72

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Creating a browser-based virtual computer lab for
classroom instruction

Ramalingam Saravanan®*

http://www.youtube.com/watch?v=L1iZ2JIMYxvJbQ

Abstract—With laptops and tablets becoming more powerful and more ubiqui-
tous in the classroom, traditional computer labs with rows of expensive desktop
computers are slowly beginning to lose their relevance. An alternative approach
for teaching Python is to use a browser-based virtual computer lab, with a
notebook interface. The advantages of physical computer labs, such as face-to-
face interaction, and the challenge of replicating them in a virtual environment
are discussed. The need for collaborative features like terminal/notebook shar-
ing and chatting is emphasized. A virtual computer lab is implemented using
the GraphTerm server, with several experimental features including a virtual
dashboard for monitoring tasks and progressively fillable notebooks for ensuring
step-by-step completion of a sequence of tasks.

Index Terms—virtual computer lab, notebook interface, cloud computing,
browser-based terminal

Introduction

A computer lab, with rows of identical desktop computers, is
a commonly used resource when teaching programming or sci-
entific computing [Thompsonl1]. However, with the increasing
popularity of Bring Your Own Device solutions everywhere, com-
puter labs are slowly losing their relevance. Physical labs are
expensive to provision and maintain. Personal laptop computers
and even tablets have more than sufficient computing horsepower
for pedagogical use. As infrastructure costs increase, cloud-based
virtual computing environments look increasingly attractive as
replacements for physical computer labs.

As we inevitably, albeit slowly, move away from hardware
computer labs, it is worth analyzing the pros and cons of the
physical vs. the virtual approach. Some of the advantages of a
physical lab are:

¢ Uniform software without installation or compatibility
issues

Ability to walk around and monitor students’ progress
Students raise their hand to request assistance from the
instructor

Students can view each other’s screens and collaborate
Large files and datasets can be shared through cross-

mounted file systems

x Corresponding author: sarava@tamu.edu
f Texas A&M University

Copyright © 2014 Ramalingam Saravanan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

+

Some of the shortcomings of physical computer labs are:

Need to purchase and maintain hardware, ensuring security
Need to create user accounts and install course-specific
software

Instructor may not want or may not have root access,
leading to delays in fixing problems

Students typically need to be physically present to use the
lab

Many of the advantages of the physical computer lab are
difficult to replicate when students use laptops in an ad hoc
fashion, with differing software installations and without shared
file systems or collaborative features. A browser-based virtual
computing lab running on a remote server can address many of the
shortcomings of physical computer labs, while still retaining the
advantages of a uniform software environment and shared files.
However, the human interaction aspects of a physical lab will
never be fully reproducible in a virtual environment.

This study documents experiences gained from using hybrid
physical-virtual computer lab in teaching an introductory pro-
gramming course for meteorology undergraduates during Spring
2014. The course was aimed at students with no prior knowledge
of programming. The goal was to teach them to write code
that can access and visualize meteorological data, and Python is
ideally suited for this task [Lin12]. The students had access to a
physical lab with identical iMac computers, but several expressed
an interest in using their laptops so that they could continue to
work on assignments at home.

Students began using the IPython Notebook interface
[Perez12] early on during the course. Some of them installed
Enthought or Anaconda distributions on their laptop computers
and used the bundled notebook server. They were also given the
option of remotely accessing a browser-based virtual computer
lab using GraphTerm, which is an open-source graphical terminal
interface that is backwards compatible with the xterm terminal,
and also supports a lightweight notebook interface [Saravanan13].
Some of the students used the remote GraphTerm option to work
on their assignments and collaborate on their group project.

There are several "virtual computer lab" implementations on
university campuses which typically use a Citrix server to provide
remote desktop access to Windows computers. There are also
many commercial products providing Python computing environ-
ments in cloud, such as PythonAnywhere and Wakari [Wakari].
This study focuses on alternative “roll your own” solutions using
open-source software that are specifically targeted for use in


http://www.youtube.com/watch?v=LiZJMYxvJbQ
mailto:sarava@tamu.edu

CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 73

an interactive classroom instruction setting, with collaborative
features that mimic physical computer labs. Creating such a virtual
computing lab usually involves instantiating a server using a cloud
infrastructure provider, such as Amazon. A new server can be set-
up within minutes, with a scientific Python distribution automati-
cally installed during set-up. Students can then login to their own
accounts on the server using a browser-based interface to execute
Python programs and visualize graphical output. Typically, each
student would use a notebook interface to work on assignments.

The different approaches to providing a virtual computing
environment for Python, and the associated challenges, are dis-
cussed. Options for providing a multi-user environment include
running a public [Python Notebook server, or using alternative
free/commercial solutions that incorporate the notebook interface.
Enhancements to the notebook interface that promote step-by-
step instruction are described, as are collaborative features that
are important if the virtual environment is to retain some of the
advantages a physical computer lab. User isolation and security
issues that arise in a multi-user software environment are also
considered.

Multi-user virtual computing environments for Python

The simplest approach to creating a shared environment for
teaching Python would be to run a public IPython Notebook server
[IPython]. At the moment, the server does not support a true
multi-user environment, but multiple notebooks can be created
and edited simultaneously. (Full multi-user support is planned in
the near future.) The obvious disadvantage is that there is no user
isolation, and all notebooks are owned by the same user.

One can get around the current single-user limitation by
running multiple server processes, one for each student. This could
be done simply by creating a separate account for each student
on a remote server, or using more sophisticated user isolation
approaches. One of the most promising solutions uses Docker,
which is an emerging standard for managing Linux containers
[Docker]. Unlike virtual machines, which work at the operating
system level, lightweight Docker isolation works at the application
level.

JiffyLab is an open source project that uses Docker to provide
multi-user access to the I[Python Notebook interface [JiffyLab]. It
creates a separate environment for each user to run the notebook
server. New accounts are created by entering an email address.
JiffyLab addresses the user isolation issue, but does not currently
provide collaborative features.

In the commercial world, Wakari is a cloud Python hosting
solution from the providers of the Anaconda distribution, with
a free entry-level account option [Wakari]. It supports browser-
based terminal and editing capabilities, as well as access to
IPython Notebooks. Wakari provides user isolation and the ability
to share files and notebooks for collaboration.

Perhaps the most comprehensive free solution currently avail-
able for a shared virtual Python environment is the Sage Math
Cloud (SMC) [Sage]. It provides support for command line termi-
nals, LaTeX editing and includes numerous math-related programs
such as R, Octave, and the IPython Notebook. SMC is being used
for course instruction and now supports a real-time collaborative
version of the IPython Notebook [Stein13].

This study describes an alternative open-source solution using
GraphTerm that is derived from the terminal interface, with
graphical and notebook interfaces that appear as an extension of

terminal [GraphTerm]. It includes all features of the xt e rm-based
command-line interface (CLI) along with additional graphical user
interface (GUI) options. In particular, users can use CLI editors
like vim or Javascript-based graphical editors to modify programs.
Inline matplotlib graphics is supported, rather like the Qt
Console for IPython [QtConsole]. Multiple users can access the
server simultaneously, with collaborative features such as being
able to view each others’ terminals. GraphTerm also implements a
lightweight notebook interface that is compatible with the IPython
Notebook interface.

A browser-based Python Integrated Development Environment
(IDE) such as Wakari or SMC typically consists of the following
components: a graphical file manager, a Javascript-based editor,
a shell terminal, and a notebook window. A web GUI is used
to bind these components together. GraphTerm also serves as an
IDE, but it blurs some of the distinctions between the different
components. For example, the same GraphTerm window may
function at times like a plain xterm, a Qt Console with inline
graphics, or a simplified [Python Notebook, depending upon the
command being executed.

For the introductory programming course, a remote computer
was set up to run the GraphTerm server, and students were
able to automatically create individual accounts on it using a
group access code. (Appendices 1 and 2 provide details of the
installation and remote access procedures involved in creating
the virtual computing lab.) Students used the virtual lab accounts
to execute shell commands on the remote terminal, and also to
use the notebook interface, either by using GraphTerm’s own
notebook implementation or by running the full IPython Notebook
server on their account. (The distinction between GraphTerm and
[Python notebooks will be explained later.) Having a custom,
lightweight notebook interface enabled the implementation and
testing of several experimental features to the GraphTerm server
to support collaboration and a new feature called progressively
fillable notebooks. This feature allows an instructor to assign a
set of notebook-based tasks to students, where each task must be
completed before the automatically displaying the correct solution
for the task and proceeding to the next task, which may depend on
the correct solutions to all the previous tasks.

Sharing terminal sessions

One of the common sights in a physical computer lab is a group
of students huddled around a computer animatedly discussing
something visible on the screen. It would be nice to reproduce
this ability to view each other’s terminals and communicate in the
virtual computer lab. If students use their laptop computers in a
regular classroom with row seating, rather than a lab, then collab-
orative features in the virtual setting could make a big difference.
Such features would also allow the students to work with each
other after hours. Another crucial feature of the physical computer
lab is the instructor’s ability to grab a student’s mouse/keyboard
to make some quick fixes to his/her code. This feature would very
much be desirable to have in a virtual computer lab.

Although the default multi-user account setup in GraphTerm
isolates users with Unix account permissions, the instructor can
choose to enable terminal sharing for all, or create specific
user groups for shared work on projects etc. As super user, the
instructor has access to the students’ terminals. (A list of all users
currently watching a terminal session can be accessed from the
menu.)



74

For the programming course, group-based sharing was enabled
to allow students to work together on the end-of-semester project.
Students were able to watch someone else’s terminal, without
controlling it, or steal control of someone else’s terminal, if the
terminal owner had permitted it. (To regain control, the terminal
owner would have to steal it back.)

GraphTerm supports a rudimentary chat command for com-
munication between all watchers for a terminal session. The
command displays a chat button near the top right corner. Any
user who is currently watching a terminal session can type lines
of text that will be displayed as a feed, translucently overlaid on
the terminal itself. When chatting, an alert button also becomes
available to attract the attention of the terminal watchers (which
may include the instructor).

There is also an experimental tandem control option, which
allows two or more people to control a terminal simultaneously.
This needs to be used with caution, because it can lead to unpre-
dictable results due to the time lags between terminal operations
by multiple users.

Notebook interface

The IPython Notebook interface was a huge hit with students in
the most recent iteration of the programming course, as com-
pared to the clunky text-editor/command-line/graphics-window
development environment that was used in previous iterations. In
addition to running the IPython Notebook server locally on the lab
computers, students accessed the notebook interface on the remote
server in two ways, depending upon individual preference:
1. Activating the lightweight notebook interface built
into the remote GraphTerm terminal. This can be as
simple as typing Shift-Enter after starting the standard
command line Python interpreter.
2. Running the public IPython Notebook server on
the remote computer and accessing it using a browser on
the local computer. (A separate server process is started
for each user who initiates it by typing a command, with
a unique port number and a password that is the same as
the user’s access code.)

The two notebook implementations run separately, although
they share the user’s home directory.

The GraphTerm notebook interface is implemented as a wrap-
per on top of the standard Python command line interface. It
provides basic notebook functionality, but is not a full-featured
environment like IPython Notebook. It does support the same
notebook format, which means that notebooks can be created in a
GraphTerm window, saved as . ipynb files and opened later using
IPython Notebook, and vice versa. Notebooks are opened within
GraphTerm using the standard python (or ipython) command,
and pre-loading the GraphTerm-compatible pylab environment
(Fig. 1):
python —-i $GTERM_DIR/bin/gpylab.py notebook.ipynb

A shortcut command, gpython notebook.ipynb, can also
be used instead of the long command line shown above. Like the
IPython Notebook, typing Control-Enter executes code in-place,
and Shift-Enter executes code and moves to the next cell. The
GraphTerm notebook interface is integrated into the terminal (Fig.
2), allowing seamless switching between the python command
line and notebook mode, "live sharing" of notebooks across shared
terminals, and inline graphics display that can work across SSH
login boundaries [Saravananl3].

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

& view terminal command notebook help share

~$ python -i $GTERM_DIR/bin/gpylab.py

NOTE: Enabled interactive plotting mode, ion()
To disable, use ioff()

NOTE: Enabled notebook mode (affects auto printing of expressions)
To disable, use gterm.nbmode({False)

>>> gterm.open_notebook()

>>>

import netCDF4

import numpy as np

import matplotlib.pyplot as plt
import mpl_toolkits.basemap as bm
import pylab

int(raw_input("Enter year:

= “
int(raw_input("Enter month:

mo
dy
tm

))
"))
int(raw_input("Enter day: "
int(raw_input("Enter time:

)

))

def getdate(year, month, day, time):

if year==2008 and l<=month<=12 and l<=day<=31 and time==0 or time==

e = "%d" % (year)

£ = "$02d" & (month)

g = "s02d" & (day)

h = "802d" & (time)

return [e, £, g, h]

Fig. 1: Snippet showing a portion of a notebook session in the virtual
lab.

@ view terminal command notebook help share

plt.clabel(nl, inline=3, fontsize=6)

n2 = pylab.contourf(lonproj, latproj, variablel dict["variable_ array"],
CBI = plt.colorbar(n2, orientation='horizontal', shrink=0.8)
pylab.title(title name)

pylab.figure(figsize=(13,13))
pylab.subplot(221)

plotdata(gecht, vor, "500mb Geopotential Heights and Vorticity", 'spectral')
pylab.subplot(222)

plotdata(RH, vertvel, "700mb Relative Humidity and Vertical Velocities", 'Gr
pylab.subplot(223)

plotdata(Temp, Pres, "Surface Temperature and Pressure", 'jet')

pylab.subplot(224)
plotdata(gecht2, wind, "300mb Geopotential Heights and Wind Speed", 'spectra

Enter year: 2008
Enter month: 3
Enter day: 27
Enter time: 0

Haights and varticity J00mb Asistrve

Fig. 2: Another snippet showing a notebook session in the virtual lab,
with inline graphics.

GraphTerm Hosts

User: ubuntu

Available hosts:

acassel
aharte
cgrimes
fpegueno49
hcrockett
jblake

jcoy
jespinoza
9. jgarcia

10. jklosterman
11. jklosterman3
12. Jjmccarthy
13. kszeliga
14. local

W~ W WN

Fig. 3: The instructor "dashboard" in the virtual computer lab,
showing all currently logged in users. Clicking on the user name will
open a list of terminals for that user.



CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 75

& view terminal command notebook help share ubuntu@localittyl: 4

~$ gadmin -a sessions

acassel /projaccs- idle 21min
acassel/quid idle 17min

fpequenod9/aprill7:Untitled3#3
fpequenoc49/ttyl:Untitled4#1

fpequenod9/tty2 idle 3min
fpequenod9/tty3- idle 18min
fpequenod9/ttyd— idle 18min

idle 2min
idle 24min
idle 12min
idle lmin

jgarcia/quiz:Untitled8#2
jgarcia/ttyl:Untitled7#4-
jmecarthy/ttyl:Untitled3
imeccarthy/tty2:Untitledd#1

jmccarthy/tty3- idle 7min
imccarthy/ttyd:exercise6#2 idle 2min
mefries/guizda

mmckeown/quizd:Untitledd#2

mmckeown/ttyl:exercise7#1 idle 8min

myoung/ttyl:Untitledld#3- idle 21min
myoung/tty2:Untitledl5#1

myoung/tty3- idle 17min
myoung/ttyd texT#1

sarava/ttyl:Untitled9#8— idle 16min
sarava/tty2:Untitledl0#1 idle 2min
=] |

Fig. 4: The instructor "dashboard" in the virtual computer lab, with
a listing of all user terminals, including notebook names and the last
modified cell count, generated by the gadmin command. Clicking on
the terminal session name will open a view of the terminal.

A dashboard for the lab

An important advantage of a physical computer lab is the ability to
look around and get a feel for the overall level of student activity.
The GraphTerm server keeps track of terminal activity in all the
sessions (Fig. 3). The idle times of all the terminals can be viewed
to see which users are actively using the terminal (Fig. 4). If a
user is running a notebook session, the name of the notebook and
the number of the last modified cell are also tracked. During the
programming course, this was used assess how much progress was
being made during notebook-based assignments.

The gadmin command is used to list terminal activity, serving
as a dashboard. Regular expressions can be used to filter the list of
terminal sessions, restricting it to particular user names, notebook
names, or alert status. As mentioned earlier, students have an alert
button available when they enable the built-in chat feature. This
alert button serves as the virtual equivalent of raising a hand, and
can be used to attract the attention of the instructor by flagging the
terminal name in gadmin output.

The terminal list displayed by gadmin is hyperlinked. As
the super user has access to all terminals, clicking on the output
of gadmin will open a specific terminal for monitoring (Fig.
5). Once a terminal is opened, the chat feature can be used to
communicate with the user.

Progressively fillable notebooks

A common difficulty encountered by students on their first expo-
sure to programming concepts is the inability to string together
simple steps to accomplish a complex task. For example, they
may grasp the concept of an if block and a for loop separately,
but putting those constructs together turns out to be much harder.
When assigned a multi-step task to perform, some of the students
will get stuck on the first task and never make any progress. One
can address this by progressively revealing the solutions to each
step, and then moving on to the next step. However, if this is done

in a synchronous fashion for the whole lab, the stronger students
will need to wait at each step for the weaker students to catch up.

An alternative approach is to automate this process to allow
students make incremental progress. As the Notebook interface
proved to be extremely popular with the students, an experimental
progressively fillable version of notebooks was recently imple-
mented in the GraphTerm server. A notebook code cell is assigned
to each step of a multi-step task, with associated Markdown cells
for explanatory text. Initially, only the first code cell is visible,
and the remaining code cells are hidden. The code cell contains
a "skeleton" program, with missing lines (Fig. 6). The expected
textual or graphical output of the code is also shown. Students
can enter the missing lines and repeatedly execute the code using
Control-Enter to reproduce the expected results. If the code runs
successfully, or if they are ready to give up, they press Shift-Enter
to move on. The last version of the code executed by the student,
whether right or wrong, is saved in the notebook (as Markdown),
and the correct version of the code is then displayed in the cell
and executed to produce the desired result (Fig. 7). The next code
cell becomes visible and the whole process is repeated for the next
step of the task.

The user interface for creating progressively fillable notebooks
in this experimental version is very simple. The instructor creates
a regular notebook, with each code cell corresponding to a specific
step of a complex task. The comment string ## ANSWER is
appended to all code lines that are to be hidden (Fig. 7). The
code in each successive step can depend on the previous step
being completed correctly. Each code cell is executed in sequence
to produce output for the step. The notebook is then saved with
the suffix ~£111 appended to the base filename to indicate that
it is fillable. The saving step creates new Markdown content
from the output of each code cell to display the expected output
in the progressive version of the notebook. Once filled by the
students, the notebooks can be submitted for grading, as they
contain a record of the last attempt at completing each step, even
if unsuccessful.

One can think of progressively fillable notebooks as providing
"training wheels" for the inexperienced programmer trying to
juggle different algorithmic concepts at the same time. They can
work on assignments that require getting several pieces of code
right for the the whole program to work, without being stymied
by a pesky error in a single piece. (This approach is also somewhat
analogous to simple unit testing using the doctest Python
module, which runs functions with specified input and compares
the results to the expected output.)

Some shortcomings

Cost is an issue for virtual computer labs, because running a
remote server using a cloud service vendor does not come free.
For example, an AWS general purpose m3 . medium server, which
may be able to support 20 students, costs $0.07 per hour, which
works out to $50 per month, if running full time. This would
be much cheaper than the total cost of maintaining a lab with
20 computers, even if it can be used for 10 different courses
simultaneously. However, this is a real upfront cost whereas
the cost of computer labs is usually hidden in the institutional
overheads. Of course, on-campus servers could be used to host
the virtual computer labs, instead of commercial providers. Also,
dedicated commercial servers may be considerably cheaper than
cloud-based servers for sustained long-term use.



76

& view terminal command notebook help share ubuntu@localitty1: 4

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

new detach home

~$ gadmin -a sessions ".*quiz.*"
g g

jgarcia/gquiz:Untitled8#3
mefries/quizda:Untitled7#1
mmckeown/quizd:Untitled4#3
~§ gadmin -t -a sessions ".*quiz.*"
jgarcia/quiz
mefries/quizda
mmckeown/quizé
~§ gframe -r 300 -b -¢ 3 -t /jgarcia/quiz /mefries/quizda /mmckeown/quiz4é
asrined vertsection(2,11) x
Standard atmosphere Plot >>> month_data = month[:]
sl 1 Traceback (most recent call
last):
e 1 File "<stdin>", line 1, in 1000
. <module> a0
g“” 1 NameError: name 'month' is

NK |
of i

def vertsection(month,
lon_index):

m = int(month)

1 int(lon_index)

>>>

not defined
>>> print type(month_data) L
Traceback (most recent call 200

last): 8
O 000 a0 GG000 000 000G 0006 a0 File "<stdin>", line 1, in

<module>

NameError: name 'month_data' =0

is not defined

eon

>>>

=1

Fig. 5: The instructor "dashboard" in the virtual computer lab, with embedded views of student terminals generated using the gframe

command.

@ view terminal command notebook help share localfttyl:1 run new detach

@ view terminal command notebook help share localttyl:1 run new detach

Part |

Write a function abs_add that returns the sum of the absolute values of two numbers and another function
abs_sub that computes the difference of absolute values. Test the two functions.

# Part la: Define the function abs_add
##... (fill in code here)

# Testing function abs_add
print abs_add(3, -4)
# Part 1lb: Define the function abs_sub

##... (fill in code here)

# Testing function abs_sub
print abs_sub(3, -4)

>>>

Expected output:

7
-1

Fig. 6: View of progressively fillable notebook before user completes
Step 1. Note two comment line where it says (fill in code
here). The user can replace these lines with code and execute it. The
resulting output should be compared to the expected output, shown
below the code cell.

Depending upon whether the remote server is located on
campus or off campus, a good internet connection may be essential
for the performance a virtual computer lab during work hours. For
a small number of students, server capacity should not be an issue,
because classroom assignments are rarely compute-intensive. For
large class sizes, more expensive servers may be needed.

When compared to using a physical computer lab, typically
managed by professional system administrators, instructors plan-
ning to set up their own virtual computer lab would need some
minimal command line skills. The GraphTerm server runs only
on Linux/Mac systems, as it requires access to the Unix terminal
interface. (The browser-based GraphTerm client can be used on
Windows computers, as well as iPads and Android tablets.)

GraphTerm supports a basic notebook interface that is closely

Your Input:

# Part la: Define the function abs_add
def abs_add(a,b):
return atb

# Testing function abs_add
print abs_add(3, -4)

# Part lb: Define the function abs_sub
def abs_sub(a,b):
return atb

# Testing function abs_sub
print abs_sub(3, -4)

Your Output:

-1
-1

Expected Input:

# Part la: Define the function abs_add
def abs_add(a, b): ## ANSWER
return abs(a) + abs(b) ## ANSWER

# Testing function abs_add
print abs_add(3, -4)

# Part 1lb: Define the function abs_sub
def abs_sub(a, b): ## ANSWER
return abs(a) - abs(b) ## ANSWER

# Testing function abs_sub
print abs_sub(3, -4)

7
=1
>>>

Fig. 7: View of progressively fillable notebook after user has com-
pleted Step 1. The last version of code entered and executed by
the user is included the markup, and the code cell now displays the
"correct" version of the code. Note the comment suffix ## ANSWER
on selected lines of code. These lines were hidden in the unfilled view.

integrated with the command line, and supports the collabora-
tive/administrative features of the virtual computer lab. How-
ever, this interface will never be as full-featured as the IPython
Notebook interface, which is a more comprehensive and mature
product. For this reason, the virtual computer lab also provides
the ability for users who need more advanced notebook features



CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 77

to run their own IPython Notebook server and access it remotely.
The compatibility of the .ipynb notebook file format and the
shared user directory should make it fairly easy to switch between
the two interfaces.

Although the notebook interface has been a boon for teaching
students, it is not without its disadvantages. It has led to decreased
awareness of the file and directory structure, as compared to
the traditional command line interface. For example, as students
download data, they often have no idea where the files are being
saved. The concept of a modular project spread across functions in
multiple files also becomes more difficult to grasp in the context
of a sequential notebook interface. The all-inclusive pylab envi-
ronment, although very convenient, can lead to reduced awareness
of the modular nature of Python packages.

Conclusions

Students would like to break free of the physical limitations of
a computer lab, and to be able to work on their assignments
anywhere, anytime. However, the human interactions in a physical
computer lab have considerable pedagogical value, and any virtual
environment would need to support collaborative features to make
up for that. With further development of the IPython Notebook,
and other projects like SMC, one can expect to see increased sup-
port for collaboration through browser-based graphical interfaces.

The collaborative features of the GraphTerm server enable it
to be used as a virtual computer lab, with automatic user creation,
password-less authentication, and terminal sharing features. De-
veloping a GUI for the complex set of tasks involved in managing
a virtual lab can be daunting. Administering the lab using just
command line applications would also be tedious, as some actions
like viewing other users’ terminals are inherently graphical oper-
ations. The hybrid CLI-GUI approach of GraphTerm gets around
this problem by using a couple of tricks to implement the virtual
"dashboard":

(i) Commands that produce hyperlinked (clickable)
listings, to easily select terminals for opening etc.

(ii) A single GraphTerm window can embed multiple
nested GraphTerm terminals for viewing

The IPython Notebook interface, with its blending of ex-
planatory text, code, and graphics, has evolved into a powerful
tool for teaching Python as well as other courses involving
computation and data analysis. The notebook format can provide
the "scaffolding" for structured instruction [AeroPython]. One of
the dilemmas encountered when using notebooks for interactive
assignments is when and how to reveal the answers. Progressively
fillable notebooks address this issue by extending the notebook
interface to support assignments where students are required to
complete tasks in a sequential fashion, while being able to view
the correct solutions to completed tasks immediately.

Appendix 1: GraphTerm server setup

The GraphTerm server is implemented purely in Python, with
HTML+Javascript for the browser. Its only dependency is the Tor-
nado web server. GraphTerm can be installed using the following
shell command:

sudo pip install graphterm

To start up a multi-user server on a Linux/Mac computer, a
variation of the following command may be executed (as root):

@ view terminal command notebook help share locality1: 1

graphterm$ ec2launch
Create Amazon EC2 instance with hostname (e.g.,
testlab

tagname

--type=
--key name= ec2key
-—ami= ami-2f8f9246
--gmail_addr= someone@gmail.com
--auth_type=
--https

--pylab v
--netecdf v

-=R v

--allow embed

--allow_share

--notebook server v
--logging v
--oshell

==5Creen

--other opts=
--install=

--copy files=
--connect_to_ gterm=
--dry run

--verbose

Submit Cancel

Fig. 8: Automatic form display for the ec2launch command, used
to configure and launch a new virtual lab using the AWS cloud. The

form elements are automatically generated from the command line
options for ec2launch

gtermserver —-daemon=start —--auth_type=multiuser
——user_setup=manual --users_dir=/home
——port=80 --host=server_domain_or_ip

If a physical server is not readily available for multi-user ac-
cess, a virtual server can be created on demand using Amazon
Web Services (AWS). The GraphTerm distribution includes the
convenience scripts ec2launch, ec2list, ec2scp, and
ec2ssh to launch and monitor AWS Elastic Computing Cloud
(EC2) instances running a GraphTerm server. (An AWS account
is required to use these scripts, and the boto Python module
needs to be installed.)

To launch a GraphTerm server in the cloud using AWS, first
start up the single-user version of GraphTerm:

gtermserver --terminal --auth_type=none

The above command should automatically open up a GraphTerm
window in your browser. You can also open one using the
URL http://localhost:8900 Within the GraphTerm window, run the
following command to create a virtual machine on AWS:

ec2launch

The above command will display a web form within the Graph-
Term window (Fig. 8). This is an example of the hybrid CLI-GUI
interface supported by GraphTerm that avoids having to develop
a new web GUI for each additional task. Filling out the form and
submitting it will automatically generate and execute a command
line which looks like:

ec2launch --type=m3.medium --key_name=ec2key

——ami=ami-2£8£f9246 --gmail_addr=user@gmail.com
——auth_type=multiuser --pylab —--netcdf testlab


http://localhost:8900

78

eczlist
Public DNS Rey Tags State Action
ec2-54-197-139-116.compute-1.amazonaws.com ec2key testdB.gterm.net shutting-down
ec2-54-204-51-129.compute-1.amazonaws.com  ec2key testd4d.gterm.net running Kill
ec2-54-198-135-149.compute-1.amazonaws.con ec2key lab.gterm.net running Kill

Fig. 9: Output of the ec21ist command, listing currently active
AWS cloud instances running the virtual computer lab. Clickable links
are displayed for terminating each instance

GraphTerm Login

Please specify username (letters/digits/hyphens, starting with letter).
If new user, enter your group code to create account.

User: jsmith

Code: Use Google Auth

Authenticate

Fig. 10: Login page for GraphTerm server in multiuser mode. The
user needs to enter the group access code, and may choose to use
Google Authentication

The above command can be saved, modified, and re-used as
needed. After the new AWS Linux server has launched and com-
pleted configuration, which can take several minutes, its IP address
and domain name will be displayed. The following command can
then be used to list, access or terminate all running cloud instances
associated with your AWS account (Fig. 9):

ec2list

Detailed instructions for accessing the newly launched server are
provided on the GraphTerm website [GraphTerm].

Appendix 2: Multiple user authentication and remote access

Assuring network security is a real headache for roll your own
approaches to creating multi-user servers. Institutional or commer-
cial support is essential for keeping passwords secure and software
patched. Often, the only sensitive information in a remotely-
accessed academic computer lab account is the student’s password,
which may be the same as one used for a more confidential
account. It is therefore best to avoid passwords altogether for
virtual computer labs, and remove a big burden of responsibility
from the instructor.

The GraphTerm server uses two approaches for password-less
authentication: (i) A randomly-generated user access code, or (ii)
Google authentication. The secret user access code is stored in a
protected file on the students’ local computers and a hash-digest
scheme is used for authentication without actually transmitting
the secret code. Students create an account using a browser URL
provided by the instructor, selecting a new user name and entering
a group access code (Fig. 10). A new Unix account is created
for each user and the user-specific access code is displayed (Fig.
11). Instead of using this access code, students can choose to use
password-less Google Authentication.

After logging in, users connect to an existing terminal session
or create a new terminal session. A specific name can be used for
a new terminal session, or the special name new can be used to
automatically choose names like ttyl, tty2 etc. When sharing
terminals with others, it is often useful to choose a meaningful
name for the terminal session.

Users can detach from a terminal session any time and connect
to it at a later time, without losing any state information. For
example, a terminal created at work can be later accessed from

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

GraphTerm Hosts

User: jsmith

Created new user with authentication code:
74ac-7a60-6760-6ec?

Copy this information for future use or email it to yourself.

Click here to open a terminal.

Optionally, you can enter an email address below. It will be

E-mail: Submit Email

Sign out

Fig. 11: New user welcome page, with access code displayed.

home, without interrupting program execution. The students found
the ability to access their terminal sessions from anywhere to be
perhaps the most desirable feature of the virtual computer lab.

REFERENCES

[AeroPython] AeroPython http://lorenabarba.com/blog/announcing-
aeropython/

[Docker] Docker sandboxed linux containers http://www.docker.com/
whatisdocker/

[GraphTerm]  GraphTerm home page http://code.mindmeldr.com/graphterm

[IPython] IPython Notebook public server http://ipython.org/ipython-
doc/stable/notebook/public_server.html

[JiffyLab] JiffyLab multiuser IPython notebooks https://github.com/
ptone/jiffylab

[Lin12] J. Lin. A Hands-On Introduction to Using Python in the
Atmospheric and Oceanic Sciences [Chapter 9, Exercise 29,
p. 162] http://www.johnny-lin.com/pyintro

[Perez12] FE. Perez. The IPython notebook: a historical retrospective.
Jan 2012 http://blog.fperez.org/2012/01/ipython-notebook-
historical.html

[QtConsole] A Qt Console for IPython. http://ipython.org/ipython-doc/2/
interactive/qtconsole.html

[Sage] Sage Math Cloud https://cloud.sagemath.com/

[Saravanan13] R. Saravanan. GraphTerm: A notebook-like graphical termi-
nal interface for collaboration and inline data visualization,
Proceedings of the 12th Python in Science Conference, 90-94,
July 2013. http://conference.scipy.org/proceedings/scipy2013/
pdfs/saravanan.pdf

W. Stein. IPython Notebooks in the Cloud with Realtime
Synchronization and Support for Collaborators. Sep 2013
http://sagemath.blogspot.com/2013/09/ipython-notebooks-in-
cloud-with.html

[Thompsonll] A. Thompson. The Perfect Educational Computer Lab.
Nov 2011 http://blogs.msdn.com/b/alfredth/archive/2011/11/
30/the-pertect-educational-computer-lab.aspx

Wakari collaborative data analytics platform http://continuum.
io/wakari

[Stein13]

[Wakari]


http://lorenabarba.com/blog/announcing-aeropython/
http://lorenabarba.com/blog/announcing-aeropython/
http://www.docker.com/whatisdocker/
http://www.docker.com/whatisdocker/
http://code.mindmeldr.com/graphterm
http://ipython.org/ipython-doc/stable/notebook/public_server.html
http://ipython.org/ipython-doc/stable/notebook/public_server.html
https://github.com/ptone/jiffylab
https://github.com/ptone/jiffylab
http://www.johnny-lin.com/pyintro
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
http://ipython.org/ipython-doc/2/interactive/qtconsole.html
http://ipython.org/ipython-doc/2/interactive/qtconsole.html
https://cloud.sagemath.com/
http://conference.scipy.org/proceedings/scipy2013/pdfs/saravanan.pdf
http://conference.scipy.org/proceedings/scipy2013/pdfs/saravanan.pdf
http://sagemath.blogspot.com/2013/09/ipython-notebooks-in-cloud-with.html
http://sagemath.blogspot.com/2013/09/ipython-notebooks-in-cloud-with.html
http://blogs.msdn.com/b/alfredth/archive/2011/11/30/the-perfect-educational-computer-lab.aspx
http://blogs.msdn.com/b/alfredth/archive/2011/11/30/the-perfect-educational-computer-lab.aspx
http://continuum.io/wakari
http://continuum.io/wakari

	Introduction
	Multi-user virtual computing environments for Python
	Sharing terminal sessions
	Notebook interface
	A dashboard for the lab
	Progressively fillable notebooks
	Some shortcomings
	Conclusions
	Appendix 1: GraphTerm server setup
	Appendix 2: Multiple user authentication and remote access
	References

