38

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Python Coding of Geospatial Processing in
Web-based Mapping Applications

James A. Kuiper™*, Andrew J. Ayers*, Michael E. Holm*, Michael J. Nowak*

Abstract—Python has powerful capabilities for coding elements of Web-based
mapping applications. This paper highlights examples of analytical geospatial
processing services that we have implemented for several Open Source-based
development projects, including the Eastern Interconnection States’ Planning
Council (EISPC) Energy Zones Mapping Tool (http://eispctools.anl.gov), the
Solar Energy Environmental Mapper (http:/solarmapper.anl.gov), and the Eco-
logical Risk Calculator (http://bogi.evs.anl.gov/erc/portal). We used common
Open Source tools such as GeoServer, PostGIS, GeoExt, and OpenLayers for
the basic Web-based portal, then added custom analytical tools to support more
advanced functionality. The analytical processes were implemented as Web
Processing Services (WPSs) running on PyWPS, a Python implementation of
the Open Geospatial Consortium (OGC) WPS. For report tools, areas drawn by
the user in the map interface are submitted to a service that utilizes the spatial
extensions of PostGIS to generate buffers for use in querying and analyzing
the underlying data. Python code then post-processes the results and outputs
JavaScript Object Notation (JSON)-formatted data for rendering. We made
use of PyWPS'’s integration with the Geographic Resources Analysis Support
System (GRASS) to implement flexible, user-adjustable suitability models for
several renewable energy generation technologies. In this paper, we provide
details about the processing methods we used within these project examples.

Index Terms—GIS, web-based mapping, PyWPS, PostGIS, GRASS, spatial
modeling

BACKGROUND AND INTRODUCTION

Web-based mapping applications are effective in providing simple
and accessible interfaces for geospatial information, and often in-
clude large spatial databases and advanced analytical capabilities.
Perhaps the most familiar is Google Maps [Ggl] which provides
access to terabytes of maps, aerial imagery, street address data,
and point-to-point routing capabilities. Descriptions are included
herein of several Web-based applications that focus on energy and
environmental data and how their back-end geoprocessing services
were built with Python.

The Eastern Interconnection States’ Planning Council (EISPC)
Energy Zones Mapping Tool (EZMT) [Ezmt] was developed
primarily to facilitate identification of potential energy zones or
areas of high resource concentration for nine different low- or no-
carbon energy resources, spanning more than 30 grid-scale energy
generation technologies. The geographic scope is the Eastern
Interconnection (EI), the electrical grid that serves the eastern

% Corresponding author: jkuiper @anl.gov
Argonne National Laboratory

Copyright © 2014 James A. Kuiper et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

United States and parts of Canada. The EZMT includes more
than 250 map layers, a flexible suitability modeling capability with
more than 35 pre-configured models and 65 input modeling layers,
and 19 reports that can be run for user-specified areas within the
EI. More background about the project is available from [Arg13].

Solar Energy Environmental Mapper (Solar Mapper) [Sol]
provides interactive mapping data on utility-scale solar energy
resources and related siting factors in the six southwestern states
studied in the Solar Energy Development Programmatic Envi-
ronmental Impact Statement [DOI12]. The application was first
launched in December 2010, and a version that has been reengi-
neered with open-source components is scheduled for launch in
June 2014. Solar Mapper supports identification and screening-
level analyses of potential conflicts between development and
environmental resources, and is designed primarily for use by
regulating agencies, project planners, and public stakeholders.
More details about Solar Mapper can be found in [Sol13].

The Ecological Risk Calculator (ERC) [Erc] estimates risk in
individual watersheds in the western United States to federally
listed threatened and endangered species, and their designated crit-
ical habitats from energy-related surface and groundwater with-
drawals. The approach takes into account several biogeographical
characteristics of watersheds including occupancy, distribution,
and imperilment of species, and their sensitivity to impacts from
water withdrawals, as well as geophysical characteristics of wa-
tersheds known to include designated critical habitats for species
of concern. The ERC is intended to help project planners identify
potential levels of conflicts related to listed species (and thus the
associated regulatory requirements), and is intended to be used as
a preliminary screening tool.

Each of these Web-based mapping applications includes both
vector (geographic data stored using coordinates) and raster (ge-
ographic data stored as a matrix of equally sized cells) spatial
data stored in a relational database. For each application, Python
was used to add one or more custom geoprocessing, modeling, or
reporting services. The following section provides background on
the software environment used, followed by specific examples of
code with a discussion about the unique details in each.

One of the distinctive elements of geographic data manage-
ment and processing is the need for coordinate reference systems
and coordinate transformations (projections), which are needed
to represent areas on the earth’s oblate spheroid shape as pla-
nar maps and to manage data in Cartesian coordinate systems.
These references appear in the code examples as "3857," the
European Petroleum Survey Group (EPSG) Spatial Reference ID
(SRID) reference for WGS84 Web Mercator (Auxiliary Sphere)

http://eispctools.anl.gov
http://solarmapper.anl.gov
http://bogi.evs.anl.gov/erc/portal
mailto:jkuiper@anl.gov

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS 39

and "102003," the USA Contiguous Albers Equal Area Conic
projection commonly used for multi-state and national maps
of the United States. These standardized EPSG definitions are
now maintained by the International Association of Oil & Gas
Producers (OGP) Surveying & Positioning Committee [OGP].

The Web Mercator projection has poor properties for many
elements of mapping and navigation [NGA] but is used for
most current Web-based mapping applications because of the
wide availability of high-quality base maps in the Web Mercator
projection from providers such as Google Maps. In the Solar Map-
per project, we compared area computations in the southwestern
United States using Web Mercator against the Albers Equal Area
projection and found very large discrepancies in the results (Table
1).

The distortion inherent in world-scale Mercator projections
is easily seen by the horizontal expansion of features, which in-
creases dramatically in the higher northern and southern latitudes.
In each of our projects, we chose to store local geographic data in
Web Mercator to match the base maps and increase performance.
However, for geographic processing such as generating buffers and
computing lengths and areas, we first convert coordinates to the
Albers Equal Area projection to take advantage of the improved
properties of that projection.

SOFTWARE ENVIRONMENT

Each of these systems was built with a multi-tier architecture
composed of a Javascript/HTML (hypertext markup language)
interface built on Bootstrap [Btsrp], OpenLayers [OpLyr], and
ExtJS [Sen]; a Web application tier built on Ruby on Rails [RoR];
a mapping tier implemented with GeoServer [Gsrvr]; a persistence
tier implemented with PostGIS [PGIS]; and an analysis tier built
on Python, PyWPS [PyWPS], GRASS [GRASS], and the spatial
analysis functionality of PostGIS. These systems are deployed on
Ubuntu [Ub] virtual machines running in a private VMware [VM]
cloud. The Python-orchestrated analysis tier is the focus of this
paper.

Many of the examples show geospatial operations using
PostGIS. PostGIS extends the functionality of PostgreSQL for
raster and vector spatial data with a robust library of functions.
We found it to be well documented, reliable, and the "footprint
analysis" tools we describe in the examples run significantly faster
than similar tools we had previously developed with a popular
commerical GIS framework.

EXAMPLES

One of the primary capabilities of each of our Web applications
was using an area selected or drawn by the user for analysis (a
"footprint"); collecting vector and raster data inside, intersecting,
or near the footprint; and compiling it in a report. The first example
shows the steps followed through the whole process, including the
user interface, and later examples concentrate on refinements of
the Python-coded steps.

Full Process for Footprint Analysis of Power Plant Locations
Stored as Point Features

This example is from the EZMT and illustrates part of its Power
Plant report. The user draws an area of interest over the map
(Figure 1) and specifies other report parameters (Figure 2). The
"Launch Report" button submits a request to the Web application

I London 9 ' Ay p \"RSN b -

I- . 2 ' "i‘..l-"l ©

3 .- "5“*““* i e i ‘
C@ Ko Win Il

.--.-sﬂ_\l . -I e..rl/'a\.g E e T

; ‘ cm. NAW [T N

qFayitgwf

’ ' 1 i Nee | 2~
: | E = O aWHmingt
|Q n“""w = c!uﬁ}m larence g’ glo
ﬁ'ﬁ ShuTH 'iﬁ‘?mqﬂ*h
WEasel " GARCH INA oy

Fig. 1: EZMT Interface View of User-Specified Analysis Area and
Power Plant Points

]Q, Report Run Launcher ®
Report: Power Plants >
Region
Type: Analysis Area w
Area: Example Area b
Parameters

Buffer Zone 1 {mi): 25
Buffer Zone 2 (mi): 50

Run Mame: Power Plants Report

Motes:

Launch Report|

Fig. 2: EZMT Interface View of the Report Run Launcher

server to schedule, launch, track, and manage the report’s execu-
tion.

The Web application initiates the report run by making a
WPS request to the service, which is implemented in PyWPS.
The request is an XML (extensible markup language) document
describing the WPS "Execute" operation and is submitted via a
hypertext transfer protocol (HTTP) POST. PyWPS receives this
POST request, performs some basic validation and preprocessing,
and routes the request to the custom WPSProcess implemen-
tation for that request. PyWPS then prepares the HTTP response
and returns it to the application server. The code below illustrates
the major steps used to generate the data for the report.

We use the psycopg?2 library to interact with the database,
including leveraging the geographic information system (GIS)
capabilities of PostGIS.

Import PostgresSQL 1ib for

import psycopg2

brary database queries

The user-specified footprint corresponding to Figure 1 is hard-
coded in this example with Web Mercator coordinates specified in
meters and using the Well-Known Text (WKT) format.

Footprint specified in WKT with web Mercator
coordinates
fp_webmerc = "POLYGON ((-9152998.67 4312042.45,

-8866818.44 4319380.41,-8866818.44 4099241.77,

40

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Area (square miles)

Projection - -

Large Horizontal Area | Large Vertical Area | Smaller Square Area
Albers Equal Area 7,498.7 10,847.3 35.8
Web Mercator 13,410.0 18,2714 63.0
Difference 5911.3 7,424.1 27.2
Percent Difference 44% 41% 43%

TABLE 1: Comparison of Area Computations between the Web Mercator Projection and the Albers Equal Area Projection in the Southwestern

United States

-9143214.73 4101687.75,-9152998.67 4312042.45))"
Input GIS data
layer="power_plant_platts_existing"

A database connection is then established, and a cursor is created.

Make database connection and cursor

conn = psycopg?2.connect (host=pg_host,
database=pg_database, user=pg_user,
password=pg_password)

cur = self.conn () .cursor()

Structured Query Language (SQL) is used to (1) convert the

Web Mercator footprint to the Albers Equal Area projection, (2)

generate a buffer around the Albers version of the footprint, and

(3) convert that buffer back to Web Mercator. In these sections,

ST_GeomFromText converts WKT to binary geometry, and

ST_AsText converts binary geometry back to WKT. Because

WKT does not store projection information, it is given as a

parameter in ST_GeomFromText.

Convert web Mercator

footprint to Albers projection

(equal area)

sgl = "SELECT ST_AsText (ST_Transform("+
"ST_GeomFromText ('"+fp_webmerc+
"', 3857), 102003))"

cur.execute (sql)

fp_albers = cur.fetchone() [0]

Generate Albers projection buffer around footprint
sgl = "SELECT ST_AsText (ST_Buffer ("+
"ST_GeomFromText ('"+fp_albers+
", 102003), "+str(buffer_dist_m)+"))"
cur.execute (sgl)
buffer_albers = cur.fetchone () [0]
Convert buffer to web Mercator projection
(rpt for second buffer)
sgl = "SELECT ST_AsText (ST_Transform("+
"ST_GeomFromText ('"+
bufferl_albers+"', 102003),
cur.execute (sql)
bufferl_webmerc = cur.fetchone() [0]

3857))"

The previous steps are handled similarly for every report in an
initialization method. The final SQL statement in this example
retrieves data for the report content itself. The ST_Intersects
method queries the geometries in the power plant layer and returns
the records intersecting (overlapping) the footprint. These records
are summarized [count (%), sum (opcap), and GROUP BY
energy_resource] to provide content for the initial graph and
table in the report. This SQL statement is repeated for the two
buffer distances around the footprint.

Return records falling within footprint and the

two buffer distances # (Repeat for two footprints)

sgl = "SELECT energy_resource,count (x),sum(opcap) "+
"FROM "+layer+" WHERE ST_Intersects ("+

layer+".geom, ST_GeomFromText ('"+fp_webmerc+
"', 3857)) GROUP BY energy_resource "+
"ORDER BY energy_resource"

cur.execute (sql)

1 =1
for row in cur:
Collect results in list...

Once the data have been retrieved, the code compiles it into a
Python dictionary which is rendered and returned as a JSON
document (excerpt below). This document is retained by the
application for eventual rendering into its final form, HTML with
the graphs built with ExtJS. Figure 3 shows a portion of the report.

Combine data and return results as JSON.

import json

"existing_summary": {
"header": [
"EISPC Energy Resource Type",

]

’
"data": {

"Natural Gas": [11,8716.6,14,11408.5,20,14705.57,
"Other/Unk": [36,186.135,39,365.335,48,838.185],
"Nuclear": [2,4851.8,4,6843.3,6,10461.91,
"Biomass": [7,77.3,11,97.3,17,397.081,
"Coal": [5,4333.1,10,6971.8,24,12253.2]7,
"Solar": [7,26.95,7,26.95,9,30.151,
"Hydro": [36,1127.875,54,1829.675,82,5308.875]

}I

"metadata": {
"shortname": "power_plant_platts_existing",

"feature_type": "point"

Footprint Analysis of Transmission Lines Stored as Line Fea-
tures

Another EISPC report uses a user-specified footprint to analyze
electrical transmission line information; however, rather than only
listing features inside the footprint as in the previous example, (1)
in contrast to points, line features can cross the footprint boundary;
and (2) we want to report the total length of the portion within
the footprint rather than only listing the matching records. Note
that ST_Intersects is used to collect the lines overlapping
the footprint, whereas ST_Intersection is used to calculate
lengths of only the portion of the lines within the footprint. In
addition, the coordinates are transformed into the Albers Equal
Area projection for the length computation.
sgl = "SELECT category, COUNT (*),sum(ST_Length ("+
"ST_Transform(ST_Intersection("+layer+
".geom, ST_GeomFromText ('"+fp_webmerc+
"', 3857)), 102003))) AS sum_length_fp "+
"FROM "+layer+" WHERE ST_Intersects ("+layer+
".geom, ST_GeomFromText ('"+fp_webmerc+
"', 3857)) GROUP BY category ORDER BY category"
cur.execute (sql)
list = []
for row in cur:

Collect results in list of lists...

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS

Existing: Summary

41

Hyaro -}

Solar

Coal

Biomass

Muclear

W Within Area
W Within 10 Mi
W Within 50 i

OtherMUnknown

Natural Gas

u T T
2000 4000 6000

T
8000

Ccapacity (MW)

T T T 1
10000 12000 14000 16000

Total Number| Total Operating
Capacity (MW) within

Analysis Area

Total Number
within 25 Miles of

EISPC Energy
within
Resource Type|

Analysis Area Analysis Area

Total Number
within 50 Miles of

Total Operating Capacity
(MW) within 25 Miles of
Analysis Area

Total Operating Capacity
(MW) within 50 Miles of

Analysis Area Analysis Area

Natural Gas 8,716.6()

11,408.50] 14,705.50)

Other/Unknovn| 186.14]

365.34] 838.18|

luclear 2 4,851.80) 4

6,843.30 6| 10,461.90)

Biomass 7 77.30)

97.30] 307.08]

coal 5 4,333.10)

6,971.80 12,253.20)

Sofr 7 26.95] 7|

26.95| 9| 30.15

Hydro 1,127.88|

1,829.68] 5,308.88|

TOTAL 104 19,319.7¢|

27,542.96| 43,004.80|

Source: Platis/Bentek EnerqyiPower Plant - Existing

Fig. 3: Portion of EZMT Power Plant Report

Results in JSON format:

{"existing_trans_sum": {
"header": [
"Voltage Category",

"Total Length (mi) within Analysis Area",
"Total Length (mi) within 1.0 Miles...",
"Total Length (mi) within 5.0 Miles..."],
"data": {
"115kv - 161kV": [209.24, 259.38, 477.57],
"100kV or Lower": [124.94, 173.15, 424.08],
"345kV - 450kv": [206.67, 239.55, 393.97]
}!
"metadata": {
"shortname": "transmission_line_platts",

"feature_type": "multilinestring"

Footprint Analysis of Land Jurisdictions Stored as Polygon
Features

In the Solar Mapper report for Protected Lands, the first section
describes the land jurisdictions within a footprint, and a 5-
mile area around it, with areas. The sma_code field contains
jurisdiction types. The query below uses ST_Intersects to
isolate the features overlapping the outer buffer and computes the
areas within the buffer and footprint for each jurisdiction that
it finds for a particular report run. For the area computations,
ST_Intersection is used to remove extents outside of the
footprint or buffer, and ST_Transform is used to convert the
coordinates to an Albers Equal Area projection before the area
computation is performed.

table_name "sma_anl_090914"

sgl = "SELECT sma_code,sum(ST_Area (ST_Transform("+
"ST_Intersection ("+table_name+".geom, "+
"ST_GeomFromText ("+fp_wkt+", 3857)), 102003)))"+

"as footprint_area"

sgql += ", sum(ST_Area (ST_Transform(ST_Intersection ("+
table_name+".geom, ST_GeomFromText ("+buffer_wkt+
", 3857)), 102003))) as affected_area"

sgl += " FROM "+table_name

sgl += " JOIN wps_runs ON ST_Intersects ("+table_name+

".geom, ST_GeomFromText ("+buffer_wkt+", 3857))"

n —_n

sql += AND wps_runs.pywps_process_id =
sgql += str(procId)+" GROUP BY sma_code"

cur.execute (sql)

list = []
for row in cur:
Collect results in list of lists...

Footprint Analysis of Watershed Areas Stored as Polygon Fea-
tures, with Joined Tables

The Environmental Risk Calculator [?] involves analysis of animal
and plant species that have been formally designated by the United
States as threatened or endangered. The ERC estimates the risk of
water-related impacts related to power generation. Reports and
maps focus on watershed areas and use U.S. Geological Survey
watershed boundary GIS data (stored in the huc_8 table in the
database). Each watershed has a Hydrologic Unit Code (HUC) as a
unique identifier. The huc8_species_natser table identifies
species occurring in each HUC, and the sensitivity table
has further information about each species. The ERC report uses
a footprint analysis similar to those employed in the previous
examples. The query below joins the wps_runs, huc8_poly,
huc8_species_natser, and sensitivity tables to list
sensitivity information for each species for a particular report
run for each species occurring in the HUCs overlapped by the
footprint. Some example results are listed in Table 2.

sgql = "SELECT sens.species,sens.taxa,sens.status"
sgl += " FROM sensitivity sens"

sgql += " INNER JOIN huc8_species_natser spec"
sgl += " ON sens.species = spec.global_cname"
sgql += " INNER JOIN huc8_poly poly"

sgl += " ON spec.huc8 = poly.huc_8"

sgl += " INNER JOIN wps_runs runs"

sgl += " ON ST_Intersects (poly.geom,"

sgql += " ST_GeomFromText ("+fp_wkt"', 3857))"
sgl += " AND runs.pywps_process_id = "

sgl += str(procId)

sgl += " group by sens.species,sens.taxa,"
sgl += "sens.status"

cur.execute (sgl)

list

[

42

Species Taxa Status
California Red-legged Frog Amphibian T
California Tiger Salamander - Sonoma Amphibian E
County

Colusa Grass Plant T
Conservancy Fairy Shrimp Invertebrate E
Fleshy Owls clover Plant T

TABLE 2: Example Ecorisk Calculator Results Listing Threatened
and Endangered Species Occurring in a Watershed

for row in cur:
Collect results in list of lists...

Footprint Analysis of Imperiled Species Sensitivity Stored as
Raster (Cell-based) Data

Many of the layers used in the mapping tools are stored as raster
(cell-based) data rather than vector (coordinate-based) data. The
ST_Clip method can retrieve raster or vector data and returns
the data within the footprint. The WHERE clause is important for
performance because images in the database are usually stored as
many records, each with a tile. ST_Intersects restricts the
much more processing-intensive ST_Clip method to the tiles
overlapping the footprint. When the footprint overlaps multiple
image tiles, multiple records are returned to the cursor, and results
are combined in the loop.

list = []

sgl = "SELECT (pvc).value as val,sum((pvc).count) "+
"FROM (SELECT ST_ValueCount (ST_Clip(rast,1, "+

"ST_GeomFromText ('"+fp_wkt"', 3857))) as pvc "+
"FROM "+layer+" as x "+
"WHERE ST_Intersects (rast, ST_GeomFromText ('"+

fp_wkt"',3857))) "+"GROUP BY val ORDER BY val"
cur.execute (sql)
for row in cur:

list.append([row[0],row[1l]])

Results in JSON format:
{

as y

"Imperiled Species": {
"header": [
"Value",
"Count"
1,
"data": [
[0.0, 216211, [10.0,
[1000.0, 16101, [l0000.0,

11811, [100.0,
421]

4847,

1,

"metadata": {
"shortname": "imperiled_species_area",
"feature_type": "raster"

}

Elevation Profile along User-Specified Corridor Centerline Us-
ing Elevation Data Stored as Raster Data

The Corridor Report in the EZMT includes elevation profiles along
the user-input corridor centerline. In this example, an elevation
layer is sampled along a regular interval along the centerline.
First, the coordinate of the sample point is generated with
ST_Line_Interpolate_Point, next, the elevation data are
retrieved from the layer with ST_Value.

d = {}
d['data'] = []

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)
minval = 999999.0
maxval = -999999.0
interval = 0.1
samplepct = 0.0
i=20.0
while i
sgl =
sql

<= 1.0:

"SELECT ST_AsText (ST_Line_Interpolate_Point ("
+= "line, "+str(i)+")) "

sgql += "FROM (SELECT ST_GeomFromText ('"+line

sgl += "') as line) As point"

cur.execute (sql)

samplepoint = cur.fetchone () [0]

sgql = "SELECT ST_Value(rast,ST_GeomFromText ('"
sgql += samplepoint+"',3857)) FROM "+table_name
sgl += " WHERE ST_Intersects(rast,ST_GeomFromText ('"
sqgql+= samplepoint+"',3857))"
cur.execute (sql)
value = cur.fetchone() [0]
if minval > value:
minval = value
if maxval < value:
maxval = value
d['data'].append(value)
i+= interval
d['min'] = minval
d['max'] = maxval

Results:

"Elevation Profiles": {
"header": [
"From Milepost
"To Milepost (mi)
"Data"

(mi)",

"
’

] 4
"data": [

[0.0, 10.0, {
"header": [
"data": {

"data": [
137.0,

"Values"],

135.0, 134.0,

194.0, 190.0, 188.0
]I
"max": 198.0,
"min": 131.0
)!
"metadata": {
"shortname": "dem_us_250m",
"feature_type": "raster"

Footprint Analysis of Raster Population Density Data

In this example, the input data consist of population density
values in raster format, and we want to estimate the total
population within the footprint. As in the previous example,
ST_Intersects is used in the WHERE clause to limit the tiles
processed by the rest of the query, and multiple records will
be output if the footprint overlaps multiple tiles. First, image
cells overlapped by the footprint are collected and converted
to polygons (ST_DumpAsPolygons). Next, the polygons are
trimmed with the footprint (ST_Intersection) to remove
portions of cells outside the footprint and are converted to an equal
area projection (ST_Transform); and then the area is computed.
Finally, the total population is computed (density * area), prorated
by the proportion of the cell within the footprint.

sqgql = "SELECT orig_dens * orig_area * new_area/"+
"orig_area as est_total "+

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS 43

"FROM (SELECT val as orig_dens, "+

" (ST_Area (ST_Transform (ST_GeomFromText ("+
"ST_AsText (geom),3857),102003)) "+
"/1000000.0) As orig_area, (ST_Area ("+
"ST_Transform(ST_GeomFromText ("+
"ST_AsText (ST_Intersection (geom, "+
"ST_GeomFromText ('"+fp_wkt+

"',3857))),3857),102003))/1000000.0) "+

"as new_area "+

"FROM (SELECT (ST_DumpAsPolygons (ST_Clip("+
"rast,1l,ST_GeomFromText ('"+
fp_wkt+"'",3857)))) .« "+

"FROM "+table_name+" WHERE ST_Intersects ("+

"rast, ST_GeomFromText ('"+
fp_wkt+"',3857))) As sample)
cur.execute (sgl)
totpop = 0.0
for row in cur:
totpop += row[0]

as x"

Computation of Suitability for Wind Turbines Using Raster
Data Using GRASS

The suitability models implemented in the EZMT use GRASS
software for computations, which are accessed in Python through
WPSs. The code below shows the main steps followed when
running a suitability model in the EZMT. The models use a set
of raster layers as inputs, each representing a siting factor such as
wind energy level, land cover, environmental sensitivity, proximity
to existing transmission infrastructure, etc. Each input layer is
coded with values ranging from 0 (Completely unsuitable) to
100 (Completely suitable), and weights are assigned to each layer
representing its relative importance. A composite suitability map
is computed using a weighted geometric mean. Figure 4 shows
the EZMT model launcher with the default settings for land-based
wind turbines with 80-meter hub heights.

Processing in the Python code follows the same steps that
would be used in the command-line interface. First, the processing
resolution is set using g.region. Then, the input layers are
processed to normalize the weights to sum to 1.0 (this approach
simplifies the model computation). Next, an expression is gen-
erated, specifying the formula for the model, and r.mapcalc
is called to perform the model computation. r.out.gdal is
used to export the model result from GRASS format to Geo-
Tiff for compatibility with GeoServer, and the projection is set
using gdal_translate from the Geospatial Data Abstraction
Library [GDAL] plugin for GRASS.

Set the processing resolution
WPSProcess.cmd (self, "g.region res=250"

outmap = "run"+str (self.process_run_id)
layers [1]
weights = []
Calculate
total = 0.0
for 1 in model['layers']:

total = total + model['layers'][1l]['weight']

sum of weights

Create input array of layer names, and
normalize weights
for 1 in model['layers']:
layers.append ({
The reclass method applies user-specified
suitability scores to an input layer
'name': self.reclass(model, 1),
'weight': model['layers'][1l]['weight']/total
})

geometric_exp = []

22 Model Launcher ¥

Land-based wind turbine (80 meter)
| Add Layer(s) To Model Run

Actions Weight Name
L6 s : Wind Turbine Gross Capacity Factor (80m)
8062 = Land Cover Area
X - BB 3 Population Density (with 2 mile buffer)
$61 % Distance to Major Road
4] @ P 3 Distance to Airport Runway
£ (= B! : Distance to Transmission (=345 k)
. X- Rk % Protected Lands
0062 = Habitat
$ 03 % Imperied Species
Mame: Land-based wind turbine (80 meter)
Motes:

#| Add Model To Map After Successful Completion

Launch

Fig. 4: Land-based Wind Turbine Suitability Model Launcher in the
EISPC Energy Zones Mapping Tool

total_weight = 0.0
for 1 in layers:
total_weight = total_weight + 1['weight']
geometric_exp.append (" (pow ("+1["'name']+", "+
str(l['weight'])+"))")
func = "round ("+
string.join(geometric_exp, "x")+")"
Run model using r.mapcalc
WPSProcess.cmd (self, "r.mapcalc
"="+str (func))

"+outmap+

user_dir = "/srv/ez/shared/models/users/"+
str(self.user_id)

if not os.path.exists(user_dir):
os.makedirs (user_dir)

Export the model result to GeoTIFF format
WPSProcess.cmd(self, "r.out.gdal -c input="+
outmap+" output="+outmap+".tif.raw"+
" type=Byte format=GTiff nodata=255 "+
"createopt="'TILED=YES', 'BIGTIFF=IF_SAFER'")

Set the projection of the GeoTIFF to EPSG:3857
WPSProcess.cmd (self,
"gdal_translate -a_srs EPSG:3857 "+outmap+
".tif.raw "+user_dir+"/"+outmap+".tif")

CONCLUSIONS

Python is the de-facto standard scripting language in both the
open source and proprietary GIS world. Most, if not all, of the
major GIS software systems provide Python libraries for system
integration, analysis, and automation, including ArcGIS, GeoPan-
das [GeoP], geoDjango [geoD], GeoServer, GRASS, PostGIS,
pySAL [pySAL], and Shapely [Shp]. Some of these systems, such

44

as ArcGIS and geoDJango, provide frameworks for web-based
mapping applications different from the approach we described in
the SOFTWARE ENVIRONMENT section. While it is outside the
scope of this paper to discuss the merits of these other approaches,
we recommend considering them as alternatives when planning
projects.

The examples in this paper include vector and raster data, as
well as code for converting projections, creating buffers, retrieving
features within a specified area, computing areas and lengths,
computing a raster-based model, and exporting raster results in
GeoTIFF format. All examples are written in Python and run
within the OGC-compliant WPS framework provided by PyWPS.

One of the key points we make is that the Web Mercator
projection should not be used for generating buffers or computing
lengths or areas because of the distortion inherent in the projection.
The examples illustrate how these computations can be performed
easily in PostGIS. We chose to use the Albers Equal Area projec-
tion, which is commonly used for regional and national maps for
the United States. Different projections should be used for more
localized areas.

So far our Web-based mapping applications include fairly
straightforward analysis and modeling services. However, the
same approaches can be used for much more sophisticated ap-
plications that tap more deeply into PostGIS and GRASS, or the
abundant libraries available in the Python ecosystem. Matplotlib,
NetworkX, NumPi, RPy2, and SciPy can each be integrated with
Python to provide powerful visualization, networking, mathemat-
ics, statistical, scientific, and engineering capabilities.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Electricity Delivery and Energy Reliability; and the U.S.
Department of Interior, Bureau of Land Management, through
U.S. Department of Energy contract DE-AC02-06CH11357. The
submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory ("Argonne")
under contract No. DE-AC02-06CH11357 with the U.S. Depart-
ment of Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

REFERENCES

[Argl3] Argonne National Laboratory, Energy Zones Study: A Comprehensive
Web-Based Mapping Tool to Identify and Analyze Clean Energy
Zones in the Eastern Interconnection, ANL/DIS-13/09, September
2013. Available at https://eispctools.anl.gov/document/21/file

[Btsrp] http://getbootstrap.com

[DOI12] U.S. Department of the Interior, Bureau of Land Management,
and U.S. Department of Energy, Final Programmatic Environmental
Impact Statement for Solar Energy Development in Six Southwest-
ern States, FES 12-24, DOE/EIS-0403, July 2012. Available at
http://solareis.anl.gov/documents/fpeis

[Erc] http://bogi.evs.anl.gov/erc/portal

[Ezmt] http://eispctools.anl.gov

[GDAL] http://www.gdal.org

[geoD] http://geodjango.org

[GeoP] http://geopandas.org

[Ggl] http://maps.google.com

[GRASS] http://grass.osgeo.org

[Gsrvr] http://geoserver.org

[NGA] http://earth-info.nga.mil/GandG/wgs84/web_mercator/index.html

[OGP] http://www.epsg.org

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

[OpLyr] http://openlayers.org

[PGIS] http://postgis.net/docs/manual-2.0/reference.html
[pySAL] http://pysal.readthedocs.org/en/v1.7

[PyWPS] http://pywps.wald.intevation.org

[RoR] http://rubyonrails.org

[Sen] http://www.sencha.com/products/extjs

[Shp] http://pypi.python.org/pypi/Shapely

[Sol] http://solarmapper.anl.gov

[Sol13] Kuiper, J., Ames, D., Koehler, D., Lee, R., and Quinby, T., "Web-
Based Mapping Applications for Solar Energy Project Planning," in
Proceedings of the American Solar Energy Society, Solar 2013 Con-
ference. Available at http://proceedings.ases.org/wp-content/uploads/
2014/02/SOLAR2013_0035_final-paper.pdf.

[Ub] http://www.ubuntu.com

[VM] http://www.vmware.com

https://eispctools.anl.gov/document/21/file
http://getbootstrap.com
http://solareis.anl.gov/documents/fpeis
http://bogi.evs.anl.gov/erc/portal
http://eispctools.anl.gov
http://www.gdal.org
http://geodjango.org
http://geopandas.org
http://maps.google.com
http://grass.osgeo.org
http://geoserver.org
http://earth-info.nga.mil/GandG/wgs84/web_mercator/index.html
http://www.epsg.org
http://openlayers.org
http://postgis.net/docs/manual-2.0/reference.html
http://pysal.readthedocs.org/en/v1.7
http://pywps.wald.intevation.org
http://rubyonrails.org
http://www.sencha.com/products/extjs
http://pypi.python.org/pypi/Shapely
http://solarmapper.anl.gov
http://proceedings.ases.org/wp-content/uploads/2014/02/SOLAR2013_0035_final-paper.pdf
http://proceedings.ases.org/wp-content/uploads/2014/02/SOLAR2013_0035_final-paper.pdf
http://www.ubuntu.com
http://www.vmware.com

	BACKGROUND AND INTRODUCTION
	SOFTWARE ENVIRONMENT
	EXAMPLES
	Full Process for Footprint Analysis of Power Plant Locations Stored as Point Features
	Footprint Analysis of Transmission Lines Stored as Line Features
	Footprint Analysis of Land Jurisdictions Stored as Polygon Features
	Footprint Analysis of Watershed Areas Stored as Polygon Features, with Joined Tables
	Footprint Analysis of Imperiled Species Sensitivity Stored as Raster (Cell-based) Data
	Elevation Profile along User-Specified Corridor Centerline Using Elevation Data Stored as Raster Data
	Footprint Analysis of Raster Population Density Data
	Computation of Suitability for Wind Turbines Using Raster Data Using GRASS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

