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Abstract—There are numerous barriers to the use of scientific computing
toolsets. These barriers are becoming more apparent as we increasingly see
mixing of different academic backgrounds, and compute ranging from laptops to
cloud platforms. Members of the UC Berkeley D-Lab, Statistical Computing Fa-
cility (SCF), and Berkeley Research Computing (BRC) support such use-cases,
and have developed strategies that reduce the pain points that arise. We begin
by describing the variety of concrete training and research use-cases in which
our strategy might increase accessibility, productivity, reuse, and reproducibility.
We then introduce available tools for the “recipe-based” creation of compute
environments, attempting to demystify and provide a framework for thinking
about DevOps (along with explaining what “DevOps” means!). As a counterpoint
to novel DevOps tools, we'll also examine the success of OSGeo-Live [OSGL]
— a project that has managed to obtain and manage developer contributions
for a large number of geospatial projects. This is enabled through the use of
commonly known skills like shell scripting, and is a model of complexity that
can be managed without these more recent DevOps tools. Given our evaluation
of a variety of technologies and use-cases, we present our current strategy
for constructing the Berkeley Common Environment [BCE], along with general
recommendations for building environments for your own use-cases.

Index Terms—education, reproducibility, virtualization

Introduction

Most readers of this paper will have dealt with the challenges of
sharing or using complex compute stacks — be that in the course of
instruction, collaboration, or shipping professional software. Here,
we suggest an approach for introducing novices to new software
that reduces complexity by providing a standard reference end-
user environment. We’ll discuss approaches to building and using
a common environment from any major OS, including an overview
of the tools available to make this easier. This approach can make
it easier to provide complete and robust instructions, and make it
easier for students to follow demos.

At a university, students often need to reproduce an environ-
ment required to run the software for a course. Researchers need
to reproduce their collaborator’s workflows, or anyone’s workflow
in the name of reproducible research. Recently, a new crop of
tools-for-managing-tools has emerged under the DevOps banner
— a contraction of software development and systems operation
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— with a general philosophy that instead of merely documenting
systems operation tasks (configuration, deployment, maintenance,
etc.), that developers can and should be scripting these tasks as
much as possible.

In scientific computing the environment was commonly man-
aged via Makefiles & Unix-y hacks, or alternatively with mono-
lithic software like Matlab. More recently, centralized package
management has provided curated tools that work well together.
But as more and more essential functionality is built out across
a variety of systems and languages, the value — and also the
difficulty — of coordinating multiple tools continues to increase.
Whether we are producing research results or web services, it is
becoming increasingly essential to set up new languages, libraries,
databases, and more.

Documentation for complex software environments is stuck
between two opposing demands. To make things easier on novice
users, documentation must explain details relevant to factors like
different operating systems. Alternatively, to save time writing
and updating documentation, developers like to abstract over such
details. A DevOps approach to “documenting” an application
might consist of providing brief descriptions of various install
paths, along with scripts or “recipes” that automate setup. This can
be more enjoyable and certainly easily and robustly reproducible
for end-users — even if your setup instructions are wrong, they will
be reproducibly wrong! As we’ll describe below, many readers
will already have tools and skills to do this, in the form of package
management and basic shell scripting. In other words, the primary
shift that’s required is not one of new tooling, as most developers
already have the basic tooling they need. Rather, the needed shift
is one of philosophy.

We recognize that excellent tools have been developed to allow
for configuring Python environments, including environments that
peacefully co-exist on the same computer (e.g., pip, virtualenv,
venv, conda, and buildout). These specialized tools can increase
our efficiency and provide ready access to a broader range of
options (such as different versions or compile-time settings).
But, we may also wish to coordinate the desktop environment,
including text editors, version control systems, and so on. As such,
these tools from the Python community to manage packages and
run-time environments cannot solve all of our problems. But any
of them could be used within the broader approach we’ll describe.

More recent configuration management tools are directed at
solving this larger problem of configuring nearly any aspect of
a compute system, and yet other DevOps tools provide efficient
ways of managing environments across compute contexts. Unfor-
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tunately, the variety and complexity of tools match the variety and
complexity of the problem space, and the target space for most
of them was not scientific computing. Thus, before discussing
available tooling, we first lay out a fuller set of concerns relevant
to supporting scientific computing.

Issues for Scientific Computing

The users of computational tools (and their collaborators) are
often equipped with a suite of informally learned foundational
skills (command line usage, knowledge of specific applications,
etc.). Newcomers to a field often lack these technical skills, which
creates a boundary between those who do and do not (and perhaps
cannot) participate in that discipline. However, we are entering
an era where these boundaries are becoming barriers to the
research and educational mission of our university. Our primary
concern at present for the Berkeley Common Environment [BCE]
is educational, particularly introductory computational science
and statistics. However, where possible, we wish to build an
environment that supports the broader set of uses we outline here.

For instruction

We are entering an era where experimental philosophers want to
take courses in advanced statistics and sociologists need best-
of-breed text analysis. These students are willing to work hard,
and might sign up for the university courses meant to provide
these skills. But while the group that the course was originally
designed for (e.g., statistics or computer science students) have a
set of assumed skills that are necessary to succeed in the class,
these skills aren’t taught anywhere in the curriculum. In these
cases, instructors may spend a large amount of time addressing
installation and setup issues — taking time away from higher value
instruction. Alternatively, students with divergent backgrounds
often drop these classes with the sense that they simply can’t
obtain these skills. This is not an equitable situation.

It’s difficult, however, to write instructions that work for any
potential student. As mentioned above, students come to a course
with many possible environments (i.e., on their laptop or a server).
But if a standardized environment is provided, this task becomes
much simpler. Written instructions need fewer special cases, and
illustrations can be essentially pixel-identical to what students
should be seeing on their screen.

The most accessible instructions will only require skills pos-
sessed by the broadest number of people. In particular, many
potential students are not yet fluent with notions of package
management, scripting, or even the basic idea of command-line
interfaces [SWC]. Thus, installing an accessible solution should
require only GUI operations. The installed common environment,
then, can look and operate in a uniform way. This uniformity
can scaffold students’ use of more challenging “developer” tools.
This “uniformity of the environment in which the user is clicking”
cannot be implemented without full control of the graphical
environment, and systems that configure only a self-contained set
of libraries or computational tools cannot do this. At the other end,
it would be unreasonable to reconfigure students’ desktop on their
laptop. Thus, we wish to set up an isolated, uniform environment
in its totality where instructions can provide essentially pixel-
identical guides to what the student will see on their own screen.

For scientific collaboration

Across campus, we encounter increasing numbers of researchers
who wish to borrow techniques from other researchers. These
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researchers often come from different domains with different
standards for tools. These would-be collaborators are increasingly
moving towards open-source tools — often developed in Python
or R — which already dramatically reduces financial barriers to
collaboration.

The current situation, however, results in chaos, misery, and
the gnashing of teeth. It is common to encounter a researcher
with three or more Python distributions installed on their ma-
chine, and this user will have no idea how to manage their
command-line path, or which packages are installed where. In
particularly pathological cases, pip will install packages to an
otherwise inactive python distribution. These nascent scientific
coders will have at various points had a working system for a
particular task, and often arrive at a state in which nothing seems
to work. A standard environment can eliminate this confusion,
and if needed, isolate environments that serve different projects.
Snapshots of working systems can provide even more resilience of
the continued functioning of already running projects. And it bears
repeating that we don’t want to disrupt the already productive
environments that these researchers are using!

This issue becomes even more pronounced when researchers
attempt to reproduce published results without access to the expert
who did the initial research. It is unreasonable to expect any
researcher to develop code along with instructions on how to run
that code on any potential environment. As with the instructional
case above, an easy way to do this is to ensure others have access
to the exact environment the original researcher was working on,
and again, “pixel-identical” instructions can be provided.

For administration

At UC Berkeley, the D-Lab supports tools for courses and short
trainings. Similarly, the Statistical Computing Facility (SCF) sup-
ports an instructional lab and “cloud” resources for some courses,
and grad student assistants often provide virtual machines for
computer science courses (we’ll explain virtual machines later). In
each and every case, multiple technical challenges are common.
These technical glitches can delay or reduce the quality of in-
struction as compared to an environment that students are already
familiar with. It is also a drag on the time of those supporting the
course — time that could be better directed at course content!

The more broadly a standard environment is adopted across
campus, the more familiar it will be to all students. Using infras-
tructure for collaborative administration, technical glitches can be
tracked or resolved by a community of competent contributors,
allowing course instructors to simply use a well-polished end
product, while reducing the complexity of instructions for students
to set up course-specific software. These environments can also
be tuned in ways that would be beyond the scope of what’s
worth doing for an individual course — for example optimizations
to increase the efficiency of numeric computations or network
bandwidth for remote desktops.

At this point that our use case starts to sound like the case in
which product developers are working together to deploy software
on a production server, while maintaining a useful development
environment on their own machines, testing servers, and so on.
However, going forwards, we will suggest that novel tools for
building and managing compute environments be largely the
domain of specialized administrator-contributors to a common en-
vironment. Technically skilled students, professors and researchers
can continue to use the tools they are familiar with, such as the
Ubuntu package manager, pip, shell scripts, and so on.
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Technical challenges for a common environment

Any common environment needs to provide a base of generally
useful software, and it should be clear how it was installed and
configured. It should be equally clear how one could set up
additional software following the pattern of the “recipe” for the
environment, making it easy to share new software with other
users of the environment. More generally, we seek to address the
following challenges, though we have not definitely solved them!
After each problem, we list relevant tools, which will be described
in full in a later section.

Complex requirements

The quote at the beginning of this paper illustrates a case in which
requirements are not explicitly stated and there is an assumption
that all collaborators know how to set up the necessary environ-
ment. The number of steps or the time required is unknown, and
regularly exceeds the time available. For example, in the context of
a 1.5 hour workshop or a class with only handful of participants,
if all cannot be set up within a fixed amount of time (typically
20 minutes at most) it will jeopardize successfully completing the
workshop or class materials and will discourage participation. All
participants must be able to successfully complete the installation
with a fixed number of well-known steps across all platforms
within a fixed amount of time.

Additional difficulties arises when users are using different
versions of the “same” software. For example, Git Bash on
Windows lacks a man command. We can’t control the base
environment that users will have on their laptop or workstation,
nor do we wish to! A useful environment should provide consis-
tency and not depend on or interfere with users’ existing setup.
Relevant tools discussed below include Linux, virtual machines,
and configuration management.

Going beyond the laptop

Laptops are widely used across the research and teaching space
and in our experience it is reasonable to assume most individuals
will have at least a 64-bit laptop with 4GB of RAM. Such a laptop
is sufficient for many tasks, however the algorithms or size of
in-memory data may exceed the available memory of this unit-
of-compute and the participant may need to migrate to another
compute resource such as a powerful workstation with 128GB of
RAM (even the most advanced laptops typically max-out at 16GB
at the time of this writing). Thus, an environment should not be
restricted to personal computers. Across systems, a user should
be able to to replicate the data processing, transformations, and
analysis steps they ran on their laptop in this new environment, but
with better performance. Relevant tools discussed below include
Packer and Docker.

Managing cost / maximizing value

Imagine you have the grant money to buy a large workstation with
lots of memory and many processors, but you may only need that
resource for a 1 to 2 week period of time. Spending your money
on a resource that remains unused 95% of the time is a waste
of your grant money! A homogeneous, familiar environment can
enable easier usage of the public cloud. A private cloud approach
to managing owned resources can also allow more researchers to
get value out of those resources. This is a critical enabler to allow
us to serve less well-funded researchers. In addition, more recent
technologies can avoid exclusively reserving system resources for

Goal

Make Linux available as a
VM (regardless of host OS)

Relevant tools

Local VM tool or public cloud (e.g.,
VirtualBox or Amazon EC2 — choose
something supported by Packer)

Apply configurations in a re-
peatable fashion

Scripting, package managers (e.g., apt,
pip), configuration management (e.g.,

Ansible)
Generate OS image for mul-  Packer
tiple platforms
Enable light-weight cus-  Docker, LXC

tom environment (instead of
heavy-weight virtualization)

TABLE 1: Recommended automation tools for our use-cases.

a single environment. Relevant tools discussed below are Packer,
Docker (and LXC), and cloud-based virtual machines.

Existing Tools

As discussed above, the problems outlined above are not unique
to scientific computing. Developers and administrators have pro-
duced a variety of tools that make it easier to ensure consistent
environments across all kinds of infrastructure, ranging from a
slice of your personal laptop, to a dynamically provisioned slice of
your hybrid public/private cloud. We cannot cover the breadth of
tooling available here, and so we will restrict ourselves to focusing
on those tools that we’ve found useful to automate the steps that
come before you start doing science. We’ll also discuss popular
tools we’ve found to add more complexity for our use-cases than
they eliminate. Table 1 provides an overview from the perspective
of the DevOps engineer (i.e., contributor, maintainer, you, etc.).

Linux OS (Operating System)

A foundational tool for our approach is the Linux operating sys-
tem. It is far easier to standardize on a single OS instead of trying
to manage cross-platform support. It is relatively easy to install
(or build) scientific code and DevOps tools on Linux. Moreover,
Linux is not encumbered by licensing constraints, which reduces
barriers to collaboration, distribution, and reuse. This choice of
a single target OS is a primary reason to use virtual machines
(described below) because most people don’t use Linux as their
primary laptop OS.

Virtual machines (VMs)

Virtual machine (VM) software enables running another OS (in
BCE, Ubuntu server with XFCE installed) as a guest OS inside the
host OS — often Mac OS or Windows. If a system is not virtualized
(for example, the host OS), it is said to be running on “bare metal.”
For BCE, we have focused on VirtualBox and VMware (the former
of which is free) as they both run on Windows, Mac OS, and
Linux. Cloud providers like EC2 only provide virtual machines
(there is no access to “bare metal”), and similar concepts apply
across local and cloud virtual systems. A notable distinction is
that web tools are often available for cloud services, as opposed
to a local GUI tool for systems like VirtualBox. Both kinds of
services provide command-line tools that can perform a superset
of the tasks possible with graphical interfaces.

For some users, a VM simply will not run locally, generally
because they have a very old operating system or computer.
Thus, one should assume that any VM solution will not work
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for some individuals and provide a fallback solution (particularly
for instructional environments) on a remote server. In this case,
remote desktop software may be necessary, or in the case of
BCE, we are able to enable all essential functionality via a web
browser using IPython notebooks. RStudio server would provide a
similar approach to sidestepping the need for a full remote desktop
session.

One concern is that VMs reserve compute resources exclu-
sively. Some approaches, however, allow for more elastic usage of
resources, most notably with LXC-like solutions, discussed in the
Docker section below. Another issue that can arise is dealing with
mappings between host and guest OS, which vary from system
to system — arguing for the utility of an abstraction layer for
VM configuration like Vagrant or Packer (discussed below). This
includes things like port-mapping, shared files, enabling control
of the display for a GUI vs. enabling network routing for remote
operation. These settings may also interact with the way the
guest OS is configured. Specifically with BCE we noticed that
some desktop environments interacted poorly with VirtualBox (for
example, LXDE did not handle resize events properly).

Note that if you are already running Linux on “bare metal”, it’s
still useful to run a virtualized Linux guest OS. The BCE model
relies on a well-known, curated set of dependencies and default
configurations. To ensure that it is possible to consistently and
reliably manage those elements no matter what flavor, variant, or
version of Linux you may be running as the host OS. However, we
have intentionally made choices that allow an informed developer
set up a partial environment that matches BCE. For example,
python requirements are installed with pip using a requirements
file. This makes it easy to set up a virtualenv or conda environment
with those packages.

The easiest way to use a VM is to use a pre-existing image
— a file that contains all relevant data and metadata about an
environment (described more fully at [images]). It’s very easy to
make modifications to an environment and make a new image
by taking a snapshot. Note that while both local and cloud-based
VM systems often allow for easy snapshotting, it may be hard
to capture exactly how changes happened — especially changes
and configuration that was made “by hand.” So, snapshots are
not necessarily a good solution for reproducibility. You can also
install an OS to a virtual image in essentially the same manner
you would install it to bare metal. The primary difference is that
you need to use specialized VM software to start this process. For
example, you can do this directly in VirtualBox simply by clicking
the “New” button, and you’ll be guided through all of the steps.
There are more automated ways, however, and we discuss these
below.

Configuration management and automated image creation
Creating an image or environment is often called provisioning.
The way this was done in traditional systems operation was
interactively, perhaps using a hybrid of GUI, networked, and
command-line tools. The DevOps philosophy encourages that we
accomplish as much as possible with scripts (ideally checked into
version control!). Most readers of this paper will already be able
to create a list of shell commands in a file and execute it as a
script. So, if you already know how to execute commands at the
Bash prompt to configure Linux, this can do most of the system
setup for you.

Package managers in particular provide high-level commands
to install and configure packages. Currently, we use a combination
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of apt, pip, and shell scripts. We also evaluated conda and found
that it introduced additional complexity. For example, it is still
hard to install a list of pip requirements with conda if some pack-
ages are not available for conda. Most package authors currently
make their packages available, however, for pip. Standard apt
packages were also adequate for things like databases, and ideal
for the desktop environment, where we could reap the benefit of
the careful work that went into the LTS Ubuntu distribution.

Some steps may even be done manually. As we explored
managing the complexity and reducing the number of tools for
the BCE development process, one of the steps in the “recipe” was
manual installation of Ubuntu from an ISO. It is straightforward to
make a binary image from a snapshot immediately after creating
a base image, so this initial step could be done once by a careful
individual.

Ultimately, however, we decided it was better to automate
installation from an ISO, which is enabled by the Debian Installer
[UDI], a system that allows a text file to specify answers to
the standard configuration prompts at install-time, in addition to
providing many more possibilities. You can find the BCE configu-
ration file for the debian-installer in the provisioning/http
directory. Later, we’ll discuss how we’re coordinating all of the
above using Packer.

Ansible and related tools

Ansible is one of a number of recent DevOps tools for con-
figuration management [Ansible]. These tools enable automated
management of customizations to the default status and configu-
ration of software. They are purpose-built domain-specific tools
that can replace the scripting approach described above. Such
systems provide checks and guarantees for applying changes that
would be hard to write as shell scripts alone — just as a makefile
handles builds more gracefully than a shell script. This approach
manages configuration complexity as an environment grows in
feature complexity. It may also allow an end-user to manage and
reliably apply personal customizations across multiple versions
of an environment over time. For BCE development, we felt
Ansible added the least complexity amongst comparable tools.
It may be used at build-time and also at run-time within the guest
OS, or from any other location with SSH access to the target
being configured. The only requirements for the target are an
SSH server and a Python interpreter (Ansible is Python-based).
Ansible execution is also more linear than some systems, which is
a limitation, but also a simplification.

At this phase, however, the complexity of BCE doesn’t warrant
contributors learning even a simple configuration management
tool. The maintainer of the Software Carpentry VM, Matt Davis,
has reported a similar observation. He has used another tool,
Puppet, to provision the Software Carpentry VM, but will likely
use shell scripts in the future. And as we will see below from the
OSGeo project, it is perhaps easier to coordinate certain kinds of
complexity with more commonly known tools like shell scripting.

While the syntax for each tool varies, the general concept is
the same — one describes the desired machine state with a tool-
specific language. After execution of this recipe — if you did a
good job — the machine state is guaranteed to be how you’ve
requested it to be. Unfortunately, all DevOps tools call their
recipes something different. While the process certainly seems
more like baking than, say, coaching a football team, Ansible calls
its scripts “playbooks.” Alternate tools with similar functionality
are Chef (which, unsurprisingly does call its scripts “recipes”),
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Salt (also Python-based, and uses ‘“‘states”), and Puppet (which
uses “manifests”). With any of these, a great way to start learning
would be to translate an existing configuration shell script into one
of these tools.

Packer

Packer is used at build-time and enables creating identical ma-
chine images targeting multiple machine image formats [Packer].
For example, we generate a (mostly) uniformly configured BCE
machine image in multiple formats including OVF for VirtualBox
and AMI for AWS EC2. Packer coordinates many of the tools
described above and below based on a JSON configuration file.
This file specifies the Ubuntu ISO to install, a Debian Installer
configuration file (which gets served over HTTP), and configures
the installed OS by copying files and running a shell script. Packer
can also readily use Ansible, Puppet, Chef, or Salt (and has a
plugin system if you want to use something more exotic). Images
can be built for many popular platforms, including a variety of
local and cloud-based providers.

Packer made it possible for us to learn a relatively simple tool
that executes the entire image-creation process as a single logical
operation. Moreover, end users need have no knowledge of Packer.
They can use the Amazon web console or the VirtualBox GUI with
no concerns for the complexity at build time.

It is worth noting that while indexes are available for a variety
of images (e.g, vagrantbox.es, the Docker index, and Amazon’s
list of AMIs), we have encountered surprisingly little effort to
publish consistent environment that allows one to readily migrate
between platforms. This is, however, precisely the goal of BCE,
and it’s enabled by Packer.

Vagrant

Vagrant is a run-time component that needs to be installed on the
host OS of the end user’s laptop [Vagrant]. Like Packer, it is a
wrapper around virtualization software that automates the process
of configuring and starting a VM from a special Vagrant box image
(Vagrant boxes may be created with any of the above tools). It is
an alternative to configuring the virtualization software using the
GUI interface or the system-specific command line tools provided
by systems like VirtualBox or Amazon. Instead, Vagrant looks for
a Vagrantfile which defines the configuration, and also establishes
the directory under which the vagrant command will connect to
the relevant VM. This directory is, by default, synced to the guest
VM, allowing the developer to edit the files with tools on their
host OS. From the command-line (under this directory), the user
can start, stop, or ssh into the Vagrant-managed VM. It should
be noted that (again, like Packer) Vagrant does no work directly,
but rather calls out to those other platform-specific command-line
tools.

The initial impetus for the BCE project came from a Vagrant-
based project called “jiffylab” [jl]. With a single command, this
project launches a VM in VirtualBox or on various cloud services.
This VM provides isolated shell and IPython notebook through
your web browser. But while Vagrant is conceptually very elegant
(and cool), we are not currently using it for BCE. In our evaluation,
it introduced another piece of software, requiring command-line
usage before students were comfortable with it. Should a use-
case arise, however, it would be trivial to create a ‘“‘vagrant
box” (a Vagrant-tuned virtual image) with our current approach
using Packer. That said, other “data-science” oriented VMs have
chosen Vagrant as their method of distribution [DSTb], [DSTk].

Currently, Vagrant is most useful for experienced developers to
share environments with each other.

Docker

Docker is a platform to build, distribute, and run images built on
top of Linux Containers (LXC) which provides a lightweight style
of virtualization called containerization [Docker]. An important
distinction of LXC-based containerization is that the guest OS
and the host OS both run the same underlying Linux kernel.

At run-time Docker adds to this containerization a collection
of tools to manage configuring and starting an instance in much
the same way that Vagrant does for a virtualization environment.
Images are created using a simple build script called a Dockerfile
which usually runs a series of shell script commands which might
even invoke a configuration management system such as Ansible.

Another feature of the platform is the management and dis-
tribution of the images built by docker, including incremental
differences between images. Docker makes it possible (albeit in a
rudimentary way) to track changes to the binary image in a manner
similar to the way git allows you to track changes to source code.
This also includes the ability to efficiently maintain and distribute
multiple branches of binary images that may be derived from a
common root.

Docker is also more than just a tool. It is a quickly growing
community of open source and industry developers with a rapidly
evolving ecosystem of tools built on core OS primitives. There
is no clear set of best practices, and those that emerge are not
likely to fit all the use cases of the academic community without
us being involved in mapping the tools to our needs. However,
providing better access to hardware with containers is an important
and active research topic for performance [HPC].

Currently, Docker requires a Linux environment to host the
Docker server. As such, it clearly adds additional complexity on
top of the requirement to support a virtual machine. We also
evaluated Docker as a way to potentially provide around 30
students access to a VM on a reasonably powered server with only
16GB of RAM. However, in our use-cases, we have full control of
our Linux compute environment and existing methods of isolating
users with permissions was less complex than using Docker, and
of course allowed users to efficiently share all available physical
RAM. Moreover, the default method of deploying Docker (at
the time of evaluation) on personal computers was with Vagrant.
This approach would then also add the complexity of using
Vagrant. However, recent advances with boot2docker provide
something akin to a VirtualBox-only, Docker-specific replacement
for Vagrant that eliminates some of this complexity, though one
still needs to grapple with the cognitive load of nested virtual
environments and tooling.

0OSGeo-Live: A Successful Common Environment

The OSGeo-Live VM is an example of a comprehensive geospatial
compute environment with a vibrant community process. It pro-
vides a successful example of solving the problems of complex
requirements described above — or in this case, perhaps more
properly called “dependency hell”. Notably, the project uses none
of the recent DevOps tools. OSGeo-Live is instead configured
using simple and modular combinations of Python, Perl and
shell scripts, along with clear install conventions and examples.
Documentation is given high priority.

The VM project began around the same time as, and ulti-
mately joined the Open Source Geospatial Foundation (OSGeo),
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an international body modeled on the Apache Foundation [2g]. It
started as a smaller open project that sought to build an “easy to
try and use” software environment for spatial data applications.
Initial efforts consisted of shell scripts to install core geospatial
packages. These examples provided guides to the projects that
were invited and ultimately contributed packages to the project.
Many of these later contributors spoke English as a second lan-
guage, further highlighting the importance of clear, working code
examples. OSGeo-Live is not the only attempt at building such
an environment, but it is a highly successful one. More than fifty
open-source projects now contribute by actively maintaining and
improving their own install scripts, examples and documentation.

Tool Sets

OSGeo-Live itself is not a “Linux distribution” per se, rather
it relies on an apt-based ecosystem to handle the heavy-lifting
of system updates and upgrades. This is a win, as updates are
proven reliable over a very large Ubuntu community process, and
project participants can concentrate on adding value to its featured
components. Given the component architecture used to build the
VM, individual software projects can be installed as-needed on a
generic apt-enabled base.

A key component of the success of the overall project has been
the availability of widely-known and reliable tools. Rather than
require .deb installation packages for each project, OSGeo-Live
chose to use a simple install script format, with ample examples.
This choice proved crucial in the earliest stages, as an outside
open-source project evaluating participation in the Live ISO could
get started with fewer barriers to entry. Participating open-source
projects already had install scripts built for Linux, so they could
almost immediately adapt and iterate their own install scripts in
a straightforward way, with the flexibility to use the tools they
were already using, such as shell, Perl, or Python. Scripts may
call package managers, and generally have few constraints (apart
from conventions like keeping recipes contained to a particular di-
rectory). The project also maintains packages that support broader
kinds of packages, such as web-based applications. In this case,
OSGeo-Live provides a standard configuration for Apache, WSGI,
and other components, along with a standard layout for projects
that rely on this core. As a result, there is very little conflict
among packages that share common resources. Some concerns,
like port number usage, have to be explicitly managed at a global
level. But the overhead of getting 50 projects to adopt a uniform
configuration management tool would likely be much greater.

All recipes are currently maintained in a common subversion
repository, using standardized asset hierarchies, including instal-
lation scripts [6g]. An OSGeo-Live specific report is maintained
on the project trac ticketing system [10g]. And while OSGeo-
Live primarily targets a live/bootable ISO, the scripts that are used
to build that ISO provide a straightforward method for building
OSGeo software in other contexts.

Community Awareness

The initial stages of the adoption of new technology include
initial awareness and trialability [4g]. OSGeo-Live intentionally
incorporates targeted outreach, professional graphic design and
“easy to try” structure to build participation from both developers
and end-users. An original project design goal was to provide
tools to those doing geospatial fieldwork with limited resources
around the globe, and who often lack advanced programming
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and administration skills. In other words, a community was built
around tools that the desired members already had.

Several years into the project, with a grant from the Australian
government, a professional-level documentation project was ini-
tiated for a single-page overview and quick-start instructions
for each application. Language internationalization was rendered
more efficient, specifically to support local field work. Much later,
a “percentage complete” graph for each human language group
was added, making translation into a sort of competitive game.
This translation has proven very successful. The project has facil-
itated collaboration across developer communities. For example,
we have seen productive application of software developed by the
U.S. military to environmental applications [Army].

Steps to Contribute

All build scripts are organized in the open, in source control
[6g]. A new contributors FAQ is maintained via wiki [7g] for
software projects, and for translation [8g]. At its core, the OSGeo-
Live project uses common skills for system administration as
opposed to more recent DevOps available, but it very much adopts
a DevOps philosophy. Contributors pay particular attention to
documenting each and every step, and standard approaches are
encouraged across the project. Gamification also played a role
in spurring useful documentation contributions. The low barrier
to entry (allowing contributing projects to use skills they likely
already have), combined with guidelines to ensure interoperability
have led to OSGeo-Live becoming a standard way to evaluate and
install software in the geospatial community.

BCE: The Berkeley Common Environment

The overarching, aspirational goal for the Berkeley Common
Environment (BCE) is to make it easy to do the “right” thing (or
hard to do “wrong” things), where “right” means you’ve managed
to use someone else’s code in the manner that was intended. In
particular, it allows for targeted instructions that can assume all
features of BCE are present. BCE also aims to be stable, reliable,
and reduce complexity more than it increases it.

More prosaically, to be useful in the cases described above,
BCE provides simple things like a standard GUI text editor, and
a command-line editor for when a GUI is not available. BCE pre-
configures applications with sensible defaults (e.g., spaces for tab-
stops are set up for nano). It also enables idiosyncratic features
on different VM platforms, for example, enabling simple access to
shared folders in VirtualBox and ensuring NFS functions properly
on Amazon EC2. The environment is also configured to make
minimal demands on underlying resources. For example, the BCE
desktop is a solid color to minimize network utilization for remote
desktop sessions, and efficient numerics libraries are configured.

BCE provides ready-made images for end-users, and the
“recipe” for setting up the image using Packer is maintained on
GitHub. Lists of Python packages are maintained in a separate
requirements file, and all setup is done via a master Bash script.
It is currently common for individuals to only distribute scripts,
which requires all potential users to install and configure the
relevant stack of DevOps tools. There are, however, free services
for distributing images for particular tools (e.g., the Docker index),
and services like Amazon can host AMIs for pennies a month.
(For example, building on a free, existing EBS-backed AMI, one
need only save a snapshot, with charges only for changes from
the base AMI. One GB of extra tools onto a standard EBS-backed
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Fig. 1: The Berkeley Common Environment running in VirtualBox on
OS X. The interface (and opportunities for confusion) are minimized.
For example, all users have the same text editor available, and in
particular, it’s easy to configure common gotchas like spaces for tabs.

Ubuntu server AMI, currently costs <$0.1 / GB-month to store.)
We strongly recommend distributing a binary along with the recipe
for any environment that includes novices in its audience.

Using the BCE

You can see what BCE currently looks like (in a relatively small
window) in Figure 1. Throughout various iterations, students have
found working on a BCE VM to be confusing and counterproduc-
tive to being incredibly useful and efficient — strong evidence that
the details matter. It seems critical both to provide a rationale for
the use of VMs (i.e., explaining how a standard, “pixel-identical”
environment speeds instruction), and also a smooth initial ex-
perience. Thus, we’ve worked to make BCE easy for students,
researchers, and instructors. Simple instructions are provided on
our site for things like opening a terminal (including a description
of what the terminal icon looks like). However, for an experienced
programmer, the environment should be obvious to navigate.

In our experience, some students will not be able to run the
VM while others have difficulty getting regular access to a stable
network connection (though fortunately, almost never both!). So,
consistency across server and local versions of the environment
is critical to effectively support students with either of these
difficulties.

If you’re using VirtualBox, we require a 64-bit CPU with
support for 64-bit virtualization (note that some 32-bit operating
systems will support this on some hardware). A reasonable min-
imum of RAM is 4GB. The full instructions for importing BCE
from an OVA image into Virtualbox are available on our project
website [BCEVB]. After starting the VM — a process that can be
done entirely with the mouse — a user will have all the software
installed as part of BCE, including IPython, RStudio, and useful
packages.

If you’re using BCE on EC2, even a micro instance is suf-
ficient for basic tasks. Again, complete instructions are provided
on the BCE website [BCEAMI]. In brief, you can find our image
(AMD) in the public list. You can readily launch in instance, and
get instructions on connecting via the EC2 console.

Communicating with the maintainers of the BCE project

All development occurs in the open in our GitHub repository. This
repository currently also hosts the project website, with links to all
BCE materials. We provide channels for communication on bugs,
desired features, and the like via the repository and a mailing
list (also linked from the project page), or if a user is comfortable
with it, via the GitHub issue tracker. BCE will be clearly versioned
for each semester, and versions will not be modified, except for
potential bugfix releases.

Contributing to the BCE project

BCE provides a fully scripted (thus, reproducible) workflow that
creates the standard VM/image. If the appropriate software is
installed, the recipe should run reliably. However, you should
generally not need to build the binary VM for BCE for a given
semester. If you wish to customize or extend BCE, the best way
to do this is by simply writing a shell script that will install
requirements properly in the context of BCE (for a complex
example, see our bootstrap-bce. sh script [boot]). Much as
with OSGeo-Live, we have chosen our approach to provisioning
to be relatively simple for users to understand. It is our goal for
instructors or domain experts to be able to easily extend the recipe
for building BCE VMs or images. If not, that’s a bug!

As described above, while we have experimented with Docker,
Vagrant, and Ansible for setting up the various BCE images (and
evaluated even more tools), the only foundationally useful tool
for our current set of problems has been Packer. Packer runs a
shell script that uses standard installation mechanisms like pip
and apt-get to complete the setup of our environment. Of
central importance, Packer does not require end-users to install or
understand any of the current crop of DevOps tools — it operates
solely at build time. However, should the need arise, Packer will
readily target Vagrant, Docker, and many other targets, and we are
not opposed to adopting other tooling.

Conclusion

By merely using recent DevOps tools, you arrive at the cutting
edge of DevOps for the scientific community. Your collaborators
and students likely won’t have needed concepts, so extra care
should be taken to make your tooling accessible. Where appro-
priate, use tools that your collaborators already know — shell,
scripting, package management, etc. That said, technologies that
allow efficient usage of available hardware, like Docker, stand to
provide substantial savings and potential for re-use by researchers
with less direct access to capital.

So, let’s be intentional about creating and using environments
that are broadly accessible. Let’s follow the DevOps philosophy of
being transparent and explicit about our choices and assumptions.
That doesn’t have to mean “using the latest tools” — a simple text
file or even a PDF can provide ample explanation that a human
can understand, along with a simple reference script (in shell or
Python). In this paper, we’ve made fairly strong recommendations
based on what we are actually using (we are eating our own
dogfood!). A novice user can access BCE using only a few GUI
operations on their laptop, or the Amazon Web Console. As we’ve
seen with OSGeo-Live, the simple tools we’ve chosen make it easy
for our collaborators (instructors or researchers) to understand.
This standard reference allows us to return focus on the interesting
bits of developing code and doing science.



BCE currently provides a standard reference, built with an
easily understood recipe, that eliminates the complexity of de-
scribing how to run a large variety of projects across a wide
variety of platforms. We can now target our instruction to a single
platform. The environment is easy to deploy, and should provide
identical results across any base platform — if this is not the case,
it’s a bug! This environment is already available on VirtualBox
and Amazon EC2, and is straightforward to provision for other
environments. We welcome loose collaboration in the form of
forks that are specialized for other institutions, and eventually,
perhaps standardizing across institutions.
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