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4.6	 Emerging technologies

Recent advances in understanding of 
HPV-associated carcinogenesis have led to the 
development and evaluation of many new tech-
nologies and approaches for cervical cancer 
screening, triage, management, and diagnosis. 
Three types of approaches for the detection 
of cervical precancer are distinguished: those 
based on visual, cytological, and molecular 
technologies.

Several systematic approaches to assess 
the potential use of a biomarker in cervical 
cancer screening and management have been 
proposed (Arbyn et al., 2009; Wentzensen & 
Wacholder, 2013). Established guidelines for 
diagnostic research (the Standards for Reporting 
of Diagnostic Accuracy Studies [STARD] state-
ment) have been adapted for technology devel-
opment for cervical cancer screening (Arbyn 
et al., 2009). Five phases of technology evalu-
ation are formally distinguished: (1)  preclin-
ical exploratory studies, (2)  clinical validation 
studies, (3)  retrospective biobank studies in 
the target population, (4) prospective screening 
studies, and (5) prospective intervention studies. 
Although this framework provides important 
guidance for technology development, not all of 
these steps are required for all technologies, and 
the sequence may vary depending on the clin-
ical indication and the availability of suitable 
research studies. The evaluation of a technology 
must occur in the context of its potential use, 
because diagnostic accuracy requirements differ 
depending on whether the technology is used in 
screening, triage, or disease confirmation. Here, 
the term “emerging technology” is used when the 
discovery processes have been completed and the 
early steps of technology evaluation are under 
way (i.e. phases 1–3).

The process from discovery and develop-
ment to clinical implementation is complex 
and involves many stakeholders, including 

researchers, industry, regulatory authorities, and 
professional societies that develop guidelines 
(Wentzensen & Silver, 2016). It can take a long 
time from initial discovery to clinical imple-
mentation. For example, HPV DNA testing was 
initially developed in the 1980s but did not enter 
clinical practice until 20  years later. The time-
line from discovery to clinical practice is now 
shorter, because of the better understanding of 
the natural history of cervical cancer and the 
much accelerated technology development.

Because most discovered biomarkers do 
not make it into clinical practice, it is impor-
tant to identify likely failures early in the eval-
uation process, enabling researchers to focus 
on the most promising leads (Wentzensen & 
Wacholder, 2013). The most important crite-
rion for a biomarker is whether the test result 
will improve clinical management; if not, the 
test may be useless. Successful biomarker devel-
opment usually relies on a commercial party 
to invest in assay development and regulatory 
approval. Therefore, barriers to bringing a prom-
ising biomarker into clinical practice may be the 
lack of intellectual property, or relatively limited 
clinical indication, which may result in too small 
a commercial market.

Of the molecular technologies summarized 
here, some were developed several years ago but 
have not been sufficiently validated for consider-
ation of clinical use or have not been translated 
from the research setting to a commercially 
available test, for various reasons. Other novel 
technologies are rapidly progressing through 
the evaluation process, such as AI-based visual 
and cytological methods, as well as host and 
viral DNA methylation markers, which can be 
expected to appear in extensive clinical valida-
tion studies very soon.
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4.6.1	 Emerging technologies using artificial 
intelligence

AI is having an impact on many scientific 
disciplines, including medicine. As the power 
of computer software has increased, the size 
of the hardware has decreased, and as Internet 
bandwidth and electronic storage capacity have 
improved, it has become possible to deliver 
accurate image-recognition systems in very 
small, cloud-independent devices that incorpo-
rate comprehensive systems for management of 
clinical data and images (Fig. 4.8). Convolutional 
neural networks (CNNs) are commonly used for 
the analysis and classification of visual images; 

they are increasingly being used in medical diag-
nostics, such as in the classification of benign or 
malignant lung tumours (Hussein et al., 2017), 
in skin cancer (Esteva et al., 2017), in retinop-
athy (Ting et al., 2017), in the classification of 
colorectal polyps (Wei et al., 2020), in breast 
cancer (McKinney et al., 2020), and in the 
detection of cardiological abnormalities (Islam 
et al., 2017). Recently, these approaches have also 
been applied to automated and biomarker-en-
hanced cervical cytology (Schiffman et al., 2017; 
Wentzensen et al., 2021).

Fig. 4.8 Pathway to the development of new technologies
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(a)	 AI-based automated visual evaluation

Even with adequate training and quality 
assurance measures in place, visual inspection 
of the cervix is a highly subjective procedure, 
including determining the adequacy of the 
examination, the type of the TZ, and the diag-
nostic impression. Furthermore, comprehensive 
training to the level of independent practice can 
take 6–18 months. A major but not exclusive part 
of this training is in image recognition, which to 
date has been learned largely within a live clin-
ical setting. The concept of training a computer 
to recognize abnormality by “learning” the rele-
vant features from a large image bank of known 
histopathology has obvious appeal. If that 
computational power can be harnessed in small, 
inexpensive, and user-friendly image-capture 
systems, the inadequacies of current visual exam-
ination methods could be addressed without 
the need for expensive training or adjunctive 
systems. As a laboratory-independent and reus-
able device, this technology could replace or 
complement current visual-based screening and 
triage approaches in LMICs. It may also negate 
the need for individual colposcopy expertise 
in screen-positive women who are not suitable 
for ablative treatment as part of a screen-and-
treat protocol. AI can be used innovatively to 
train service providers and for quality control. 
Currently, no system has been properly evaluated 
in a live or real-world setting.

(i)	 Technical description
Training a model to discriminate between 

one image and another is now feasible, thanks to 
improved technology. Also, computing power has 
increased exponentially, and large, appropriately 
labelled image banks are available. Currently, for 
the detection of squamous cervical precancer, the 
clinically important discriminatory threshold is 
between normal or LSIL and HSIL. Therefore, 
algorithms in cervical precancer detection have 
focused on this dichotomous division. Training 
a CNN to discriminate between two distinct 

epithelial appearances within the squamous 
epithelium of the TZ involves exposing the model 
to a large series of adequate cervical images of 
known severity (i.e. supported by histopathology). 
Moreover, specific features on the cervical image 
may also be labelled by experts for a model to 
process. The CNN may then categorize cervical 
images into one of the two categories (≤ LSIL or 
HSIL) by outputting the probability that a given 
image belongs to either category.

During training, the CNN receives as inputs 
images from the training data set and adjusts its 
parameters to minimize the error between its 
predictions and the ground truth (i.e. colposcop-
ically or histologically verified disease status) of 
the training set. Thus, the CNN is fitted to the 
training data set, learning the relevant features 
from the training data set, which enables it to 
increase the number of correct predictions. This 
process is illustrated in Fig. 4.9 (Hu et al., 2019). 
While the model is being trained on the training 
data set, the discriminative performance of 
the model is evaluated in a validation set. The 
purpose of the validation set is to evaluate the 
performance of the model on data that it has not 
been fitted to during the training process. Models 
with different selected hyperparameters can be 
trained in this way until a model that performs 
optimally on the validation set is determined. 
This yields a final trained model that can then 
be evaluated on a test set of images to assess its 
generalizability to predict cervical disease.

In general, the larger the training set, the 
higher the accuracy of the model. A viable 
model is often only as good as the quality of the 
images on which it is trained and the labels, or 
the robustness of the disease end-points, associ-
ated with these images. In many medical appli-
cations, there is often an imbalance between the 
number of images in each category; for example, 
in most cervical precancer image banks there 
are more images of ≤  LSIL than of HSIL. This 
imbalance can affect the training and validation 
process for the development of the model. The 
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scarcity of accurately labelled medical data, or 
robust disease end-points, with which to train 
CNNs for certain medical problems is a chal-
lenge to computational analysis. Although large 
image repositories may be available in some 
cases, relevant labelling of these images or infor-
mation about the methods used to determine 
disease may be unclear or limited, leading to 
risk of disease misclassification. In addition, the 
quality of the available images depends on the 
sophistication of the image-capture system used. 
However, several specialized techniques (e.g. 
augmentation, transfer learning) can be used 

to address these issues and improve the perfor-
mance of the model.

(ii)	 Performance of method
This technology may be appropriate for both 

screening and triage of screen-positive women. 
Early work using deep learning in cervical 
imagery has been encouraging (Xu et al., 2017). 
A deep-learning-based object detection method 
(Ren et al., 2017) was used to develop a visual 
evaluation algorithm for the detection of cervical 
precancer. Digitized cervigrams were collected 
as part of a population-based longitudinal cohort 

Fig. 4.9 System architecture of the automated visual evaluation algorithm used by Hu et al. (2019)
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From Hu et al. (2019).
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study in 9406 women in Costa Rica; 241 of the 
women had histopathological confirmation 
of precancer (CIN2/3), and 38 had cancer over 
7  years of follow-up in 1993–2001 (Hu et al., 
2019). Despite limitations in image quality and 
images without full visualization of the squa-
mocolumnar junction, the algorithm showed 
high accuracy for the identification of cervical 
precancers (Fig. 4.10). Automated visual evalua-
tion of cervigrams collected at enrolment identi-
fied the cumulative number of cases of precancer 
or cancer with greater accuracy (AUC, 0.91; 95% 
CI, 0.89–0.93) than interpretation of the same 
images by a colposcopist (cervicography; AUC, 
0.69; 95% CI, 0.63–0.74; P < 0.0001) or conven-
tional cytology (AUC, 0.71; 95% CI = 0.65–0.77; 
P < 0.0001).

AI or deep-learning algorithms may be devel-
oped in different ways. Because the discrimina-
tive model “reads” images, the image-capture 
technique is relevant. Using this approach, Xue 
et al. (2020) developed an algorithm to inter-
pret images captured by the smartphone-based 
MobileODT system. Automated visual evalua-
tion can classify images of the cervix taken using 
smartphone camera image-capture systems. 
Alternatives to this approach include the devel-
opment of a dedicated high-quality image-cap-
ture device that can capture multiple images 
to mimic a thorough colposcopic evaluation. 
Such systems can incorporate all the necessary 
computational power within a single device that 
is independent of the cloud; this makes them 
useful in low-resource settings. Both approaches 
have yet to be evaluated in the field.

(b)	 Automated cytology technologies

Computer-assisted cytology systems have 
previously been developed for the reading of 
conventional or liquid-based cytology slides 
and are currently used in some settings. For the 
technical description and performance of these 
technologies, see Section 4.3.1(c). Recently, new 
AI-based approaches have been developed for 

automated evaluation of Pap cytology and dual-
stain cytology.

A fully automated approach to evaluate 
Pap cytology was developed and validated in 
two studies in the USA. The training and vali-
dation data set included 1178 cervical cytology 
slides from HPV-positive women in Oklahoma 
who were referred for colposcopy for cytolog-
ical abnormalities or for treatment of previously 
diagnosed precancer or cancer. The automated 
cytology algorithm achieved a performance for 
detection of CIN2+ (sensitivity, 0.91; specificity, 
0.30) similar to that of conventional cytology 
with a threshold of ASC-US+ (sensitivity, 0.94; 
specificity, 0.30) (Schiffman et al., 2017). A subse-
quent study in 1839 HPV-positive women in the 
KPNC cohort, of whom 310 had precancer (181 
with CIN2 and 129 with CIN3/AIS), similarly 
reported comparability of automated cytology 
and LBC with a threshold of ASC-US+ and 
LSIL+ (Yu et al., 2018).

Cytology with p16/Ki-67 dual staining (see 
Section 4.3.1(e)), which is used as a triage marker 
for HPV-positive women (see Section 4.4.7), can 
also be read by an automated system. A CNN 
deep-learning-based automated algorithm has 
been developed to evaluate p16/Ki-67 dual-
stained slides (CYTOREADER software). The 
system uses a whole-slide scan followed by a 
machine-learning algorithm to detect and quan-
tify p16/Ki-67 dual-stain-positive cells. A deep-
learning classifier for automated dual-stained 
slides was compared with manual dual staining 
and conventional cytology for the detection 
of precancer in 602 women in Oklahoma who 
were referred for colposcopy, of whom 53 (8.8%) 
had CIN3+ (Wentzensen et al., 2021). The auto-
mated dual-staining algorithm had margin-
ally lower positivity than manual dual staining 
(58% vs 63%; P = 0.06), with comparable sensi-
tivity for the detection of CIN3+ (automated 
dual staining: 87%; 95% CI, 76–94%; manual 
dual staining: 87%; 95% CI, 76–94%; P  =  1.0) 
and marginally higher specificity (automated 
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Fig. 4.10 ROC curve of automated visual evaluation of cervical images, and comparison of 
performance in identification of CIN2+

ROC-like curves are shown for the categorical variables for simple visual and statistical comparison with automated visual evaluation (two-
sided χ2 tests). The thresholds are listed on each curve, showing the sensitivity and 1 − specificity applicable to that threshold. Automated 
visual evaluation was as accurate as or more accurate than all of the screening tests used in the cohort study: (A) automated visual evaluation, 
(B) cervicography, (C) conventional cytology, (D) liquid-based cytology, (E) first-generation neural network-based cytology, and (F) MY09/MY11 
PCR-based hrHPV testing.
ASC-US+. atypical squamous cells of undetermined significance or worse; AUC, area under the curve; CI, confidence interval; CIN2+, cervical 
intraepithelial neoplasia grade 2 or worse; HPV, human papillomavirus; hrHPV, high-risk human papillomavirus; HSIL+, high-grade squamous 
intraepithelial lesion or worse; LSIL+, low-grade squamous intraepithelial lesion or worse; PCR, polymerase chain reaction; ROC, receiver 
operating characteristic.
From Hu et al. (2019).
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dual staining: 46%; 95% CI, 41–51%; manual 
dual staining: 41%; 95% CI, 36–46%; P = 0.07). 
Similarly, in 3095 HPV-positive women under-
going routine cervical cancer screening in the 
KPNC cohort, of whom 218 (7.0%) had CIN3+, 
the test positivity of the automated dual-staining 
algorithm was significantly lower than that of 
manual dual staining or conventional cytology 
with a threshold of ASC-US+ (42%, 50%, and 
60%, respectively), with comparable sensitivity 
(88%, 90%, and 86%, respectively) and higher 
specificity (62%, 53%, and 42%, respectively). 
The automated dual-staining algorithm led to a 
substantial reduction in the colposcopy referral 
rate compared with conventional cytology, paired 
with better disease detection, and provided addi-
tional risk stratification compared with manual 
dual staining in HPV-positive women.

4.6.2	Emerging molecular technologies

HPV-based testing may soon replace cytology 
as the primary screening method for cervical 
cancer in many parts of the world. However, the 
lower specificity of HPV DNA-based tests means 
that some screen-positive women are referred for 
colposcopy unnecessarily. Novel methods are 
required to identify which HPV-positive women 
need to be referred for colposcopy (Cuschieri 
et al., 2018). Although infection with carcino-
genic HPV is necessary for the development of 
cervical cancer, other molecular changes occur 
with carcinogenic HPV infection, which result 
from DNA nucleotide mutations, structural 
genomic variations, or epigenetic alterations, 
such as DNA methylation (Steenbergen et al., 
2014). Aberrant DNA methylation may help 
to distinguish non-progressive HPV infec-
tions from those that will progress to cervical 
cancer. It may thus be used as a strategy to triage 
HPV-positive women.

(a)	 DNA methylation

(i)	 Technical description
DNA methylation occurs after the addition 

of a methyl group to position 5 of the cytosine 
(C) ring immediately preceding a guanine (G) 
in the DNA sequence. It occurs mainly at CpG 
dinucleotide sites (C and G separated by one 
phosphate), known as CpG islands, which are 
present in about 60% of human genes (Laird, 
2010). Controlled DNA methylation is essential 
for normal biological processes, such as the regu-
lation of cellular processes including embryonic 
development, chromosomal instability, and 
protection from invading foreign viral DNA. 
However, aberrant DNA methylation can lead 
to alterations in the functions of gene products 
that regulate tumour suppression, DNA repair, 
apoptosis, metastasis, and invasion (Steenbergen 
et al., 2014; Lorincz, 2016). DNA methylation of 
some human genes and of the genome of hrHPV 
genotypes has been shown to be associated with 
increasing persistence of hrHPV genotypes 
(Mirabello et al., 2012), precancer (Wentzensen 
et al., 2009; Bierkens et al., 2013), and invasive 
cervical cancer (Bowden et al., 2019; Cook et al., 
2019; Kelly et al., 2019). DNA methylation of more 
than 100 human genes and up to 12 carcinogenic 
HPV genotypes has been evaluated as a possible 
biomarker for the detection of cervical precancer 
and cancer using clinician-collected or self-col-
lected cervical samples (Wentzensen et al., 2009; 
Lorincz, 2016).

(ii)	 Host DNA methylation
The most widely studied human gene DNA 

methylation targets have been evaluated as triage 
tests in HPV-positive women in cross-sectional, 
case–control, or convenience studies. Most 
studies evaluated the DNA methylation of the 
human genes CADM1, MAL, and miR-124-2 in 
different combinations, and of PAX-1, SOX-1, 
POU4F3, and FAM19A4, alone or in combina-
tion with miR-124-2, for the detection of CIN2+ 
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or CIN3+. Several studies evaluated the DNA 
methylation of the human gene EPB41L3, alone 
or in combination with DNA methylation of 
HPV16 (late coding regions L1 and L2), HPV18 
(L2), HPV31 (L1), and HPV33 (L2), which is 
defined as the S5 classifier. The sensitivity and 
specificity of DNA methylation assays for the 
detection of prevalent CIN2+ have been shown 
to vary widely depending on the human gene 
target, the CpG targets of the gene studied, vari-
ations in the thresholds used to define methyl-
ation positivity, and the study design (Lorincz, 
2016; Kelly et al., 2019).

RCTs comparing detection of CIN2+ in 
women undergoing testing with DNA methyl-
ation compared with cytology, and prospective 
studies evaluating baseline DNA methylation 
status to predict the risk of cervical cancer over 
time have been informative in clarifying the 
value of DNA methylation as a triage test.

In a non-inferiority RCT (Protection by 
Offering HPV Testing on Self-Sampled Cervi- 
covaginal Specimens Trial 3 [PROHTECT-3]) in 
the Netherlands, HPV-positive women regis-
tered in the national cervical cancer screening 
programme who submitted a self-collected 
sample were randomly allocated to either triage 
with cytology (509 women) or triage with DNA 
methylation analysis of the MAL and miR-124-2 
genes (515 women) (Verhoef et al., 2014). Detection 
of CIN2+ with triage by methylation was non-in-
ferior to that by cytology (17% vs 15%; RR, 1.19; 
95% CI, 0.90–1.57), and the sensitivity for detec-
tion of CIN2+ was equivalent (adjusted sensitivity, 
71%; 95% CI, 66–75% for both DNA methylation 
and cytology), although the sensitivity for detec-
tion of CIN3+ was slightly lower with DNA 
methylation (68%; 95% CI, 63–72%) than with 
cytology (75%; 95% CI, 70–79%). Also, because of 
a lower specificity to distinguish < CIN2, referral 
for colposcopy was more common in the methyl-
ation group than in the cytology group (55% 
vs 29%; P  <  0.0001) (Verhoef et al., 2014). In a 
14-year longitudinal study in 1040 HPV-positive 

women enrolled in the POBASCAM screening 
trial in the Netherlands, all of whom underwent 
testing with DNA methylation and cytology, a 
negative FAM19A4/miR-124-2 methylation test 
indicated lower risk of cervical cancer incidence 
over a 14-year follow-up period compared with a 
negative cytology result (< ASC-US) at enrolment 
(risk ratio, 0.71; 95% CI, 0.16–1.40) (De Strooper 
et al., 2018).

Previous studies have shown high agreement 
between clinician-collected and self-collected 
samples and between lavage-based and brush-
based self-collected samples for several human 
gene DNA methylation targets (Boers et al., 2014; 
De Strooper et al., 2016); this offers the possibility 
of conducting screening and triage on the same 
self-collected specimen.

(iii)	 Viral DNA methylation
DNA methylation of the early (E2) and late 

(L1 and L2) coding regions of the HPV viral 
genome has been reported to increase with 
increasing CIN grade for 12 carcinogenic HPV 
types: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 
and 59 (Clarke et al., 2012; Wentzensen et al., 
2012; Lorincz et al., 2013; Mirabello et al., 2013; 
Bowden et al., 2019). The diagnostic accuracy 
of DNA methylation of HPV genotypes, alone 
or in various combinations, has been evaluated 
for detection of CIN2+. In a meta-analysis of 
seven studies evaluating DNA methylation of 
the E2, L1, and/or L2 coding regions of HPV16 
in HPV16-positive women, the pooled sensi-
tivity for detection of CIN2+ was 74% (95% CI, 
57–85%) and the pooled specificity was 73% 
(95% CI, 66–79%), although there was signifi-
cant heterogeneity in the observed estimates, 
because of differences in the CpG sites targeted 
(Kelly et al., 2019). A second, independent meta-
analysis on the diagnostic accuracy of the HPV16 
L1 and/or L2 genes in 10 studies reported similar 
findings, with a pooled sensitivity of 77% (95% 
CI, 63–87%) and a pooled specificity of 64% (95% 
CI, 55–71%) (Bowden et al., 2019).
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The addition of HPV type-specific methyl-
ation (HPV types 16, 18, 31, and 33) to a human 
gene target (EPB41L3) as part of the S5 classi-
fier enables testing in all women, irrespective of 
HPV type positivity. In three studies conducted 
in HPV-positive women in Canada, Colombia, 
and the United Kingdom, the sensitivity of the 
S5 classifier varied from 74% to 82% for detection 
of CIN2+ and from 84% to 93% for detection of 
CIN3+, suggesting that the combination of viral 
and host gene targets may increase detection 
of CIN2+/CIN3+ (Lorincz et al., 2016; Cook 
et al., 2019; Ramírez et al., 2021). However, the 
specificity for < CIN2 varied from 35% to 65%. 
Compared with either cytology with a threshold 
of ASC-US+ or HPV16/18 partial genotyping, 
the S5 classifier had a consistently higher sensi-
tivity for the detection of CIN2+ or CIN3+ but a 
lower specificity (Lorincz et al., 2016; Cook et al., 
2019; Ramírez et al., 2021).

A multiplex DNA methylation test targeting 
the L1/L2 regions of a wider range of HPV types 
(HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 
58, and 59) was evaluated in a case–control study 
in 299 women with precancer (CIN3/AIS) and 
360 women who had normal cytology but who 
were positive for any one of the targeted HPV 
types (i.e. 30 controls for each of the 12 carcino-
genic HPV types evaluated) (Clarke et al., 2018). 
Methylation was positively associated with CIN3/
AIS for all 12 types. The diagnostic accuracy of the 
12-type DNA methylation assay was simulated 
by applying type-specific sensitivity and speci-
ficity estimates for the DNA methylation test to 
a population of 30 000 women using data from 
a cohort of women undergoing routine cervical 
screening in the USA. The simulated sensitivity 
and specificity of the 12-type DNA methylation 
assay were 80% and 66%, respectively; both were 
higher than for cytology with a threshold of 
ASC-US+ (77% and 54%, respectively).

(b)	 Detection of HPV E6 oncoprotein

Elevated expression of the HPV oncoproteins 
E6 and E7 is associated with the development of 
HPV-associated cervical cancer. E6 oncopro-
tein from HPV16/18/45 can be detected by the 
OncoE6 test (Wentzensen et al., 2016). Zhao 
et al. (2013) reported the test performance when 
E6 oncoprotein was used as a primary screening 
method. Another study in China assessed the 
test performance of E6 oncoprotein for the 
detection of CIN3+ as triage for HPV-positive 
women (Qiao et al., 2014). The sensitivity of E6 
oncoprotein from HPV16/18/45 was about 50% 
and the specificity was more than 90% in both 
clinician-collected and self-collected samples. 
Compared with HPV16/18/45 DNA testing, 
the sensitivity was lower but the specificity was 
higher.

A recent study reported the cumulative 
incidence of CIN3+ in 1742 women at 10-year 
follow-up (Dong et al., 2020). The cumula-
tive incidence of CIN3+ was higher in women 
harbouring methylation at six sites (CpG 5602, 
6650, 7034, 7461, 31, and 37) with and without 
E6 oncoprotein than in women with abnormal 
cytology. For triage of HPV16-positive women 
with detection of CIN3+, the sensitivity of E6 
oncoprotein was lower than that of cytology 
(57.1% vs 92.9%), but the specificity was higher 
(86.5% vs 43.2%). A higher AUC was obtained 
with the methylation test at the six sites (0.82; 
95% CI, 0.69–0.91) than with E6 oncoprotein 
detection (0.72; 95% CI, 0.58–0.82) and with 
cytology (0.68; 95% CI, 0.54–0.80).
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