
1182 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

A Programmable Dynamic Interconnection
Network Router with Hidden Refresh

José G. Delgado-Frias,Senior Member, IEEE,Jabulani Nyathi, and Douglas H. Summerville,Member, IEEE

Abstract—A VLSI implementation of a programmable pipe-
lined router scheme for parallel machine interconnection net-
works is presented in this paper. The implementation is based on
a dynamic content-addressable memory (DCAM) that supports
unique bit masking per entry. The number of required DCAM
entries is extremely small; it is of the same order as the node
degree (output ports). This, in turn, makes it possible to imple-
ment a dynamic content-addressable memory in order to reduce
the physical size of the system. A DCAM is implemented with
only six and a half transistors (one transistor is shared by two
cells). We have provided circuitry and arranged timing to achieve
refreshing of the stored data in a hidden fashion. In addition to
the DCAM, we have incorporated a fast priority scheme that
allows only one entry to be selected. The router executes routing
algorithms in 1.5 clock cycles, this being the fastest approach for
flexible routers. The prototype router has 24 entries, and is able
to sustain a throughput of one routing decision per cycle.

Index Terms—Content addressable memory, dynamic circuits,
matching with ternary digits, parallel comparison, pipelining,
routing algorithm execution, ternary digit logic.

I. INTRODUCTION

PARALLEL computer organizations have been proposed
and developed to provide the performance required in a

number of applications [1], [5], [7]. A parallel system consists
of a number of processing elements (PE’s) that are arranged
in a configuration that is characterized by an interconnection
network. Communication between PE’s is accomplished by
means of the interconnection network, which should not only
provide a short path, but also accommodate the communication
needs of the application. A number of interconnection network
topologies have been proposed and used [4]; each network
has features that make it suitable for a set of applications and
algorithms [2], [10].

An interconnection network node has a router that provides
a means of handling messages on the network. The router
receives, forward, and delivers messages as well as controlling
message flow through the network. The router system transfers
messages from its input ports to the proper output ports
based on a routing algorithm. A crucial component of any
large-scale parallel machine is the routing algorithm [9]. The
router has to be able to accommodate the routing requirements
of an interconnection network topology. These requirements

Manuscript received August 27, 1996; revised December 9, 1997 and June
4, 1998. This paper was recommended by Associate Editor K. Antreich.

J. G. Delgado-Frias and J. Nyathi are with the Department of Electrical
Engineering, State University of New York, Binghamton, NY 13902-6000
USA (e-mail: delgado@binghamton.edu).

D. H. Summerville is with the Department of Electrical Engineering,
University of Hawaii, Honolulu, HI 96822 USA.

Publisher Item Identifier S 1057-7122(98)07721-6.

Fig. 1. CAM-based router organization.

may include: routing algorithm execution, expeditious deter-
mination of the destination port, flexibility to accommodate
modifications to the network, support for a large number of
interconnection networks, deterministic communication path,
and programmability. The VLSI CAM-based router scheme
has been designed to support routing algorithms that are used
in most processor-based router schemes [11]. Using routing
algorithms to determine the output port requires consideration
of the following two issues [12].

• Some addressing bits need be ignored depending on the
current and destination nodes. A routing algorithm ex-
amines the status of addressing bits that are of importance
to determine the output port. The bits that are taken
into account depend on current node position in the
network topology, destination address, routing algorithm,
and output port priority. For instance, in a hypercube
topology, when routing to the higher unrouted dimension
(-cube algorithm), the bits of lower dimensions are not
considered [12]. In this case, the lower dimension bits
are not considered since they do not affect a decision of
taking a route in a high-dimension channel.

• Output port alternatives need be prioritized. This priority
is used to favor a port that would yield a short path. This
feature ensures deterministic routing algorithm execution.

Our CAM-based router provides a bit-pattern matching
mechanism that allows all the alternative paths to be consid-
ered in parallel. Fig. 1 shows the proposed router. The modules
along with the matching mode of operation for this router are
briefly described below.

1) Search Argument Register: The destination address is
passed to the router by an input port. At this time,
the search argument register latches this address, which
serves as input to the following stage.

1057–7122/98$10.00 1998 IEEE

DELGADO-FRIAS et al.: INTERCONNECTION NETWORK ROUTER WITH HIDDEN REFRESH 1183

2) Bit-Pattern Matching Unit: The bit patterns for a given
interconnection network node are stored in this unit.
This unit performs a comparison between the destination
address and the current address (which is specified by
the bit patterns). All of the bit patterns that match the
input address are passed to the following stage.

3) Hit and Priority Logic (HPL): If more than one pattern
has been found to match, the hit and priority logic
selects only one match. The other matches are ignored.
If no pattern matches with input (due to an unknown
address destination), the HPL sets a no match signal.
The selected match pointer is passed to the following
stage.

4) Port Assignment Memory: The output port assignments
are stored in this memory. The address where the
assignment is read is specified by a pointer from the
hit priority logic. This assignment is passed to the port
assignment register.

5) Port Assignment Register: The output port assignment is
stored in this register to be used by the interconnection
network.

In addition to the matching mode of operation, there is a
program mode in which the bit patterns and port assignments
are stored into memory. During the program phase, the match
and HPL logic are ignored, and an address decoder (not shown)
is used to select the word in both memories that is to be written.

The CAM design should include a mechanism to mask
off any set of bits at each entry. This mechanism selectively
ignores bits that have no relevance in determining a routing
path. In order to discard bits within a CAM entry, it is
necessary to have a ternary condition for each bit comparison.
Thus, each CAM cell needs to store this ternary condition
which consists of binary logical values (ZERO and ONE)
as well as don’t care (). A set of these ternary conditions
per entry constitutes a bit pattern. Each of the bit patterns is
compared in parallel with the destination address passed by
the search argument register [12].

The hit and priority logic implements a prioritization of
the match lines from the matching unit. A priority function
is required to ensure deterministic execution of the routing
algorithms, and to select the output port that provides a short
path. The priority function enables one of the match lines from
the matching unit to address the port assignment memory.
The hit and priority logic has been designed using a dynamic
approach.

The proposed dynamic CAM-based router has been de-
signed and implemented using CMOS technology. This im-
plementation is a vast improvement over our previous static
CAM router [3]. By having a dynamic CAM router, we have
reduced the total transistor count significantly without losing
the router functionality and performance.

This paper has been organized as follows. Sections II and
III outline the circuit design used in the full custom CMOS
VLSI implementation of the CAM-based router. In Section
II, the circuit design of the matching unit is presented in
detail. In Section III, the design and implementation of the
hit and priority logic as well as the port assignment memory
are introduced. The timing of the router operation as well as

Fig. 2. Matching unit organization.

the results of the CMOS implementation are given in Section
IV. Section V presents an application of the proposed router
approach: hypertree routing. Concluding remarks are provided
in Section VI.

II. M ATCHING UNIT IMPLEMENTATION

In our VLSI implementation, the bit-pattern matching unit
has been realized in the form of a dynamic content-addressable
memory (DCAM) design. The DCAM design includes per
entry unique bit masking to provide the parallel evaluation
of all of the bit patterns on the input data. The design uses
dynamic storage cells to hold the matching data condition. This
condition requires a ternary digit (with values 0, 1, and) per
comparison bit. The refreshing requirement of the dynamic
cells has been made transparent by interleaving the refresh
operation with the match operation to maintain the high level
of performance achieved using static storage [3]. In addition,
the hardware resources are shared at different times during a
clock cycle in a nonconflicting manner. The resulting DCAM
cell is smaller than the static cell while maintaining the same
level of performance and functionality.

A. Match Unit Organization and Cell Design

The organization of the matching unit is shown in Fig. 2.
The CAM cells are dynamic circuits that perform the bit
comparison between the stored patterns and the argument
(destination address) sent by the search and argument register
(SAR). The comparison is done by means of an XOR-like
operation. Once a match with all of the patterns has been
performed, the condition of the match lines is latched; this is
needed to accommodate the pipeline requirements. In order
to provide programmability and refresh to the dynamic CAM
(DCAM) cells, two logic circuits (shown as gray blocks in
Fig. 2) are used: row select shift register and refresh register.
The row select shift register provides signals (row 1, row 2,

, row) to select a row in the CAM array to either read
from or write to. This pointer is used for the programming and
refreshing modes. In the refreshing mode, the refresh register
holds the data and passes back this information.

In the design of the DCAM cell, we have stressed not only
transistor count reduction, but also performance and hidden
refresh issues. The circuit of a single DCAM cell, shown in
Fig. 3, consists of six and a half transistors; transistor
is shared by two cells. This circuit shares some similarities

1184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

Fig. 3. CMOS circuit for a single DCAM cell.

TABLE I
REPRESENTATION OFSTORED DATA IN A DCAM CELL

with the dynamic CAM circuit proposed by Wade and Sodini
[14]. However, our circuit provides much shorter matching
and reading delays and accommodates hidden refresh.

The read (denoted as& in Fig. 3), write, evaluation, and
match line signals are shared by the cells in a word, while the
BIT and NBIT lines are shared by the corresponding bit in
all words of the matching unit. The design uses a precharged
match line to allow fast as well as simple evaluation of the
match condition. This condition is represented by the DCAM
cell state which is set by the and node status. This
state is stored in the gate capacitance of the transistors
and . The possible DCAM cell stored values are listed in
Table I.

The DCAM cell performs a match between its stored ternary
value and a bit input (provided by BIT and NBIT which
represent a bit and its opposite value, respectively). The match
line is precharged to a logic 1; thus, when a no match exists,
this line is discharged by means of transistor . To read the
contents of the DCAM cell, transistor is set on. If the
stored bit in (or) is a “1,” then the BIT line (or NBIT
line) will be set to 0. If both and are “0” (don’t care
condition), transistor sets a “0” at the gate of ; this, in
turn, serves as refresh for the don’t care condition at transistor

. A more comprehensive description of this cell operation
is provided in the following subsections.

B. Match Operation

The match operation mode involves comparing the input
data to the patterns stored in the DCAM and determining if
a match has been found. During match operation, the input
data to be compared with the stored data are presented on the
BIT line and their inverse value on the NBIT line. Before the

TABLE II
LOGIC AND TRANSISTOR STATUS TABLE FOR THE MATCH OPERATION

Fig. 4. RefreshREAD and WRITE timing.

actual matching of these two values is performed, the match
line is precharged to , which indicates a match condition.

The matching of the input data and the stored data is
performed by means of an exclusive-or operation which is
implemented by the two transistors (and) that hold
the stored value. The match condition under different inputs
and stored data is shown in Table II. When the stored value is
either 0 or 1, the exclusive-or circuit sets a path from BIT or
NBIT, respectively, to the gate of transistor . This allows
the exclusive-or circuit to pass either 0 or 1 to that gate. When
there is a match between the two values, a 0 is passed; this
condition prevents transistor from discharging the match
line. On the other hand, when there is no match,’s gate is
set to 1. This, in turn, sets a path to discharge the match line
when the evaluation signal is set high. If the stored value is set
to “don’t care,” transistors and are off, disconnecting
the BIT and NBIT lines. For the “don’t care” value, transistor

sets the gate of transistor to zero; this, in turn,
prevents the cell from discharging the precharged match line.

C. Hidden Refresh Operation

The refresh operation occurs at a portion of the clock cycle
when the BIT and NBIT lines are not needed for the match
operation (shown as the shaded areas in Fig. 4). This makes
the refresh operation transparent to the match operation. The
refresh circuitry consists of the row select shift register and the
refresh register (shown in Fig. 2). The row select shift register
points to the matching unit row that is being refreshed. To
prevent the refresh operation from extending the cycle time,
the operation has been split into two phases: read stored data
and write back data. Fig. 4 shows the timing for the refresh
read and write along with the match operation. We have used
a two-phase clock (and); the times when both clocks
are 0 are called and .

A DCAM row, selected by the row select shift register, is
read and stored at the refresh register. The read operation is
similar for both bits of the stored value (and shown in

DELGADO-FRIAS et al.: INTERCONNECTION NETWORK ROUTER WITH HIDDEN REFRESH 1185

TABLE III
KILL , PASS, AND Priorityout GENERATION

Fig. 3). Since the data stored in the cell are dynamic, the read
operation must sense the data stored at and without
weakening them. This is accomplished by transistor in
Fig. 3. To ensure the proper reading operation, the BIT and
NBIT lines are precharged just before reading takes place (at
time) as shown in Fig. 4. At , the inverse value of each
bit is read. For instance, if a 1 is stored at , this causes
the BIT line to be discharged; on the other hand, a stored 0
prevents the discharge of the line. The refresh register inverts
the data before setting the BIT line at the write-back phase.
At the write-back phase, the value data are passed to the BIT
and NBIT lines at time before the actual writing occurs
(at). This, in turn, helps to reduce the delay on writing
into the cell. This is particularly important when writing a 1
which is done through an n-type transistor (or) that
presents a larger resistance.

III. H IT AND PRIORITY LOGIC

AND PORT ASSIGNMENT MEMORY

In this section, we present two important components of
the flexible router: the hit and priority logic and the port
assignment memory. Dynamic circuitry has been used to
reduce transistor count and delays. The hit and priority logic
implements a priority function required to ensure a determin-
istic execution of the routing algorithms and select the output
port that provides a short path. The port assignment memory
stores the port numbers that correspond to each bit-pattern
entry in the CAM.

A. Hit and Priority Logic Design

The hit and priority logic (HPL) has been designed to ensure
the deterministic execution of the routing algorithms. With a
given input (i.e., destination address) and a set of patterns
stored (program) in the matching unit, the port assignment
should always be the same.

The priority function, implemented by the HPL, enables
only one of the match lines from the matching unit to address
the port assignment memory. In order to implement this func-
tion, we designed a priority encoder. Each cell of this encoder
has three inputs [Kill (), Pass (), and Priority] and two
outputs (Priority and Select). Kil and Pass are generated
from the match input. Table III shows the relationship between
the match input (provided by the match line) and the kill
and pass inputs. This table presents the values of Priority
as well. It should be noted that Kill and Pass are mutually
exclusive inputs. When Pass is 1 (this means that there is no
match at the current input), the priority value is propagated. On
the other hand, when Kill is 1 (meaning that there is a match
at the current input), the Priority value is set to zero. Given
the match input (i.e., Kill) and the Priority, it is possible to
generate the select output, this is shown in Table IV. If there

TABLE IV
SELECT GENERATION

(a)

(b)

Fig. 5. Hit and priority logic design: (a) hit and priority block diagram and
(b) two-cell priority encoder circuit design.

is no match the select output is always 0. When there is a
match, the Priority sets the select output. A block diagram
of this unit is shown in Fig. 5(a).

The circuit design of two priority encoders is shown in
Fig. 5(b). We have included two cells in the design of the
priority encoder in order to reduce the number of buffers
(inverters) in the main path of the priority chain. It should
be pointed out that the number of entries to the encoder is
very small (is usually larger no larger than 16 for most
of the applications). Thus, this simple circuit satisfies the

1186 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

requirements for this application; in addition, we have allowed
close to three quarters of a cycle for this circuit to stabilize.

The sequence of events (which is closely linked to the
timing provided in Section IV) for this unit is as follows. At

, the priority line is precharged, and Pass and Kill are reset.
The select lines (shown as Select DRAM) are set to 0 at the
same time. Just after the precharge/reset time (at time), the
match condition is passed to the HPL from the matching unit.
This match condition is stored in the gates of the transistor
connected to this input; it should be pointed out that only
gates are connected to this signal. At this time,and are
generated, and the priority is being computed. If there is a
match and the priority line is 1 (indicating that no match line
above the current one is active), then the select is enabled.
Thus, the priority signal that is passed to all of the cells below
the current one is set to 0, preventing any further select lines
from going high. Finally, the HPL output is passed to the
following stage at time called , which comes just before
the next reset of the unit.

B. Dynamic Port Assignment Memory

The port assignment memory holds information about the
output port that has to be assigned after a bit pattern that
matches the current input is found. This memory has been
implemented using a dynamic approach; Fig. 6(a) shows the
organization of this memory. The selected row address is
passed from the HPL. The cells in this row are read, and their
data are latched in the port assignment register. This structure
has a hidden refresh approach which is accomplished by means
of the DRAM refresh and the row select shift registers. The
hidden refresh for this memory works in a similar fashion as
the one for the DCAM. Fig. 6(b) shows the circuit of a DRAM
cell. In order to accommodate refresh, we have added another
bus (refresh/program). It should be pointed out that the select
signal is latched at the gate of transistor .

IV. SYSTEM TIMING AND ROUTER IMPLEMENTATION

In this implementation, we have used a two-phase clock
approach. The clock diagram for match operation is shown in
Fig. 7. This figure shows an instance of several consecutive
input data (denoted as data1,). The figure also depicts
how the refresh circuitry shares the BIT and NBIT bus; the
rows being refreshed are CAMand CAM . The refresh
timing has been described in an earlier section; for the sake of
simplicity, the refresh operation is not described any further.
The destination address at the input of the SAR is latched at.
The input data are passed on to the BIT and NBIT bus after
During this time, the match is being executed. Such a match
is passed on to the match line at Right after this clock,
the match output is passed and latched at the HPL. At the
end of the following the HPL has completed the priority
encoding; thus, the pointer to the port assignment memory
is ready. The selected port assignment is latched to the port
assignment register right after . Thus, the port assignment
can be read at .

The timing diagram in Fig. 7 clearly shows the pipelined
operation of the router. The router can sustain a throughput

(a)

(b)

Fig. 6. Port assignment memory: (a) memory organization and (b) DRAM
circuit design.

of one routing decision per cycle. It can be observed that the
implemented router performs a single routing algorithm in 1.5
clock cycles.

The proposed router has been implemented using a low-
cost 2 m CMOS technology. The implemented router has
24 16-bit patterns (CAM size) and 24 8-bit port assignments
(RAM size). This system size is large enough for all of the
applications that we have studied [12]. The VLSI layout design
of this router is shown in Fig. 8. Using an in-house testing
board, we were able to run the system at 3 MHz. When the
match line is pulled down by a single cell (within a word), it
has a delay of 60 ns; it should be mentioned that this delay is
measured at the output pin (there is a long delay due to the
I/O pad). The propagation delay in the hit and priority logic
(HPL) is 18 ns. This delay is observed when the first entry
that matches the input cancels all of the other potential matches
below. The pipelined router system is able to execute one route
assignment per cycle. Using a submicron CMOS technology
(such as 0.35 m or smaller), the current design will be able
to reach clock rates in excess of 200 MHz. The circuit was
designed using scalable CMOS design rules; thus, it will be
relatively easy to implement it on submicron technologies.

V. EXAMPLE APPLICATION

In this section, we present a routing algorithm implemen-
tation as an application of the CAM-based router scheme.
We have chosen a hypertree interconnection network [5] to
illustrate the router capabilities; however, the CAM-based
router can be used for a number of other interconnection
networks and routing algorithms [12]. Before describing a

DELGADO-FRIAS et al.: INTERCONNECTION NETWORK ROUTER WITH HIDDEN REFRESH 1187

Fig. 7. Match operation mode timing.

Fig. 8. Die microphotograph of the router system.

hypertree’s routing algorithm, we introduce the binary tree,
its addressing scheme, and its properties that are used in the
algorithm. Then the hypertree, which is an enhanced binary
tree, is introduced along with its features that are considered
in the routing algorithm. Finally, the routing algorithm is
described and its mapping onto the router’s bit patterns.

A. Binary Tree Basic Structure

The binary tree structure is the fundamental building block
for most of the tree networks [7]. The binary tree structure is
distinguished from that of the generalized tree structures by
the fact that no node has more than two children. These two

children are commonly referred to as the left and right child
of the node. The left (or right) child and its descendants are
referred to as the left (or right) subtree of the node. Without
losing generality, we have adopted the odd–even addressing
scheme proposed by Horowitz and Zorat [7]. In this scheme,
each node address has the format (),
where the leftmost “1” bit is referred to as the leading 1
and the bits () are referred to collectively as the
significant portion of the node address. The root is assigned the
address of 1. As the tree is traversed downward, the address
of each parent node is modified and passed on to its children.
The leading 1 of the parent’s address is replaced with a 0 if
the address is being determined for the left child or with a 1

1188 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

if it is for the right child. A new leading 1 is then appended
before the significant portion of the node address.

A routing algorithm for the binary tree is described in [7]. In
this algorithm, a message is first routed up the tree to a subtree
containing the destination node. Once the correct subtree is
reached, the algorithm sends the message down through this
subtree toward its destination. We refer to these as the upward
and downward phases of the algorithm. To describe a generic
routing algorithm for all of the nodes of a tree, we have
the following notations. The current node has an address
(), this node is at level . The node
where the message will go is called destination node, and
has an address (); this node is at
level .

A routing algorithm uses the properties of the addressing
scheme. The conditions required by the algorithm include the
following properties.

Property 1: The relative position of two nodes can be de-
termined by comparing the relative position of the leading 1 in
each address. The number of bits in the significant portion of
a node address is equal to the level number. Thus, the position
of the leading 1 indicates a node’s level in the tree. For node

() at level , the leading 1 occurs
at position . If nodes and are at the same level (),
then their leading 1 must occur at the same bit position. If
node is higher (lower) in the tree than node, then the bit
position of the leading 1 in the address of is to the right
(left) of the leading 1 in the address of.

Property 2: Nodes in a subtree inherit all of the significant
bits of the subtree parent. In this addressing scheme, the child
node inherits the significant portion of the parent’s address. All
nodes in the subtree of node ()
will have the bits () in common. Furthermore, a
node in the left subtree of will have () and a node
in the right subtree will have ().

B. Hypertree Interconnection Network

A hypertree interconnection topology is a binary tree net-
work augmented with additional horizontal connections called

-cube links [5]. The hypertree structure is shown in Fig. 9.
An -cube link provides an interconnection path between two
nodes in different subtrees at the same level of the tree struc-
ture. The addresses of these two nodes differ in only one bit.
Using the same addressing scheme as the binary tree, we have
that for a node ()
at level , the node connected by an-cube link to node will
have address (),
where and for all . We refer to as
the hypernode of . The bit position in which the two node
addresses differ is based on the type of hypertree as well as
the level in the tree at which the nodes reside. Details can be
found in [5].

Having a hypercube link enhances the routing algorithm
with more alternatives. The conditions required to use an

-cube link are summarized in the following properties.
Property 3: To use the hypernode, the Hamming distance

between the addresses of the current node C and the destination

Fig. 9. Hypertree interconnection network.

node D must be greater than that between the addresses of
B (the hypernode of C) and D. The addresses of nodes
and differ only in bit position . Let represent the
Hamming distance between the addresses of nodesand .
Then requires or, alternatively,

.
Property 4: To use the hypernode, the routing algorithm

must be in its upward phase. For the routing algorithm to be
in its downward phase, node must be in the subtree of node

. This requires that the bits of and corresponding to
the significant portion of the address ofbe equal. Since bit
position falls within the significant portion of the address of

, is sufficient to ensure that the algorithm is in its
upward phase.

C. Hypertree Routing Algorithm and its Bit-Pattern Mapping

Based on the features and requirements of the hypertree, an
algorithm has been adapted from [7]. For a message arriving
at node () on level destined
for another node D () at level , a
distributed routing algorithm is shown in program-like fashion
at the bottom of the following page.

The algorithm consists of conditional program statements.
Each of these statements is associated with a potential output
port assignment (assign) that could be made by the algo-
rithm. These potential assignments are shown to the right side
of the algorithm description. It should be mentioned that, once
an assignment is made, the algorithm stops there, i.e., the other
conditionals are not considered. We have added comments
to the algorithm to make reference to what the conditional
statements are checking.

To map the routing algorithm onto the bit-pattern associa-
tive router, each conditional program statement needs to be
expressed in a bit pattern. This is accomplished using the
four addressing scheme properties introduced in the previous
subsections. The bit-pattern entries for this hypercube routing
algorithm are given in Fig. 10. The entry numbers in the bit
patterns correspond to the assignment number in the routing
algorithm.

The first entry in the bit pattern set corresponds to the
destination being the current node; thus, the destination ad-
dress must exactly match the current node address. Using
Properties 3 and 4, entry number 2 checks the condition to
use an -cube link; this is represented by the bit pattern
(). Entry 3 checks if the relative

DELGADO-FRIAS et al.: INTERCONNECTION NETWORK ROUTER WITH HIDDEN REFRESH 1189

Fig. 10. Bit patterns for an oblivious hypertree routing algorithm.

Fig. 11. Hypertree routing example.

level of the destination address is above the current node.
Property 1 is used to check the level; the leading 1’s for all
of the nodes above the current level have zeros in bits–
of their addresses. Using Property 2, entries 3 and 4 can be
generated; all of the nodes in the current one’s subtree must
inherit the same bits from to 0. It is also necessary
to check bit of the destination node to send the message
to the proper branch of the subtree. The last entry has the
purpose of sending the message to the parent if none of the
other conditions has been met. This entry takes care of the
destination addresses that are at the same or below the current
node level, but are not part of the current node’s subtree.

An example of how a message will be routed in a hypertree
using the bit-pattern router is shown in Fig. 11. The source and
destination node addresses are 1000 and 1011, respectively. It
should be pointed out that each node has its own bit-pattern
associative router which has a customized set of bit patterns
(these are based on the generic bit patterns shown in Fig. 10).

TABLE V
NODES AND ENTRIES USED TO ROUTE A MESSAGEFROM 1000 TO 1011

Table V shows the nodes and entries at each node that are
used to route the message from the source to the destination.

VI. CONCLUDING REMARKS

In this paper, we have presented a custom VLSI implemen-
tation of a flexible router scheme for parallel interconnection
network architectures. This programmable router has been im-
plemented using a novel dynamic CMOS content-addressable
memory (DCAM) array. This array performs one comparison
or match per cycle. The refreshing of the DCAM has been
hidden from the match operation; the hardware resources are
shared at different times during one clock cycle by these two
operations. This, in turn, allows the matching and refresh
operations to be intermixed.

The main features of the proposed VLSI system include the
following.

• Novel Parallel Routing Algorithm Execution: Bit-pattern
matching is used to execute the routing algorithm in
parallel. All potential routing alternatives are considered
in parallel. The hit and priority logic provides a fast
collision resolution when multiple pattern matches are
found.

• High Performance: The pipelined implementation pro-
vides a high-performance router with a throughput of
one routing decision made at every clock cycle. A sin-
gle routing decision requires 1.5 cycles to complete its
execution.

• 6.5 n-Type Transistors per DCAM Cell: This cell requires
a very small number of transistors for its implementation.

• Don’t Care (X) Condition per Cell: Each cell is capable of
storing a “don’t care” condition which can be extremely
useful for a number of applications.

BEGIN
IF () check if destination is the current node

THEN: assign (current node) Assignment 1
IF check if the hypernode can be used

THEN: assign (n-cube link) Assignment 2
IF check if destination is at a higher level

THEN: assign (parent node) Assignment 3
IF check if destination is at a lower level

THEN: IF (in the subtree of) check if dest. is in current subtree
THEN: IF (in left subtree of)

THEN: assign (left subtree) Assignment 4
ELSE: assign (right subtree) Assignment 5

ELSE: assign (parent node) Assignment 6
END

1190 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

• Hidden Refresh: The refresh for the DCAM and DRAM
is accomplished in a transparent fashion. The match
operation of the DCAM is not interrupted while refresh
takes place.

• Expandability: Using the proposed approach, the DCAM
and DRAM arrays can be easily expanded to accommo-
date the required number of bits per word and the number
of words.

• Intrinsic Pipeline Stage Latching Approach: Data are
latched in the gate capacitance of transistors used in the
logic for the following pipeline stage. Thus, there is no
need for extra hardware to accommodate the pipeline
latch requirements.

• Potential for Power Savings: The DCAM cell has no
direct paths between and ground where current
could be wasted in a number of CMOS designs. In
this router system, paths between and ground are
avoided by precharging and discharging lines at different
times. This, in turn, provides not only fast execution of
some logic fuctions (such as match condition), but also
power savings.

The prototype system has been successfully tested. The
testing indicates that the system is functional and able to carry
out one port assignment computation per cycle. The proposed
DCAM could also be used in other applications such as data
communication, video processing, and data and knowledge
bases.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees of the
paper for their helpful comments and suggestions. The authors
acknowledge MOSIS for fabricating the test chips, and Bing-
hamton University’s IEEC for producing the microphotograph
of the chip.

REFERENCES

[1] G. S. Almasi and A. Gottlieb,Highly Parallel Computing, 2nd ed.
Benjamin/Cummings, 1994.

[2] Y. Chen and S. J. Upadhyaya, “Reliability, reconfiguration, and spare
allocation issues in binary tree architectures based on multiple-level
redundancy,”IEEE Trans. Comput., vol. 42, pp. 713–723, June 1993.

[3] J. G. Delgado-Frias, R. Sze, D. Summerville, and V. Aikens, “A VLSI
CAM-based router for multiprocessor organizations,” inProc. 4th Great
Lakes Symp. VLSI, Notre Dame, IN, Mar. 1994, pp. 124–129.

[4] J. Duato, S. Yalmanchili, and L. Ni,Interconnection Networks: An
Engineering Approach. CA: IEEE Computer Society Press, 1997.

[5] J. R. Goodman and C. H. Séquin, “Hypertree: A multiprocessor inter-
connection topology,”IEEE Trans. Comput., vol. C-30, pp. 923–933,
Dec. 1981.

[6] K. E. Grosspietsch, “Associative processors and memories,”IEEE
Micro, vol. 12, pp. 12–19, June 1992.

[7] E. Horowitz and A. Zorat, “The binary tree as interconnection net-
work: Applications to multiprocessor systems and VLSI,”IEEE Trans.
Comput., vol. 30, pp. 247–253, Apr. 1981.

[8] INMOS Ltd., The 9000 Transputer Products Overview Manual, INMOS
Document 72 TRN 228 00, 1991.

[9] T. Leighton, “Average case analysis of greedy routing algorithms on ar-
rays,” in 2nd Annual ACM Symp. Parallel Algorithms and Architectures,
Crete, Greece, 1990, pp. 2–10.

[10] F. T. Leighton,Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, and Hypercubes. San Mateo, CA: Morgan Kaufmann,
1992.

[11] J. Park, S. Vassiliadis, and J. G. Delgado-Frias, “Flexible oblivious
router architecture,”IBM J. Res. Develop., vol. 39, pp. 315–329, May
1995.

[12] D. H. Summerville, J. G. Delgado-Frias, and S. Vassiliadis, “A flexible
bit-pattern associative router for interconnection networks,”IEEE Trans.
Parallel Distrib. Syst., vol. 6, pp. 477–485, May 1996.

[13] , “A high performance pattern associative oblivious router for tree
topologies,” in IPPS’94: 8th Int. Parallel Processing Symp., Cancun,
Mexico, Apr. 1994, pp. 541–545.

[14] J. P. Wade and C. G. Sodini, “Dynamic cross-coupled bit-line content
addressable memory cell for high-density arrays,”IEEE J. Solid-State
Circuits, vol. SC-22, pp. 119–121, Feb. 1987.

Jośe G. Delgado-Frias (S’81–M’86–SM’90)
received the B.S. degree from the National
Autonomous University of Mexico, the M.S. degree
from the National Institute for Astrophysics, Optics
and Electronics, Mexico, and the Ph.D. degree from
Texas A&M University, all in electrical engineering.

He is with the Electrical Engineering Department
at the State University of New York at Binghamton
where he is an Associate Professor. He has held
academic positions at the University of Oxford,
England (as a Post-Doctoral Research Fellow) and

the National Autonomous University of Mexico (as an Assistant Professor).
His research interests include parallel computer architecture, interconnection
networks, VLSI design, computer hardware organization, neural network
computing machines, and optimization using genetic algorithms. He has co-
authored more than 80 technical papers and co-edited three books. He has
been granted 11 U.S. patents.

Dr. Delgado-Frias has been the co-chairman of three international
workshops and a program committee member of a number of international
conferences. In 1994, he received the State University of New York System
Chancellor’s Award for Excellence in Teaching. He is a Senior Member of the
IEEE and a member of the Association for Computing Machinery, American
Society for Engineering Education, and Sigma Xi.

Jabulani Nyathi received the B.S.E.E. degree in
1994 from Morgan State University, MD, and the
M.S.E.E. degree in 1996 from the State Univer-
sity of New York at Binghamton. He is currently
pursuing doctoral studies in electrical engineering
(computer engineering) at the State University of
New York at Binghamton.

He is an Adjunct Lecturer at the State University
of New York at Binghamton, where he also has
served as a Teaching Assistant, Research Assistant,
and Graduate Mentor for minorities enrolled in math

and science. His research interests lie in the design and implementation of high
speed, high density, and low power dynamic VLSI circuits.

Douglas H. Summerville(S’93–M’97) received the
B.S.E.E. degree in 1991 from The Cooper Union for
the Advancement of Science and Art, New York,
NY and the M.S.E.E. and Ph.D. degrees from the
State University of New York at Binghamton in
1994 and 1997, respectively.

He is currently an Assistant Professor in the De-
partment of Electrical Engineering at the University
of Hawaii at Manoa, Honolulu, HI. He has been a
Visiting Researcher in the Mission Computers and
Processors Branch at the Naval Air Warfare Center

Aircraft Division, Patuxent River, MD, conducting research on parallel and
distributed processing systems. His research interests include interconnection
networks, parallel computer architecture and design, and VLSI design.

In 1995, Dr. Summerville received the Graduate Student Award for Excel-
lence in Teaching. He holds memberships in the Association for Computing
Machinery, American Society for Engineering Education, Eta Kappa Nu, and
Sigma Xi.

