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Abstract

The problem of gender recognition using visual and
acoustic cues has recently received significant attention.
This paper explores the use of Total Variability (i-vectors)
and Inter-Session Variability (ISV) modeling techniques for
both unimodal and bimodal gender recognition, and com-
pares them to several state-of-the-art algorithms. The ex-
perimental evaluation is conducted on the FERET and LFW
databases for face-based gender recognition, on the NIST-
SRE database for audio-based gender recognition, and on
the MOBIO database for audio-visual gender recognition.
Results on LFW show that the i-vectors technique outper-
forms state-of-the-art algorithms, which are based on Sup-
port Vector Machines (SVM) applied either on raw pixels,
on Local Binary Patterns (LBP) or on Gabor filters, with an
accuracy rate of about 95%. Results on NIST-SRE show
that the i-vectors system is also superior to state-of-the-
art GMM-based gender recognition systems, with a relative
gain of about 11%. Finally, results on MOBIO show that
i-vectors and ISV also take advantage of combining visual
and acoustic cues using logistic regression. The resulting
bimodal systems achieve accuracy rates of about 98%.

1. Introduction

Information about gender, age, ethnicity, and emotional
state are important ingredients that lead to rich behavioral
informatics. Such information can be extracted from visual
or audio modalities. In this work, we focus on the problem
of gender recognition using both visual and audio cues.

Automatic gender recognition is crucial for a number
of applications of human-computer or human-robot interac-
tion. It serves to (1) enrich the metadata of visual and audio
documents in an indexing and retrieval system, (2) improve
the efficiency and the accuracy of people (both face and
speaker) recognition, diarization and surveillance systems
by reducing the search space to subjects from the same gen-

der, and by building gender-dependent models which are
often better than gender-independent models, (3) enhance
human-machine interaction by suggesting user-friendly in-
terface (e.g. gaming, social networks) and personalized ad-
vertisements (e.g. interactive voice response system, in-
store cameras), (4) increase the intelligibility of human-
robot interaction, and (5) collect passive demographic data.

Due to these various applications, the problem of au-
tomatic gender recognition has recently received signifi-
cant attention. Researchers have often addressed this prob-
lem with a unimodal aspect. For image-based gender
recognition, readers can refer to [23, 32, 19, 20, 1]. For
audio-based gender recognition, one can cite the work of
[14, 15, 10, 5, 31, 17]. In contrast, only few works (e.g.
[18, 26]) have taken into account both visual and acoustic
cues to solve the problem of gender recognition. They have
shown that audio-visual fusion can improve the accuracy of
gender classification system especially under degraded con-
ditions and temporal unavailability of one of the modalities.
However, their evaluations were conducted on in-house or
small databases, using simplistic unimodal systems.

In this work, we explore the recently proposed total vari-
ability (TV, also known as i-vectors) [9] and inter-session
variability (ISV) [34] techniques for both audio-based and
face-based gender recognition problems. We apply logistic
regression [25] to combine the two modalities at the deci-
sion level. The proposed systems are compared to several
unimodal and bimodal state-of-the-art algorithms. The ex-
perimental evaluation is conducted on the FERET and LFW
databases for face-based gender recognition, on the NIST-
SRE database for audio-based gender recognition, and on
the MOBIO dataset for audio-visual gender recognition.

The remainder of this paper is structured as follows:
In Section 2, we review existing work on unimodal- and
multimodal-based gender recognition. Section 3 presents
the proposed unimodal gender recognition systems, relying
on the TV and ISV techniques. Section 4 describes the eval-
uation metrics, the databases, the experimental setup and
the results. Section 5 concludes the paper.



2. Related work
2.1. Visual gender recognition

Gender recognition from face images has received sig-
nificant attention recently, and several approaches were ex-
plored. In [23], authors show that support vector machines
(SVMs) are superior to linear discriminant analysis (LDA),
nearest-neighbor, and radial basis function networks. They
conducted their experiments on images selected from the
FERET database [24]. However, the experimental proto-
col suffers from lack of information that prevents the repro-
ducibility of the results.

Authors in [19] made an effort towards making avail-
able the details about the protocol used on FERET, and
thus helping to benchmark the different approaches. One
of the findings of their work is that SVMs (with face pix-
els) are slightly superior to neural networks (with face pix-
els) and AdaBoost (with Haar-like features). In [1], authors
proposed an approach that combines several SVM classi-
fiers applied on intensity, shape and texture features gath-
ered at different scales. This approach obtains a better ac-
curacy than the techniques presented in [19]. The drawback
of the FERET database is that the images are acquired in
controlled conditions, and the dataset corresponding to the
available protocol [19] is small (only 411 face images).

Gallagher and Chen [12] used contextual features to rec-
ognize people’s gender in images of groups of people (fam-
ily portraits, wedding photos, etc.). Their images were
collected from Flickr (uncontrolled conditions) and made
available for researchers [11]. However, they did not pro-
vide a standard evaluation protocol.

More recently an evaluation protocol' on Labeled Faces
in the Wild (LFW) database was proposed as one of the
BeFIT (Benchmarking Facial Image Analysis Technologies)
challenges. As for Gallagher’s database, LFW images are
acquired in realistic scenarios under large variability in illu-
mination, facial expressions and head pose. Authors in [7]
used this protocol to evaluate state-of-the-art systems. They
found that Gabor jets and local binary patterns (LBPs) ob-
tain similar accuracy rates, and perform generally better
than pixels. They also found that SVM classifier works
slightly better than LDA.

2.2. Acoustic gender recognition

Several approaches were proposed to cope with the prob-
lem of acoustic gender recognition. In [14], Mel frequency
spectral coefficients (MFSC) with neural networks were
used. Their database was collected from French and En-
glish radio stations. However, the details needed to repli-
cate the experiments were not provided. Authors in [15]
proposed a two-stage classifier where pitch thresholding is
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applied in the first stage, and Mel frequency cepstral coeffi-
cients (MFCC) extraction followed by GMM-based classifi-
cation is done in the second stage. In [10], authors described
an unsupervised system that jointly uses MFCC-based and
Pitch-based classifiers, and any disagreement between the
two classifiers is resolved by using a pitch-shifting mech-
anism. In both [15] and [10], the experiments were con-
ducted on clean data (TIDIGITS in [15] and TIMIT in [10]).
This explains the high accuracy rates reported in their work.

In 2010, a challenge on gender and age detection was
conducted [31] on the aGender database [5], which contains
recordings from German telephone speech. Several gender
recognition algorithms were explored on this database such
as GMM, SVM, MLP, GMM-Mean-SVM, GMM-MLLR-
SVM, using both prosodic and acoustic features. Readers
can refer to the work in [17] where seven sub-systems based
on SVM and GMM were evaluated and combined. aGender
contains one group of children speakers. However, its eval-
uation protocol does not distinguish between female and
male children. This makes it difficult to be used indepen-
dently for gender recognition.

In all these works, none of the recently proposed inter-
session variability (ISV) [34] and total variability (TV) [9]
modeling techniques were explored.

2.3. Audio-visual gender recognition

Contrarily to unimodal gender recognition, the audio-
visual gender recognition has not been well explored in the
literature. To the best of our knowledge, the first attempt of
recognizing the gender using acoustic and visual cues was
done in [35]. In this work, authors found that SVMs are
better than nearest-neighbor and k-nearest neighbors. The
main drawback of their work is that they used two separate
unimodal databases to compare their audio and visual sys-
tems. This prevents them from making an objective and fair
comparison between the two unimodal systems, and fur-
thermore, it hinders them from combining both modalities
to improve the performance of their system.

This issue was partially solved in the work of Liu et
al. [18] where an audio-visual database was used. In
their work, the audio gender classifier is based on GMM,
whereas the visual classifier is based on SVM. The acous-
tic features used are the MFCC coefficients and their first
derivatives, whereas the visual features used are the inten-
sities of the pixels. At the fusion level, they combine the
non-compatible scores (posterior probability for GMM and
distances for SVM) from the two classifiers using a naive
linear combination that was tuned directly on the test set.
They reported gender classification accuracy rates of 85%,
84.75% and 91.25% on audio-only, visual-only and audio-
visual cues, respectively. The main drawback of this work
is the use of a private database without giving the full details
about the conditions in which the data was collected.
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3. Proposed audio-visual gender recognition

In this work, we propose to address the task of gen-
der recognition by modeling the feature distribution using
Gaussian mixture models (GMMs). Several classification
and extraction techniques can be applied on top of this
modeling for both visual and audio modalities. One pos-
sibility is to rely on the generative probabilistic framework
for classification based on GMMs, introduced for speaker
recognition in [27, 28] and then successfully applied for
audio-based gender recognition [17]. Furthermore, to cope
with the problem of high intra-class variability, we addi-
tionally investigate two recent session variability model-
ing techniques derived from GMMs: inter-session variabil-
ity (ISV) [34] and total variability (TV) [9]. To the best of
our knowledge, none of these two methods were used for
gender recognition.

3.1. Feature distribution modeling using GMM

Two separate feature extraction processes are employed
for face image and audio data. Considering visual data, a
decomposition in the spatial domain is performed, leading
to the extraction of parts-based features, as originally pro-
posed for the task of face recognition in [29]. For audio
data, the signal is decomposed in the time domain by ex-
tracting MFCC at equally-spaced time instants using a slid-
ing window approach, as commonly performed in the field
speaker recognition. For both modalities, this means that a
set O of K feature vectors (O = {o',0%,--- ,0%})is ex-
tracted from each sample O, where each feature vector is
of dimensionality M.

After feature extraction, and separately for each modal-
ity, the distribution of resulting feature vectors can be mod-
eled using a GMM. A GMM is a weighted sum of C' multi-
variate Gaussian components:

c
p(olggmm) = ch/\/ (0; Hec, Ec) » (D
c=1
where Ogmm = {we, e, Bete=q1,...,c} are the weights, the
means and the covariances of the model. This GMM can be
seen as a codebook that represents the feature distribution.
In the following, GMM:s have diagonal covariance matrices.

3.2. Gaussian mixture modeling

To use GMMs for gender recognition, we need to learn
a GMM G, for each gender (i € {male, female}) from
a set of enrollment samples. There are different ways to
learn GMMs. As in [27], we employ the expectation-
maximization algorithm to seek a maximum-likelihood es-
timate. Once gender-specific models G; are enrolled, the
probability that a test sample O, is from the class male is
given by a log-likelihood ratio (LLR) score:

hGMM (ot) - hlp (Ot|gmale) - lnp (Ot‘gfemale) (2)

3.3. Inter-session variability modeling

Another technique to learn GMMs consists of training a
generic model called a universal background model (GMM
UBM), and to adapt it to the enrollment samples of a spe-
cific class. The adaptation is commonly achieved by using
maximum a posteriori (MAP) estimation [28], where only
the means of the UBM are updated. A convenient and com-
pact representation of mean-only MAP adaptation and other
session variability modeling techniques is the GMM super-
vector notation [34]:

gi =m-+d;, 3)

where g; is the mean supervector of the GMM G;, m =
[IMT’ pul ... ,,ug]T is the mean supervector of the UBM
M., and d; is a class-specific offset for G;.

A powerful approach that relies on a GMM UBM is
inter-session variability (ISV) modeling [34]. It aims to es-
timate and suppress the effects of within-class variations in
order to create more discriminant gender models. ISV as-
sumes that session variability results in an additive offset to
the mean supervector g; of the gender model. This offset
can be added directly to the normal mean-only MAP adap-
tation representation. Given the j-th sample O; ; of gender
1 the mean supervector p; ; of the GMM that best represents
this sample is:

Hij =m+ UCEi_’j + Dz;, 4)

where U is a subspace that constrains the possible session
effects, x; ; is its associated latent session variable (x; ; ~
N (0, I)), while Dz; represents the gender-specific offset.

Similarly to GMM, ISV scoring relies on a LLR, using
compensated GMMs as follows:

p (Ot|m + meale,t + Dzmale)

)
(otlm + Umfemale,t + szemale)
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3.4. Total variability modeling

In [9] it was shown that session variability modeling
techniques can fail to separate between-classes and within-
class variations into two different subspaces. To address
this issue, an alternative technique called total variabil-
ity (T'V, also known as i-vectors) modeling was developed
for speaker recognition [9], and later applied to face recog-
nition [36]. TV modeling aims to extract low-dimensional
factors w; j, so-called i-vectors, from samples O; ;. More
formally, TV can be described in the GMM mean supervec-
tor space by:

pi; =m+Tw,;, (6)

where T is the low-dimensional total variability subspace
and w; ; the low-dimensional i-vector, which is assumed
to follow a normal distribution N (0, I). T is learned by
maximizing the likelihood over a large training set.



In contrast to ISV, TV does not explicitly perform ses-
sion compensation and scoring. Hence, a set of preprocess-
ing algorithms have been proposed to map i-vectors into
a more adequate space [4, 13, 36]. For i-vectors prepro-
cessing, whitening was proposed in [4] and shown to boost
classification performance. Whitening consists of normal-
izing the TV space such that the covariance matrix of the
i-vectors, of a training set, is turned into the identity matrix.
Another efficient preprocessing technique is length normal-
ization [13, 36], which aims at reducing the impact of a mis-
match between training and test i-vectors. For session com-
pensation, within-class covariance normalization (WCCN)
is employed, which normalizes the within-class covariance
matrix of a training set of i-vectors.

Once session compensation has been performed, any
classification technique might be used. We investigate the
simple and efficient cosine similarity measure [9, 36], as
well as SVMs [33], leading to two systems TV-Cosine and
TV-SVM, respectively.

4. Experimental evaluation

In this section, we evaluate the accuracy of unimodal and
bimodal gender recognition systems on several databases.
For both visual and audio modalities, and after feature ex-
traction, four gender recognition systems are employed,
relying on the modeling and classification techniques de-
scribed in Section 3. We call them GMM, ISV, TV-
SVM and TV-Cosine, respectively. GMMs are composed
of 512 Gaussian components, and the rank of the subspaces
are respectively set to 50 for ISV (matrix U) and 400 for
TV (matrix T), respectively. Given the small size of the
training set of FERET, the TV subspace has a rank of 200
on this database.

The development of the different systems has been
performed relying on the open-source toolbox Bob [2]%.
Source code required to reproduce the experiments is avail-
able online”.

Similarly to [19, 20, 7], the evaluation metrics used in
our work are the accuracy (Acc), the true positive rate
(TPR), the true negative rate (TNR) that are defined by:

TP+ TN TP TN

Acc = PIN TPR = iR TNR = N @)
where TP is the number of samples correctly classified as
positive (i.e. male), TN the number of samples correctly
classified as negative (i.e. female), P the total number of
positive samples and N the total number of negative sam-
ples. Furthermore, we used a variant of the receiver oper-
ating characteristic (ROC) curve, that plots the fraction of
males classified correctly in terms of the fraction of females
classified incorrectly [20].

2http://www.idiap.ch/software/bob
3https://pypi.python.org/pypi/xbob.qender.bimodal

4.1. Face-based gender recognition

The problem of face-based gender recognition has been
tackled in [19, 1]. In their work, the experiments rely on a
subset of the FERET database [24], for which an evaluation
protocol is already established*. For the sake of compari-
son, we conducted a set of experiments on this small corpus
(411 images), using the same annotations and the same pro-
tocol. Another drawback of using this database is the well
controlled recording conditions of the images.

In contrast to FERET, images of the LFW database’ [16]
were acquired in an uncontrolled environment, leading to
higher variability in term of pose, illumination and expres-
sion. In addition, the amount of samples is significantly
larger (13,233 images). Experiments are conducted on
this corpus using the BeFIT evaluation protocol (see Sec-
tion 2.1).

We evaluated our proposed systems on both databases,
using a very similar setup.

First, images are rotated, scaled and cropped to a fixed
size, according to eye coordinate annotations and using a
parametrization similar to the one in [19]. Next, visual fea-
tures are extracted.

For the four proposed systems (GMM, ISV, TV-
SVM and TV-Cosine), we rely on parts-based features
that were initially proposed for the task of face recognition
in [29]. The key idea is to decompose the face image into
a set of overlapping blocks before extracting a feature vec-
tor from each of them. For this purpose, 12 x 12 blocks
of pixel values are extracted from the preprocessed image
using an exhaustive overlap. Pixel values of each block are
normalized to zero mean and unit variance, prior to extract-
ing the M (M = 44) lowest frequency 2D discrete cosine
transform (2D-DCT) coefficients [29] excluding the zero
frequency coefficient. Finally, the 2D-DCT vectors are nor-
malized to zero mean and unit variance.

We also evaluate other benchmarks, that apply SVM
on raw pixels (Raw-SVM) or on LBP features (LBP-
SVM) [19], as well as SVM on HOG [8] (HOG-SVM).

On FERET, we first evaluate all the systems at different
image resolutions. Fig. 1 shows that the accuracy of the
systems is stabilizing when image resolution is increasing.
Therefore, we set the resolution of cropped images to the
reasonable value of 80 x 80 in further experiments.

Additionally, Table | compares the accuracy of our sys-
tems to the results published in [19], using the same im-
age resolution and cropping. At the largest resolution
of 48 x 48, results suggest that the proposed TV-SVM,
ISV and GMM systems outperfom the benchmarks. In par-
ticular, ISV reaches an accuracy rate of 90.7%, compared
to 84.0% for the best system of [19] (Raw-SVM).

4http://www.sis.uta.fi/~em55910/datasets/
5http://visfwww.cs.umass.edu/lfw/
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Table 1. ACCURACY ON FERET. This table reports the accuracy rate (in %) of the systems on FERET.

Resolution TV-SVM ISV GMM TV-Cosine HOG-SVM LBP-SVM [19] Neural Network [19] Raw-SVM [19] AdaBoost [19]
24 x 24 76.6 91.6 822 77.6 79.4 76.9 842 82.6 81.5
48 x 48 88.8 88.8 85.1 88.8 83.2 82.1 82.9 84.0 83.9
Table 2. ACCURACY ON LFW. This table reports the accuracy,
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Figure 1. IMPACT OF IMAGE RESOLUTION ON FERET. This fig-
ure shows the accuracy of all the systems on FERET by varying
image resolution. The height and the width are set to identical
values after cropping.
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Figure 2. ACCURACY ON THE FIRST FOLD OF LFW. This figure
reports the accuracy of all the systems on the first fold of the LFW
database.

Experiments conducted on LFW show similar trends, the
ISV system providing a good accuracy rate, as reported in
Fig. 2. Nevertheless, the TV-SVM system significantly out-
performs other systems and achieves state-of-the-art perfor-
mances on this corpus (accuracy rate of 94.6% as shown
in Table 2), compared to the best previously published re-
sults [7]. Looking at the errors made by the TV-SVM (ex-
amples are depicted in Fig. 3), results suggest that the high
intra-class variability remains one of the main challenges.
This variability is caused by recording conditions such as
pose, illumination and expression on one side, and acces-
sories, hair and make-up on the other side.

the true positive rate (TPR, for males) and the true negative rate
(TNR, for females) on LFW after 5-fold cross-validation. The im-
age resolution employed by each system is given in brackets.

System Accuracy TPR | TNR

TV-SVM (80 x 80) 94.6 97.4 85.0
Gabor-PCA-SVM (120 x 105) [7] 94.0 97.5 82.2
LBP-PCA-SVM (120 x 105) [7] 93.8 97.0 83.0
Raw-PCA-SVM (120 x 105) [7] 89.2 95.4 68.1

Figure 3. MISCLASSIFIED SAMPLES BY TV-SVM ON LFW,
FOLD 0. This figure shows misclassified samples (top row: fe-
males; bottom row: males) by the proposed TV-SVM gender
recognition system. These are original images aligned with fun-
neling from the LFW database, fold 0.

Table 3. NIST-SRE PARTITIONNING. This table reports the num-
ber of male and female speakers and the number of utterances on
the training (TRAIN), development (DEV) and evaluation (EVAL)
sets for NIST-SRE protocol.

TRAIN DEV EVAL
NIST-SRE series 2006 2010 2012
Number of Male speakers 481 235 763
Number of Female speakers 659 261 1,155
Number of utterances 14,735 22,848 73,106

4.2. Audio-based gender recognition

We evaluate our gender recognition systems on audio
data from the MIXER corpus [6], which is provided by
NIST since 2004 for the task of speaker recognition. The
training (TRAIN) set uses data from NIST-SRE (Speaker
Recognition Evaluation) 2006, whereas the development
(DEV) and the evaluation (EVAL) sets use data from SRE
2010 and 2012, respectively. The recordings were collected
in uncontrolled conditions (e.g. microphone, telephone,
synthetic noise, real noise, duration variability, etc.). Statis-
tics on the number of male and female speakers, and the
number of utterances are reported in Table 3. To the best of
our knowledge, this is the first large scale gender recogni-
tion experiment conducted on audio data®.

Acoustic features are extracted at equally-spaced time
instants using a sliding window approach. First, voice activ-

5The protocol is made publicly available within the package.
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Figure 4. ACCURACY ON NIST-SRE. This figures shows the ROC
curves of the different algorithms on NIST-SRE dataset.

20

Fraction of males classified correctly (%)

0

ity detection (VAD) is performed jointly using the normal-
ized log energy and the 4 Hz modulation energy [30]. Sec-
ond, 19 MFCC and log energy features together with their
first- and second-order derivatives are computed over 20 ms
Hamming windowed frames every 10 ms. This results in
acoustic feature vectors of dimensionality M = 60. Fi-
nally, cepstral mean and variance normalization (CMVN)
is applied on the remaining feature vectors.

Results in Fig. 4 clearly show that TV-SVM and
ISV systems outperform state-of-the-art GMM system by
up to 11% of relative gain. It also shows that TV-SVM sys-
tem is slightly superior than ISV. The accuracy rates of
TV-SVM, ISV, GMM and TV-Cosine are 92.5%, 91.1%,
83.5% and 87.1%, respectively.

4.3. Bimodal gender recognition

We evaluated bimodal gender recognition on the MO-
BIO’ database, which consists of 61 hours of audio-visual
data of 150 people captured within twelve sessions. This
corpus is challenging since the data is acquired on mobile
devices with real noise. It has been used to evaluate several
speaker, face and bimodal recognition systems [21]. The
extracted images contain faces with uncontrolled illumina-
tion, facial expression, and occlusion, while the extracted
speech segments are relatively short, partially even less than
two seconds. A new protocol® for gender recognition is es-
tablished, with separate training, development (DEV) and
evaluation (EVAL) sets, each containing 50 identities.

For each modality, we employ the same features and
parametrization as the ones introduced for the unimodal
systems (cf. Sections 4.1 and 4.2). The combination of the
two modalities is performed using score fusion (also called
high-level fusion), which combines scores from several sys-
tems. For this purpose, we use the linear logistic regression

7https ://www.idiap.ch/dataset/mobio
8The protocol is made publicly available within the package.

Table 4. ACCURACY ON MOBIO. This table reports the accu-
racy, the true positive rate (TPR, for males) and the true negative
rate (TNR, for females) of the systems on the evaluation set of
MOBIO.

TV-SVM | ISV | GMM | TV-Cosine
Accuracy 94.5 93.9 86.7 91.5
Face TPR 97.7 97.0 91.9 93.0
TNR 88.4 879 76.5 88.6
Accuracy 97.5 97.8 97.6 94.1
Audio TPR 96.9 97.3 97.0 92.1
TNR 98.6 98.7 98.5 98.0

approach, which has been successfully employed for com-
bining heterogeneous speaker classifiers [25].

Let an audio-visual test sample O, = (O%, O}) be pro-
cessed by both audio and visual systems. Each system pro-
duces an output score, hi'%° (O%) and hYs'! (O)) for au-
dio and visual cues, respectively. The final fused score is
expressed by the logistic function:

P (04) = g (By + B (OF) + BB (O))),

)]
where 1
S S— 9
9(z) 1+ exp(—zx) ©)
and B = [fo, 01, B2] are the regression coefficients, that

are computed by estimating the maximum likelihood of
the logistic regression model on the scores of the develop-
ment set. In this work, the optimization is done using the
conjugate-gradient algorithm [22].

Performances of unimodal gender recognition systems
on the MOBIO database are shown in Fig. 5. For the vi-
sual modality, TV-SVM , ISV and TV-Cosine outperform
the Raw-SVM and LBP-SVM benchmarks. For the audio
modality, TV-SVM, ISV and GMM achieve very high per-
formances.

Interestingly, when comparing the two modalities (Ta-
ble 4), a significantly higher accuracy rate (96.8%) is
achieved with the audio modality, compared to the visual
one (92.2%). Possible explanation is that the visual modal-
ity was subject to more variability (pose, illumination, ex-
pression) than the audio modality during the data collec-
tion. In addition, for audio-based gender recognition, the
classification rates are comparable for the two classes male
and female. In contrast, for face-based gender recogni-
tion, there is a large gap between male (TPR) and female
(TNR) classification rates.

We investigate the fusion of several unimodal systems.
Results depicted in Fig. 6 show that the fusion of the
two modalities allows to drastically reduce the error rate,
reaching an accuracy rate of about 98% for TV-SVM and
ISV systems. Real classification examples of the TV-
SVM systems (both unimodal and bimodal ones) are illus-
trated in Fig. 7. Sample 1 (first column) is classified cor-
rectly by all the unimodal and bimodal systems. In contrast,
samples 2 to 5 are only classified correctly by one of the
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Figure 5. ACCURACY ON MOBIO. These figures show ROC curves for both visual and audio modalities on MOBIO. For the audio
modality, a zoom is performed in the region of interest, as a high accuracy is achieved.
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Figure 6. PERFORMANCES OF THE PROPOSED SYSTEMS ON
MOBIO. This figure reports the accuracy rate of several unimodal
and bimodal systems on the evaluation set of MOBIO.
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Figure 7. CLASSIFICATION EXAMPLES ON MOBIO. This figure
shows few classification examples of the bimodal TV-SVM sys-
tem. Each column corresponds to a test sample, whereas each
row corresponding to a modality (visual, audio and bimodal, re-
spectively). A green bounding-box around a cell indicates that the
sample has been classified correctly, whereas a red one indicates
a misclassification.

Face

Audio

two unimodal systems, but the bimodal one is still able to
take the right decision. This suggests that, when a modality
is affected by challenging conditions (e.g. noise or acces-
sories), the other one is available for the rescue. Sample 6
is very challenging since both modalities are subject to high
deformations.

To quantify the significance of the improvement of the
proposed systems over the baselines, we conducted an eval-
uation based on Eq. 15 and Fig. 2 of [3]. This evaluation
shows that the improvement is statistically significant con-

sidering a 99% confidence interval for all databases except
for the small FERET database.

5. Conclusions

This paper investigates the problem of audio, visual
and bimodal gender recognition with two different variabil-
ity modeling techniques: ISV and TV. For visual gender
recognition, state-of-the-art performances are achieved on
both FERET and LFW databases. For the audio modality,
the large scale evaluation conducted on NIST-SRE shows
that the TV-SVM system is achieving an accuracy rate of
92.5%. In addition, experiments were carried out on the
bimodal MOBIO database. Results show that our pro-
posed TV-SVM and ISV systems outperform state-of-the-
algorithms on both modalities. Furthermore, additional im-
provements are obtained by combining them using linear
logistic regression. The final accuracy rate of the bimodal
system is about 98%.
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