 264

Creating a Simple File 265
Creating a Simple Parser 267
Modifying the Parser to Generate SAX Events 269
Using the Parser as a SAXSource 275
Doing the Conversion 278

Transforming XML Data with XSLT 278

Defining a Simple <article> Document Type 279
Creating a Test Document 281
Writing an XSLT Transform 282
Processing the Basic Structure Elements 283
Writing the Basic Program 287

J2EETutorial.book Page xii Thursday, June 3, 2004 10:26 AM

C

ONTENTS

xiii

Trimming the Whitespace 289
Processing the Remaining Structure Elements 291
Process Inline (Content) Elements 296
Printing the HTML 300
What Else Can XSLT Do? 301

Transforming from the Command Line with Xalan 303
Concatenating Transformations with a Filter Chain 303

Writing the Program 303
Understanding How the Filter Chain Works 307
Testing the Program 308

Further Information 311

Chapter 8 Building Web Services with JAX-RPC. 313

Setting the Port 314
Creating a Simple Web Service and Client with JAX-RPC 314

Coding the Service Endpoint Interface and Implementation Class 316
Building the Service 317
Packaging the Service 318
Specifying the Endpoint Address 320
Deploying the Service 320
Static Stub Client 321

Types Supported by JAX-RPC 324

J2SE SDK Classes 324
Primitives 325
Arrays 325
Value Types 325
JavaBeans Components 326

Web Service Clients 326

Dynamic Proxy Client 326
Dynamic Invocation Interface Client 329
Application Client 333
More JAX-RPC Clients 336

Web Services Interoperability and JAX-RPC 337
Further Information 337

Chapter 9 SOAP with Attachments API for Java 339

Overview of SAAJ 340

Messages 340
Connections 344

J2EETutorial.book Page xiii Thursday, June 3, 2004 10:26 AM

xiv

C

ONTENTS

Tutorial 345

Creating and Sending a Simple Message 346
Adding Content to the Header 355
Adding Content to the SOAPPart Object 356
Adding a Document to the SOAP Body 357
Manipulating Message Content Using SAAJ or DOM APIs 358
Adding Attachments 358
Adding Attributes 361
Using SOAP Faults 366

Code Examples 371

Request.java 371
MyUddiPing.java 373
HeaderExample.java 380
DOMExample.java and DOMSrcExample.java 381
Attachments.java 385
SOAPFaultTest.java 387

Further Information 388

Chapter 10 Java API for XML Registries 389

Overview of JAXR 389

What Is a Registry? 389
What Is JAXR? 390
JAXR Architecture 391

Implementing a JAXR Client 393

Establishing a Connection 394
Querying a Registry 399
Managing Registry Data 404
Using Taxonomies in JAXR Clients 411

Running the Client Examples 417

Before You Compile the Examples 418
Compiling the Examples 420
Running the Examples 420

Using JAXR Clients in J2EE Applications 425

Coding the Application Client: MyAppClient.java 426
Coding the PubQuery Session Bean 427
Compiling the Source Files 427
Importing Certificates 428
Starting the Application Server 429

J2EETutorial.book Page xiv Thursday, June 3, 2004 10:26 AM

C

ONTENTS

xv

Creating JAXR Resources 429
Creating and Packaging the Application 430
Deploying the Application 433
Running the Application Client 433

Further Information 434

Chapter 11 Java Servlet Technology. 435

What Is a Servlet? 435
The Example Servlets 436

Troubleshooting 440

Servlet Life Cycle 441

Handling Servlet Life-Cycle Events 441
Handling Errors 443

Sharing Information 444

Using Scope Objects 444
Controlling Concurrent Access to Shared Resources 445
Accessing Databases 446

Initializing a Servlet 447
Writing Service Methods 448

Getting Information from Requests 449
Constructing Responses 451

Filtering Requests and Responses 454

Programming Filters 454
Programming Customized Requests and Responses 456
Specifying Filter Mappings 458

Invoking Other Web Resources 460

Including Other Resources in the Response 461
Transferring Control to Another Web Component 462

Accessing the Web Context 463
Maintaining Client State 464

Accessing a Session 464
Associating Objects with a Session 465
Session Management 466
Session Tracking 466

Finalizing a Servlet 467

Tracking Service Requests 468
Notifying Methods to Shut Down 469
Creating Polite Long-Running Methods 470

Further Information 470

J2EETutorial.book Page xv Thursday, June 3, 2004 10:26 AM

xvi

C

ONTENTS

Chapter 12 JavaServer Pages Technology 471

What Is a JSP Page? 471

Example 472

The Example JSP Pages 476
The Life Cycle of a JSP Page 482

Translation and Compilation 483
Execution 484

Creating Static Content 486

Response and Page Encoding 487

Creating Dynamic Content 487

Using Objects within JSP Pages 488

Expression Language 489

Deactivating Expression Evaluation 490
Using Expressions 490
Variables 491
Implicit Objects 492
Literals 493
Operators 493
Reserved Words 494
Examples 494
Functions 496

JavaBeans Components 497

JavaBeans Component Design Conventions 497
Creating and Using a JavaBeans Component 499
Setting JavaBeans Component Properties 500
Retrieving JavaBeans Component Properties 502

Using Custom Tags 502

Declaring Tag Libraries 503
Including the Tag Library Implementation 505

Reusing Content in JSP Pages 506
Transferring Control to Another Web Component 507

jsp:param Element 508

Including an Applet 508
Setting Properties for Groups of JSP Pages 510
Further Information 513

Chapter 13 JavaServer Pages Documents. 515

The Example JSP Document 516
Creating a JSP Document 521

Declaring Tag Libraries 523

J2EETutorial.book Page xvi Thursday, June 3, 2004 10:26 AM

C

ONTENTS

xvii

Including Directives in a JSP Document 525
Creating Static and Dynamic Content 527
Using the jsp:root Element 530
Using the jsp:output Element 531

Identifying the JSP Document to the Container 535

Chapter 14 JavaServer Pages Standard Tag Library 537

The Example JSP Pages 538
Using JSTL 541

Tag Collaboration 542

Core Tag Library 543

Variable Support Tags 543
Flow Control Tags 545
URL Tags 548
Miscellaneous Tags 549

XML Tag Library 550

Core Tags 551
Flow Control Tags 552
Transformation Tags 553

Internationalization Tag Library 554

Setting the Locale 555
Messaging Tags 555
Formatting Tags 556

SQL Tag Library 556

query Tag Result Interface 559

Functions 561
Further Information 562

Chapter 15 Custom Tags in JSP Pages. 563

What Is a Custom Tag? 564
The Example JSP Pages 564
Types of Tags 568

Tags with Attributes 569
Tags with Bodies 572
Tags That Define Variables 572
Communication between Tags 573

Encapsulating Reusable Content Using Tag Files 573
Tag File Location 576
Tag File Directives 576

J2EETutorial.book Page xvii Thursday, June 3, 2004 10:26 AM

xviii CONTENTS

Evaluating Fragments Passed to Tag Files 584
Examples 585

Tag Library Descriptors 589
Top-Level Tag Library Descriptor Elements 590
Declaring Tag Files 591
Declaring Tag Handlers 594
Declaring Tag Attributes for Tag Handlers 595
Declaring Tag Variables for Tag Handlers 596

Programming Simple Tag Handlers 598
Including Tag Handlers in Web Applications 599
How Is a Simple Tag Handler Invoked? 599
Tag Handlers for Basic Tags 599
Tag Handlers for Tags with Attributes 600
Tag Handlers for Tags with Bodies 602
Tag Handlers for Tags That Define Variables 603
Cooperating Tags 606
Examples 608

Chapter 16 Scripting in JSP Pages . 617

The Example JSP Pages 618
Using Scripting 619
Disabling Scripting 620
Declarations 620

Initializing and Finalizing a JSP Page 620
Scriptlets 621
Expressions 622
Programming Tags That Accept Scripting Elements 623

TLD Elements 623
Tag Handlers 623
Tags with Bodies 626
Cooperating Tags 627
Tags That Define Variables 629

Chapter 17 JavaServer Faces Technology. 631

JavaServer Faces Technology Benefits 633
What Is a JavaServer Faces Application? 633
Framework Roles 634
A Simple JavaServer Faces Application 635

Steps in the Development Process 635
Creating the Pages 638

J2EETutorial.book Page xviii Thursday, June 3, 2004 10:26 AM

CONTENTS xix

Defining Page Navigation 640
Developing the Beans 642
Adding Managed Bean Declarations 643

User Interface Component Model 644
User Interface Component Classes 645
Component Rendering Model 647
Conversion Model 651
Event and Listener Model 652
Validation Model 654

Navigation Model 654
Backing Bean Management 656
How the Pieces Fit Together 659
The Life Cycle of a JavaServer Faces Page 662

Request Processing Life Cycle Scenarios 663
Standard Request Processing Life Cycle 664

Further Information 669

Chapter 18 Using JavaServer Faces Technology
in JSP Pages . 671

The Example JavaServer Faces Application 672
Setting Up a Page 676
Using the Core Tags 678
Using the HTML Component Tags 680

UI Component Tag Attributes 681
The UIForm Component 683
The UIColumn Component 684
The UICommand Component 684
The UIData Component 686
The UIGraphic Component 690
The UIInput and UIOutput Components 690
The UIPanel Component 694
The UISelectBoolean Component 697
The UISelectMany Component 697
The UIMessage and UIMessages Components 698
The UISelectOne Component 699
The UISelectItem, UISelectItems, and UISelectItemGroup
Components 700

Using Localized Messages 703
Referencing a ResourceBundle from a Page 704
Referencing a Localized Message 705

J2EETutorial.book Page xix Thursday, June 3, 2004 10:26 AM

xx CONTENTS

Using the Standard Converters 705
Using DateTimeConverter 707
Using NumberConverter 709

Registering Listeners on Components 710
Registering a ValueChangeListener on a Component 711
Registering an ActionListener on a Component 711

Using the Standard Validators 712
Requiring a Value 713
Using the LongRangeValidator 714

Binding Component Values and Instances to External Data Sources 714
Binding a Component Value to a Property 715
Binding a Component Value to an Implicit Object 717
Binding a Component Instance to a Bean Property 718

Referencing a Backing Bean Method 719
Referencing a Method That Performs Navigation 720
Referencing a Method That Handles an ActionEvent 721
Referencing a Method That Performs Validation 722
Referencing a Method That Handles a ValueChangeEvent 722

Using Custom Objects 723
Using a Custom Converter 724
Using a Custom Validator 725
Using a Custom Component 726

Chapter 19 Developing with JavaServer Faces
Technology . 729

Writing Component Properties 730
Writing Properties Bound to Component Values 730
Writing Properties Bound to Component Instances 739

Performing Localization 741
Creating a Resource Bundle 741
Localizing Dynamic Data 741
Localizing Messages 742

Creating a Custom Converter 744
Implementing an Event Listener 747

Implementing Value-Change Listeners 748
Implementing Action Listeners 749

Creating a Custom Validator 750
Implementing the Validator Interface 751
Creating a Custom Tag 753

Writing Backing Bean Methods 755
Writing a Method to Handle Navigation 755

J2EETutorial.book Page xx Thursday, June 3, 2004 10:26 AM

CONTENTS xxi

Writing a Method to Handle an ActionEvent 757
Writing a Method to Perform Validation 757
Writing a Method to Handle a Value-Change Event 758

Chapter 20 Creating Custom UI Components 761

Determining Whether You Need a Custom Component
or Renderer 762

When to Use a Custom Component 762
When to Use a Custom Renderer 763
Component, Renderer, and Tag Combinations 764

Understanding the Image Map Example 765
Why Use JavaServer Faces Technology to Implement an
Image Map? 765
Understanding the Rendered HTML 766
Understanding the JSP Page 767
Configuring Model Data 769
Summary of the Application Classes 770

Steps for Creating a Custom Component 771
Creating the Component Tag Handler 772
Defining the Custom Component Tag in a Tag Library Descriptor 777
Creating Custom Component Classes 778

Performing Encoding 780
Performing Decoding 783
Enabling Value-Binding of Component Properties 783
Saving and Restoring State 785

Delegating Rendering to a Renderer 786
Creating the Renderer Class 786
Identifying the Renderer Type 788

Handling Events for Custom Components 788

Chapter 21 Configuring JavaServer Faces Applications 791

Application Configuration Resource File 792
Configuring Beans 793

Using the managed-bean Element 793
Initializing Properties using the managed-property Element 795
Initializing Maps and Lists 801

Registering Messages 802
Registering a Custom Validator 803
Registering a Custom Converter 804
Configuring Navigation Rules 805

J2EETutorial.book Page xxi Thursday, June 3, 2004 10:26 AM

xxii CONTENTS

Registering a Custom Renderer with a Render Kit 808
Registering a Custom Component 810
Basic Requirements of a JavaServer Faces Application 811

Configuring an Application Using deploytool 812
Including the Required JAR Files 816
Including the Classes, Pages, and Other Resources 817

Chapter 22 Internationalizing and Localizing Web
Applications . 819

Java Platform Localization Classes 819
Providing Localized Messages and Labels 820

Establishing the Locale 821
Setting the Resource Bundle 821
Retrieving Localized Messages 822

Date and Number Formatting 823
Character Sets and Encodings 823

Character Sets 823
Character Encoding 824

Further Information 827

Chapter 23 Enterprise Beans . 829

What Is an Enterprise Bean? 829
Benefits of Enterprise Beans 830
When to Use Enterprise Beans 830
Types of Enterprise Beans 830

What Is a Session Bean? 831
State Management Modes 831
When to Use Session Beans 832

What Is an Entity Bean? 833
What Makes Entity Beans Different from Session Beans? 833
Container-Managed Persistence 835
When to Use Entity Beans 838

What Is a Message-Driven Bean? 838
What Makes Message-Driven Beans Different from
Session and Entity Beans? 838
When to Use Message-Driven Beans 840

Defining Client Access with Interfaces 840
Remote Clients 840
Local Clients 841
Local Interfaces and Container-Managed Relationships 842
Deciding on Remote or Local Access 842

J2EETutorial.book Page xxii Thursday, June 3, 2004 10:26 AM

CONTENTS xxiii

Web Service Clients 843
Method Parameters and Access 844

The Contents of an Enterprise Bean 845
Naming Conventions for Enterprise Beans 846
The Life Cycles of Enterprise Beans 847

The Life Cycle of a Stateful Session Bean 847
The Life Cycle of a Stateless Session Bean 848
The Life Cycle of an Entity Bean 848
The Life Cycle of a Message-Driven Bean 850

Further Information 851

Chapter 24 Getting Started with Enterprise Beans 853

Creating the J2EE Application 854
Creating the Enterprise Bean 854

Coding the Enterprise Bean 854
Compiling the Source Files 856
Packaging the Enterprise Bean 857

Creating the Application Client 858
Coding the Application Client 859
Compiling the Application Client 861
Packaging the Application Client 861
Specifying the Application Client’s Enterprise Bean Reference 862

Creating the Web Client 863
Coding the Web Client 863
Compiling the Web Client 865
Packaging the Web Client 865
Specifying the Web Client’s Enterprise Bean Reference 866

Mapping the Enterprise Bean References 866
Specifying the Web Client’s Context Root 868
Deploying the J2EE Application 868
Running the Application Client 869
Running the Web Client 869
Modifying the J2EE Application 870

Modifying a Class File 870
Adding a File 871
Modifying a Deployment Setting 872

Chapter 25 Session Bean Examples . 873

The CartBean Example 873
Session Bean Class 874
Home Interface 878

J2EETutorial.book Page xxiii Thursday, June 3, 2004 10:26 AM

xxiv CONTENTS

Remote Interface 879
Helper Classes 880
Building the CartBean Example 880
Creating the Application 880
Packaging the Enterprise Bean 881
Packaging the Application Client 882

A Web Service Example: HelloServiceBean 884
Web Service Endpoint Interface 884
Stateless Session Bean Implementation Class 885
Building HelloServiceBean 886
Building the Web Service Client 888
Running the Web Service Client 889

Other Enterprise Bean Features 889
Accessing Environment Entries 890
Comparing Enterprise Beans 891
Passing an Enterprise Bean’s Object Reference 891

Using the Timer Service 892
Creating Timers 893
Canceling and Saving Timers 893
Getting Timer Information 894
Transactions and Timers 894
The TimerSessionBean Example 895
Building TimerSessionBean 896

Handling Exceptions 901

Chapter 26 Bean-Managed Persistence Examples 903

The SavingsAccountBean Example 903
Entity Bean Class 904
Home Interface 914
Remote Interface 916
Running the SavingsAccountBean Example 917

Mapping Table Relationships for Bean-Managed Persistence 919
One-to-One Relationships 919
One-to-Many Relationships 922
Many-to-Many Relationships 930

Primary Keys for Bean-Managed Persistence 933
The Primary Key Class 934
Primary Keys in the Entity Bean Class 935
Getting the Primary Key 936

deploytool Tips for Entity Beans with Bean-Managed Persistence 937

J2EETutorial.book Page xxiv Thursday, June 3, 2004 10:26 AM

CONTENTS xxv

Chapter 27 Container-Managed Persistence Examples. 939

Overview of the RosterApp Application 939
The PlayerBean Code 941

Entity Bean Class 941
Local Home Interface 946
Local Interface 947

Method Invocations in RosterApp 947
Creating a Player 948
Adding a Player to a Team 949
Removing a Player 950
Dropping a Player from a Team 951
Getting the Players of a Team 952
Getting a Copy of a Team’s Players 953
Finding the Players by Position 955
Getting the Sports of a Player 956

Building and Running the RosterApp Example 958
Creating the Database Tables 958
Creating the Data Source 959
Capturing the Table Schema 959
Building the Enterprise Beans 960
Creating the Enterprise Application 960
Packaging the Enterprise Beans 961
Packaging the Enterprise Application Client 970
Deploying the Enterprise Application 971
Running the Client Application 971

A Guided Tour of the RosterApp Settings 972
RosterApp 972
RosterClient 974
RosterJAR 974
TeamJAR 975

Primary Keys for Container-Managed Persistence 980
The Primary Key Class 982

Advanced CMP Topics: The OrderApp Example 984
Structure of OrderApp 984
Bean Relationships in OrderApp 985
Primary Keys in OrderApp’s Entity Beans 987
Entity Bean Mapped to More Than One Database Table 989
Finder and Selector Methods 990
Using Home Methods 990

J2EETutorial.book Page xxv Thursday, June 3, 2004 10:26 AM

xxvi CONTENTS

Cascade Deletes in OrderApp 991
BLOB and CLOB Database Types in OrderApp 991
Building and Running the OrderApp Example 992

deploytool Tips for Entity Beans with Container-Managed
Persistence 1000

Selecting the Persistent Fields and Abstract Schema Name 1001
Defining EJB QL Queries for Finder and Select Methods 1001
Defining Relationships 1002
Creating the Database Tables at Deploy Time in deploytool 1002

Chapter 28 A Message-Driven Bean Example 1003

Example Application Overview 1003
The Application Client 1004
The Message-Driven Bean Class 1005

The onMessage Method 1005
The ejbCreate and ejbRemove Methods 1007

Deploying and Running SimpleMessageApp 1007
Creating the Administered Objects 1007
Deploying the Application 1009
Running the Client 1009
Removing the Administered Objects 1009

deploytool Tips for Message-Driven Beans 1010
Specifying the Bean’s Type 1010
Setting the Message-Driven Bean’s Characteristics 1010

deploytool Tips for Components That Send Messages 1011
Setting the Resource References 1012
Setting the Message Destination References 1012
Setting the Message Destinations 1013

Chapter 29 Enterprise JavaBeans Query Language. 1015

Terminology 1016
Simplified Syntax 1016
Example Queries 1017

Simple Finder Queries 1017
Finder Queries That Navigate to Related Beans 1019
Finder Queries with Other Conditional Expressions 1020
Select Queries 1022

Full Syntax 1022
BNF Symbols 1023
BNF Grammar of EJB QL 1023

J2EETutorial.book Page xxvi Thursday, June 3, 2004 10:26 AM

CONTENTS xxvii

FROM Clause 1027
Path Expressions 1030
WHERE Clause 1032
SELECT Clause 1040
ORDER BY Clause 1043

EJB QL Restrictions 1044

Chapter 30 Transactions . 1045

What Is a Transaction? 1045
Container-Managed Transactions 1046

Transaction Attributes 1046
Rolling Back a Container-Managed Transaction 1050
Synchronizing a Session Bean’s Instance Variables 1052
Compiling the BankBean Example 1053
Packaging the BankBean Example 1053
Methods Not Allowed in Container-Managed Transactions 1057

Bean-Managed Transactions 1057
JDBC Transactions 1058
Deploying and Running the WarehouseBean Example 1059
Compiling the WarehouseBean Example 1059
Packaging the WarehouseBean Example 1059
JTA Transactions 1063
Deploying and Running the TellerBean Example 1064
Compiling the TellerBean Example 1064
Packaging the TellerBean Example 1065
Returning without Committing 1068
Methods Not Allowed in Bean-Managed Transactions 1068

Summary of Transaction Options for Enterprise Beans 1069
Transaction Timeouts 1070
Isolation Levels 1070
Updating Multiple Databases 1071
Transactions in Web Components 1073

Chapter 31 Resource Connections . 1075

JNDI Naming 1075
DataSource Objects and Connection Pools 1077
Database Connections 1078

Coding a Database Connection 1078
Specifying a Resource Reference 1079
Creating a Data Source 1079

J2EETutorial.book Page xxvii Thursday, June 3, 2004 10:26 AM

xxviii CONTENTS

Mail Session Connections 1080
Running the ConfirmerBean Example 1082

URL Connections 1083
Running the HTMLReaderBean Example 1085

Further Information 1086

Chapter 32 Security . 1087

Overview 1087
Realms, Users, Groups, and Roles 1088

Managing Users 1089
Setting Up Security Roles 1090
Mapping Roles to Users and Groups 1090

Web-Tier Security 1092
Protecting Web Resources 1094
Setting Security Requirements Using deploytool 1095
Specifying a Secure Connection 1097
Using Programmatic Security in the Web Tier 1098

Understanding Login Authentication 1100
Using HTTP Basic Authentication 1100
Using Form-Based Authentication 1101
Using Client-Certificate Authentication 1102
Using Mutual Authentication 1103
Using Digest Authentication 1105
Configuring Authentication 1105
Example: Using Form-Based Authentication 1105

Installing and Configuring SSL Support 1114
Understanding Digital Certificates 1115
Configuring the SSL Connector 1122

XML and Web Services Security 1125
Example: Basic Authentication with JAX-RPC 1126
Example: Client-Certificate Authentication over HTTP/SSL
with JAX-RPC 1133

EJB-Tier Security 1142
Declaring Method Permissions 1143
Configuring IOR Security 1143
Using Programmatic Security in the EJB Tier 1145
Unauthenticated User Name 1145

Application Client-Tier Security 1145
EIS-Tier Security 1147

Container-Managed Sign-On 1147
Component-Managed Sign-On 1148

J2EETutorial.book Page xxviii Thursday, June 3, 2004 10:26 AM

CONTENTS xxix

Configuring Resource Adapter Security 1148
Propagating Security Identity 1149

Configuring a Component’s Propagated Security Identity 1150
Configuring Client Authentication 1151

What Is Java Authorization Contract for Containers? 1151
Further Information 1152

Chapter 33 The Java Message Service API 1153

Overview 1154
What Is Messaging? 1154
What Is the JMS API? 1154
When Can You Use the JMS API? 1155
How Does the JMS API Work with the J2EE Platform? 1156

Basic JMS API Concepts 1157
JMS API Architecture 1158
Messaging Domains 1159
Message Consumption 1161

The JMS API Programming Model 1162
Administered Objects 1163
Connections 1165
Sessions 1165
Message Producers 1166
Message Consumers 1167
Messages 1169
Exception Handling 1172

Writing Simple JMS Client Applications 1173
A Simple Example of Synchronous Message Receives 1174
A Simple Example of Asynchronous Message Consumption 1183
Running JMS Client Programs on Multiple Systems 1187

Creating Robust JMS Applications 1191
Using Basic Reliability Mechanisms 1193
Using Advanced Reliability Mechanisms 1200

Using the JMS API in a J2EE Application 1212
Using Session and Entity Beans to Produce and to
Synchronously Receive Messages 1212
Using Message-Driven Beans 1214
Managing Distributed Transactions 1216
Using the JMS API with Application Clients and
Web Components 1219

Further Information 1220

J2EETutorial.book Page xxix Thursday, June 3, 2004 10:26 AM

xxx CONTENTS

Chapter 34 J2EE Examples Using the JMS API 1221

A J2EE Application That Uses the JMS API with a Session Bean 1222
Writing the Application Components 1223
Creating and Packaging the Application 1225
Deploying the Application 1229
Running the Application Client 1230

A J2EE Application That Uses the JMS API with an Entity Bean 1231
Overview of the Human Resources Application 1231
Writing the Application Components 1232
Creating and Packaging the Application 1235
Deploying the Application 1237
Running the Application Client 1238

An Application Example That Consumes Messages from a
Remote J2EE Server 1239

Overview of the Applications 1240
Writing the Application Components 1241
Creating and Packaging the Applications 1241
Deploying the Applications 1244
Running the Application Client 1245

An Application Example That Deploys a Message-Driven
Bean on Two J2EE Servers 1246

Overview of the Applications 1246
Writing the Application Components 1248
Creating and Packaging the Applications 1249
Deploying the Applications 1251
Running the Application Client 1252

Chapter 35 The Coffee Break Application 1255

Common Code 1256
JAX-RPC Coffee Supplier Service 1257

Service Interface 1257
Service Implementation 1258
Publishing the Service in the Registry 1259
Deleting the Service from the Registry 1263

SAAJ Coffee Supplier Service 1265
SAAJ Client 1266
SAAJ Service 1274

Coffee Break Server 1280
JSP Pages 1281
JavaBeans Components 1282
RetailPriceListServlet 1284

J2EETutorial.book Page xxx Thursday, June 3, 2004 10:26 AM

CONTENTS xxxi

JavaServer Faces Version of Coffee Break Server 1284
JSP Pages 1285
JavaBeans Components 1288
Resource Configuration 1289

Building, Packaging, Deploying, and Running the Application 1290
Setting the Port 1291
Setting Up the Registry Server 1291
Using the Provided WARs 1292
Building the Common Classes 1292
Building, Packaging, and Deploying the JAX-RPC Service 1292
Building, Packaging, and Deploying the SAAJ Service 1294
Building, Packaging, and Deploying the Coffee Break Server 1295
Building, Packaging, and Deploying the JavaServer Faces
Technology Coffee Break Server 1297
Running the Coffee Break Client 1298
Removing the Coffee Break Application 1300

Chapter 36 The Duke’s Bank Application 1301

Enterprise Beans 1302
Session Beans 1303
Entity Beans 1306
Helper Classes 1307
Database Tables 1308
Protecting the Enterprise Beans 1309

Application Client 1310
The Classes and Their Relationships 1311
BankAdmin Class 1312
EventHandle Class 1314
DataModel Class 1315

Web Client 1318
Design Strategies 1319
Client Components 1320
Request Processing 1323
Protecting the Web Client Resources 1325

Internationalization 1327
Building, Packaging, Deploying, and Running the Application 1328

Setting Up the Servers 1328
Compiling the Duke’s Bank Application Code 1330
Packaging and Deploying the Duke’s Bank Application 1330
Reviewing JNDI Names 1335

J2EETutorial.book Page xxxi Thursday, June 3, 2004 10:26 AM

xxxii CONTENTS

Running the Clients 1338
Running the Application Client 1338
Running the Web Client 1339

Appendix A Java Encoding Schemes 1341

Further Information 1342

Appendix B XML and Related Specs: Digesting the
Alphabet Soup . 1343

Basic Standards 1344
SAX 1344
StAX 1345
DOM 1345
JDOM and dom4j 1345
DTD 1346
Namespaces 1347
XSL 1347
XSLT (+XPath) 1347

Schema Standards 1348
XML Schema 1349
RELAX NG 1349
SOX 1349
Schematron 1350

Linking and Presentation Standards 1350
XML Linking 1350
XHTML 1351

Knowledge Standards 1351
RDF 1351
RDF Schema 1352
XTM 1352

Standards That Build on XML 1352
Extended Document Standards 1353
e-Commerce Standards 1353

Summary 1354

Appendix C HTTP Overview. 1355

HTTP Requests 1356
HTTP Responses 1356

J2EETutorial.book Page xxxii Thursday, June 3, 2004 10:26 AM

CONTENTS xxxiii

Appendix D J2EE Connector Architecture 1357

About Resource Adapters 1357
Resource Adapter Contracts 1359

Management Contracts 1359
Outbound Contracts 1360
Inbound Contracts 1361

Common Client Interface 1362
Further Information 1363

Glossary . 1365

About the Authors . 1403

Index . 1405

J2EETutorial.book Page xxxiii Thursday, June 3, 2004 10:26 AM

J2EETutorial.book Page xxxiv Thursday, June 3, 2004 10:26 AM

xxxv

Foreword

When the first edition of The J2EE™ Tutorial was released, the Java™ 2 Plat-
form, Enterprise Edition (J2EE) was the new kid on the block. Modeled after its
forerunner, the Java 2 Platform, Standard Edition (J2SE™), the J2EE platform
brought the benefits of “Write Once, Run Anywhere™” API compatibility to
enterprise application servers. Now at version 1.4 and with widespread conform-
ance in the application server marketplace, the J2EE platform has firmly estab-
lished its position as the standard for enterprise application servers.

The J2EE™ Tutorial, Second Edition covers the J2EE 1.4 platform and more. If
you have used the first edition of The J2EE™ Tutorial, you may notice that the
second edition is triple the size. This reflects a major expansion in the J2EE plat-
form and the availability of two upcoming J2EE technologies in the Sun Java
System Application Server Platform Edition 8, the software on which the tutorial
is based.

One of the most important additions to the J2EE 1.4 platform is substantial sup-
port for Web services with the JAX-RPC 1.1 API, which enables Web service
endpoints based on servlets and enterprise beans. The platform also contains
Web services support APIs for handling XML data streams directly (SAAJ) and
for accessing Web services registries (JAXR). In addition, the J2EE 1.4 platform
requires WS-I Basic Profile 1.0. This means that in addition to platform indepen-
dence and complete Web services support, the J2EE 1.4 platform offers Web ser-
vices interoperability.

The J2EE 1.4 platform contains major enhancements to the Java servlet and
JavaServer Pages (JSP) technologies that are the foundation of the Web tier. The
tutorial also showcases two exciting new technologies, not required by the J2EE
1.4 platform, that simplify the task of building J2EE application user interfaces:
JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces. These new

J2EETutorial.book Page xxxv Thursday, June 3, 2004 10:26 AM

xxxvi FOREWORD

technologies are available in the Sun Java System Application Server. They will
soon be featured in new developer tools and are strong candidates for inclusion
in the next version of the J2EE platform.

Readers conversant with the core J2EE platform enterprise bean technology will
notice major upgrades with the addition of the previously mentioned Web ser-
vice endpoints, as well as a timer service, and enhancements to EJB QL and
message-driven beans.

With all of these new features, I believe that you will find it well worth your time
and energy to take on the J2EE 1.4 platform. You can increase the scope of the
J2EE applications you develop, and your applications will run on the widest pos-
sible range of application server products.

To help you to learn all about the J2EE 1.4 platform, The J2EE™ Tutorial, Sec-
ond Edition follows the familiar Java Series tutorial model of concise descrip-
tions of the essential features of each technology with code examples that you
can deploy and run on the Sun Java System Application Server. Read this tutorial
and you will become part of the next wave of J2EE application developers.

Jeff Jackson
Vice President, J2EE Platform and Application Servers
Sun Microsystems
Santa Clara, CA
Thursday, June 3, 2004

J2EETutorial.book Page xxxvi Thursday, June 3, 2004 10:26 AM

xxxvii

About This Tutorial

THE J2EE™ Tutorial, Second Edition is a guide to developing enterprise
applications for the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here
we cover all the things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al. (Addison-Wesley, 2000). In particular, you should be familiar
with relational database and security features described in the trails listed in
Table 1.

Table 1 Prerequisite Trails in The Java™ Tutorial

Trail URL

JDBC http://java.sun.com/docs/books/tutorial/jdbc

Security http://java.sun.com/docs/books/tutorial/security1.2

J2EETutorial.book Page xxxvii Thursday, June 3, 2004 10:26 AM

xxxviii ABOUT THIS TUTORIAL

How to Read This Tutorial
The J2EE 1.4 platform is quite large, and this tutorial reflects this. However, you
don’t have to digest everything in it at once.

This tutorial opens with three introductory chapters, which you should read
before proceeding to any specific technology area. Chapter 1 covers the J2EE
1.4 platform architecture and APIs along with the Sun Java System Application
Server Platform Edition 8. Chapters 2 and 3 cover XML basics and getting
started with Web applications.

When you have digested the basics, you can delve into one or more of the four
main technology areas listed next. Because there are dependencies between
some of the chapters, Figure 1 contains a roadmap for navigating through the
tutorial.

• The Java XML chapters cover the technologies for developing applications
that process XML documents and implement Web services components:

• The Java API for XML Processing (JAXP)

• The Java API for XML-based RPC (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

• The Java API for XML Registries (JAXR)

• The Web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-alone Web application:

• Java Servlet

• JavaServer Pages (JSP)

• JavaServer Pages Standard Tag Library (JSTL)

• JavaServer Faces

• Web application internationalization and localization

• The Enterprise JavaBeans (EJB) technology chapters cover the compo-
nents used in developing the business logic of a J2EE application:

• Session beans

• Entity beans

• Message-driven beans

• Enterprise JavaBeans Query Language

J2EETutorial.book Page xxxviii Thursday, June 3, 2004 10:26 AM

HOW TO READ THIS TUTORIAL xxxix

• The platform services chapters cover the system services used by all the
J2EE component technologies:

• Transactions

• Resource connections

• Security

• Java Message Service

Figure 1 Roadmap to This Tutorial

J2EETutorial.book Page xxxix Thursday, June 3, 2004 10:26 AM

xl ABOUT THIS TUTORIAL

After you have become familiar with some of the technology areas, you are
ready to tackle the case studies, which tie together several of the technologies
discussed in the tutorial. The Coffee Break Application (Chapter 35) describes
an application that uses the Web application and Web services APIs. The Duke’s
Bank Application (Chapter 36) describes an application that employs Web appli-
cation technologies and enterprise beans.

Finally, the appendixes contain auxiliary information helpful to the J2EE
application developer along with a brief summary of the J2EE Connector
architecture:

• Java Encoding Schemes (Appendix A)

• XML standards (Appendix B)

• HTTP Overview (Appendix C)

• J2EE Connector Architecture (Appendix D)

About the Examples
This section tells you everything you need to know to install, build, and run the
examples.

Required Software

Tutorial Bundle
The tutorial example source is contained in the tutorial bundle, which is distrib-
uted on the accompanying CD-ROM.

After you have installed the tutorial bundle, the example source code is in the
<INSTALL>/j2eetutorial14/examples/ directory, with subdirectories for each
of the technologies discussed in the tutorial.

Application Server
The Sun Java System Application Server Platform Edition 8 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2
Software Development Kit, Standard Edition (J2SE SDK) 1.4.2_04 or higher.

J2EETutorial.book Page xl Thursday, June 3, 2004 10:26 AM

ABOUT THE EXAMPLES xli

The Application Server and J2SE SDK are contained in the J2EE 1.4 SDK,
which is distributed on the CD-ROM accompanying the tutorial.

Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,

• Select the Don’t Prompt for Admin User Name radio button. This will save
the user name and password so that you won’t need to provide them when
performing administrative operations with asadmin and deploytool. You
will still have to provide the user name and password to log in to the Admin
Console.

• Note the HTTP port at which the server is installed. This tutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port, or if you decide to
change it yourself, you will need to update the common build properties
file (described in the next section) and the configuration files for some of
the tutorial examples to reflect the correct port.

In the Installation Options pane, check the Add Bin Directory to PATH checkbox
so that Application Server scripts (asadmin, asant, deploytool, and wscom-
pile) override other installations.

Registry Server
You need a registry server to run the examples discussed in Chapters 10 and 35.
Directions for obtaining and setting up a registry server are provided in those
chapters.

Building the Examples
Most of the tutorial examples are distributed with a configuration file for asant,
a portable build tool contained in the Application Server. This tool is an exten-
sion of the Ant tool developed by the Apache Software Foundation (http://
ant.apache.org). The asant utility contains additional tasks that invoke the
Application Server administration utility asadmin. Directions for building the
examples are provided in each chapter.

Build properties and targets common to all the examples are specified in the
files <INSTALL>/j2eetutorial14/examples/common/build.properties and

J2EETutorial.book Page xli Thursday, June 3, 2004 10:26 AM

xlii ABOUT THIS TUTORIAL

<INSTALL>/j2eetutorial14/examples/common/targets.xml. Build proper-
ties and targets common to a particular technology are specified in the files
<INSTALL>/j2eetutorial14/examples/tech/common/build.properties

and <INSTALL>/j2eetutorial14/examples/tech/common/targets.xml.

To run the asant scripts, you must set two common build properties as follows:

• Set the j2ee.home property in the file <INSTALL>/j2eetutorial14/
examples/common/build.properties to the location of your Applica-
tion Server installation. The build process uses the j2ee.home property to
include the libraries in <J2EE_HOME>/lib/ in the classpath. All examples
that run on the Application Server include the J2EE library archive—
<J2EE_HOME>/lib/j2ee.jar—in the build classpath. Some examples use
additional libraries in <J2EE_HOME>/lib/ and <J2EE_HOME>/lib/

endorsed/; the required libraries are enumerated in the individual tech-
nology chapters. <J2EE_HOME> refers to the directory where you have
installed the Application Server or the J2EE 1.4 SDK.

Note: On Windows, you must escape any backslashes in the j2ee.home property
with another backslash or use forward slashes as a path separator. So, if your Appli-
cation Server installation is C:\Sun\AppServer, you must set j2ee.home as follows:

j2ee.home = C:\\Sun\\AppServer

or

j2ee.home=C:/Sun/AppServer

• If you did not use port 8080 when you installed the Application Server,
set the value of the domain.resources.port property in <INSTALL>/
j2eetutorial14/examples/common/build.properties to the correct
port.

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examples is stored in the follow-
ing structure under each application directory:

J2EETutorial.book Page xlii Thursday, June 3, 2004 10:26 AM

TYPOGRAPHICAL CONVENTIONS xliii

• build.xml: asant build file

• src: Java source of servlets and JavaBeans components; tag libraries

• web: JSP pages and HTML pages, tag files, and images

The asant build files (build.xml) distributed with the examples contain targets
to create a build subdirectory and to copy and compile files into that directory.

Further Information
This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/817-6092.

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide at http://docs.sun.com/db/doc/817-6087 for information about
developer features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about
administering the Application Server.

Typographical Conventions
Table 2 lists the typographical conventions used in this tutorial.

Table 2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs; code examples; file names; path names; tool names;
application names; programming language keywords; tag,
interface, class, method, and field names; properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

J2EETutorial.book Page xliii Thursday, June 3, 2004 10:26 AM

xliv ABOUT THIS TUTORIAL

Menu selections indicated with the right-arrow character →, for example,
First→Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Acknowledgments
The J2EE tutorial team would like to thank the J2EE specification leads: Bill
Shannon, Pierre Delisle, Mark Roth, Yutaka Yoshida, Farrukh Najmi, Phil Good-
win, Joseph Fialli, Kate Stout, and Ron Monzillo and the J2EE 1.4 SDK team
members: Vivek Nagar, Tony Ng, Qingqing Ouyang, Ken Saks, Jean-Francois
Arcand, Jan Luehe, Ryan Lubke, Kathy Walsh, Binod P G, Alejandro Murillo,
and Manveen Kaur.

The chapters on custom tags and the Coffee Break and Duke’s Bank applications
use a template tag library that first appeared in Designing Enterprise Applica-
tions with the J2EE™ Platform, Second Edition, Inderjeet Singh et al.,
(Addison-Wesley, 2002).

The JavaServer Faces technology and JSP Documents chapters benefited greatly
from the invaluable documentation reviews and example code contributions of
these engineers: Ed Burns, Justyna Horwat, Roger Kitain, Jan Luehe, Craig
McClanahan, Raj Premkumar, Mark Roth, and especially Jayashri Visvanathan.

The OrderApp example application described in the Container-Managed Persis-
tence chapter was coded by Marina Vatkina with contributions from Markus
Fuchs, Rochelle Raccah, and Deepa Singh. Ms. Vatkina’s JDO/CMP team pro-
vided extensive feedback on the tutorial’s discussion of CMP.

The security chapter writers are indebted to Raja Perumal, who was a key con-
tributor both to the chapter and to the examples.

Monica Pawlan and Beth Stearns wrote the Overview and J2EE Connector chap-
ters in the first edition of The J2EE Tutorial and much of that content has been
carried forward to the current edition.

We are extremely grateful to the many internal and external reviewers who pro-
vided feedback on the tutorial. Their feedback helped improve the technical accu-
racy and presentation of the chapters and eliminate bugs from the examples.

We would like to thank our manager, Alan Sommerer, for his support and steady-
ing influence.

J2EETutorial.book Page xliv Thursday, June 3, 2004 10:26 AM

FEEDBACK xlv

We also thank Duarte Design, Inc., and Zana Vartanian for developing the illus-
trations in record time. Thanks are also due to our copy editor, Betsy Hardinger,
for helping this multi-author project achieve a common style.

Finally, we would like to express our profound appreciation to Ann Sellers,
Elizabeth Ryan, and the production team at Addison-Wesley for graciously see-
ing our large, complicated manuscript to publication.

Feedback
To send comments, broken link reports, errors, suggestions, and questions about
this tutorial to the tutorial team, please use the feedback form at http://
java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html.

J2EETutorial.book Page xlv Thursday, June 3, 2004 10:26 AM

J2EETutorial.book Page xlvi Thursday, June 3, 2004 10:26 AM

671

18
Using JavaServer

Faces Technology in
JSP Pages

THE page author’s responsibility is to design the pages of a JavaServer Faces
application. This includes laying out the components on the page and wiring
them to backing beans, validators, converters, and other back-end objects associ-
ated with the page. This chapter uses the Duke’s Bookstore application and the
Coffee Break application (see Chapter 35) to describe how page authors use the
JavaServer Faces tags to

• Layout standard UI components on a page

• Reference localized messages

• Register converters, validators, and listeners on components

• Bind components and their values to back-end objects

• Reference backing bean methods that perform navigation processing, han-
dle events, and perform validation

This chapter also describes how to include custom objects created by application
developers and component writers on a JSP page.

J2EETutorial.book Page 671 Thursday, June 3, 2004 10:26 AM

672 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The Example JavaServer Faces
Application

The JavaServer Faces technology chapters of this tutorial primarily use a rewrit-
ten version of the Duke’s Bookstore example to illustrate the basic concepts of
JavaServer Faces technology. This version of the Duke’s Bookstore example
includes several JavaServer Faces technology features:

• The JavaServer Faces implementation provides FacesServlet, whose
instances accept incoming requests and pass them to the implementation
for processing. Therefore, the application does not need to include a serv-
let (such as the Dispatcher servlet) that processes request parameters and
dispatches to application logic, as do the other versions of Duke’s Book-
store.

• A custom image map component that allows you to select the locale for the
application.

• Navigation configured in a centralized application configuration resource
file. This eliminates the need to calculate URLs, as other versions of the
Duke’s Bookstore application must do.

• Backing beans associated with the pages. These beans hold the component
data and perform other processing associated with the components. This
processing includes handling the event generated when a user clicks a but-
ton or hyperlink.

• Tables that display the books from the database and the shopping cart are
rendered with the dataTable tag, which is used to dynamically render data
in a table. The dataTable tag on bookshowcart.jsp also includes input
components.

• A custom validator and a custom converter are registered on the credit card
field of the bookcashier.jsp page.

• A value-change listener is registered on the Name field of bookcash-
ier.jsp. This listener saves the name in a parameter so that book-
receipt.jsp can access it.

This version of Duke’s Bookstore includes the same pages listed in Table 12–1.
It also includes the chooselocale.jsp page, which displays the custom image
map that allows you to select the locale of the application. This page is displayed
first and advances directly to the bookstore.jsp page after the locale is
selected.

J2EETutorial.book Page 672 Thursday, June 3, 2004 10:26 AM

THE EXAMPLE JAVASERVER FACES APPLICATION 673

The packages of the Duke’s Bookstore application are:

• backing: Includes the backing bean classes

• components: Includes the custom UI component classes

• converters: Includes the custom converter class

• listeners: Includes the event handler and event listener classes

• model: Includes a model bean class

• renderers: Includes the custom renderers

• resources: Includes custom error messages for the custom converter and
validator

• taglib: Includes custom tag handler classes

• util: Includes a message factory class

• validators: Includes a custom validator class

Chapter 19 describes how to program backing beans, custom converters and val-
idators, and event listeners. Chapter 20 describes how to program event handlers,
custom components, renderers, and tag handlers.

The source code for the application is located in the <INSTALL>/j2ee-
tutorial14/examples/web/bookstore6/ directory. A sample bookstore6.war
is provided in <INSTALL>/j2eetutorial14/examples/web/provided-wars/.
To build, package, deploy, and run the example, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 100).

2. Go to <INSTALL>/j2eetutorial14/examples/web/bookstore6/ and
run asant build.

3. Start the Sun Java System Application Server Platform Edition 8.

4. Perform all the operations described in Accessing Databases from Web
Applications, page 100.

5. Start deploytool.

6. Create a Web application called bookstore6 by running the New Web
Component Wizard. Select File→New→Web Component.

7. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR Location field, enter <INSTALL>/j2eetutorial14/exam-
ples/web/bookstore6.war.

c. In the WAR Name field, enter bookstore6.

J2EETutorial.book Page 673 Thursday, June 3, 2004 10:26 AM

674 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

d. In the Context Root field, enter /bookstore6.

e. Click Edit Contents.

f. In the Edit Contents dialog box, navigate to <INSTALL>/j2ee-
tutorial14/examples/web/bookstore6/build/. Select everything
in the build directory and click Add.

g. In the Contents tree, drag the resources package to the WEB-INF/
classes directory.

h. In the Contents tree, drag faces-config.xml to the WEB-INF direc-
tory.

i. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore/dist/. Select book-
store.jar and click Add.

j. In the Edit Contents dialog box, navigate to <J2EE_HOME>/lib/ and
select the jsf-api.jar. Click Add, and then Click OK.

k. Click Next.

l. Select the Servlet radio button.

m. Click Next.

n. Select javax.faces.webapp.FacesServlet from the Servlet Class
combo box.

o. In the Startup Load Sequence Position combo box, enter 1.

p. Click Finish.

8. Provide a mapping for the FacesServlet Web component.

a. Select the FacesServlet Web component that is contained in the
bookstore6 Web application from the tree.

b. Select the Aliases tab.

c. Click Add and enter *.faces in the Aliases field.

9. Specify where state is saved.

a. Select the bookstore6 WAR from the tree.

b. Select the Context tabbed pane and click Add.

c. Enter javax.faces.STATE_SAVING_METHOD in the Coded Parameter
field.

d. Enter client in the Value field.

10. Set preludes and codas for all JSP pages.

a. Select the JSP Properties tab.

b. Click Add.

c. Enter bookstore6 in the Name field.

J2EETutorial.book Page 674 Thursday, June 3, 2004 10:26 AM

THE EXAMPLE JAVASERVER FACES APPLICATION 675

d. Click Add URL.

e. Enter *.jsp in the URL Patterns field.

f. Click Edit Preludes.

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click Edit Codas.

k. Click Add.

l. Enter /template/coda.jspf.

m. Click OK.

11. Add the listener class listeners.ContextListener (described in Han-
dling Servlet Life-Cycle Events, page 441).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from the drop-down
menu in the Event Listener Classes pane.

12. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI Name field of the Sun-specific Set-
tings frame.

13. Select File→Save.

14. Deploy the application.

15. Select Tools→Deploy.

16. In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

17. Click OK.

18. A pop-up dialog box will display the results of the deployment. Click
Close.

19. Open the URL http://localhost:8080/bookstore6 in a browser.

J2EETutorial.book Page 675 Thursday, June 3, 2004 10:26 AM

676 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Setting Up a Page
To use the JavaServer Faces UI components in your JSP page, you need to give
the page access to the two tag libraries: the JavaServer Faces standard HTML ren-
der kit tag library and the JavaServer Faces core tag library. The JavaServer Faces
standard HTML render kit tag library defines tags that represent common HTML
user interface components. The JavaServer Faces core tag library defines tags that
perform core actions and are independent of a particular render kit.

Using these tag libraries is similar to using any other custom tag library. This
chapter assumes that you are familiar with the basics of using custom tags in JSP
pages (see Using Custom Tags, page 502).

As is the case with any tag library, each JavaServer Faces tag library must have a
TLD that describes it. The html_basic TLD describes the The JavaServer Faces
standard HTML render kit tag library. The jsf_core TLD describes the Java-
Server Faces core tag library.

Please refer to the TLD documentation at http://java.sun.com/j2ee/

javaserverfaces/1.0/docs/tlddocs/index.html for a complete list of the
JavaServer Faces tags and their attributes.

Your application needs access to these TLDs in order for your pages to use them.
The Application Server includes these TLDs in jsf-impl.jar, located in
<J2EE_HOME>/lib.

To use any of the JavaServer Faces tags, you need to include these taglib direc-
tives at the top of each page containing the tags defined by these tag libraries:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

The uri attribute value uniquely identifies the TLD. The prefix attribute value
is used to distinguish tags belonging to the tag library. You can use other prefixes
rather than the h or f prefixes. However, you must use the prefix you have chosen
when including the tag in the page. For example, the form tag must be refer-
enced in the page via the h prefix because the preceding tag library directive uses
the h prefix to distinguish the tags defined in html_basic.tld:

<h:form ...>

A page containing JavaServer Faces tags is represented by a tree of components.
At the root of the tree is the UIViewRoot component. The view tag represents

J2EETutorial.book Page 676 Thursday, June 3, 2004 10:26 AM

SETTING UP A PAGE 677

this component on the page. Thus, all component tags on the page must be
enclosed in the view tag, which is defined in the jsf_core TLD:

<f:view>
... other faces tags, possibly mixed with other content ...

</f:view>

You can enclose other content, including HTML and other JSP tags, within the
view tag, but all JavaServer Faces tags must be enclosed within the view tag.

The view tag has an optional locale attribute. If this attribute is present, its
value overrides the Locale stored in the UIViewRoot. This value is specified as a
String and must be of this form:

:language:[{-,_}:country:[{-,_}:variant]

The :language:, :country:, and :variant: parts of the expression are as
specified in java.util.Locale.

A typical JSP page includes a form, which is submitted when a button or hyper-
link on the page is clicked. For the data of other components on the page to be
submitted with the form, the tags representing the components must be nested
inside the form tag. See The UIForm Component (page 683) for more details on
using the form tag.

If you want to include a page containing JavaServer Faces tags within another
JSP page (which could also contain JavaServer Faces tags), you must enclose the
entire nested page in a subview tag. You can add the subview tag on the parent
page and nest a jsp:include inside it to include the page:

<f:subview id="myNestedPage">
<jsp:include page="theNestedPage.jsp"/>

<f:subview>

You can also include the subview tag inside the nested page, but it must enclose
all the JavaServer Faces tags on the nested page.

In summary, a typical JSP page that uses JavaServer Faces tags will look some-
what like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

J2EETutorial.book Page 677 Thursday, June 3, 2004 10:26 AM

678 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

<h:form>
other JavaServer Faces tags and core tags,
including one or more button or hyperlink components for
submitting the form

</h:form>
</f:view>

The sections Using the Core Tags (page 678) and Using the HTML Component
Tags (page 680) describe how to use the core tags from the JavaServer Faces
core tag library and the component tags from the JavaServer Faces standard
HTML render kit tag library.

Using the Core Tags
The tags included in the JavaServer Faces core tag library are used to perform
core actions that are independent of a particular render kit. These tags are listed
in Table 18–1.

Table 18–1 The jsf_core Tags

Tag Categories Tags Functions

Event-handling tags

actionListener
Registers an action listener on a parent
component

valueChangeListener
Registers a value-change listener on a
parent component

Attribute configura-
tion tag

attribute
Adds configurable attributes to a parent
component

Data conversion tags

converter
Registers an arbitrary converter on the
parent component

convertDateTime
Registers a DateTime converter
instance on the parent component

convertNumber
Registers a Number converter instance
on the parent component

Facet tag facet
Signifies a nested component that has a
special relationship to its enclosing tag

J2EETutorial.book Page 678 Thursday, June 3, 2004 10:26 AM

USING THE CORE TAGS 679

These tags are used in conjunction with component tags and are therefore
explained in other sections of this tutorial. Table 18–2 lists the sections that
explain how to use specific jsf_core tags.

Localization tag loadBundle
Specifies a ResourceBundle that is
exposed as a Map

Parameter
substitution tag

param
Substitutes parameters into a Message-
Format instance and adds query string
name-value pairs to a URL

Tags for representing
items in a list

selectItem
Represents one item in a list of items in
a UISelectOne or UISelectMany
component

selectItems
Represents a set of items in a UISelec-
tOne or UISelectMany component

Container tag subview
Contains all JavaServer Faces tags in a
page that is included in another JSP
page containing JavaServer Faces tags

Validator tags

validateDoubleRange
Registers a DoubleRangeValidator
on a component

validateLength
Registers a LengthValidator on a
component

validateLongRange
Registers a LongRangeValidator on
a component

validator
Registers a custom validator on a com-
ponent

Output tag verbatim
Generates a UIOutput component that
gets its content from the body of this tag

Container for form
tags

view
Encloses all JavaServer Faces tags on
the page

Table 18–1 The jsf_core Tags (Continued)

Tag Categories Tags Functions

J2EETutorial.book Page 679 Thursday, June 3, 2004 10:26 AM

680 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Using the HTML Component Tags
The tags defined by the JavaServer Faces standard HTML render kit tag library
represent HTML form controls and other basic HTML elements. These controls
display data or accept data from the user. This data is collected as part of a form
and is submitted to the server, usually when the user clicks a button. This section
explains how to use each of the component tags shown in Table 17–2, and is
organized according to the UIComponent classes from which the tags are derived.

The next section explains the more important tag attributes that are common to
most component tags. Please refer to the TLD documentation at http://
java.sun.com/j2ee/javaserverfaces/1.0/docs/tlddocs/index.html for a
complete list of tags and their attributes.

For each of the components discussed in the following sections, Writing Compo-
nent Properties (page 730) explains how to write a bean property bound to a par-
ticular UI component or its value.

Table 18–2 Where the jsf_core Tags Are Explained

Tags Where Explained

Event-handling tags Registering Listeners on Components (page 710)

Data conversion tags Using the Standard Converters (page 705)

facet
The UIData Component (page 686) and The UIPanel
Component (page 694)

loadBundle Using Localized Messages (page 703)

param Using the outputFormat Tag (page 693) and

selectItem and selectItems
The UISelectItem, UISelectItems, and UISelectItem-
Group Components (page 700)

subview Setting Up a Page (page 676)

verbatim Using the outputLink Tag (page 692)

view Setting Up a Page (page 676)

Validator tags
Using the Standard Validators (page 712) and Creating a
Custom Validator (page 750)

J2EETutorial.book Page 680 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 681

UI Component Tag Attributes
In general, most of the component tags support these attributes:

• id: Uniquely identifies the component

• immediate: If set to true, indicates that any events, validation, and con-
version associated with the component should happen in the apply request
values phase rather than a later phase.

• rendered: Specifies a condition in which the component should be ren-
dered. If the condition is not satisfied, the component is not rendered.

• style: Specifies a Cascading Style Sheet (CSS) style for the tag.

• styleClass: Specifies a CSS stylesheet class that contains definitions of
the styles.

• value: Identifies an external data source and binds the component’s value
to it.

• binding: Identifies a bean property and binds the component instance to it.

All of the UI component tag attributes (except id and var) are value-binding-
enabled, which means that they accept JavaServer Faces EL expressions. These
expressions allow you to use mixed literals and JSP 2.0 expression language
syntax and operators. See Expression Language (page 489) for more information
about the JSP 2.0 expression language.

The id Attribute
The id attribute is not required for a component tag except in these situations:

• Another component or a server-side class must refer to the component.

• The component tag is impacted by a JSTL conditional or iterator tag (for
more information, see Flow Control Tags, page 545).

If you don’t include an id attribute, the JavaServer Faces implementation auto-
matically generates a component ID.

The immediate Attribute
UIInput components and command components (those that implement Action-
Source, such as buttons and hyperlinks) can set the immediate attribute to true
to force events, validations, and conversions to be processed during the apply
request values phase of the life cycle. Page authors need to carefully consider

J2EETutorial.book Page 681 Thursday, June 3, 2004 10:26 AM

682 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

how the combination of an input component’s immediate value and a command
component’s immediate value determines what happens when the command com-
ponent is activated.

Assume that you have a page with a button and a field for entering the quantity
of a book in a shopping cart. If both the button’s and the field’s immediate
attributes are set to true, the new value of the field will be available for any pro-
cessing associated with the event that is generated when the button is clicked.
The event associated with the button and the event, validation, and conversion
associated with the field are all handled during the apply request values phase.

If the button’s immediate attribute is set to true but the field’s immediate
attribute is set to false, the event associated with the button is processed with-
out updating the field’s local value to the model layer. This is because any
events, conversion, or validation associated with the field occurs during its usual
phases of the life cycle, which come after the apply request values phase.

The bookshowcart.jsp page of the Duke’s Bookstore application has examples
of components using the immediate attribute to control which component’s data
is updated when certain buttons are clicked. The quantity field for each book
has its immediate attribute set to false. (The quantity fields are generated by
the UIData component. See The UIData Component, page 686, for more infor-
mation.) The immediate attribute of the Continue Shopping hyperlink is set to
true. The immediate attribute of the Update Quantities hyperlink is set to
false.

If you click the Continue Shopping hyperlink, none of the changes entered into
the quantity input fields will be processed. If you click the Update Quantities
hyperlink, the values in the quantity fields will be updated in the shopping cart.

The rendered Attribute
A component tag uses a Boolean JavaServer Faces (EL) expression, along with
the rendered attribute, to determine whether or not the component will be ren-
dered. For example, the check commandLink component on the bookcata-
log.jsp page is not rendered if the cart contains no items:

<h:commandLink id="check"
...
rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

J2EETutorial.book Page 682 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 683

The style and styleClass Attributes
The style and styleClass attributes allow you to specify Cascading Style
Sheets (CSS) styles for the rendered output of your component tags. The UIMes-
sage and UIMessages Components (page 698) describes an example of using the
style attribute to specify styles directly in the attribute. A component tag can
instead refer to a CSS stylesheet class. The dataTable tag on the bookcata-
log.jsp page of the Duke’s Bookstore application references the style class
list-background:

<h:dataTable id="books"
...
styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The stylesheet that defines this class is stylesheet.css, which is included in
the application. For more information on defining styles, please see the Cascad-
ing Style Sheets Specification at http://www.w3.org/Style/CSS/.

The value and binding Attributes
A tag representing a component defined by UIOutput or a subclass of UIOutput
uses value and binding attributes to bind its component’s value or instance to
an external data source. Binding Component Values and Instances to External
Data Sources (page 714) explains how to use these attributes.

The UIForm Component
A UIForm component is an input form that has child components representing
data that is either presented to the user or submitted with the form. The form tag
encloses all the controls that display or collect data from the user. Here is an
example:

<h:form>
... other faces tags and other content...
</h:form>

The form tag can also include HTML markup to lay out the controls on the page.
The form tag itself does not perform any layout; its purpose is to collect data and
to declare attributes that can be used by other components in the form. A page

J2EETutorial.book Page 683 Thursday, June 3, 2004 10:26 AM

684 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

can include multiple form tags, but only the values from the form that the user
submits will be included in the postback.

The UIColumn Component
The UIColumn component represents a column of data in a UIData component.
While the UIData component is iterating over the rows of data, it processes the
UIColumn for each row. UIColumn has no renderer associated with it and is repre-
sented on the page with a column tag. Here is an example column tag from the
bookshowcart.jsp page of the Duke’s Bookstore example:

<h:dataTable id="items"
...
value="#{cart.items}"
var="item">
...
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}"/>

</f:facet>
<h:inputText

...
value="#{item.quantity}">
<f:validateLongRange minimum="1"/>

</h:inputText>
</h:column>
...

</h:dataTable>

The UIData component in this example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices.
The column tag shown in the example renders the column that displays text
fields that allow customers to change the quantity of each book in the shopping
cart. Each time UIData iterates through the list of books, it renders one cell in
each column.

The UICommand Component
The UICommand component performs an action when it is activated. The most
common example of such a component is the button. This release supports
Button and Link as UICommand component renderers.

J2EETutorial.book Page 684 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 685

In addition to the tag attributes listed in Using the HTML Component Tags (page
680), the commandButton and commandLink tags can use these attributes:

• action, which is either a logical outcome String or a method-binding
expression that points to a bean method that returns a logical outcome
String. In either case, the logical outcome String is used by the default
NavigationHandler instance to determine what page to access when the
UICommand component is activated.

• actionListener, which is a method-binding expression that points to a
bean method that processes an ActionEvent fired by the UICommand
component.

See Referencing a Method That Performs Navigation (page 720) for more infor-
mation on using the action attribute.

See Referencing a Method That Handles an ActionEvent (page 721) for details
on using the actionListener attribute.

Using the commandButton Tag
The bookcashier.jsp page of the Duke’s Bookstore application includes a
commandButton tag. When a user clicks the button, the data from the current
page is processed, and the next page is opened. Here is the commandButton tag
from bookcashier.jsp:

<h:commandButton value="#{bundle.Submit}"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked
because the action attribute references the submit method of the CashierBean
backing bean. The submit method performs some processing and returns a logi-
cal outcome. This is passed to the default NavigationHandler, which matches
the outcome against a set of navigation rules defined in the application configu-
ration resource file.

The value attribute of the preceding example commandButton tag references the
localized message for the button’s label. The bundle part of the expression refers
to the ResourceBundle that contains a set of localized messages. The Submit
part of the expression is the key that corresponds to the message that is displayed
on the button. For more information on referencing localized messages, see
Using Localized Messages (page 703). See Referencing a Method That Performs
Navigation (page 720) for information on how to use the action attribute.

J2EETutorial.book Page 685 Thursday, June 3, 2004 10:26 AM

686 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Using the commandLink Tag
The commandLink tag represents an HTML hyperlink and is rendered as an
HTML <a> element. The commandLink tag is used to submit an action event to
the application. See Implementing Action Listeners (page 749) for more infor-
mation on action events.

A commandLink tag must include a nested outputText tag, which represents the
text the user clicks to generate the event. The following tag is from the choose-
locale.jsp page from the Duke’s Bookstore application.

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms['_id3']['_id3:NAmerica'].
value='_id3:NAmerica';
document.forms['_id3'].submit();
return false;">English

Note: Notice that the commandLink tag will render JavaScript. If you use this tag,
make sure your browser is JavaScript-enabled.

The UIData Component
The UIData component supports data binding to a collection of data objects. It
does the work of iterating over each record in the data source. The standard
Table renderer displays the data as an HTML table. The UIColumn component
represents a column of data within the table. Here is a portion of the dataTable
tag used by the bookshowcart.jsp page of the Duke’s Bookstore example:

<h:dataTable id="items"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"

headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
value="#{cart.items}"
var="item">

J2EETutorial.book Page 686 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 687

<h:column >
<f:facet name="header">

<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity" size="4"

value="#{item.quantity}" />
</h:inputText>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>

</f:facet>
<h:commandLink action="#{showcart.details}">

<h:outputText value="#{item.item.title}"/>
</h:commandLink>

</h:column>
...
<f:facet name="footer"

<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />
</h:outputText>

</h:panelGroup>
</f:facet>

</h:dataTable>

Figure 18–1 shows a data grid that this dataTable tag can display.

Figure 18–1 Table on the bookshowcart.jsp Page

J2EETutorial.book Page 687 Thursday, June 3, 2004 10:26 AM

688 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The example dataTable tag displays the books in the shopping cart as well as
the number of each book in the shopping cart, the prices, and a set of buttons,
which the user can click to remove books from the shopping cart.

The facet tag inside the first column tag renders a header for that column. The
other column tags also contain facet tags. Facets can have only one child, and
so a panelGroup tag is needed if you want to group more than one component
within a facet. Because the facet tag representing the footer includes more than
one tag, the panelGroup is needed to group those tags.

A facet tag is usually used to represent headers and footers. In general, a facet
is used to represent a component that is independent of the parent-child relation-
ship of the page’s component tree. In the case of a data grid, header and footer
data is not repeated like the other rows in the table, and therefore, the elements
representing headers and footers are not updated as are the other components in
the tree.

This example is a classic use case for a UIData component because the number
of books might not be known to the application developer or the page author at
the time the application is developed. The UIData component can dynamically
adjust the number of rows of the table to accommodate the underlying data.

The value attribute of a dataTable tag references the data to be included in the
table. This data can take the form of

• A list of beans

• An array of beans

• A single bean

• A javax.faces.model.DataModel

• A java.sql.ResultSet

• A javax.servlet.jsp.jstl.sql.ResultSet

• A javax.sql.RowSet

All data sources for UIData components have a DataModel wrapper. Unless you
explicitly construct a DataModel, the JavaServer Faces implementation will cre-
ate a DataModel wrapper around data of any of the other acceptable types. See
Writing Component Properties (page 730) for more information on how to write
properties for use with a UIData component.

The var attribute specifies a name that is used by the components within the
dataTable tag as an alias to the data referenced in the value attribute of dataTable.

J2EETutorial.book Page 688 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 689

In the dataTable tag from the bookshowcart.jsp page, the value attribute
points to a List of books. The var attribute points to a single book in that list. As
the UIData component iterates through the list, each reference to item points to
the current book in the list.

The UIData component also has the ability to display only a subset of the under-
lying data. This is not shown in the preceding example. To display a subset of the
data, you use the optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute
specifies the number of rows—starting with the first row—to be displayed. By
default, both first and rows are set to zero, and this causes all the rows of the
underlying data to display. For example, if you wanted to display records 2
through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider
including a link or button that causes subsequent rows to display when clicked.

The dataTable tag also has a set of optional attributes for adding styles to the
table:

• columnClasses: Defines styles for all the columns

• footerClass: Defines styles for the footer

• headerClass: Defines styles for the header

• rowClasses: Defines styles for the rows

• styleClass: Defines styles for the entire table

Each of these attributes can specify more than one style. If columnClasses or
rowClasses specifies more than one style, the styles are applied to the columns
or rows in the order that the styles are listed in the attribute. For example, if col-
umnClasses specifies styles list-column-center and list-column-right and
if there are two columns in the table, the first column will have style list-
column-center, and the second column will have style list-column-right.

If the style attribute specifies more styles than there are columns or rows, the
remaining styles will be assigned to columns or rows starting from the first col-
umn or row. Similarly, if the style attribute specifies fewer styles than there are
columns or rows, the remaining columns or rows will be assigned styles starting
from the first style.

J2EETutorial.book Page 689 Thursday, June 3, 2004 10:26 AM

690 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The UIGraphic Component
The UIGraphic component displays an image. The Duke’s Bookstore appli-
cation uses a graphicImage tag to display the map image on the
chooselocale.jsp page:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.chooseLocale}" usemap="#worldMap" />

The url attribute specifies the path to the image. It also corresponds to the local
value of the UIGraphic component so that the URL can be retrieved, possibly
from a backing bean. The URL of the example tag begins with a /, which adds
the relative context path of the Web application to the beginning of the path to
the image.

The alt attribute specifies the alternative text displayed when the user mouses
over the image. In this example, the alt attribute refers to a localized message.
See Performing Localization (page 741) for details on how to localize your Java-
Server Faces application.

The usemap attribute refers to the image map defined by the custom component,
MapComponent, which is on the same page. See Chapter 20 for more information
on the image map.

The UIInput and UIOutput Components
The UIInput component displays a value to the user and allows the user to mod-
ify this data. The most common example is a text field. The UIOutput compo-
nent displays data that cannot be modified. The most common example is a label.

The UIInput and UIOutput components can each be rendered in four ways.
Table 18–3 lists the renderers of UIInput and UIOutput. Recall from Compo-
nent Rendering Model (page 647) that the tags are composed of the component
and the renderer. For example, the inputText tag refers to a UIInput compo-
nent that is rendered with the Text renderer.

The UIInput component supports the following tag attributes in addition to the
tag attributes described at the beginning of Using the HTML Component Tags
(page 680). The UIOutput component supports the first of the following tag
attributes in addition to those listed in Using the HTML Component Tags (page
680).

• converter: Identifies a converter that will be used to convert the compo-
nent’s local data. See Using the Standard Converters (page 705) for more
information on how to use this attribute.

J2EETutorial.book Page 690 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 691

• validator: Identifies a method-binding expression pointing to a backing
bean method that performs validation on the component’s data. See Refer-
encing a Method That Performs Validation (page 722) for an example of
using the validator tag.

• valueChangeListener: Identifies a method-binding expression pointing
to a backing bean method that handles the event of entering a value in this
component. See Referencing a Method That Handles a ValueChangeEvent
(page 722) for an example of using valueChangeListener.

The rest of this section explains how to use selected tags listed in Table 18–3.
The other tags are written in a similar way.

Using the outputText and inputText Tags
The Text renderer can render both UIInput and UIOutput components. The
inputText tag displays and accepts a single-line string. The outputText tag
displays a single-line string. This section shows you how to use the inputText
tag. The outputText tag is written in a similar way.

Table 18–3 UIInput and UIOutput Renderers

Component Renderer Tag Function

UIInput

Hidden inputHidden
Allows a page author to include a
hidden variable in a page

Secret inputSecret
Accepts one line of text with no
spaces and displays it as a set of
asterisks as it is typed

Text inputText Accepts a text string of one line

TextArea inputTextarea Accepts multiple lines of text

UIOutput

Label outputLabel
Displays a nested component as a
label for a specified input field

Link outputLink
Displays an <a href> tag that
links to another page without gen-
erating an ActionEvent

OutputMessage outputFormat Displays a localized message

Text outputText Displays a text string of one line

J2EETutorial.book Page 691 Thursday, June 3, 2004 10:26 AM

692 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Here is an example of an inputText tag from the bookcashier.jsp page:

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

The value attribute refers to the name property of CashierBean. This property
holds the data for the name component. After the user submits the form, the value
of the name property in CashierBean will be set to the text entered in the field
corresponding to this tag.

The required attribute causes the page to reload with errors displayed if the
user does not enter a value in the name text field. See Requiring a
Value (page 713) for more information on requiring input for a component.

Using the outputLabel Tag
The outputLabel tag is used to attach a label to a specified input field for acces-
sibility purposes. The bookcashier.jsp page uses an outputLabel tag to ren-
der the label of a checkbox:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClubLabel"
rendered="false"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"

value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The for attribute of the outputLabel tag maps to the id of the input field to
which the label is attached. The outputText tag nested inside the outputLabel
tag represents the actual label component. The value attribute on the
outputText tag indicates the text that is displayed next to the input field.

Using the outputLink Tag
The outputLink tag is used to render a hyperlink that, when clicked, loads
another page but does not generate an action event. You should use this tag

J2EETutorial.book Page 692 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 693

instead of the commandLink tag if you always want the URL—specified by the
outputLink tag’s value attribute—to open and do not have to perform any
processing when the user clicks on the link. The Duke’s Bookstore application
does not utilize this tag, but here is an example of it:

<h:outputLink value="javadocs">
<f:verbatim>Documentation for this demo</f:verbatim>

</h:outputLink>

As shown in this example, the outputLink tag requires a nested verbatim tag,
which identifies the text the user clicks to get to the next page.

You can use the verbatim tag on its own when you want to simply output some
text on the page.

Using the outputFormat Tag
The outputFormat tag allows a page author to display concatenated messages as
a MessageFormat pattern, as described in the API documentation for
java.text.MessageFormat (see http://java.sun.com/j2se/1.4.2/docs/

api/java/text/MessageFormat.html). Here is an example of an outputFormat
tag from the bookshowcart.jsp page of the Duke’s Bookstore application:

<h:outputFormat value="#{bundle.CartItemCount}">
<f:param value="#{cart.numberOfItems}"/>

</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag speci-
fies the substitution parameters for the message.

In the example outputFormat tag, the value for the parameter maps to the num-
ber of items in the shopping cart. When the message is displayed in the page, the
number of items in the cart replaces the {0} in the message corresponding to
the CartItemCount key in the bundle resource bundle:

Your shopping cart contains " + "{0,choice,0#no items|1#one
item|1< {0} items

This message represents three possibilities:

• Your shopping cart contains no items.

• Your shopping cart contains one item.

• Your shopping cart contains {0} items.

J2EETutorial.book Page 693 Thursday, June 3, 2004 10:26 AM

694 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The value of the parameter replaces the {0} from the message in the sentence in
the third bullet. This is an example of a value-binding-enabled tag attribute
accepting a complex JSP 2.0 EL expression.

An outputFormat tag can include more than one param tag for those messages
that have more than one parameter that must be concatenated into the message.
If you have more than one parameter for one message, make sure that you put
the param tags in the proper order so that the data is inserted in the correct place
in the message.

A page author can also hardcode the data to be substituted in the message by
using a literal value with the value attribute on the param tag.

Using the inputSecret Tag
The inputSecret tag renders an <input type="password"> HTML tag. When
the user types a string into this field, a row of asterisks is displayed instead of the
text the user types. The Duke’s Bookstore application does not include this tag,
but here is an example of one:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent
the password from being displayed in a query string or in the source file of the
resulting HTML page.

The UIPanel Component
The UIPanel component is used as a layout container for its children. When you
use the renderers from the HTML render kit, UIPanel is rendered as an HTML
table. This component differs from UIData in that UIData can dynamically add
or delete rows to accommodate the underlying data source, whereas UIPanel
must have the number of rows predetermined. Table 18–4 lists all the renderers
and tags corresponding to the UIPanel component.

The panelGrid tag is used to represent an entire table. The panelGroup tag is
used to represent rows in a table. Other UI component tags are used to represent
individual cells in the rows.

J2EETutorial.book Page 694 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 695

The panelGrid tag has a set of attributes that specify CSS stylesheet classes:
columnClasses, footerClass, headerClass, panelClass, and rowClasses.
These stylesheet attributes are not required. It also has a columns attribute. The
columns attribute is required if you want your table to have more than one col-
umn because the columns attribute tells the renderer how to group the data in the
table.

If a headerClass is specified, the panelGrid must have a header as its first
child. Similarly, if a footerClass is specified, the panelGrid must have a footer
as its last child.

The Duke’s Bookstore application includes three panelGrid tags on the book-
cashier.jsp page. Here is a portion of one of them:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>
<h:outputText value="#{bundle.Name}" />
<h:inputText id="name" size="50"

value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />
</h:inputText>
<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>

Table 18–4 UIPanel Renderers and Tags

Renderer Tag Renderer Attributes Function

Grid panelGrid

columnClasses,
columns, footerClass,
headerClass, panel-
Class, rowClasses

Displays a table

Group panelGroup
Groups a set of components
under one parent

J2EETutorial.book Page 695 Thursday, June 3, 2004 10:26 AM

696 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

<h:inputText id="ccno" size="19"
converter="CreditCardConverter" required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

This panelGrid tag is rendered to a table that contains controls for the customer
of the bookstore to input personal information. This panelGrid uses stylesheet
tags classes to format the table. The CSS classes are defined in the
stylesheet.css file in the <INSTALL>/j2eetutorial14/examples/web/

bookstore6/web/ directory. The list-header definition is

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the panelGrid tag specifies a headerClass, the panelGrid must con-
tain a header. The example panelGrid tag uses a facet tag for the header. Fac-
ets can have only one child, and so a panelGroup tag is needed if you want to
group more than one component within a facet. Because the example panel-
Grid tag has only one cell of data, a panelGroup tag is not needed.

A panelGroup tag can also be used to encapsulate a nested tree of components
so that the tree of components appears as a single component to the parent
component.

The data represented by the nested component tags is grouped into rows accord-
ing to the value of the columns attribute of the panelGrid tag. The columns
attribute in the example is set to "3", and therefore the table will have three col-
umns. In which column each component is displayed is determined by the order
that the component is listed on the page modulo 3. So if a component is the fifth
one in the list of components, that component will be in the 5 modulo 3 column,
or column 2.

J2EETutorial.book Page 696 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 697

The UISelectBoolean Component
The UISelectBoolean class defines components that have a boolean value. The
selectBooleanCheckbox tag is the only tag that JavaServer Faces technology
provides for representing boolean state. The Duke’s Bookstore application
includes a selectBooleanCheckbox tag on the bookcashier.jsp page:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel
for="fanClubLabel"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

This example tag displays a checkbox to allow users to indicate whether they
want to join the Duke Fan Club. The label for the checkbox is rendered by the
outputLabel tag. The actual text is represented by the nested outputText tag.
Binding a Component Instance to a Bean Property (page 718) discusses this
example in more detail.

The UISelectMany Component
The UISelectMany class defines a component that allows the user to select zero
or more values from a set of values. This component can be rendered as a set of
checkboxes, a list box, or a menu. This section explains the selectManyCheck-
box tag. The selectManyListbox tag and selectManyMenu tag are written in a
similar way.

A list box differs from a menu in that it displays a subset of items in a box,
whereas a menu displays only one item at a time until you select the menu. The
size attribute of the selectManyListbox tag determines the number of items
displayed at one time. The list box includes a scrollbar for scrolling through any
remaining items in the list.

J2EETutorial.book Page 697 Thursday, June 3, 2004 10:26 AM

698 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Using the selectManyCheckbox Tag
The selectManyCheckbox tag renders a set of checkboxes, with each checkbox
representing one value that can be selected. Duke’s Bookstore uses a select-
ManyCheckbox tag on the bookcashier.jsp page to allow the user to subscribe
to one or more newsletters:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the selectManyCheckbox tag identifies the CashierBean
backing bean property, newsletters, for the current set of newsletters. This
property holds the values of the currently selected items from the set of check-
boxes.

The layout attribute indicates how the set of checkboxes are arranged on the
page. Because layout is set to pageDirection, the checkboxes are arranged ver-
tically. The default is lineDirection, which aligns the checkboxes horizontally.

The selectManyCheckbox tag must also contain a tag or set of tags representing
the set of checkboxes. To represent a set of items, you use the selectItems tag.
To represent each item individually, you use a selectItem tag for each item.
The UISelectItem, UISelectItems, and UISelectItemGroup Components (page
700) explains these two tags in more detail.

The UIMessage and UIMessages
Components
The UIMessage and UIMessages components are used to display error messages.
Here is an example message tag from the guessNumber application, discussed in
Steps in the Development Process (page 635):

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}"
<f:validateLongRange minimum="0" maximum="10" />

...
<h:message

J2EETutorial.book Page 698 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 699

style="color: red;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the error mes-
sage. The message tag will display the error message wherever it appears on the
page.

The style attribute allows you to specify the style of the text of the message. In
the example in this section, the text will be red, New Century Schoolbook, serif
font family, and oblique style, and a line will appear over the text.

If you use the messages tag instead of the message tag, all error messages will
display.

The UISelectOne Component
A UISelectOne component allows the user to select one value from a set of
values. This component can be rendered as a list box, a radio button, or a menu.
This section explains the selectOneMenu tag. The selectOneRadio and
selectOneListbox tags are written in a similar way. The selectOneListbox
tag is similar to the selectOneMenu tag except that selectOneListbox defines a
size attribute that determines how many of the items are displayed at once.

Using the selectOneMenu Tag
The selectOneMenu tag represents a component that contains a list of items,
from which a user can choose one item. The menu is also commonly known as a
drop-down list or a combo box. The following code example shows the select-
OneMenu tag from the bookcashier.jsp page of the Duke’s Bookstore applica-
tion. This tag allows the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

J2EETutorial.book Page 699 Thursday, June 3, 2004 10:26 AM

700 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the selectOneMenu tag maps to the property that holds
the currently selected item’s value.

Like the selectOneRadio tag, the selectOneMenu tag must contain either a
selectItems tag or a set of selectItem tags for representing the items in the
list. The next section explains these two tags.

The UISelectItem, UISelectItems, and
UISelectItemGroup Components
UISelectItem and UISelectItems represent components that can be nested
inside a UISelectOne or a UISelectMany component. UISelectItem is associ-
ated with a SelectItem instance, which contains the value, label, and descrip-
tion of a single item in the UISelectOne or UISelectMany component.

The UISelectItems instance represents either of the following:

• A set of SelectItem instances, containing the values, labels, and descrip-
tions of the entire list of items

• A set of SelectItemGroup instances, each of which represents a set of
SelectItem instances

Figure 18–2 shows an example of a list box constructed with a SelectItems
component representing two SelectItemGroup instances, each of which repre-
sents two categories of beans. Each category is an array of SelectItem
instances.

The selectItem tag represents a UISelectItem component. The selectItems
tag represents a UISelectItems component. You can use either a set of select-
Item tags or a single selectItems tag within your selectOne or selectMany
tag.

The advantages of using the selectItems tag are as follows:

• You can represent the items using different data structures, including
Array, Map, and Collection. The data structure is composed of Selec-
tItem instances or SelectItemGroup instances.

J2EETutorial.book Page 700 Thursday, June 3, 2004 10:26 AM

USING THE HTML COMPONENT TAGS 701

• You can concatenate different lists together into a single UISelectMany or
UISelectOne component and group the lists within the component, as
shown in Figure 18–2.

• You can dynamically generate values at runtime.

The advantages of using selectItem are as follows:

• The page author can define the items in the list from the page.

• You have less code to write in the bean for the selectItem properties.

For more information on writing component properties for the UISelectItems
components, see Writing Component Properties (page 730). The rest of this sec-
tion shows you how to use the selectItems and selectItem tags.

Using the selectItems Tag
Here is the selectManyCheckbox tag from the section The UISelectMany Com-
ponent (page 697):

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

Figure 18–2 An Example List Box Created Using
SelectItemGroup Instances

J2EETutorial.book Page 701 Thursday, June 3, 2004 10:26 AM

702 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The value attribute of the selectItems tag is bound to the newsletters man-
aged bean, which is configured in the application configuration resource file. The
newsletters managed bean is configured as a list:

<managed-bean>
<managed-bean-name>newsletters</managed-bean-name>
<managed-bean-class>

java.util.ArrayList</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<list-entries>

<value-class>javax.faces.model.SelectItem</value-class>
<value>#{newsletter0}</value>
<value>#{newsletter1}</value>
<value>#{newsletter2}</value>
<value>#{newsletter3}</value>

</list-entries>
</managed-bean>
<managed-bean>
<managed-bean-name>newsletter0</managed-bean-name>
<managed-bean-class>

javax.faces.model.SelectItem</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>
<managed-property>

<property-name>label</property-name>
<value>Duke's Quarterly</value>

</managed-property>
<managed-property>

<property-name>value</property-name>
<value>200</value>

</managed-property>
</managed-bean>
...

As shown in the managed-bean element, the UISelectItems component is a
collection of SelectItem instances. See Initializing Array and List
Properties (page 799) for more information on configuring collections as beans.

You can also create the list corresponding to a UISelectMany or UISelectOne
component programmatically in the backing bean. See Writing Component
Properties (page 730) for information on how to write a backing bean property
corresponding to a UISelectMany or UISelectOne component.

J2EETutorial.book Page 702 Thursday, June 3, 2004 10:26 AM

USING LOCALIZED MESSAGES 703

The arguments to the SelectItem constructor are:

• An Object representing the value of the item

• A String representing the label that displays in the UISelectMany com-
ponent on the page

• A String representing the description of the item

UISelectItems Properties (page 737) describes in more detail how to write a
backing bean property for a UISelectItems component.

Using the selectItem Tag
The selectItem tag represents a single item in a list of items. Here is the exam-
ple from Using the selectOneMenu Tag (page 699):

<h:selectOneMenu
id="shippingOption" required="true"
value="#{cashier.shippingOption">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value of the SelectItem
instance. The itemLabel attribute represents the String that appears in the
drop-down menu component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning
that they can use value-binding expressions to refer to values in external objects.
They can also define literal values, as shown in the example selectOneMenu tag.

Using Localized Messages
All data and messages in the Duke’s Bookstore application have been com-
pletely localized for Spanish, French, German, and American English. Performing

J2EETutorial.book Page 703 Thursday, June 3, 2004 10:26 AM

704 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Localization (page 741) explains how to produce the localized messages as well
as how to localize dynamic data and messages.

The image map on the first page allows you to select your preferred locale. See
Chapter 20 for information on how the image map custom component was created.

This section explains how to use localized static data and messages for JavaSer-
ver Faces applications. If you are not familiar with the basics of localizing Web
applications, see Chapter 22. Localized static data can be included in a page by
using the loadBundle tag, defined in jsf_core.tld. Follow these steps:

1. Reference a ResourceBundle from the page.

2. Reference the localized message located within the bundle.

A ResourceBundle contains a set of localized messages. For more information
about resource bundles, see

http://java.sun.com/docs/books/tutorial/i18n/index.html

After the application developer has produced a ResourceBundle, the application
architect puts it in the same directory as the application classes. Much of the data
for the Duke’s Bookstore application is stored in a ResourceBundle called
BookstoreMessages.

Referencing a ResourceBundle from a
Page
For a page with JavaServer Faces tags to use the localized messages contained in
a ResourceBundle, the page must reference the ResourceBundle using a load-
Bundle tag.

The loadBundle tag from bookstore.jsp is

<f:loadBundle var="bundle"
basename="messages.BookstoreMessages" />

The basename attribute value refers to the ResourceBundle, located in the mes-
sages package of the bookstore application. Make sure that the basename
attribute specifies the fully qualified class name of the file.

J2EETutorial.book Page 704 Thursday, June 3, 2004 10:26 AM

USING THE STANDARD CONVERTERS 705

The var attribute is an alias to the ResourceBundle. This alias can be used by
other tags in the page in order to access the localized messages.

Referencing a Localized Message
To reference a localized message from a ResourceBundle, you use a value-bind-
ing expression from an attribute of the component tag that will display the local-
ized data. You can reference the message from any component tag attribute that
is value-binding-enabled.

The value-binding expression has the notation "var.message", in which var
matches the var attribute of the loadBundle tag, and message matches the key
of the message contained in the ResourceBundle referred to by the var attribute.
Here is an example from bookstore.jsp:

<h:outputText value="#{bundle.Talk}"/>

Notice that bundle matches the var attribute from the loadBundle tag and that
Talk matches the key in the ResourceBundle.

Another example is the graphicImage tag from chooseLocale.jsp:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />

The alt attribute is value-binding-enabled, and this means that it can use value-
binding expressions. In this case, the alt attribute refers to localized text, which
will be included in the alternative text of the image rendered by this tag.

See Creating the Component Tag Handler (page 772) and Enabling Value-Binding
of Component Properties (page 783) for information on how to enable value bind-
ing on your custom component’s attributes.

Using the Standard Converters
The JavaServer Faces implementation provides a set of Converter implementa-
tions that you can use to convert component data. For more information on the
conceptual details of the conversion model, see Conversion Model (page 651).

J2EETutorial.book Page 705 Thursday, June 3, 2004 10:26 AM

706 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The standard Converter implementations, located in the javax.faces.convert
package, are as follows:

• BigDecimalConverter

• BigIntegerConverter

• BooleanConverter

• ByteConverter

• CharacterConverter

• DateTimeConverter

• DoubleConverter

• FloatConverter

• IntegerConverter

• LongConverter

• NumberConverter

• ShortConverter

Two of these standard converters (DateTimeConverter and NumberConverter)
have their own tags, which allow you to configure the format of the component
data by configuring the tag attributes. Using DateTimeConverter (page 707)
discusses using DateTimeConverter. Using NumberConverter (page 709) dis-
cusses using NumberConverter.

You can use the other standard converters in one of three ways:

• You can make sure that the component that uses the converter has its value
bound to a backing bean property of the same type as the converter.

• You can refer to the converter by class or by its ID using the component
tag’s converter attribute. The ID is defined in the application configura-
tion resource file (see Application Configuration Resource File, page 792).

• You can refer to the converter by its ID using the converterId attribute of
the converter tag.

The latter two will convert the component’s local value. The first method will
convert the model value of the component. For example, if you want a compo-
nent’s data to be converted to an Integer, you can bind the component to a prop-
erty similar to this:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

J2EETutorial.book Page 706 Thursday, June 3, 2004 10:26 AM

USING THE STANDARD CONVERTERS 707

Alternatively, if the component is not bound to a bean property, you can use the
converter attribute on the component tag:

<h:inputText value="#{LoginBean.Age}"
converter="javax.faces.convert.IntegerConverter" />

The data corresponding to this tag will be converted to a java.lang.Integer.
Notice that the Integer type is already a supported type of the NumberCon-
verter. If you don’t need to specify any formatting instructions using the
convertNumber tag attributes, and if one of the other converters will suffice, you
can simply reference that converter using the component tag’s converter
attribute.

Finally, you can nest a converter tag within the component tag and refer to the
converter’s ID via the converter tag’s converterId attribute. If the tag is refer-
ring to a custom converter, the value of converterID must match the ID in the
application configuration resource file. Here is an example:

<h:inputText value="#{LoginBean.Age}" />
<f:converter converterId="Integer" />

</h:inputText>

Using DateTimeConverter
You can convert a component’s data to a java.util.Date by nesting the con-
vertDateTime tag inside the component tag. The convertDateTime tag has
several attributes that allow you to specify the format and type of the data. Table
18–5 lists the attributes.

Here is a simple example of a convertDateTime tag from the bookreceipt.jsp
page:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

Here is an example of a date and time that this tag can display:

Saturday, Feb 22, 2003

You can also display the same date and time using this tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

J2EETutorial.book Page 707 Thursday, June 3, 2004 10:26 AM

708 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

If you want to display the example date in Spanish, you can use the parse-
Locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display

Sabado, Feb 22, 2003

Table 18–5 convertDateTime Tag Attributes

Attribute Type Description

dateStyle String

Defines the format, as specified by java.text.DateFor-
mat, of a date or the date part of a date string. Applied only
if type is date (or both) and pattern is not defined. Valid
values: default, short, medium, long, and full. If no
value is specified, default is used.

locale
String or
Locale

Locale whose predefined styles for dates and times are used
during formatting or parsing. If not specified, the Locale
returned by FacesContext.getLocale will be used.

pattern String

Custom formatting pattern that determines how the date/time
string should be formatted and parsed. If this attribute is spec-
ified, dateStyle, timeStyle, and type attributes are
ignored.

timeStyle String

Defines the format, as specified by java.text.DateFor-
mat, of a time or the time part of a date string. Applied only
if type is time and pattern is not defined. Valid values:
default, short, medium, long, and full. If no value is
specified, default is used.

timeZone
String or
TimeZone

Time zone in which to interpret any time information in the
date string.

type String
Specifies whether the string value will contain a date, a
time, or both. Valid values are date, time, or both. If no
value is specified, date is used.

J2EETutorial.book Page 708 Thursday, June 3, 2004 10:26 AM

USING THE STANDARD CONVERTERS 709

Please refer to the Customizing Formats lesson of the Java Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/simpleDate-

Format.html for more information on how to format the output using the pat-
tern attribute of the convertDateTime tag.

Using NumberConverter
You can convert a component’s data to a java.lang.Number by nesting the con-
vertNumber tag inside the component tag. The convertNumber tag has several
attributes that allow you to specify the format and type of the data. Table 18–6
lists the attributes.

Table 18–6 convertNumber Attributes

Attribute Type Description

currencyCode String
ISO4217 currency code, used only when formatting
currencies.

currencySymbol String
Currency symbol, applied only when formatting
currencies.

groupingUsed boolean
Specifies whether formatted output contains grouping
separators.

integerOnly boolean
Specifies whether only the integer part of the value will
be parsed.

maxFractionDigits int
Maximum number of digits formatted in the fractional
part of the output.

maxIntegerDigits int
Maximum number of digits formatted in the integer part
of the output.

minFractionDigits int
Minimum number of digits formatted in the fractional
part of the output.

minIntegerDigits int
Minimum number of digits formatted in the integer part
of the output.

Continues

J2EETutorial.book Page 709 Thursday, June 3, 2004 10:26 AM

710 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The bookcashier.jsp page of Duke’s Bookstore uses a convertNumber tag to
display the total prices of the books in the shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber type="currency"

</h:outputText>

Here is an example of a number this tag can display

$934

This number can also be displayed using this tag:

<h:outputText id="cartTotal"
value="#{cart.Total}" >
<f:convertNumber pattern="$####" />

</h:outputText>

Please refer to the Customizing Formats lesson of the Java Tutorial at http://
java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html

for more information on how to format the output using the pattern attribute of
the convertNumber tag.

Registering Listeners on Components
A page author can register a listener implementation class on a component by
nesting either a valuechangeListener tag or an actionListener tag within the
component’s tag on the page.

locale
String
or
Locale

Locale whose number styles are used to format or
parse data.

pattern String
Custom formatting pattern that determines how the
number string is formatted and parsed.

type String
Specifies whether the string value is parsed and format-
ted as a number, currency, or percentage. If not
specified, number is used.

Table 18–6 convertNumber Attributes (Continued)

Attribute Type Description

J2EETutorial.book Page 710 Thursday, June 3, 2004 10:26 AM

REGISTERING LISTENERS ON COMPONENTS 711

An application developer can instead implement these listeners as backing bean
methods. To reference these methods, a page author uses the component tag’s
valueChangeListener and actionListener attributes, as described in Refer-
encing a Method That Handles an ActionEvent (page 721) and Referencing a
Method That Handles a ValueChangeEvent (page 722).

The Duke’s Bookstore application includes a value-change listener implementa-
tion class but does not use an action listener implementation class. This section
explains how to register the NameChanged ValueChangeListener and a hypo-
thetical LocaleChange ActionListener implementation on components. Imple-
menting Value-Change Listeners (page 748) explains how to implement
NameChanged. Implementing Action Listeners (page 749) explains how to imple-
ment the hypothetical LocaleChange.

Registering a ValueChangeListener on a
Component
A page author can register a ValueChangeListener implementation on a
UIInput component or a component represented by one of the subclasses of
UIInput by nesting a valueChangeListener tag within the component’s tag on
the page. Here is the tag corresponding to the name component from the book-
cashier.jsp page:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

The type attribute of the valueChangeListener tag specifies the fully qualified
class name of the ValueChangeListener implementation.

After this component tag is processed and local values have been validated,
its corresponding component instance will queue the ValueChangeEvent asso-
ciated with the specified ValueChangeListener to the component.

Registering an ActionListener on a
Component
A page author can register an ActionListener implementation on a UICommand
component by nesting an actionListener tag within the component’s tag on

J2EETutorial.book Page 711 Thursday, June 3, 2004 10:26 AM

712 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

the page. Duke’s Bookstore does not use any ActionListener implementations.
Here is one of the commandLink tags on the chooselocale.jsp page, changed
to reference an ActionListener implementation rather than a backing bean
method:

<h:commandLink id="NAmerica" action="bookstore">
 <f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class
name of the ActionListener implementation.

When this tag’s component is activated, the component’s decode method (or its
associated Renderer) automatically queues the ActionEvent implementation
associated with the specified ActionListener implementation to the component.

Using the Standard Validators
JavaServer Faces technology provides a set of standard classes and associated
tags that page authors and application developers can use to validate a compo-
nent’s data. Table 18–7 lists all the standard validator classes and the tags that
allow you to use the validators from the page.

Table 18–7 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange

Checks whether the local value of a
component is within a certain range.
The value must be floating-point or
convertible to floating-point.

LengthValidator validateLength

Checks whether the length of a
component’s local value is within a
certain range. The value must be a
java.lang.String.

LongRangeValidator validateLongRange

Checks whether the local value of a
component is within a certain range.
The value must be any numeric
type or String that can be con-
verted to a long.

J2EETutorial.book Page 712 Thursday, June 3, 2004 10:26 AM

USING THE STANDARD VALIDATORS 713

All these validator classes implement the Validator interface. Component writ-
ers and application developers can also implement this interface to define their
own set of constraints for a component’s value.

When using the standard Validator implementations, you don’t need to write
any code to perform validation. You simply nest the standard validator tag of
your choice inside a tag that represents a component of type UIInput (or a sub-
class of UIInput) and provide the necessary constraints, if the tag requires it.
Validation can be performed only on UIInput components or components whose
classes extend UIInput because these components accept values that can be
validated.

This section shows you how to use the standard Validator implementations.

See The UIMessage and UIMessages Components (page 698) for information
on how to display validation error messages on the page.

Requiring a Value
The name inputText tag on the bookcashier.jsp page has a required
attribute, which is set to true. Because of this, the JavaServer Faces implemen-
tation checks whether the value of the component is null or is an empty String.

If your component must have a non-null value or a String value at least one
character in length, you should add a required attribute to your component tag
and set it to true. If your tag does have a required attribute that is set to true
and the value is null or a zero-length string, no other validators registered on the
tag are called. If your tag does not have a required attribute set to true, other
validators registered on the tag are called, but those validators must handle the
possibility of a null or zero-length string.

Here is the name inputText tag:

<h:inputText id="name" size="50"
value="#{cashier.name}" required="true">
...

</h:inputText>

J2EETutorial.book Page 713 Thursday, June 3, 2004 10:26 AM

714 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Using the LongRangeValidator
The Duke’s Bookstore application uses a validateLongRange tag on the quan-
tity input field of the bookshowcart.jsp page:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
<f:validateLongRange minimum="1"/>

</h:inputText>
<h:message for="quantity"/>

This tag requires that the user enter a number that is at least 1. The size attribute
specifies that the number can have no more than four digits. The validateLon-
gRange tag also has a maximum attribute, with which you can set a maximum
value of the input.

Binding Component Values and
Instances to External Data Sources

As explained in Backing Bean Management (page 656), a component tag can
wire its component’s data to a back-end data object by doing one of the following:

• Binding its component’s value to a bean property or other external data
source

• Binding its component’s instance to a bean property

A component tag’s value attribute uses a value-binding expression to bind a
component’s value to an external data source, such as a bean property. A compo-
nent tag’s binding attribute uses a value-binding expression to bind a compo-
nent instance to a bean property.

When referencing the property using the component tag’s value attribute, you
need to use the proper syntax. For example, suppose a backing bean called
MyBean has this int property:

int currentOption = null;
int getCurrentOption(){...}
void setCurrentOption(int option){...}

The value attribute that references this property must have this value-binding
expression:

"#{MyBean.currentOption}"

J2EETutorial.book Page 714 Thursday, June 3, 2004 10:26 AM

BINDING COMPONENT VALUES AND INSTANCES TO EXTERNAL DATA SOURCES 715

In addition to binding a component’s value to a bean property, the value
attribute can specify a literal value or can map the component’s data to any prim-
itive (such as int), structure (such as an array), or collection (such as a list),
independent of a JavaBeans component. Table 18–8 lists some example value-
binding expressions that you can use with the value attribute.

The next two sections explain in more detail how to use the value attribute to
bind a component’s value to a bean property or other external data sources and
how to use the binding attribute to bind a component instance to a bean property

Binding a Component Value to a
Property
To bind a component’s value to a bean property, you specify the name of the
bean and the property using the value attribute. As explained in Backing Bean
Management (page 656), the value-binding expression of the component tag’s
value attribute must match the corresponding managed bean declaration in the
application configuration resource file.

This means that the name of the bean in the value-binding expression must
match the managed-bean-name element of the managed bean declaration up to
the first . in the expression. Similarly, the part of the value-binding expression
after the . must match the name specified in the corresponding property-name
element in the application configuration resource file.

Table 18–8 Example Value-Binding Expressions

Value Expression

A Boolean cart.numberOfItems > 0

A property initialized from a
context init parameter

initParam.quantity

A bean property CashierBean.name

Value in an array books[3]

Value in a collection books["fiction"]

Property of an object in an
array of objects

books[3].price

J2EETutorial.book Page 715 Thursday, June 3, 2004 10:26 AM

716 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

For example, consider this managed bean configuration, which configures the
ImageArea bean corresponding to the North America part of the image map on
the chooselocale.jsp page of the Duke’s Bookstore application:

<managed-bean>
<managed-bean-name> NA </managed-bean-name>
<managed-bean-class> model.ImageArea </managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>poly</value>

</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>NAmerica</value>

</managed-property>
...

</managed-bean>

This example configures a bean called NA, which has several properties, one of
which is called shape.

Although the area tags on the chooselocale.jsp page do not bind to an
ImageArea property (they bind to the bean itself), to do this, you refer to the
property using a value-binding expression from the value attribute of the com-
ponent’s tag:

<h:outputText value="#{NA.shape}" />

Much of the time you will not include definitions for a managed bean’s proper-
ties when configuring it. You need to define a property and its value only when
you want the property to be initialized with a value when the bean is initialized.

If a component tag’s value attribute must refer to a property that is not initial-
ized in the managed-bean configuration, the part of the value-binding expression
after the . must match the property name as it is defined in the backing bean.

See Application Configuration Resource File (page 792) for information on how
to configure beans in the application configuration resource file.

Writing Component Properties (page 730) explains in more detail how to write
the backing bean properties for each of the component types.

J2EETutorial.book Page 716 Thursday, June 3, 2004 10:26 AM

BINDING COMPONENT VALUES AND INSTANCES TO EXTERNAL DATA SOURCES 717

Binding a Component Value to an
Implicit Object
One external data source that a value attribute can refer to is an implicit object.

The bookreceipt.jsp page of the Duke’s Bookstore application includes a ref-
erence to an implicit object from a parameter substitution tag:

<h:outputFormat title="thanks" value="#{bundle.ThankYouParm}">
<f:param value="#{sessionScope.name}"/>

</h:outputFormat>

This tag gets the name of the customer from the session scope and inserts it into
the parameterized message at the key ThankYouParm from the resource bundle.
For example, if the name of the customer is Gwen Canigetit, this tag will render:

Thank you, Gwen Canigetit, for purchasing your books from us.

The name tag on the bookcashier.jsp page has the NameChanged listener
implementation registered on it. This listener saves the customer’s name in the
session scope when the bookcashier.jsp page is submitted. See Implementing
Value-Change Listeners (page 748) for more information on how this listener
works. See Registering a ValueChangeListener on a Component (page 711) to
learn how the listener is registered on the tag.

Retrieving values from other implicit objects is done in a similar way to the
example shown in this section. Table 18–9 lists the implicit objects that a value
attribute can refer to. All of the implicit objects except for the scope objects are
read-only and therefore should not be used as a value for a UIInput component.

Table 18–9 Implicit Objects

Implicit Object What It Is

applicationScope A Map of the application scope attribute values, keyed by attribute name

cookie
A Map of the cookie values for the current request, keyed by cookie
name

facesContext The FacesContext instance for the current request

Continues

J2EETutorial.book Page 717 Thursday, June 3, 2004 10:26 AM

718 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Binding a Component Instance to a
Bean Property
A component instance can be bound to a bean property using a value-binding
expression with the binding attribute of the component’s tag. You usually bind a
component instance rather than its value to a bean property if the bean must
dynamically change the component’s attributes.

Here are two tags from the bookcashier.jsp page that bind components to
bean properties:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClubLabel"
rendered="false"
binding="#{cashier.specialOfferText}" >

header
A Map of HTTP header values for the current request, keyed by header
name

headerValues
A Map of String arrays containing all the header values for HTTP
headers in the current request, keyed by header name

initParam A Map of the context initialization parameters for this Web application

param
A Map of the request parameters for this request, keyed by parameter
name

paramValues
A Map of String arrays containing all the parameter values for
request parameters in the current request, keyed by parameter name

requestScope A Map of the request attributes for this request, keyed by attribute name

sessionScope A Map of the session attributes for this request, keyed by attribute name

view
The root UIComponent in the current component tree stored in the
FacesRequest for this request

Table 18–9 Implicit Objects (Continued)

Implicit Object What It Is

J2EETutorial.book Page 718 Thursday, June 3, 2004 10:26 AM

REFERENCING A BACKING BEAN METHOD 719

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}"

/>
</h:outputLabel>

The selectBooleanCheckbox tag renders a checkbox and binds the fanClub
UISelectBoolean component to the specialOffer property of CashierBean.
The outputLabel tag binds the component representing the checkbox’s label to
the specialOfferText property of CashierBean. If the application’s locale is
English, the outputLabel tag renders:

I'd like to join the Duke Fan Club, free with my purchase of over
$100

The rendered attributes of both tags are set to false, which prevents the check-
box and its label from being rendered. If the customer orders more than $100 (or
100 euros) worth of books and clicks the Submit button, the submit method of
CashierBean sets both components’ rendered properties to true, causing the
checkbox and its label to be rendered.

These tags use component bindings rather than value bindings because the backing
bean must dynamically set the values of the components’ rendered properties.

If the tags were to use value bindings instead of component bindings, the back-
ing bean would not have direct access to the components, and would therefore
require additional code to access the components from the FacesContext to
change the components’ rendered properties.

Writing Properties Bound to Component Instances (page 739) explains how to
write the bean properties bound to the example components and also discusses
how the submit method sets the rendered properties of the components.

Referencing a Backing Bean Method
A component tag has a set of attributes for referencing backing bean methods
that can perform certain functions for the component associated with the tag.
These attributes are summarized in Table 18–10.

Only components that implement ActionSource can use the action and
actionListener attributes. Only UIInput components or components that
extend UIInput can use the validator or valueChangeListener attributes.

J2EETutorial.book Page 719 Thursday, June 3, 2004 10:26 AM

720 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The component tag refers to a backing bean method using method-binding
expression as a value of one of the attributes. The following four sections give
examples of how to use the four different attributes.

Referencing a Method That Performs
Navigation
If your page includes a component (such as a button or hyperlink) that causes the
application to navigate to another page when the component is activated, the tag
corresponding to this component must include an action attribute. This attribute
does one of the following:

• Specifies a logical outcome String that tells the application which page to
access next

• References a backing bean method that performs some processing and
returns a logical outcome String

The bookcashier.jsp page of the Duke’s Bookstore application has a command-
Button tag that refers to a backing bean method that calculates the shipping date.
If the customer has ordered more than $100 (or 100 euros) worth of books, this
method also sets the rendered properties of some of the components to true and
returns null; otherwise it returns receipt, which causes the bookreceipt.jsp
page to display. Here is the commandButton tag from the bookcashier.jsp page:

Table 18–10 Component Tag Attributes that Reference Backing Bean Methods

Attribute Function

action
Refers to a backing bean method that performs navigation
processing for the component and returns a logical outcome
String

actionListener Refers to a backing bean method that handles ActionEvents

validator
Refers to a backing bean method that performs validation on the
component’s value

valueChangeListener
Refers to a backing bean method that handles ValueChan-
geEvents

J2EETutorial.book Page 720 Thursday, June 3, 2004 10:26 AM

REFERENCING A BACKING BEAN METHOD 721

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

The action attribute uses a method-binding expression to refer to the submit
method of CashierBean. This method will process the event fired by the compo-
nent corresponding to this tag.

Writing a Method to Handle Navigation (page 755) describes how to implement
the submit method of CashierBean.

The application architect must configure a navigation rule that determines which
page to access given the current page and the logical outcome, which is either
returned from the backing bean method or specified in the tag. See Configuring
Navigation Rules (page 805) for information on how to define navigation rules
in the application configuration resource file.

Referencing a Method That Handles an
ActionEvent
If a component on your page generates an ActionEvent, and if that event is han-
dled by a backing bean method, you refer to the method by using the compo-
nent’s actionListener attribute.

The chooselocale.jsp page of the Duke’s Bookstore application includes some
components that generate action events. One of them is the NAmerica component:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the choose-
LocaleFromLink method using a method-binding expression. The chooseLocale-
FromLink method handles the event of a user clicking on the hyperlink rendered
by this component.

The actionListener attribute can be used only with the tags of components
that implement ActionSource. These include UICommand components.

Writing a Method to Handle an ActionEvent (page 757) describes how to imple-
ment a method that handles an action event.

J2EETutorial.book Page 721 Thursday, June 3, 2004 10:26 AM

722 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Referencing a Method That Performs
Validation
If the input of one of the components on your page is validated by a backing
bean method, you refer to the method from the component’s tag using the vali-
dator attribute.

The Coffee Break application includes a method that performs validation of the
email input component on the checkoutForm.jsp page. Here is the tag corre-
sponding to this component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

This tag references the validateEmail method described in Writing a Method
to Perform Validation (page 757) using a method-binding expression.

The validator attribute can be used only with UIInput components or those
components whose classes extend UIInput.

Writing a Method to Perform Validation (page 757) describes how to implement
a method that performs validation.

Referencing a Method That Handles a
ValueChangeEvent
If you want a component on your page to generate a ValueChangeEvent and you
want that event to be handled by a backing bean method, you refer to the method
using the component’s valueChangeListener attribute.

The name component on the bookcashier.jsp page of the Duke’s Bookstore
application references a ValueChangeListener implementation that handles the
event of a user entering a name in the name input field:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

J2EETutorial.book Page 722 Thursday, June 3, 2004 10:26 AM

USING CUSTOM OBJECTS 723

For illustration, Writing a Method to Handle a Value-Change Event (page 758)
describes how to implement this listener with a backing bean method instead of
a listener implementation class. To refer to this backing bean method, the tag
uses the valueChangeListener attribute:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChangeEvent}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the pro-
cessValueChange method of CashierBean using a method-binding expression.
The processValueChange method handles the event of a user entering his name
in the input field rendered by this component.

The valueChangeListener attribute can be used only with the tags of UIInput
components and components whose classes extend UIInput.

Writing a Method to Handle a Value-Change Event (page 758) describes how to
implement a method that handles a ValueChangeEvent.

Using Custom Objects
As a page author, you might need to use custom converters, validators, or com-
ponents packaged with the application on your JSP pages.

A custom converter is applied to a component either by using the component tag’s
converter attribute or by nesting a converter tag inside the component’s tag.

A custom validator is applied to a component by nesting either a validator
tag or the validator’s custom tag inside the component’s tag.

To use a custom component, you use the custom tag associated with the
component.

As explained in Setting Up a Page (page 676), you must ensure that the TLD that
defines the custom tags is packaged in the application. TLD files are stored in the
WEB-INF directory or subdirectory of the WAR file or in the META-INF/ directory
or subdirectory of a tag library packaged in a JAR.

J2EETutorial.book Page 723 Thursday, June 3, 2004 10:26 AM

724 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

Next, you include a taglib declaration so that the page has access to the tags.
All custom objects for the Duke’s Bookstore application are defined in book-
store.tld. Here is the taglib declaration that you would include on your page
so that you can use the tags from this TLD:

<%@ taglib uri="/WEB-INF/bookstore.tld" prefix="bookstore" %>

When including the custom tag in the page, you can consult the TLD to deter-
mine which attributes the tag supports and how they are used.

The next three sections describe how to use the custom converter, validator, and
UI components included in the Duke’s Bookstore application.

Using a Custom Converter
To apply the data conversion performed by a custom converter to a particular
component’s value, you must either set the converter attribute of the compo-
nent’s tag to the Converter implementation’s identifier or set the nested con-
verter tag’s converterId attribute to the Converter implementation’s
identifier. The application architect provides this identifier when registering the
Converter with the application, as explained in Registering a Custom Converter
(page 804). Creating a Custom Converter (page 744) explains how a custom
converter is implemented.

The identifier for the CreditCardConverter is creditCardConverter. The
CreditCardConverter is registered on the ccno component, as shown in this
tag from the bookcashier.jsp page:

<h:inputText id="ccno"
size="19"
converter="CreditCardConverter"
required="true">
...

</h:inputText>

By setting the converter attribute of a component’s tag to the converter’s identi-
fier, you cause that component’s local value to be automatically converted
according to the rules specified in the Converter implementation.

A page author can use the same custom converter with any similar component by
simply supplying the Converter implementation’s identifier to the converter
attribute of the component’s tag or to the convertId attribute of the nested con-
verter tag.

J2EETutorial.book Page 724 Thursday, June 3, 2004 10:26 AM

USING CUSTOM OBJECTS 725

Using a Custom Validator
To use a custom validator in a JSP page, you must nest the validator’s custom tag
inside the tag of the component whose value you want to be validated by the cus-
tom validator.

Here is the formatValidator tag from the ccno field on the bookcashier.jsp
page of the Duke’s Bookstore application:

<h:inputText id="ccno" size="19"
...
required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|9999 9999 9999 9999|
9999-9999-9999-9999" />

</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

This tag validates the input of the ccno field against the patterns defined by the
page author in the formatPatterns attribute.

You can use the same custom validator for any similar component by simply
nesting the custom validator tag within the component tag.

Creating a Custom Validator (page 750) describes how to create the custom vali-
dator and its custom tag.

If the application developer who created the custom validator prefers to config-
ure the attributes in the Validator implementation rather than allow the page
author to configure the attributes from the page, the developer will not create a
custom tag for use with the validator.

Instead, the page author must follow these steps:

1. Nest the validator tag inside the tag of the component whose data needs
to be validated.

2. Set the validator tag’s validatorId attribute to the ID of the validator
that is defined in the application configuration resource file. Registering a
Custom Validator (page 803) explains how to define the validator in the
application configuration resource file.

J2EETutorial.book Page 725 Thursday, June 3, 2004 10:26 AM

726 USING JAVASERVER FACES TECHNOLOGY IN JSP PAGES

The following tag registers a hypothetical validator on a component using a
validator tag and referencing the ID of the validator:

<h:inputText id="name" value="#{CustomerBean.name}"
size="10" ... >

<f:validator validatorId="customValidator" />
...

</h:inputText>

Using a Custom Component
Using a custom component on a page is similar to using a custom validator,
except that custom validator tags must be nested inside component tags. In order
to use the custom component in the page, you need to declare the tag library that
defines the custom tag that render the custom component. This is explained in
Using Custom Objects (page 723).

The Duke’s Bookstore application includes a custom image map component on
the chooselocale.jsp page. This component allows you to select the locale for
the application by clicking on a region of the image map:

...
<h:graphicImage id="mapImage" url="/template/world.jpg"

alt="#{bundle.chooseLocale}"
usemap="#worldMap" />
<bookstore:map id="worldMap" current="NAmericas"

immediate="true"
action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">
<bookstore:area id="NAmerica" value="#{NA}"

onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

...
<bookstore:area id="France" value="#{fraA}"

onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

</bookstore:map>

The graphicImage tag associates an image (world.jpg) with an image map that
is referenced in the usemap attribute value.

J2EETutorial.book Page 726 Thursday, June 3, 2004 10:26 AM

USING CUSTOM OBJECTS 727

The custom map tag represents the custom component, MapComponent, specifies
the image map, and contains a set of custom area tags. Each area tag represents
a custom AreaComponent and specifies a region of the image map.

On the page, the onmouseover and onmouseout attributes define the image that
is displayed when the user performs the actions described by the attributes. The
page author defines what these images are. The custom renderer also renders an
onclick attribute.

In the rendered HTML page, the onmouseover, onmouseout, and onclick
attributes define which JavaScript code is executed when these events occur.
When the user moves the mouse over a region, the onmouseover function associ-
ated with the region displays the map with that region highlighted. When the
user moves the mouse out of a region, the onmouseout function redisplays the
original image. When the user clicks a region, the onclick function sets the
value of a hidden input tag to the ID of the selected area and submits the page.

When the custom renderer renders these attributes in HTML, it also renders the
JavaScript code. The custom renderer also renders the entire onclick attribute
rather than let the page author set it.

The custom renderer that renders the map tag also renders a hidden input com-
ponent that holds the current area. The server-side objects retrieve the value of
the hidden input field and set the locale in the FacesContext according to
which region was selected.

Chapter 20 describes the custom tags in more detail and also explains how to
create the custom image map components, renderers, and tags.

J2EETutorial.book Page 727 Thursday, June 3, 2004 10:26 AM

J2EETutorial.book Page 728 Thursday, June 3, 2004 10:26 AM

