Homogenized Yarn-Level Cloth
Supplementary Document
GEORG SPERL, IST Austria

RAHUL NARAIN, Indian Institute of Technology Delhi
CHRIS WOJTAN, IST Austria

CONTENTS
S1 Homogenization Details
S1.1 Derivation of R
S1.2 Derivation of Co-rotated Periodicity

S2 Yarn-level Optimization Details
S2.1 Periodicity

S2.2 Optimization

S23 Pattern Reference Configuration
S3 Fitting Details

S3.1 Sampling

S3.2 Control Point Spacing

S3.3 MLS-Smoothing

S3.4 Marching

S3.5 Extrapolation

S3.6 Residualization

S4 Single Curvature Eigenvalues

S5 Piecewise Monotone Bicubic Interpolation
S6 Cloth Simulation Derivative Split
References

O 0 N NG U U R R R WY N ==

S1 HOMOGENIZATION DETAILS
S1.1 Derivation of R

In this section, we derive the analytic expression for the computation
of the rotation matrix R from Section 4.2 of our main paper, and
we summarize how to compute the micro-midsurface ¢ from the
macroscale fundamental forms I, IL

We start with the goal II = I Using the definitions from the
paper and with a slight abuse of index notation, this equals

I=1I (S1a)
aa-n’ﬂZ(_Ia’ﬁﬁ (S1b)
(Rag)" ng=1a, ng (S1c)
R ng=n,. (S1d)

By definition, R n = n; thus, deriving both sides we have
Ran=n4. (S2)
Plugging (S2) into (S1d) we get

R'R n=n,. (S3)

Therefore, we want to find an expression for R that satisfies (S3).

To this end, we parametrize R via the exponential map, R = exp W,

where W is a skew-symmetric matrix. The derivative of the expo-
nential map is a fairly complicated expression [Rossmann 2006],

k
_ _ k
R, = RkZ:;) & 1)!(adW) W, (S4)

where (ad W)X = WX — XW. Note that when the surface is singly
curved, W and W, commute, so R 4 = RW 4 holds exactly even
for large W. For the more general case of doubly curved surfaces,
one can approximate R 4 ® RW , under the common assumption
that the curvature is small relative to the microscale. Consequently,
we approximate (S3) by

Wit =Tt q. (S5)

This only determines two of the three degrees of freedom (DOFs) of
w,

0 o Yafaba
0 Yahzabal- (Se6)
(skew) 0

W&, &) =

To fix the solution we take the minimum-norm choice, e = 0.

Finally, we can recover R({1, &) = exp W (&1, &). This is the
matrix that rotatesa = (0 0 l)T towards An :=), i1, g &y by
an angle ||An||. Importantly, this choice exactly satisfies the original
constraint (S3) for singly curved surfaces. The exponential of W can
be computed in multiple ways; however, many are not numerically
robust for small bending strains. Here, we provide a closed form
expression for R based on the (unnormalized) sinc function, which
can be implemented to be numerically robust around 0 using Taylor
expansions. Defining

a= Y M ala, (57)
b= M aba, (S8)
r=va + b2, (S9)

we compute the rotation as

1- %az sinc(r/2)? —%ab sinc(r/2)* asine(r)
R = —%ab sinc(r/2)% 1- %bz sinc(r/2)® bsinc(r)|. (S10)
—a sinc(r) —b sinc(r) cos(r)

This expression robustly converges to the identity for r — 0.

To offer some insight, the proposed strategy for computing R
can be seen as integrating curvature along straight lines. For singly
curved surfaces where the order of integration of ¢; and &, does not
matter, the expression is exact, whereas for doubly curved surfaces
it is an approximation.

2« Sperl, Narain, and Wojtan

Computing the Micro-Midsurface. We now summarize how to
compute the midsurface ¢ from I and IL To solve the Poisson system
V2 = V - RS, we need both the in-plane deformation S and the
rotation R. We compute S with

5:(‘/7). (S11)

0 0

To compute R we need we need the normal derivatives n_,, which
can be computed using

(?1,1 fl,z) _ _(\/T)—T . (S12)

nz,1 n2z2

Note that 13, = 0 sincem = (0 0 l)-r by assumption.

We solve for ¢ numerically, by discretizing it on a regular grid
large enough to enclose the entire yarn patch. Using standard finite
differencing, we can discretize the Laplacian V2 on the left-hand
side as well as the right-hand side V - RS with the pure Neumann
boundary conditions N - V¢ = N - RS. With S and (S10), we can
compute the required values at the grid nodes.

Note that, in the case of a doubly-curved least-squares surface, the
rotation given by (510) does in general not match the computed sur-
face but is required for co-rotated boundary conditions. In this case,
one can re-estimate R as the rotation from the polar decomposition
of a finite-differenced gradient V.

S1.2 Derivation of Co-rotated Periodicity

In this section, we provide a brief derivation of our co-rotated peri-
odicity boundary conditions (see Section 4.2 in our main paper). For
comparison, in the case of solid homogenization explained in the pa-
per, the constraint fQ Vi dX = 0 can be derived from the expansion
x and the deformation average of F. Here, we apply an analogous tac-
tic, but instead of averaging the deformation 2 9 ~ directly, we again

leverage the rotation R from the polar decomposition V¢ = RS.
The proposed average is thus

RT— dQ =S5, S13
|Q|/ (513)

Notably, we average only the in-plane derivatives % and omit

%. This directly relates to the fact that we do not want to impose
constraints on the thickness and on out-of-plane shearing at the
microscale, since these deformations are also not modeled on the
macroscale.

From (S13) we now derive the periodic boundary conditions. Plug-
ging the expansion x = ¢ + hn + u into (S13),

a<p n ou
+h— dQ =8, (S14)
5] / ot " og o)
and using a rearranged polar decomposition R 8—? =S, we get
/ (BR"nq + Rt) dQ =0. (S15)
Q

Assuming that the RVE is centered with fH h dh = 0 and noticing
that R and n 4 are constant in h, we can simplify

/hRTn,a dQ:/(/ hdh)RTn,a d€=0, (S16)
Q T H

where H denotes the thickness domain and I' the midsurface domain.
Therefore, (S15) simplifies to

/ RTii,dQ=0. (S17)
Q

Splitting this integral into in-plane and out-of-plane parts, apply-
ing Leibniz’s rule and using the divergence theorem, we can rewrite

(S17) as
// R"41® N, doT dh = / R, i dQ, (S18)
Q

Hor

where JT is the in-plane boundary of the midsurface and N are
the normals to that boundary in the corresponding directions. As
discussed in the previous section, R = RW 4 for singly-curved sur-
faces and R o ~ RW , for small curvatures, where W 4 is constant.
With our fitting strategy, we only apply cylindrical deformation,
and as such it holds exactly. Therefore, the right hand side of (S18)
vanishes:

/R;a dQ:/RgRRTﬁ do (S19a)
Q Q
~ / W R i dQ (S19b)
Q
=W, /QRTa aQ (S19¢)
~0, (S19d)

since we have the translation constraint /Q RTadQ =0.

Therefore and analogously to solid homogenization, (S18) can
be satisfied by splitting T into opposite parts AT and O~ and
prescribing periodic boundary conditions

RTa)t =R a)". (S20)

Alternatively, one could satisfy (S18) more simply by setting u = 0 at
the boundary, effectively gluing micro-structures to the (deformed)
boundary. However, this would be unnecessarily stiff as it does not
allow, for example, yarns to resolve collision at the boundary during
compression.

S2 YARN-LEVEL OPTIMIZATION DETAILS

In this section, we provide more detail on periodic microscale en-
ergies; on initialization, regularization, scaling, and the stopping
criterion in our Newton solver; and on how we generate a flat refer-
ence configuration for our yarn patterns. We provide pseudocode in
a seperate supplementary document for pattern initialization and
the Newton solver.

S2.1 Periodicity

Fractional Counting. For the simulation of periodic yarn patterns,
we need periodic stretching, bending, twisting, and collision ener-
gies. As discussed in our main paper, we model periodic energies

Fig. S1. We use fractional weights to ensure energies are integrated only
over the periodic tile. Periodic vertices are plotted as empty circles. In this
example, the contributions of periodic bending elements on the left and right
are multiplied by their respective fraction of original (non-ghost) vertices.

by extending the pattern with ghost segments. These ghost seg-
ments serve only to compute energies over the periodic boundaries
and should not introduce any additional energy into the system. To
avoid double counting of energies and forces, we introduce fractional
counting as illustrated in Figure S1.

In our implementation, energies are computed from local ele-
ments: a stretching element consists of two connected vertices,
bending and twisting both use three connected vertices and the
two corresponding edges, and collisions are computed from pairs
of two-vertex segments. For each element, we can then compute
the fraction of non-ghost vertices to the total number of vertices.
Multiplying the element’s energy by this fraction ensures that in
total and including all (partial and full) periodic copies, the con-
tribution is counted exactly once. Note that in the Newton step,
the elimination of variables generates forces f = —CTVE, where
multiplication with CT acts to sums up the partial contributions to
each non-ghost DOF from its periodic copies. At this point, we also
emphasize that the translation constraint similarly integrates only
non-ghost vertices.

We can avoid computing purely periodic collisions of ghost seg-
ments. As suggested by Kaldor et al. [2008], we use an AABB tree
with a static hierarchy as the collision broadphase. We can immedi-
ately prune subtrees with only ghost vertices for extra performance
since they have a fractional count of 0 and will not add to the energy.

Edge Orientation. In our main paper, the periodic twist constraint

has the form

(RTd,)* = (R™d,)", o =0 (s21)
In our implementation, vertex order defines the direction of the ref-
erence frame directors d . For (S21) to make sense, ghost segments
have to have the same orientation and thus vertex order.

To extend a pattern with ghost yarns, we take input pattern ge-
ometry of connected vertices, copy and translate parts as new ghost
segments, and then stitch the original and copied parts together.
During this stitching process, we enforce the condition on edge
orientation by reversing the vertex order of yarns as necessary. Dur-
ing optimization, updates to the vertices are subject to co-rotated
periodicity and as such should not invalidate periodicity. For each
edge, we use the value of R computed at the first vertex, so this
is true only approximately and subject to discretization. In our ex-
periments, we haven’t noticed any significant drift, so we do not
reproject the directors.

Homogenized Yarn-Level Cloth « 3

S2.2 Optimization

Here, we discuss the Newton step from Section 5.4 of our main
paper in more detail.

Newton System Scaling. Vertex positions and edge twists have
different units. Depending on the scale of yarns and the choice of
length units, this may unfavorably affect the conditioning of the
linear system and thus optimization performance. We therefore
rescale the linear system for the microscale optimization with a
diagonal scaling matrix M:

(M(éTHé éTcLT)M+(aI 0))w:_M(CTVE)

c;C 0 0 0 Crq—d;
(S22a)
dy\ _
(fy) = Mw (S22b)

We use M with entries 1 for positional DOFs and 10° r for twist
DOFs, where r is the yarn radius.

Regularization. Similarly, the different stiffnesses of stretching
and collision compared to bending and twisting energies can nega-
tively affect convergence. As shown in our main paper and in (S22),
we add a regularizer « to the system matrix to improve convergence.
At the beginning of our simulations, the barrier-like collision forces
typically dominate. In these cases, a improves convergence by shift-
ing focus to larger gradients, which helps resolving and balancing
out collisions first compared to elastic rod forces. In our experiments,
we use @ = @ |[MVE|,, and exponentially decay & from &y = 5000
to &n = 5 over N = 400 iterations, i.e. &; = do(dn /do)™n(EN)/N,

Step Limit. Increments 5y computed from the linear system may
be arbitrarily large. To ensure that collisions are not ignored, we
rescale dy such that the maximum displacement of any vertex is
smaller than a fraction p of its radius. The value of p generally
depends on the macroscopic deformation; in compressive regimes
where yarns initially overlap strongly, a lower p may be required. We
set p = 0.05 + 0.15 min(max(0, Apin), 1), where Apiy, is the smallest
eigenvalue of I. Afterwards, in each optimization step we perform a
simple decreasing linesearch on p, iteratively multiplying it by 0.1
until the objective is improved.

Initial Guess. As an initial guess to Newton’s method, we setu = 0
everywhere. This choice is natural in that it deforms the pattern
rigidly according to the macroscopic strains. Additionally, the vertex
periodicity and translation constraints are naturally satisfied.

Stopping Criterion. The usual stopping criterion in Newton’s
method is the norm of the gradient of the objective. However, our
system includes constraints Cyq = dy with Lagrange multipliers
and elimination of variables with éy +d = q for periodicity. For
robustness, we consider the case that the system can be in a state
where Cpq # df. Although using our initial state # = 0 implies that
this is satisfied, and the Newton step and scaling of §y should not
affect it, there could be numerical drift. Therefore, as our stopping
criterion we use the norm of the gradient with respect to the free
variables y projected onto the tangent space of Crq = dr.

4« Sperl, Narain, and Wojtan

The projection of the gradient Z = V4E = CTVE is found by
solving

1) .
min — |z - z| st. C Cz =0, (S23)

z 2

the solution of which is
z=2-AT(AAT) 1Az, (S24)
where A = C;C. Note that computing (AAT)™! only requires com-

puting a 4x 4 inverse. In an effort to nondimensionalize the stopping
criterion, we finally require

lz| < ez]2°). (S25)

with z° being the value of z in the first optimization step and ¢, =
1X107°.

For completeness, we also check if the constraints modeled by the
Lagrange multipliers are satisfied ||Crq — dr || < e r with r being
the yarn radius and e = 1 X 10~ being a relative error threshold,
althrough we found that this is always satisifed, starting from a
valid configuration u = 0.

S$2.3 Pattern Reference Configuration

Here, we discuss our heuristic to find a rest pattern that is in equi-
librium with respect to in-plane stretching, which we mention in
Section 5.1 of our main paper.

The yarns of a fabric may exhibit residual tension from the fabri-
cation process. This tension is crucial in achieving both the visual
appeal of many knit patterns as well as emergent physical proper-
ties; for example, the tension causes the edges of the stockinette
pattern to curl (as illustrated in the main paper).

We do not know the tension a priori. For animation purposes, we
want it to not induce notable in-plane shrinking; i.e., the reference
configuration of the pattern should be the minimum with respect
to in-plane deformation. This way, the homogenized model may
show its tendency to curl but doesn’t shrink. To achieve this, we
generate a stress-free state from input yarn geometry, apply tension,
and then reduce the periodic lengths to find the in-plane minimum.

Initial yarn geometry can be overlapping; to generate the stress-
free state, we iteratively reset rest lengths, curvatures, and twists,
and then allow collisions to be resolved. This converges to a collision-
free state, where discrete elastic rod forces are at rest. Next, we apply
tension to the yarns by shortening rest lengths and flattening rest
curvature. For knitted patterns, we multiply rest lengths by 0.9
and rest curvatures by 0.8; for woven patters, we only multiply
rest curvature by 0.9. We found these values to work well as an
approximation under our expectation of how real knits and woven
materials behave. Finally, we reduce the periods in the warp and
weft directions to find the energy minimum with respect to periodic
lengths. The resulting final state can therefore only induce shearing
or bending. In our results, we chose patterns where shearing was
negligible as observed in the yarn-level reference simulations.

After recentering the pattern, the final reference configuration
defines the initial coordinates ({1 & h)T, the periodic lengths
define the patch area, and the extents of the pattern along h define
its thickness. We show in our results that this procedure is able to
generate homogenized models that exhibit curling without in-plane
deformation at rest.

S3 FITTING DETAILS

Here, we discuss the fitting procedure outlined in Section 6 of our
main paper in more depth. We provide pseudocode for sampling
deformations and fitting the model in a separate supplementary
document. Additionally, we provide a python implementation of
the fitting procedure along with the data with this paper.

Our goal is to fit elastic energy densities ¥ from data in the form of
strain-energy pairs. We only sample subspaces of deformations with
either bending along x or y directions respectively, and interpolate
between those as discussed in the paper. Additionally, we fit each
subspace as a sum of constant, univariate, and bivariate terms. We
can write out the total energy more verbosely as

Ffor Do) s D o)+ i (s
i 1

i

=2 ({50 +5(5))

Yy

(S26b)
e ((52) ()
i =2 (el) (5 3)
2 si A si M (S26¢)
+(1-¢%) (flx(;l, a) +ﬁy(v_i’ E)),

with1 < i < 3and (i + 1) £ j < 3. Therefore, we have to

fit the constant fj, the univariate in-plane terms f; and bending
terms fx, fy, and the bivariate terms f;}, fix, fiy. Here, v;, vy, and
vy denote normalization constants for the in-plane and bending
strains; each parameter of each term is divided by the maximum
absolute value in the data.

For each term, we can sample data for its respective range of
deformations and then fit cubic Hermite splines. To avoid overshoot
in cubic interpolation, we use piecewise monotonic interpolation
(see [Fritsch and Carlson 1980] and Section S5).

Our energy data is prone to noise, especially in compressive
regimes (see Figure S4). What is more, piecewise monotonic func-
tions can still have multiple local minima. To address these issues,
we regularize our fits by smoothing out the data using Moving
Least-Squares (MLS) and applying heuristic marching algorithms
to achieve quasiconvexity in individual terms. Note that we want
to regularize the total function ¥ in this way, but we fit individual
terms f; and f;;. Therefore, our strategy is to fit each term to match
the data and convert it to a residual afterwards.

The value of fj is simply the energy of the sample at zero strain,
(s, A1, A2, ¢®) = 0. We discuss the details of sampling, control point
spacing, MLS-smoothing, quasiconvex marching algorithms, and
residualization in the following sections.

S3.1 Sampling

To fit the univariate terms f;, fx, fy we use 150 samples each. For
the bivariate terms f;;, fix, fiy we sample a 50 X 50 grid. We sample
symmetric ranges for sg, Ax, Ay more densely around the origin, and
ranges for sy, sy more densely towards compression. We choose the

limits of deformation ranges empirically, based on self-intersection

of the pattern under bending, and stability of collisions in general.

Figure S2 demonstrates this non-uniform sampling.

m‘w“““”””m““
~050 —025 0.00 025 050 0.75 1.00

Sxand sy
LILAIITLLET LT eettts <§¢NN“"NHHHH
—1‘,00 —0‘,75 —0‘.50 —0‘.25 0.;.)0 0.'25 0.50 0. 75 1. 00
other
0.8
e S SR S S S AR
0.6 e
Fhtt bttt + 4
0.4 4 ++++++++++++++
ettt b+ +
024 I
L % %%%%ii
v T
-0.2 ++H
B 0 0 A S
—044 o R
: o R
061 T o
e e o S RO A S S S S A
—0.87 R+

0.0 0.2 0.4 0.6 0.8
Sx

Fig. S2. Top: Our non-uniform sampling for nonsymmetric ranges (sx and
sy) and symmetric ranges (other). Bottom: An example of a non-uniform
grid created from one-dimensional sampling per dimension. We additionally
indicate sample density through color.

With five 1D terms, and nine 2D terms, we therefore sample a total
of 750 + 22500 = 23250 deformations. Table S1 lists the timings for
the sampling stage of our method. Sampling is fast, especially when
compared to full yarn-level simulations with simulation times on the
order of hours and days. Furthermore, 1D terms already describe the
rest shapes of draped fabric relatively well, but only require a few
minutes to sample. We did not investigate if the number of samples
for bivariate terms can be reduced without negatively affecting the
fits to save computation time.

Table S1. Total computation time for all sampled microscale simulations for
univariate and bivariate terms per pattern. The time is given in the format
hrs:min:sec. We ran the simulations in parallel on 128 threads.

Pattern Time 1D Time 2D
Basket 00:01:05 00:18:36
Honey 00:01:15 00:56:37
Rib 00:02:46 01:12:57
Satin 00:00:50 00:26:56
Stock. 00:00:13 00:16:46
Satin small 00:00:46 00:25:15
Stock. small ~ 00:00:28 00:14:02

Homogenized Yarn-Level Cloth « 5

§3.2 Control Point Spacing

We want to space control points equidistantly. For our fitting scheme,
we want to set e.g. f;(0) = 0 and f;;(s;, 0) = fi;(0,s;) = 0, such that
fitting another term does not influence previous fits. To this end,
we require that control point spacing includes the origin for 1D
terms and the axes for 2D terms. For each term and coordinate,
we therefore combine two linearly spaced ranges to the left and
right of 0 as illustrated in Figure S3. As discussed in our main paper,
we found it necessary to modify the control point spacing for the
stockinette pattern, where we concentrate them closer to the origin.

S3.3 MLS-Smoothing

We filter and resample the data for each term using MLS at the spline
control points. With this, we can estimate the values and derivatives
required for cubic Hermite splines in a way that is robust in the
presence of noise.

Since hyperelastic energies often span multiple orders of magni-
tude, we found it beneficial to smooth the data in symlog-space; i.e.,
we convert data using I(Tg(x) = sgn(x) log(|x|+1), estimate a smooth
function using MLS, and then exponentiate the result back using
exp(x) = sgn(x)(exp(|x|) — 1). For example for a two-dimensional
range parametrized by u, v, we define the smoothed function

g(u, v) = exp(MLS(, v | Ugata Vdata- lofvg(gdata))) (827)

We then estimate the first and second derivatives that make up the
remaining Hermite spline coefficients by finite differencing (527).
At this point, we also enforce symmetry of our functions in s, by
symmetrizing (S27). This fits our data well and aids in preserving the
symmetric rest shapes observed in yarn-level reference simulations
also in our macroscale simulations. Figure S4 shows the result of
applying MLS to noisy two-dimensional data.

S3.4 Marching

Piecewise monotone interpolation does not ensure quasiconvexity
for any term. We therefore propose a marching heuristic to project
the values and derivatives estimated with MLS to be quasiconvex.
For each term, we define a minimum location Xx,;,, a minimum
tangent magnitude p. . and then march outward while projecting

0.8

[YT SRR R TR WA T SR N WS N

0.44

Sy

0.24

001 e o o o o o o o o o

-0.2

041 e o o o

Fig. S3. Representative control point spacing for the 2D term fi3(sx, sy).
We use equidistant spacing to the left and right of each axis and include
the axes s, = 0and s, = 0.

6 « Sperl, Narain, and Wojtan

data

-0.25 0.00 0.25 0.50 0.75 1.00
S

WY

—0.25 0.00 025 0.50 0.75 1.00

—0.25 0.00 025 0.50 0.75 1.00

Fig. S4. Data in compressive regions can be noisy as seen on the left. In the middle, we show MLS applied to the data. During fitting we use MLS only at the
spline control points to mitigate the data in the noise. Our final regularized fit on the right is similar to the data without noise.

values and derivatives. For 1D, we have

Pi+1 = pi + (Xiv1 — x3) Py SEN(Xi+1 — Xmin) (S28a)

pY = pr. sgn(x; — Xmin)- (528b)

We define the minimum as s; = 0 for in-plane deformation, and com-
pute the bending minimum as argmin_, ¥ of the respective range;
this ensures that the reference state of the cloth corresponds to the
in-plane rest state, but allows bent rest shapes to induce curling.
For 2D, we analogously define a minimum and march outward.
For the terms fix, fiy we find the bending minimum subject to
si = 0. However, this algorithm does not allow decreasing values
away from the axes, which is crucial for modeling Poisson’s ratio
accurately. Therefore, we do not apply this regularization on the
term f13(sx, Sy), which is responsible for controlling the response
to simultaneous deformation along warp and weft direction and
as such for Poisson’s ratio. Nevertheless, for the remainder of the
terms we found that this is crucial to ensure stable simulations with
smooth rest shapes. We choose p . = 0.001 for all patterns except
the stockinette, where we use 0.01 in an effort to regularize the bad
restshape illustrated in our main paper. It is after this projection
step, that we apply the algorithms for monotone interpolation.

S3.5 Extrapolation

Simulations can in general exhibit strains outside of the sampled
ranges due to discrete timesteps or constraints. Therefore, controlled
extrapolation is crucial. We extrapolate splines linearly using their
derivatives at the boundary. We enforce that extrapolation must
increase energy such as to ensure that the simulation stays near the
fitted deformation range. The marching algorithms already enforce
that tangents on the boundary are not decreasing away from the
minimum (for fi3, we additionally clamp the boundary tangents to
be increasing outward). For 2D splines, we set the mixed derivatives
p*Y to 0 at the boundary, such that linear extrapolation is consistent
with interpolation.

Finally, we note that in the piecewise monotone bicubic interpo-
lation scheme (Section S5), we treat extrapolation as a cell with an
edge at infinity. This modifies (540) and (S41) to have the extrapo-
lated side of the inequality become 0.

S$3.6 Residualization

To summarize the fitting procedure: we first smooth and resample
the data using MLS, and use it to compute spline coefficients; next,
we apply our quasiconvex marching algorithm to enforce a single
minimum per term; then we apply the algorithms for piecewise
monotone cubic and bicubic spline interpolation.

This procedure gives as regularized fits f* of the data, which we
have to convert to residuals f for the cumulative function (526a),
with f;(0) = 0 and f;;(0;,0) = £i;j(0, 0;) = 0. We do this for 1D and
2D terms respectively with

0 = £00) - £70) (529)
Fii01.0) = £5(01.6) — £(01.0) = £5(0.07) + £75(0.0) (530)

Finally, we had to enforce that the 2D residuals are 0 for compres-
sion in all terms except f13. Compressive data seems to be affected
the most from noise, likely due to buckling inducing varying mi-
croscale equilibria. Note that this only means that we do not model
the combined response of e.g. compression and bending. The sep-
arable elastic response encoded in the 1D terms still captures the
material behavior well, as our results show.

S4 SINGLE CURVATURE EIGENVALUES

Here we provide expressions to robustly compute the eigenvalues
and squared cosine used in the bending energy curvature splitting
(see our main paper Section 6.2) based on the formulas proposed by
Blinn [1996]. With

_ 111 + Oy

> s (S31a)
p= Tz (s31b)
2
S= \/(W)z F02 e, (S31¢)
k = sgn(Il1; — Izy), (S31d)

Fig. S5. A bicubic patch with cubic monotonicity applied to each direction
can still produce non-monotone regions as highlighted in red here.

where ¢ is a small number guarding against division by zero, we
have

M =A+S, (S32a)
Ay =A-S, (S32b)
2
? =l+k(l—L). (S32c¢)
2 2 (B+kS)?+1152

Notably, our use of the sign k in (S32c) ensures that expressions of
the form

A(f(A1) +9(A2)) + (1 = A)(f(A2) + g(A1)) (833)

are robust with respect to the order of eigenvalues even when they
are similar, e.g.

M =Axg Ay = A x e, (S34)

S5 PIECEWISE MONOTONE BICUBIC INTERPOLATION

Here, we present the algorithm for piecewise monotone bicubic
interpolation mentioned in Section 6.2 of our main paper. We also
provide a python implementation with our supplementary data. For
well-behaved simulations, we require our fitted energy functions
to not exhibit any new local minima other than the ones present in
the data. For bivariate functions, it is not sufficient to apply mono-
tone piecewise cubic interpolation in both directions as shown in
Figure S5. Instead, we adopt the monotone piecewise bicubic inter-
polation scheme of Carlson and Fritsch [1989]. Since their method
as presented assumes globally monotone data, we modify it to work
with arbitrary data while preserving its behavior in monotone re-
gions.

The input to the algorithm is a grid of nodes (x;, y;) on which
Hermite data is specified, namely values p; j, first derivatives p;"j

and p? It and mixed derivatives pf? For brevity, define h; = xj+1—x;
and kj = yj+1 — yj, and define the operators A* and AY such that
N fij = fivrj = fijs (S352)
N fij = fujei = fij (35b)
for any nodal data f. Our goal is to modify the specified derivatives
so that, in regions where the data p; ; is monotone, the resulting

piecewise bicubic Hermite interpolation is also monotone with the
same sense.

Homogenized Yarn-Level Cloth « 7

First, we must define local monotonicity of the data. We declare a
horizontal edge E;‘] = [xi, xi+1] X y;j to be increasing if A¥p; ; > 0
and decreasing if A¥p; ; < 0, and similarly define monotonicity
for vertical edges E?] = x; X [yj,yj+1]. Now we consider a cell
Ri j = [xi, xi+1] X [y}, yj+1]. We declare the cell to be increasing in x
if the adjacent horizontal edges ExJ and Ex , are both increasing,
decreasing in x if they are both decreasmg, and nonmonotone in
x otherwise. Similarly we define monotonicity in y using vertical

y y
edges E; and E7 g

Now, we review Carlson and Fritsch’s sufficient conditions for
monotonicity. Without loss of generality, we only consider mono-
tonicity in x, and further that the sense of monotonicity is increasing;
decreasingness only requires reversing all the inequalities. Increas-

. x i
ingness along an edge El.’j is ensured if

JAPi
0<pr <3—-L, S36a
Pij <3 (S362)
Npi
0<pfy ;<3 Pij. (S36b)

hi
Increasingness in x over a region R; ; is ensured by constraining
differences in y-derivatives along adjacent horizontal edges,

A<p;i ;
x,Y _ L
Npl 2 3—kj , (S37a)
Ap; j
y i,j+1
NpY L, < 3k—j’ (S37b)
and constraining mixed derivatives at adjacent nodes,
x. A pY A¥p: . PY.
xy i,j Pi,j i,j
<piy<3|—L+3 -, (S38a)
k] (hi hikj kj
Y x
Piv,) Apiy ANpij Pl
-3 = < <3 = +3 = — =1, S38b
k; P <3| nk; |k (538b)
A pY A¥p; pr. pr.
3 i,j+1 _3 Pl,]+1 i,j+1 < xy <3 l,j+1’ (S38C)
h; hik; k;j Lj+l kj
Y
3 NP7 i AP+ P11 < Y P11
h; hikj kj HLj+ ki
(S38d)

To guarantee that the above constraints always have a solution, we
further require that 0 is a valid value for each mixed derivative p*Y.
This leads to

1
Axp,?fj > e (SAxpi,j — h; max(pg‘,j,pi‘ﬂ,j)), (S39a)
1
Axpzj'*'l < P (SAxpi’j"'l hi max(pl]+1’pl+1]+1)) (539b)
J

We now develop the algorithm for satisfying the constraints.
The first step is to modify the first derivatives p*, p¥ to satisfy the
inequalities (S36) arising from edges, and (S37) and (S39) arising
from monotone cells. Then, we modify the mixed derivatives p*Y to
satisfy the inequalities (S38) arising from monotone cells, which will
always be possible thanks to (539). The entire algorithm requires
only implementing operations for enforcing monotonicity in x;

8 « Sperl, Narain, and Wojtan

these can then be used for monotonicity in y as well by flipping the
coordinates (i.e. transposing all grids and swapping p* with p¥).

As in Carlson and Fritsch’s original algorithm, we first satisfy
(S36) by clamping p* and pY. As long as we only shrink them to-
wards zero in subsequent operations, (536) will remain satisfied.

Next, both sets of remaining constraints on first derivatives act on
their “mixed differences” A*pY and AYp,. Here, unlike the original
algorithm, some more care is needed since adjacent regions may
differ in monotonicity. Consider a horizontal edge E;i ; and suppose
it is increasing. Then the adjacent cells R; j—1 and R; j cannot be
decreasing in x; they are either increasing or nonmonotone in x.
Then from (S37) we have

Ap; ; Ap; i
-3——= < A <3—=, (S40)

where the first inequality arises if R; ; is increasing in x, and the
second if R; j_1 is increasing in x. Nevertheless, there is no harm in
imposing both bounds even if the adjacent cells are nonmonotone,
since 0 is always a feasible value due to the increasingness of Ef -
Similarly, from (S39) we have

_ﬁsAx y <—bi’j

7 S41
Sl s (541)

where b; j = 3Axpi’j —h; max(p;"j,pl?cﬂ’j
regardless of monotonicity of R; j—; and R; j, because 0 is always a
feasible value thanks to (S36).

We now discuss how to satisfy these constraints without violating
(S36). Note that they are all of the form [< m; — mp < u where
I <0 < u. For any constraint, given the current values (mg, mp), we
project to the closest values (mg, m]) which satisfy the constraints
as well as |m}| < |m;| and sgn(m}) = sgn(m;). The solution is
given in closed form by several cases, illustrated in Figure S6. Since
this projection may cause the constraints on adjacent edges to be

), which we again impose

m +
W (myt, myt+u)

(m"- L m")
(my = u, my")

my

m™=min(m, 0)
m*=max(m, 0)
_ Mmytmy

- 2

(my~, my +1)

Fig. S6. We want to project (mg, m]) to the central diagonal slab I <
my—my < u (green) without increasing either entry’s absolute value. There
are six cases (not including if the initial value is already feasible), which we
show as bundles of arrows alongside their projected values.

violated, we must make multiple sweeps across the grid. Following
Carlson and Fritsch, we make two sweeps across the grid, first
in increasing order in x and then in decreasing order, applying
projections to enforce the A¥pY constraints on each edge. We then
do the same in y to enforce the AYp* constraints, albeit using the
old values of pY so that the results are order-independent.

Finally, the mixed derivative p*Y at each node is subject to con-
straints (S38) from the adjacent monotone cells. For monotonicity
in x, the constraints acting on pici" are

pY. xp.y . AXp: . DY,
ST TR e AR
] 13 g]
P« Np i ANpis; Pr
3L <p <3 43 el I S42b
K, =P hict hik K (542b)
Np? pAxp Y .
. Pi,j i,j xy i,j
3 - + 2| <p.d <3—=, S42
(he Chikg k) <P S0 (542)
x Y X X
N SLEN Y SRR DT Y) (S42d)
hi—1 hiikj—1 kj—1] 7 7R T ki

if the adjacent cells R; j, Ri—1,j, Ri j—1, and R;—1, j—1 respectively are
increasing in x, and with the corresponding inequalities reversed if
they are decreasing in x instead. Observe that each constraint above
only involves quantities along a single edge, namely Ei‘ It Eﬁl’ It
Ef] and Ef_l’j respectively. Furthermore, if said edge is increasing,
and we have satisfied all four constraints on its mixed difference
A*pY, then the constraint always has 0 as a feasible value. Therefore,
it is safe to enforce each of the constraints on p;ci./, regardless of
the monotonicity of the cell it arises from, remer,nbering only to
reverse the inequalities if the relevant edge is decreasing instead
of increasing. We do so simply by clamping pij to lie between the
two bounds of each constraint. Then we repeat the procedure on
the flipped data to enforce monotonicity in y.

The algorithm presented here is equivalent to the original algo-
rithm for globally monotone data [Carlson and Fritsch 1989]. It also
guarantees monotonicity on each cell, as long as there are no cells
with nonmonotone data. We have not yet conducted any analysis of
what guarantees, if any, are available for cells that are nonmonotone

. . . 0 1
in both directions, such as [1 ol

S6 CLOTH SIMULATION DERIVATIVE SPLIT

In this section, we briefly discuss how we compute the derivatives
of the triangle energy E5 = A ¥(2(g4)) from Section 7 of our main
paper. We found it useful to keep the computation modular, using the
chain rule to separate geometric derivatives from strain derivatives.

The energy depends on the positional degrees of freedom of
the triangle’s vertices and the additional vertices from its adjacent
triangles, collectively denoted as g, from which we can compute
the collected strains z = (s, Sq, Sy, A1, A2, ¢?) as discussed in the

main paper. Using the chain rule, we have

OEn oz T oY

A2 22 S43

aqa dq, 0z’ (543)
O%En Pz oY 9z T 9V 9z

3qp0qs ~ ‘0qadqs 0z * dqn 020z 6qA)' (S44)

This split allows us to easily swap out different energy models,
while not affecting the strain part of the computation. To compute
the derivatives g—qu and %, we generate code using Mathemat-
ica [Wolfram Research, Inc. 2019]. Additionally, we concatenate both
of these derivatives and compute them at the same time, which re-
duces redundant computation in the generated code by a significant

amount.

Homogenized Yarn-Level Cloth « 9

REFERENCES

Jim Blinn. 1996. Consider the lowly 2 x 2 matrix. IEEE Computer Graphics and Applica-
tions 16, 2 (1996), 82-88.

Ralph E Carlson and Frederick N Fritsch. 1989. An algorithm for monotone piecewise
bicubic interpolation. SIAM J. Numer. Anal. 26, 1 (1989), 230-238.

Frederick N Fritsch and Ralph E Carlson. 1980. Monotone piecewise cubic interpolation.
SIAM J. Numer. Anal. 17, 2 (1980), 238-246.

Jonathan M Kaldor, Doug L James, and Steve Marschner. 2008. Simulating knitted cloth
at the yarn level. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 65.

Wulf Rossmann. 2006. Lie Groups: An Introduction Through Linear Groups. Oxford
University Press.

Wolfram Research, Inc. 2019. Mathematica, Version 12.0. https://www.wolfram.com/
mathematica Champaign, IL.

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

	S1 Homogenization Details
	S1.1 Derivation of R
	S1.2 Derivation of Co-rotated Periodicity

	S2 Yarn-level Optimization Details
	S2.1 Periodicity
	S2.2 Optimization
	S2.3 Pattern Reference Configuration

	S3 Fitting Details
	S3.1 Sampling
	S3.2 Control Point Spacing
	S3.3 MLS-Smoothing
	S3.4 Marching
	S3.5 Extrapolation
	S3.6 Residualization

	S4 Single Curvature Eigenvalues
	S5 Piecewise Monotone Bicubic Interpolation
	S6 Cloth Simulation Derivative Split
	References

