
16 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Total Recall: flmake and the Quest for Reproducibility

Anthony Scopatz‡∗

F

Abstract—FLASH is a high-performance computing (HPC) multi-physics code
which is used to perform astrophysical and high-energy density physics simula-
tions. To run a FLASH simulation, the user must go through three basic steps:
setup, build, and execution. Canonically, each of these tasks are independently
handled by the user. However, with the recent advent of flmake - a Python
workflow management utility for FLASH - such tasks may now be performed in a
fully reproducible way. To achieve such reproducibility a number of developments
and abstractions were needed, some only enabled by Python. These methods
are widely applicable outside of FLASH. The process of writing flmake opens
many questions to what precisely is meant by reproducibility in computational
science. While posed here, many of these questions remain unanswered.

Index Terms—FLASH, reproducibility

Introduction

FLASH is a high-performance computing (HPC) multi-physics
code which is used to perform astrophysical and high-energy
density physics simulations [FLASH]. It runs on the full range
of systems from laptops to workstations to 100,000 processor
super computers, such as the Blue Gene/P at Argonne National
Laboratory.

Historically, FLASH was born from a collection of uncon-
nected legacy codes written primarily in Fortran and merged
into a single project. Over the past 13 years major sections
have been rewritten in other languages. For instance, I/O is now
implemented in C. However building, testing, and documentation
are all performed in Python.

FLASH has a unique architecture which compiles simulation
specific executables for each new type of run. This is aided by
an object-oriented-esque inheritance model that is implemented
by inspecting the file system directory tree. This allows FLASH
to compile to faster machine code than a compile-once strategy.
However it also places a greater importance on the Python build
system.

To run a FLASH simulation, the user must go through three
basic steps: setup, build, and execution. Canonically, each of these
tasks are independently handled by the user. However with the
recent advent of flmake - a Python workflow management utility
for FLASH - such tasks may now be performed in a repeatable
way [FLMAKE].

Previous workflow management tools have been written for
FLASH. (For example, the "Milad system" was implemented

* Corresponding author: scopatz@flash.uchicago.edu
‡ The FLASH Center for Computational Science, The University of Chicago

Copyright © 2012 Anthony Scopatz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

entirely in Makefiles.) However, none of the prior attempts have
placed reproducibility as their primary concern. This is in part
because fully capturing the setup metadata required alterations to
the build system.

The development of flmake started by rewriting the existing
build system to allow FLASH to be run outside of the mainline
subversion repository. It separates out a project (or simulation) di-
rectory independent of the FLASH source directory. This directory
is typically under its own version control.

For each of the important tasks (setup, build, run, etc), a
sidecar metadata description file is either initialized or modified.
This is a simple dictionary-of-dictionaries JSON file which stores
the environment of the system and the state of the code when
each flmake command is run. This metadata includes the version
information of both the FLASH mainline and project repositories.
However, it also may include all local modifications since the last
commit. A patch is automatically generated using standard posix
utilities and stored directly in the description.

Along with universally unique identifiers, logging, and Python
run control files, the flmake utility may use the description files
to fully reproduce a simulation by re-executing each command in
its original state. While flmake reproduce makes a useful
debugging tool, it fundamentally increases the scientific merit of
FLASH simulations.

The methods described herein may be used whenever source
code itself is distributed. While this is true for FLASH (uncommon
amongst compiled codes), most Python packages also distribute
their source. Therefore the same reproducibility strategy is appli-
cable and highly recommended for Python simulation codes. Thus
flmake shows that reproducibility - which is notably absent from
most computational science projects - is easily attainable using
only version control, Python standard library modules, and ever-
present command line utilities.

New Workflow Features

As with many predictive science codes, managing FLASH simu-
lations may be a tedious task for both new and experienced users.
The flmake command line utility eases the simulation burden and
shortens the development cycle by providing a modular tool which
implements many common elements of a FLASH workflow. At
each stage this tool captures necessary metadata about the task
which it is performing. Thus flmake encapsulates the following
operations:

• setup/configuration,
• building,
• execution,
• logging,

mailto:scopatz@flash.uchicago.edu


TOTAL RECALL: FLMAKE AND THE QUEST FOR REPRODUCIBILITY 17

• analysis & post-processing,
• and others.

It is highly recommended that both novice and advanced users
adopt flmake as it enables reproducible research while simultane-
ously making FLASH easier to use. This is accomplished by a few
key abstractions from previous mechanisms used to set up, build,
and execute FLASH. The implementation of these abstractions
are critical flmake features and are discussed below. Namely they
are the separation of project directories, a searchable source path,
logging, dynamic run control, and persisted metadata descriptions.

Independent Project Directories

Without flmake, FLASH must be setup and built from within
the FLASH source directory (FLASH_SRC_DIR) using the setup
script and make [GMAKE]. While this is sufficient for single runs,
such a strategy fails to separate projects and simulation campaigns
from the source code. Moreover, keeping simulations next to the
source makes it difficult to track local modifications independent
of the mainline code development.

Because of these difficulties in running suites of simulations
from within FLASH_SRC_DIR, flmake is intended to be run
external to the FLASH source directory. This is known as the
project directory. The project directory should be managed by
its own version control systems. By doing so, all of the project-
specific files are encapsulated in a repository whose history is
independent from the main FLASH source. Here this directory
is called proj/ though in practice it takes the name of the
simulation campaign. This directory may be located anywhere on
the user’s file system.

Source & Project Paths Searching

After creating a project directory, the simulation source files must
be assembled using the flmake setup command. This is analogous
to executing the traditional setup script. For example, to run the
classic Sedov problem:

~/proj $ flmake setup Sedov -auto
[snip]
SUCCESS
~/proj $ ls
flash_desc.json setup/

This command creates symbolic links to the the FLASH
source files in the setup/ directory. Using the normal
FLASH setup script, all of these files must live within
${FLASH_SRC_DIR}/source/. However, the flmake setup
command searches additional paths to find potential source files.

By default if there is a local source/ directory in the project
directory then this is searched first for any potential FLASH
units. The structure of this directory mirrors the layout found in
${FLASH_SRC_DIR}/source/. Thus if the user wanted to
write a new or override an existing driver unit, they could place
all of the relevant files in ~/proj/source/Driver/. Units
found in the project source directory take precedence over units
with the same name in the FLASH source directory.

The most commonly overridden units, however, are
simulations. Yet specific simulations live somewhat
deep in the file system hierarchy as they reside
within source/Simulation/SimulationMain/.
To make accessing simulations easier a local project
simulations/ directory is first searched for any possible

simulations. Thus simulations/ effectively aliases
source/Simulation/SimulationMain/. Continuing
with the previous Sedov example the following directories are
searched in order of precedence for simulation units, if they exist:

1) ~/proj/simulations/Sedov/
2) ~/proj/source/Simulation/

SimulationMain/Sedov/
3) ${FLASH_SRC_DIR}/source/

Simulation/SimulationMain/Sedov/

Therefore, it is common for a project directory to have the
following structure if the project requires many modifications to
FLASH that are - at least in the short term - inappropriate for
mainline inclusion:

~/proj $ ls
flash_desc.json setup/ simulations/ source/

Logging

In many ways computational simulation is more akin to experi-
mental science than theoretical science. Simulations are executed
to test the system at hand in analogy to how physical experiments
probe the natural world. Therefore, it is useful for computational
scientists to adopt the time-tested strategy of a keeping a lab
notebook or its electronic analogy.

Various example of virtual lab notebooks exist [VLABNB] as
a way of storing information about how an experiment was con-
ducted. The resultant data is often stored in conjunction with the
notebook. Arguably the corollary concept in software development
is logging. Unfortunately, most simulation science makes use of
neither lab notebooks nor logging. Rather than using an external
rich- or web-client, flmake makes use of the built-in Python logger.

Every flmake command has the ability to log a message. This
follows the -m convention from version control systems. These
messages and associated metadata are stored in a flash.log
file in the project directory.

Not every command uses logging; for trivial commands which
do not change state (such as listing or diffing) log entries are not
needed. However for more serious commands (such as building)
logging is a critical component. Understanding that many users
cannot be bothered to create meaningful log messages at each
step, sensible and default messages are automatically generated.
Still, it is highly recommended that the user provide more detailed
messages as needed. E.g.:

~/proj $ flmake -m "Run with 600 J laser" run -n 10

The flmake log command may then be used to display past
log messages:

~/proj $ flmake log -n 1
Run id: b2907415
Run dir: run-b2907415
Command: run
User: scopatz
Date: Mon Mar 26 14:20:46 2012
Log id: 6b9e1a0f-cfdc-418f-8c50-87f66a63ca82

Run with 600 J laser



18 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

The flash.log file should be added to the version control
of the project. Entries in this file are not typically deleted.

Dynamic Run Control

Many aspects of FLASH are declared in a static way. Such
declarations happen mainly at setup and runtime. For certain build
and run operations several parameters may need to be altered in a
consistent way to actually have the desired effect. Such repetition
can become tedious and usually leads to less readable inputs.

To make the user input more concise and expressive, flmake
introduces a run control flashrc.py file in the project directory.
This is a Python module which is executed, if it exists, in an empty
namespace whenever flmake is called. The flmake commands may
then choose to access specific data in this file. Please refer to
individual command documentation for an explanation on if/how
the run control file is used.

The most important example of using flashrc.py is that
the run and restart commands will update the flash.par file
with values from a parameters dictionary (or function which
returns a dictionary).

Initial flash.par

order = 3
slopeLimiter = "minmod"
charLimiting = .true.
RiemannSolver = "hll"

Run Control flashrc.py

parameters = {"slopeLimiter": "mc",
"use_flattening": False}

Final flash.par

RiemannSolver = "hll"
charLimiting = .true.
order = 3
slopeLimiter = "mc"
use_flattening = .false.

Description Sidecar Files

As a final step, the setup command generates a
flash_desc.json file in the project directory. This is
the description file for the FLASH simulation which is currently
being worked on. This description is a sidecar file whose purpose
is to store the following metadata at execution of each flmake
command:

• the environment,
• the version of both project and FLASH source repository,
• local source code modifications (diffs),
• the run control files (see above),
• run ids and history,
• and FLASH binary modification times.

Thus the description file is meant to be a full picture of the
way FLASH code was generated, compiled, and executed. Total
reproducibility of a FLASH simulation is based on having a well-
formed description file.

The contents of this file are essentially a persisted dictionary
which contains the information listed above. The top level keys

include setup, build, run, and merge. Each of these keys gets
added when the corresponding flmake command is called. Note
that restart alters the run value and does not generate its own top-
level key.

During setup and build, flash_desc.json is modified in
the project directory. However, each run receives a copy of this
file in the run directory with the run information added. Restarts
and merges inherit from the file in the previous run directory.

These sidecar files enable the flmake reproduce command
which is capable of recreating a FLASH simulation from only the
flash_desc.json file and the associated source and project
repositories. This is useful for testing and verification of the same
simulation across multiple different machines and platforms. It is
generally not recommended that users place this file under version
control as it may change often and significantly.

Example Workflow

The fundamental flmake abstractions have now been explained
above. A typical flmake workflow which sets up, builds, runs,
restarts, and merges a fork of a Sedov simulation is now demon-
strated. First, construct the project repository:

~ $ mkdir my_sedov
~ $ cd my_sedov/
~/my_sedov $ mkdir simulations/
~/my_sedov $ cp -r ${FLASH_SRC_DIR}/source/\

Simulation/SimulationMain/Sedov
simulations/

~/my_sedov $ # edit the simulation
~/my_sedov $ nano simulations/Sedov/\

Simulation_init.F90
~/my_sedov $ git init .
~/my_sedov $ git add .
~/my_sedov $ git commit -m "My Sedov project"

Next, create and run the simulation:

~/my_sedov $ flmake setup -auto Sedov
~/my_sedov $ flmake build -j 20
~/my_sedov $ flmake -m "First run of my Sedov" \

run -n 10
~/my_sedov $ flmake -m "Oops, it died." restart \

run-5a4f619e/ -n 10
~/my_sedov $ flmake -m "Merging my first run." \

merge run-fc6c9029 first_run
~/my_sedov $ flmake clean 1

Why Reproducibility is Important

True to its part of speech, much of ‘scientific computing’ has the
trappings of science in that it is code produced to solve problems
in (big-‘S’) Science. However, the process by which said programs
are written is not typically itself subject to the rigors of the
scientific method. The vaulted method contains components of
prediction, experimentation, duplication, analysis, and openness
[GODFREY-SMITH]. While software engineers often engage in
such activities when programming, scientific developers usually
forgo these methods, often to their detriment [WILSON].

Whatever the reason for this may be - ignorance, sloth, or
other deadly sins - the impetus for adopting modern software
development practices only increases every year. The evolution of
tools such as version control and environment capturing mecha-
nisms (such as virtual machines/hypervisors) enable researchers
to more easily retain information about software during and



TOTAL RECALL: FLMAKE AND THE QUEST FOR REPRODUCIBILITY 19

after production. Furthermore, the apparent end of Silicon-based
Moore’s Law has necessitated a move to more exotic architectures
and increased parallelism to see further speed increases [MIMS].
This implies that code that runs on machines now may not be able
to run on future processors without significant refactoring.

Therefore the scientific computing landscape is such that there
are presently the tools and the need to have fully reproducible
simulations. However, most scientists choose to not utilize these
technologies. This is akin to a chemist not keeping a lab notebook.
The lack of reproducibility means that many solutions to science
problems garnered through computational means are relegated to
the realm of technical achievements. Irreproducible results may be
novel and interesting but they are not science. Unlike the current
paradigm of computing-about-science, or periscientific comput-
ing, reproducibility is a keystone of diacomputational science
(computing-throughout-science).

In periscientific computing there may exist a partition between
expert software developers and expert scientists, each of whom
must learn to partially speak the language of the other camp.
Alternatively, when expert software engineers are not available,
canonically ill-equipped scientists perform only the bare minimum
development to solve computing problems.

On the other hand, in diacomputational science, software exists
as a substrate on top of which science and engineering prob-
lems are solved. Whether theoretical, simulation, or experimental
problems are at hand the scientist has a working knowledge of
computing tools available and an understanding of how to use
them responsibly. While the level of education required for dia-
computational science may seem extreme in a constantly changing
software ecosystem, this is in fact no greater than what is currently
expect from scientists with regard to Statistics [WILSON].

With the extreme cases illustrated above, there are some
notable exceptions. The first is that there are researchers who
are cognizant and respectful of these reproducibility issues. The
efforts of these scientists help paint a less dire picture than the one
framed here.

The second exception is that while reproducibility is a key
feature of fundamental science it is not the only one. For example,
openness is another point whereby the statement "If a result is
not produced openly then it is not science" holds. Open access to
results - itself is a hotly contested issue [VRIEZE] - is certainly
a component of computational science. Though having open and
available code is likely critical for pure science, it often lies outside
the scope of normal research practice. This is for a variety of
reasons, including the fear that releasing code too early or at all
will negatively impact personal publication records. Tackling the
openness issue must be left for another paper.

In summary, reproducibility is important because without it
any results generated are periscientific. To achieve diacompu-
tational science there exist computational tools to aid in this
endeavor, as in analogue science there are physical solutions.
Though it is not the only criticism to be levied against modern
research practices, irreproducibility is one that affects computation
acutely and uniquely as compared to other spheres.

The Reproduce Command

The flmake reproduce command is the key feature enabling
the total reproducibility of a FLASH simulation. This takes a
description file (e.g. flash_desc.json) and implicitly the
FLASH source and project repositories and replays the setup,

build, and run commands originally executed. It has the following
usage string:

flmake reproduce [options] <flash_descr>

For each command, reproduction works by cloning both source
and project repositories at a the point in history when they were
run into temporary directories. Then any local modifications which
were present (and not under version control) are loaded from
the description file and applied to the cloned repository. It then
copies the original run control file to the cloned repositories and
performs any command-specific modifications needed. Finally, it
executes the appropriate command from the cloned repository
using the original arguments provided on the command line.
Figure 1 presents a flow sheet of this process.

Fig. 1: The reproduce command workflow.

Thus the flmake reproduce recreates the original simu-
lation using the original commands (and not the versions currently
present). The reproduce command has the following limitations:

1) Source directory must be version controlled,
2) Project directory must be version controlled,
3) The FLASH run must depend on only the runtime param-

eters file, the FLASH executable and FLASH datafiles,
4) and the FLASH executable must not be modified between

build and run steps.

The above restrictions enforce that the run is not considered
reproducible if at any point FLASH depends on externalities or
alterations not tracked by version control. Critical to this process
are version control abstractions and the capability to execute
historical commands. These will be discussed in the following
subsections.

Meta-Version Control

Every user and developer tends towards one version control system
or another. The mainline FLASH development team operates in
subversion [SVN] though individual developers may prefer git
[GIT] or mercurial [HG]. As mentioned previously, some users
do not employ any source control management software.

In the case where the user lacks a sophisticated version control
system, it is still possible to obtain reproducibility if a clean
directory tree of a recent release is available. This clean tree must
be stored in a known place, typically the .clean/ subdirectory of
the FLASH_SRC_DIR. This is known as the ‘release’ versioning
system and is managed entirely by flmake.



20 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

To realize reproducibility in this environment, it is neces-
sary for the reproduce command to abstract core source control
management features away from the underlying technology (or
absence of technology). For flmake, the following operations
define version control in the context of reproducibility:

• info,
• checkout or clone,
• diff,
• and patch.

The info operation provides version control information that
points to the current state of the repository. For all source control
management schemes this includes a unique string id for the
versioning type (e.g. ‘svn’ for subversion). In centralized version
control this contains the repository version number, while for for
distributed systems info will return the branch name and the hash
of the current HEAD. In the release system, info simply returns
the release version number. The info data that is found is then
stored in the description file for later use.

The checkout (or sometimes clone) operation is effectively the
inverse operation to info. This operation takes a point in history, as
described by the data garnered from info, and makes a temporary
copy of the whole repository at this point. Thus no matter what
evolution the code has undergone since the description file was
written, checkout rolls back the source to its previous incarnation.
For centralized version control this operation copies the existing
tree, reverts it to a clean working tree of HEAD, and performs
a reverse merge on all commits from HEAD to the historical
target. For distributed systems this clones the current repository,
checkouts or updates to the historical position, and does a hard
reset to clean extraneous files. The release system is easiest in that
checkout simply copies over the clean subdirectory. This operation
is performed for the setup, build, and run commands at reproduce
time.

The diff operation may seem less than fundamental to version
control. Here however, diff is used to capture local modifications
to the working trees of the source and project directories. This
diffing is in place as a fail-safe against uncommitted changes.
For centralized and distributed systems, diffing is performed
through the selfsame command name. In the release system (where
committing is impossible), diffing takes on the heavy lifting not
provided by a more advanced system. Thus for the release system
diff is performed via the posix diff tool with the recursive
switch between the FLASH_SRC_DIR and the clean copy. The
diff operation is executed when the commands are originally run.
The resultant diff string is stored in the description file, along with
the corresponding info.

The inverse operation to diff is patch. This is used at reproduce
time after checkout to restore the working trees of the temporary
repositories to the same state they were in at the original execution
of setup, build, and run. While each source control management
system has its own patching mechanism, the output of diff always
returns a string which is compatible with the posix patch utility.
Therefore, for all systems the patch program is used.

The above illustrates how version control abstraction may
be used to define a set of meta-operations which capture all
versioning information provided. This even included the case
where no formal version control system was used. It also covers
the case of the ‘forgetful’ user who may not have committed

every relevant local change to the repository prior to running a
simulation. What is more is that the flmake implementation of
these abstractions is only a handful of functions. These total less
than 225 lines of code in Python. Though small, this capability is
vital to the reproduce command functioning as intended.

Command Time Machine

Another principal feature of flmake reproducibility is its ability to
execute historical versions of the key commands (setup, build, and
run) as reincarnated by the meta-version control. This is akin to
the bootstrapping problem whereby all of the instruction needed
to reproduce a command are contained in the original information
provided. Without this capability, the most current versions of the
flmake commands would be acting on historical versions of the
repository. While such a situation would be a large leap forward
for the reproducibility of FLASH simulations, it falls well short
of total reproducibility. In practice, therefore, historical flmake
commands acting on historical source are needed. This maybe be
termed the ‘command time machine,’ though it only travels into
the past.

The implementation of the command time machine requires
the highly dynamic nature of Python, a bit of namespace slight-
of-hand, and relative imports. First note that module and package
which are executing the flmake reproduce command may not be
deleted from the sys.modules cache. (Such a removal would
cause sudden and terrifying runtime failures.) This effectively
means that everything under the flash package name may not
be modified.

Nominally, the historical version of the package would be
under the flash namespace as well. However, the name flash
is only given at install time. Inside of the source directory,
the package is located in tools/python/. This allows the
current reproduce command to add the checked out and patched
{temp-flash-src-dir}/tools/ directory to the front of
sys.path for setup, build, and run. Then the historical flmake
may be imported via python.flmake because python/ is a
subdirectory of {temp-flash-src-dir}/tools/.

Modules inside of python or flmake are guaranteed to im-
port other modules in their own package because of the exclusive
use of relative imports. This ensures that the old commands import
old commands rather then mistakenly importing newer iterations.

Once the historical command is obtained, it is ex-
ecuted with the original arguments from the descrip-
tion file. After execution, the temporary source direc-
tory {temp-flash-src-dir}/tools/ is removed from
sys.path. Furthermore, any module whose name starts with
python is also deleted from sys.modules. This cleans the
environment for the next historical command to be run in its own
temporal context.

In effect, the current version of flmake is located in the
flmake namespace and should remain untouched while the re-
produce command is running. Simultaneously, the historic flmake
commands are given the namespace python. The time value of
python changes with each command reproduced but is fully in-
dependent from the current flmake code. This method of renaming
a package namespace on the file system allows for one version of
flmake to supervise the execution of another in a manner relevant
to reproducibility.



TOTAL RECALL: FLMAKE AND THE QUEST FOR REPRODUCIBILITY 21

A Note on Replication

A weaker form of reproducibility is known as replication
[SCHMIDT]. Replication is the process of recreating a result when
"you take all the same data and all the same tools" [GRAHAM]
which were used in the original determination. Replication is a
weaker determination than reproduction because at minimum the
original scientist should be able to replicate their own work. With-
out replication, the same code executed twice will produce distinct
results. In this case no trust may be placed in the conclusions
whatsoever.

Much as version control has given developers greater control
over reproducibility, other modern tools are powerful instruments
of replicability. Foremost among these are hypervisors. The ease-
of-use and ubiquity of virtual machines (VM) in the software
ecosystem allows for the total capture and persistence of the
environment in which any computation was performed. Such en-
vironments may be hosted and shared with collaborators, editors,
reviewers, or the public at large. If the original analysis was
performed in a VM context, shared, and rerun by other scientists
then this is replicability. Such a strategy has been proposed by C.
T. Brown as a stop-gap measure until diacomputational science is
realized [BROWN].

However, as Brown admits (see comments), the delineation
between replication and reproduction is fuzzy. Consider these
questions which have no clear answers:

• Are bit-identical results needed for replication?
• How much of the environment must be reinstated for

replication versus reproduction?
• How much of the hardware and software stack must be

recreated?
• What precisely is meant by ‘the environment’ and how

large is it?
• For codes depending on stochastic processes, is reusing

the same random seed replication or reproduction?

Without justifiable answers to the above, ad hoc definitions
have governed the use of replicability and reproducibility. Yet to
the quantitatively minded, an I-know-reproducibility-when-I-see-
it approach falls short. Thus the science of science, at least in the
computational sphere, has much work remaining.

Even with the reproduction/replication dilemma, the flmake re-
produce command is a reproducibility tool. This is because it takes
the opposite approach to Brown’s VM-based replication. Though
the environment is captured within the description file, flmake
reproduce does not attempt to recreate this original environment
at all. The previous environment information is simply there for
posterity, helping to uncover any discrepancies which may arise.
User specific settings on the reproducing machine are maintained.
This includes but is not limited to which compiler is used.

The claim that Brown’s work and flmake reproduce represent
paragons of replicability and reproducibility respectively may
be easily challenged. The author, like Brown himself, does not
presuppose to have all - or even partially satisfactory - answers.
What is presented here is an attempt to frame the discussion and
bound the option space of possible meanings for these terms.
Doing so with concrete code examples is preferable to debating
this issue in the abstract.

Conclusions & Future Work

By capturing source code and the environment at key stages -
setup, build, and run - FLASH simulations may be fully repro-
duced in the future. Doing so required a wrapper utility called
flmake. The writing of this tool involved an overhaul of the
existing system. Though portions of flmake took inspiration from
previous systems none were as comprehensive. Additionally, to the
author’s knowledge, no previous system included a mechanism to
non-destructively execute previous command incarnations similar
to flmake reproduce.

The creation of flmake itself was done as an exercise in
reproducibility. What has been shown here is that it is indeed
possible to increase the merit of simulation science through a
relatively small, though thoughtful, amount of code. It is highly
encouraged that the methods described here be copied by other
software-in-science project*.

Moreover, in the process of determining what flmake should
be, several fundamental questions about reproducibility itself were
raised. These point to systemic issues within the realm of compu-
tational science. With the increasing importance of computing,
soon science as a whole will also be forced to reconcile these
reproducibility concerns. Unfortunately, there does not appear to
be an obvious and present solution to the problems posed.

As with any software development project, there are further
improvements and expansions that will continue to be added to
flmake. More broadly, the questions posed by reproducibility will
be the subject of future work on this project and others. Additional
issues (such as openness) will also figure into subsequent attempts
to bring about a global state of diacomputational science.

Acknowledgements

Dr. Milad Fatenejad provided a superb sounding board in the con-
ception of the flmake utility and aided in outlining the constraints
of reproducibility.

The software used in this work was in part developed by
the DOE NNSA-ASC OASCR Flash Center at the University of
Chicago.

REFERENCES

[BROWN] C. Titus Brown, "Our approach to replication in com-
putational science," Living in an Ivory Basement, April
2012, http://ivory.idyll.org/blog/replication-i.html.

[FLASH] FLASH Center for Computational Science, FLASH
User’s Guide, Version 4.0-beta, http://flash.uchicago.
edu/site/flashcode/user_support/flash4b_ug.pdf,
University of Chicago, February 2012.

[FLMAKE] A. Scopatz, flmake: the flash workflow utility,
http://flash.uchicago.edu/site/flashcode/user_support/
tools4b/usersguide/flmake/index.html, The University
of Chicago, June 2012.

[GIT] Scott Chacon, "Pro Git," Apress (2009) DOI:
10.1007/978-1-4302-1834-0

[GMAKE] Free Software Foundation, The GNU Make Manual
for version 3.82, http://www.gnu.org/software/make/,
2010.

[GODFREY-SMITH] Godfrey-Smith, Peter (2003), Theory and Reality: An
introduction to the philosophy of science, University of
Chicago Press, ISBN 0-226-30063-3.

[GRAHAM] Jim Graham, "What is ‘Reproducibility,’ Anyway?",
Scimatic, April 2010, http://www.scimatic.com/node/
361.

*. Please contact the author if you require aid in any reproducibility
endeavours.

http://ivory.idyll.org/blog/replication-i.html
http://flash.uchicago.edu/site/flashcode/user_support/flash4b_ug.pdf
http://flash.uchicago.edu/site/flashcode/user_support/flash4b_ug.pdf
http://flash.uchicago.edu/site/flashcode/user_support/tools4b/usersguide/flmake/index.html
http://flash.uchicago.edu/site/flashcode/user_support/tools4b/usersguide/flmake/index.html
http://www.gnu.org/software/make/
http://www.scimatic.com/node/361
http://www.scimatic.com/node/361


22 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

[HG] Bryan O’Sullivan, "Mercurial: The Definitive Guide,"
O’Reilly Media, Inc., 2009.

[MIMS] C. Mims, Moore’s Law Over, Supercomputing "In
Triage," Says Expert, http://www.technologyreview.
com/view/427891/moores-law-over-supercomputing-
in-triage-says/ May 2012, Technology Review, MIT.

[SCHMIDT] Gavin A. Schmidt, "On replication," RealCli-
mate, Feb 2009, http://www.realclimate.org/index.php/
archives/2009/02/on-replication/langswitch_lang/in/.

[SVN] Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael
Pilato (2011). "Version Control with Subversion: For
Subversion 1.7". O’Reilly.

[VLABNB] Rubacha, M.; Rattan, A. K.; Hosselet, S. C. (2011). A
Review of Electronic Laboratory Notebooks Available
in the Market Today. Journal of Laboratory Automation
16 (1): 90–98. DOI:10.1016/j.jala.2009.01.002. PMID
21609689.

[VRIEZE] Jop de Vrieze, Thousands of Scientists Vow to Boycott
Elsevier to Protest Journal Prices, Science Insider,
February 2012.

[WILSON] G.V. Wilson, Where’s the real bottleneck in scientific
computing? Am Sci. 2005;94:5.

http://www.technologyreview.com/view/427891/moores-law-over-supercomputing-in-triage-says/
http://www.technologyreview.com/view/427891/moores-law-over-supercomputing-in-triage-says/
http://www.technologyreview.com/view/427891/moores-law-over-supercomputing-in-triage-says/
http://www.realclimate.org/index.php/archives/2009/02/on-replication/langswitch_lang/in/
http://www.realclimate.org/index.php/archives/2009/02/on-replication/langswitch_lang/in/

	Introduction
	New Workflow Features
	Independent Project Directories
	Source & Project Paths Searching
	Logging
	Dynamic Run Control
	Description Sidecar Files
	Example Workflow

	Why Reproducibility is Important
	The Reproduce Command
	Meta-Version Control
	Command Time Machine

	A Note on Replication
	Conclusions & Future Work
	Acknowledgements
	References

