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A B S T R A C T

Deriving a meaningful functional brain parcellation is a very challenging issue in task-related fMRI analysis. The

joint parcellation detection estimation model addresses this issue by inferring the parcels from fMRI data.

However, it requires a priori fixing the number of parcels through an initial mask for parcellation. Hence, this

difficult task generally depends on the subject. The proposed automatic parcellation approach in this paper

overcomes this limitation at the subject-level relying on a Dirichlet process mixture model combined with a

hidden Markov random field to estimate the parcels and their number online. The proposed method adopts a

variational expectation maximization strategy for inference. Compared to the model selection procedure in the

joint parcellation detection estimation framework, our method appears more efficient in terms of computational

time and does not require finely tuned initialization. Synthetic data experiments show that our method is able to

estimate the right model order and an accurate parcellation. Real data results demonstrate the ability of our

method to aggregate parcels with similar hemodynamic behaviour in the right motor and bilateral occipital

cortices while its discriminating power is increased compared to its ancestors. Moreover, the obtained HRF

estimates are close to the canonical HRF in both cortices.

1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive

imaging technique that indirectly measures neural activity from the

blood-oxygen-level dependent (BOLD) signal [31]. This signal reflects

the variations in the blood oxygenation level induced by oxygen

consumption of neural population involved during task performance.

Task-related fMRI data analysis generally focuses on two main issues:

(i) detecting the activated brain areas in response to a given stimulus,

and (ii) estimating the underlying dynamics associated with such an

activation through the estimation of the so called hemodynamic

response function (HRF).

So far, many approaches have been proposed to characterize the link

between stimuli and the induced BOLD signal through the brain, the

simplest relying on a general linear model (GLM) where the link between

the stimulus onset and the BOLD effect is actually modelled through a

convolution between the HRF and a binary stimulus sequence. The GLM

has been primarily used for detecting task-related brain activity in a

massive univariate manner [22], considering a constant and fixed

canonical HRF shape [6]. Then, it has been progressively extended to

account for the HRF variability using more regressors and hence more

flexible design matrices [24,23,29]. Nonetheless, due to the increase of

regressors the main difficulty that comes up in this context is the

decrease of statistical sensitivity in the subsequent tests, making the

detection task less reliable. Besides, other approaches that rely on

physiologically-informed non-linear models (e.g., the Balloon model)

have been pushed forward for recovering hemodynamics but most often

they are deployed in brain regions where evoked activity has already

been detected [7,23,33,17]. Their computational cost is actually prohi-

bitive for whole brain analysis and some identifiability issues (different

pairs of state variables and parameters give the same goodness-of-fit)

arise because of the presence of noise. The above mentioned approaches

mainly address detection of evoked activity and HRF recovery as a two-

step procedure whereas both tasks are strongly linked. A precise

localization of activations depends on a reliable HRF estimate, while a

robust HRF shape is only achievable in brain regions eliciting task-

related activity [26,16]. Moreover, most of linear and non-linear models

are designed for univariate inference whereas it is known that the BOLD

signal is spatially smooth and thus the HRF shapes remain similar over a

certain spatial distance [15,25,3].
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One of the approaches that accounts for this interdependence is the

joint detection-estimation (JDE) framework, where both tasks are

performed jointly [30,37,13]. To improve robustness in the estimation

task and account for spatial correlation of the BOLD signal, a single

HRF shape model was assumed for a specific group of voxels, also

referred to as a parcel. Within this JDE formalism, two approaches for

posterior inference have been developed, the first one relying on

computationally intensive stochastic sampling [30,37] and the second

one based on the variational expectation maximization (VEM) algo-

rithm [13] to achieve numerical convergence at lower cost. However,

whatever the numerical algorithm deployed, the JDE formalism

requires a prior parcellation of the brain into functionally homoge-

neous regions. These parcels should achieve a fair compromise between

homogeneity and reliability [35]. Homogeneity means that the parcels

should be small enough to meet the assumption of HRF shape

invariance within each parcel, whereas reliability should guarantee

that parcels are large enough to ensure reliable HRF estimation and

detection performance. This issue has motivated a number of recent

developments that try to cope with the identification of relevant brain

parcellation of the brain [20,34,28,27,18]. In Lashkari et al. [27], a

non-parametric Bayesian approach, relying on a Dirichlet process

mixture model, is considered for the activation classes in a multi-

subject framework but they assume that the HRF is fixed for a given

region of interest. However, among the latter works, none tries to

uncover functional regions that appear homogeneous with respect to

their hemodynamic profile. To the best of our knowledge, this issue has

been rarely addressed in the literature. In Badillo et al. [2] the

hemodynamic parcellation has been addressed using random parcella-

tion and consensus clustering. A multivariate Gaussian probabilistic

modelling has also been used in Fouque et al. [21] to cope with the

hemodynamic parcellation issue. A joint parcellation within the JDE

framework has been proposed in Chaari et al. [11,9], giving rise to the

joint parcellation detection estimation (JPDE) approach. This strategy

performs online parcellation during the detection and estimation steps

through the selection of hemodynamic territories, i.e., sets of voxels

that share the same HRF pattern. Although automated inference of

parcellation is performed in the JPDE methodology, the algorithm still

requires the manual setting of the number of parcels. In a previous

work Albughdadi et al. [1], we have proposed to finely tune this

parameter using an off-line model selection strategy. This procedure

was based on the computation of the free energy associated with

models of increasing complexity, (i.e., with an increasing number of

parcels) in the VEM framework. The best model was then selected as

the one maximizing the free energy. This technique was however of

limited interest since it requires to run the JPDE algorithm for many

candidate models, which is quite time-consuming especially when no

prior information is available on the approximate number of parcels.

Moreover, even if many analysis have to be conducted on the same

subject, running the above-mentioned procedure to select the best

model cannot be used only once since the best parcellation and

estimation of HRF patterns also depend on the data and not only the

number of parcels. Even if the number of parcels is right, the final

result can be sub-optimal.

This paper proposes a more original technique to perform on-line

model selection by adopting a non-parametric Bayesian (NPB) model.

A Dirichlet process (DP) prior combined with a hidden Markov random

field is specifically used to estimate the number of parcels from the data

itself without any prior knowledge on the initial parcellation. Injected

within the JPDE formulation, we end up with an algorithm that needs

to be run only once for getting an estimate of the number of parcels and

the corresponding HRF territories, with their own hemodynamic

signature and evoked responses. Compared with other parcellation

techniques, the proposed model allows an automatic estimation of the

hemodynamic brain parcels and their number which in turn helps to

improve the detection task and localize the brain regions involved in

some mental task. Besides, it allows the hard constraints of a single

HRF profile over a given parcel to be relaxed and hence leads to more

flexibility in brain analyses. Through this paper, we will refer to the

proposed model as the NP-JPDE model.

The rest of the paper is organized as follows. Section 2 introduces

the Dirichlet process that will be used for hemodynamic brain

parcellation. The non-parametric Bayesian model is presented in

Section 3. The inference strategy adopted for the proposed model is

described in Section 4. Experimental validations on synthetic and real

fMRI data are presented in Section 5. Finally, discussions and

conclusions are drawn in Section 6.

2. Dirichlet process

Dirichlet processes were first proposed in Ferguson [19]) as

distributions placed over distributions. A Dirichlet process (DP),

denoted by DP G α( , )0 , is characterized by a base distribution G0 and

a positive scaling parameter α. More precisely, a random distribution G

is distributed according to a Dirichlet Process [19] with scaling

parameter α and base distribution G0, if for all natural numbers k

and for all k-partitions B B{ , …, }k1

G B G B G B Dir αG B αG B αG B( ( ), ( ), …, ( )) ∼ ( ( ), ( ), …, ( ))k k1 2 0 1 0 2 0 (1)

where Dir αG B αG B αG B( ( ), ( ), …, ( ))k0 1 0 2 0 is the Dirichlet distribution

with parameter αG B αG B( ( ), …, ( ))k0 1 0 .

A Dirichlet process mixture model (DPMM) uses the DP as a non-

parametric prior in a hierarchical Bayesian model. Let us consider a

mixture model where ηn is the parameter associated with the n-th data

point xn, ηn is not observed and the DP is used to induce a prior on the

ηn's. If G is a measure generated according to a DP, G is discrete with

probability one. As a consequence, the following hierarchical repre-

sentation can be seen as a countable infinite mixture model

x η p x η η G GG α G DP α G∼ ( ), ∼ { , } ∼ ( , )n n n n n 0 0 (2)

where n N= 1, …, . Among the generated parameter values ηn, a

number of them are equal. These unique values are used to partition

the generated x x, …, N1 into clusters. Thus, the DPMM is a flexible

mixture model with a random number of clusters which grows with

new observed data. An explicit DP characterization, which will be

useful hereafter, is provided in terms of stick-breaking construction

[5]. Consider two infinite collections of independent random variables

τ∼i Be α(1, ), where Be α(1, ) is a beta distribution with parameters 1

and α, and η G* ∼
i 0, for i = 1, 2, …. With τ τ τ= , , …1 2 , the stick-break-

ing representation of G is

∏ ∑τ τπ τ τ G π δ( ) = (1 − ) and = ( ) .i i

j

i

j

i

i η

=1

−1

=1

∞

*
i

(3)

It is clear that G is a discrete distribution whose mixing proportions

τπ ( )i are given by successively breaking a unit length stick into an

infinite number of pieces. The size of each successive piece is propor-

tional to the rest of the stick and is given by an independent draw from

a beta distribution Be α(1, ). Let zn be the cluster assignment variable

of the n-th data point. The hierarchical model of a Dirichlet process

mixture model can be represented as follows

(i) τ α Be α i∼ (1, ), = 1, 2, …i

(ii) η G G i* ∼ , = 1, 2, …
i 0 0

(iii) for the n-th data point

(a) τzn is distributed according to a multinomial distribution, i.e.,

τ τz Mult π∼ ( ( ))n with τ τ τ= , , …1 2

(b) x z p x η∼ ( *)n n n zn



3. Non-parametric Bayesian joint parcellation detection

estimation model

3.1. Notation

In this paper, a vector is by convention a column vector. The

transpose is denoted by t. Matrices and vectors are denoted with bold

capital and lower-case letters (e.g., X and z). We use letters j m, as

indexes that run over voxels and experimental conditions, respectively.

3.2. Observation model

The proposed NP-JPDE model considers the observation model

used in the JPDE framework proposed in Chaari et al. [11,9]. The

JPDE model is the extension of the parcel-based JDE model developed

in Makni et al. [30,37] to a whole-brain or a large brain area. We start

by recasting the NP-JPDE model. Let be the set of voxels of interest

within the brain mask or the mask of the region of interest (ROI) under

study. At voxel j, the fMRI time series y
j
is measured at times

t n N{ , = 1, …, }n , where t nTR=n , N being the number of scans and

TR the time of repetition. The number of different stimulus types or

experimental conditions is M. The observed data Y y j= { ∈ , ∈ }
j

N

is linked to the unknown voxel-dependent HRFs H h j= { , ∈ }j and

the unknown response amplitudes A a m M= { , = 1, …, }m via a unique

BOLD signal model. More precisely, the observation model at each

voxel j ∈ can be expressed as

∑y X h P ba ℓ= + +
j

m

M

j
m

m j j j

=1 (4)

where aj
m is the amplitude at voxel j for the m-th experimental

condition with a a j= { , ∈ }m
j
m . The aj

m's are generally referred to as

neural response levels (NRL). Each NRL is assumed to be in one of I

groups specified by latent activation class assignment variables

Q q m M= { , = 1, …, }m where
⎧
⎨
⎩

⎫
⎬
⎭

q q j= , ∈m

j

m and q I∈ {1, …, }
j

m

represents the activation class at voxel j for the m-th experimental

condition. Two classes are considered here (I=2) where i=0 and i=1

refer to non-activated and activated voxels, respectively. The binary

matrix X x n N d D= { , = 1, …, , = 0, …, − 1}m m
n d t− Δ is a known binary

matrix of size N D× that provides information on the stimulus

occurrences for the m-th experimental condition, where t TRΔ ≤ is

the sampling period of the unknown HRFs. The voxel-dependent HRF

is denoted as h ∈j
D. Each hj is associated with an HRF group.

However, the NP-JPDE model does not require to a priori set the

optimum number of parcels as in the JPDEmodel where this number is

fixed a priori. Similarly to the activation groups, these HRF groups are

specified by a set of latent labels z z j= { , ∈ }j where z ∈ {1, 2, …}j

and z k=j means that the voxel j belongs to the k-th HRF group. An

estimation of z corresponds to a partition of the domain into K

hemodynamic territories whose connected components define a par-

cellation of the brain or of the considered ROI. Following the stick

breaking representation of DP, the mixing proportions of these HRF

groups are specified by their stick lengths τ τ τ= , , …1 2 . Finally, the rest

of the signal is made of the vector Pℓ j, which corresponds to low

frequency drifts where P is an N O× matrix, ℓ ∈j
O is a vector to be

estimated and L jℓ= { , ∈ }j . Regarding the observation noise, the bj 's

are assumed to be independent, zero-mean Gaussian vectors with

precision matrix Γj. The set of all unknown precision matrices is

denoted by jΓ Γ= { , ∈ }j .

3.3. Hierarchical Bayesian model

Adopting a Bayesian formulation for the NP-JPDE model, the joint

distribution of the variables Y A H Q z, , , , and τ is defined as follows

Y A H Q z τ Y A H AQ Q H z z

τ τ

p p p p p p

p

Θ Θ Θ Θ Θ

Θ Θ

( , , , , , ; ) = ( | , ; ) ( | ; ) ( ; ) ( | ; ) (

| ; ) ( ; ) (5)

where Θ is the set of all parameters which will be defined later. More

details about the right-hand side term of (5) are provided below.

(a) Likelihood

An autoregressive (AR) noise model has been adopted to

account for serial correlation in fMRI time series akin to Makni

et al. [30], Woolrich et al. [39], Chaari et al. [12,11,9]. Following

this model, the covariance matrix at voxel #j is denoted as

σΓ Λ=j j j
−2 where Λj is a tridiagonal symmetric matrix whose

components depend on the AR(1) parameter ρj. Using the notation

θ σ ρ= ( , )j j j J0
2

1≤ ≤ and y y P Shℓ= − −
j j j j j with S Xa= ∑j m

M
j
m

m=1 , the

likelihood factorizes over voxels as follows

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∏Y A H θ

y y
p

σ σ

Λ Λ
( | , ; ) ∝

det
exp −

2
.

j

J
j

j
N

j j j

j

0
=1

2
(6)

(b) Neural response levels

The NRLs are assumed to be statistically independent across

conditions, i.e.,

∏A a θp θ p( ; ) = ( ; )M

m

M
m

m{1: }
=1 (7)

where θm gathers the parameters for the m-th condition. A mixture

model is then adopted by using the latent allocation variables qj
m

to discriminate between non-activated voxels (q = 0
j

m ) and acti-

vated ones (q = 1
j

m ). For the m-th condition, and conditionally to

the assignment variables qm, the NRLs are assumed to be inde-

pendent, i.e.,

∏a q θ μ vp p a q( | ; ) = ( | ; , )m m
m

j

j
m

j

m

m m

∈ (8)

with θp a q i μ v( | = ; ) ∼ ( , )j
m

j

m
m mi mi . All the means and variances of

the response amplitudes are gathered in the two unknown vectors

μ μ m M i= { , = 1, …, , = 0, 1}
mi

and v v m M i= { , = 1, …, , = 0, 1}mi ,

respectively. Note that for non-activating voxels (i=0) we have set

μ = 0
m0 for all m M= 1, …, . The other parameters are unknown

and will be estimated.

(c) Activation classes

As in Vincent et al. [37], the M experimental conditions are

assumed to be independent a priori regarding the activation class

assignments, i.e., Q qp p β( ) = ∏ ( ; )
m

M m

m=1 with qp β( ; )m

m
a Markov

random field prior, namely a Potts model with a positive interac-

tion parameter βm that controls the spatial regularization. This

parameter is different from one stimulus type to another and will

be estimated. The Potts models prior reads

q qp β W β β U( ; ) = ( ) exp( ( ))m

m m m

m−1
(9)

where qU I q q( ) = ∑ ( = )m

j l j

m

l

m

∼ ,W β( )
m

is a normalizing constant and

I is an indicator function such that I a b( = ) = 1 if a=b and 0

otherwise. The notation j l∼ means that the sum ranges over all

neighboring voxels. Moreover, the neighboring system is a 6-

connexity 3D scheme. This Markov random field prior accounts

for the spatial correlation of the activity, which is one of the

physiological properties of the fMRI signal [37].



(d) HRF patterns

The voxel-dependent HRF hj is expressed conditionally to the

HRF group variable zj following the JPDE model

∏H z hp p z( | ) = ( | )
j

j j

∈ (10)

with h hp z k Σ( | = ) ∼ ( , )j j k k where hk denotes the mean HRF

pattern of group k# , while IνΣ =k D adjusts the stochastic perturba-

tions around hk via the value of the hyperparameter ν. The HRF

pattern is a priori assigned a zero mean Gaussian distribution

h Rσ0∼ ( , )k h
2 to ensure its smoothness, with R D Dt= (Δ ) ( )4

2 2
−1,

where D2 is the second-order finite difference matrix and σh
2 is a

parameter to be estimated or fixed. Moreover, h h= = 0k kD t0 Δ as in

Makni et al. [30], Vincent et al. [37], Chaari et al. [12]. Hence,

h ∈k
D−1.

(e) HRF groups

Following the line of DPMM, we address the issue of auto-

matically selecting the number of parcels by considering a coun-

table infinite number of parcels. This requires the extension of the

standard finite state space Potts model to a countable infinite

number of states in which we use a DP prior on the z variable in

the JPDE formulation. Our proposal differs from the one in Chatzis

and Tsechpenakis [14] in that it is not a mean field approximation

by a set of independent variables but a direct generalization of the

Potts model that uses a stick breaking representation. The stick

breaking representation is used to allow for the representation of

an infinite number of states. For such a generalization, we need to

consider the Potts model with an external field defined over

z z z= { , …, }J1 for all j J= 1, …, , z K∈ {1, …, }j such that

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ∑z αp β α β I z z( ; , ) ∝ exp + ( = ) ,

z

j

J

z z

i j

i j

=1 ∼
j

(11)

where βz is an interaction parameter and α is a parameter vector

such that α α α= { , …, }K1 represents an additional external field

parameter where each αk is scalar. Such a Potts model is defined up

to a multiplicative constant depending on α, meaning that the

distribution (11) can be also obtained when adding the same

constant value to all the αk's. To avoid such an identifiability issue,

it is common to consider additional constraints on the αk's. One

way to make the parameter vector α unique is to asssume α π= logk k

with π∑ = 1
k

K
k=1 . The Potts model in (11) then rereads

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∑ ∑

∏ ∑

z πp β π β I z z

π β I z z

( ; , ) ∝ exp log + ( = )

∝ exp ( = ) .

z
j

J

z z
i j

i j

j

J

z z
i j

i j

=1 ∼

=1 ∼

j

j

(12)

Define z πV β π β I z z( ; , ) = ∑ log + ∑ ( = )
z j

J
z z i j i j=1 ∼j

, which is called the

energy function, where the first and the second sum respectively

represents the first and the second order potentials. In the finite

state space case, such a representation is equivalent, via the

Hammersley-Clifford theorem [4], to assume that the distribution

in (11) is a Markov random field.

Using the stick breaking construction, we can then consider a

countable infinite number of probabilities πk that sum to 1, i.e.,

π∑ = 1
k k=1
∞

. From this, we can define the same energy function V as

before but consider it over an infinite countable set (homogeneous

to the set of positive integers),

∑ ∑z πV β π β I z z( ; , ) = log + ( = )
z

j

J

z z

i j

i j

=1 ∼
j

for z ∈ {1, 2, …}j . Next, using the Gibbs representation

z z πp V β( ) ∝ exp( ( ; , ))
z

, the Hammersley-Clifford theorem still holds

if z πV β∑ exp( ( ; , )) < ∞
z z

. Our choice of π ensures this property.

Indeed,

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ∑ ∏ ∑

∑∏

z πV β π β I z z

β J J π

β J J

exp( ( ; , )) = exp ( = )

< exp( ( − 1))

< exp( ( − 1)) < ∞

z z

z

z
j

J

z z
i j

i j

z
j

J

z

z

=1 ∼

=1

j

j

where J J( − 1) is the maximum number of neighbors among J sites.

We also used that for all j J= 1, …, , π π∑ = ∑ = 1
z z k k=1

∞

j j
. It follows

that z πp β( ; , )
z
, in the infinite state space case, is still a valid

probability distribution and is a Markov field by the Hammersley-

Clifford theorem. Note that such a generalization of the Potts model

is possible because of the presence of the external field parameters

πk that satisfy π∑ = 1
k k=1
∞

. A Potts model with equal external field

parameters cannot be as simply extended to an infinite countable

state space. For a Potts model with no external field, such an

extension is not possible because in the K-state case this Potts

model is equivalent to π K= 1/k for all k where their sum does not

tend to 1 when K tends to infinity. In the stick breaking setting, we

then consider τπ τ τ( ) = ∏ (1 − )k k l

k
l=1

−1
and

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∏ ∑z τ τp β π β I z z( ; , ) ∝ ( ) exp ( = ) .

z

j

J

z z

i j

i j

=1 ∼
j

(13)

Such a construction is valid for any set of parameters τ τ= { }k k=1
∞

with each τ ∈ [0, 1]k .

(f) Stick lengths

Following (13) would leave us with an infinite number of

parameters τk to estimate. The Bayesian point of view solves this

problem by assuming that all τk's are i.i.d. variables following the

same Be α(1, ) distribution so that the number of parameters to

estimate is now reduced to a single parameter α. The stick lengths

are a priori assigned a beta distribution with parameters 1 and α,

i.e.,

p τ α Be α k( ) ∼ (1, ) for = 1, 2, ….k (14)

The scaling parameter αmay have a significant effect on the growth

of the number of parcels. Following Blei et al. [5], a gamma prior is

placed over α with parameters s1 and s2, i.e., α ∼ gamma(s , s )1 2

where α s, 1 and s2 will be estimated.

The extension of JPDE model to an infinite number of parcels therefore

consists of augmenting the original JPDE formulation with additional

variables τ{ }k k=1
∞ and of considering the following hierarchical construc-

tion that yields the NP-JPDE model

(i) p τ α Be α k( ) ∼ (1, ), = 1, 2, …k

(ii) hΘ G G kΣ( * = ( , ) ) ∼ , = 1, 2, …k k k 0 0 where RG σ δ= (0, ) ⊗ Ih ν0
2

(iii) z τ τp β π β I z z( | ; ) ∝ (∏ ( ))exp( ∑ ( = ))
z j

J
z z i j i j=1 ∼j

(iv) h hz p Θ∼ ( | *)j j j zj
, where h h hp Θ Σ( | *) = ( ; , )j k j k k is a Gaussian dis-

tribution whose parameters h Σ,k k are associated with the k-th

parcel.1

where L θ hβ σ ν αΘ Γ= { , , , , , ( ) , , }a z h k k K
2

1≤ ≤ . The probabilities

τp p τ( ) = ∏ ( )
k k=1
∞

and z τp( | ) are defined in steps (i) and (iii), respec-

tively.

Fig. 1 illustrates the hierarchical model of the NP-JPDE model.

1 The other distributions defining the model remain the same as in the standard JPDE

model. Note that in the extended version above we assume ν ν=k for all k to define G0.



4. Variational expectation maximization algorithm

Different inference strategies can be used to estimate the missing

variables A H Q z, , , and τ in addition to the parameters Θ from the

posterior A H Q z τ Yp Θ( , , , , ; ) associated with (5). Due to the compu-

tational complexity of MCMC methods, we here use a VEM algorithm

to derive an approximation of the true posterior distribution

A H Q z τ Yp Θ( , , , , ; ) of the form

∏ ∏A H Q z τ A H τp p p p Q p z pΘ( , , , , ; ) = ( ) ( ) ( ) ( ) ( ).∼ ∼ ∼ ∼ ∼ ∼
A H

j

J

Q j

j

J

z j τ

=1 =1
j j

(15)

In the variational distribution above, the approximations p Q∏ ( )∼
j

J

Q j=1 j

and p z∏ ( )∼
j

J

z j=1 j
are sought in a form that factorizes over voxels (mean

field) to handle intractability due to the spatial neighborhood.

Following Blei et al. [5], the infinite state space for z is dealt with by

considering a truncation to a number K which consists of assuming that

the variational distribution satisfies p k( ) = 0∼
zj

for k K> and

τp p τ( ) = ∏ ( )∼ ∼
τ k

K

τ k=1
−1

k
. This amounts to setting τ = 1k for k K≥ or

p τ δ τ( ) = ( )∼
τ k k1
k

. It is worth noticing that in this case the Dirichlet process

is still full and not truncated. Moreover, the truncation level is freely

adjusted without being a part of the prior model specification [5].

The VEM approach requires five steps associated with five expecta-

tions referred to as: VE-H, VE-A, VE-Q, VE-Z and τVE − . The resulting

E-steps can be written as

⎛

⎝
⎜

⎞

⎠
⎟H H Y A zp pVE H Θ− : ( ) ∝ exp E [log ( | , , ; ]∼

H

r
p p

r( ) ( −1)
∼ ∼
A
r

z
r( −1) ( −1)

(16)

⎛

⎝
⎜

⎞

⎠
⎟A A Y H Qp pVE A Θ− : ( ) ∝ exp E [log ( | , , ; )]∼

A

r
p p

r( ) ( −1)
∼ ∼
H
r

Q
r( ) ( −1)

(17)

⎛

⎝
⎜

⎞

⎠
⎟Q QY Ap pVE Q Θ− : ( ) ∝ exp E [log ( | , ; )]∼

Q

r
p

r( ) ( −1)
∼
A
r( )

(18)

⎛

⎝
⎜

⎞

⎠
⎟τ τ τ Y zp pVE Θ− : ( ) ∝ exp E [log ( | , ; )]∼

z

r
p

r( ) ( −1)
∼
z
r( )

(19)

⎛

⎝
⎜

⎞

⎠
⎟z z Y H τp pVE Z Θ− : ( ) ∝ exp E [log ( | , , ; )] .∼

z

r
p p

r( ) ( −1)
∼ ∼
H
r

τ
r( ) ( )

(20)

Compared to the standard JPDE model, the new steps are the VE-Z and

τVE − steps which are detailed below. To make the paper self-

contained, more details about the other expectation steps are provided

in Appendix A.

• τVE step− This step is straightforwardly driven from results on

variational approximation in the exponential family. Given (3) and

for k K= 1, …, − 1,

⎛

⎝

⎜
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟∑ τp τ p τ π( ) ∝ ( )exp E log ( )∼

τ k k

j

J

p p z

=1

∼ ∼
k zj τ k j⧹{ }

(21)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ∑ ∑p τ p l τ p k τ∝ ( )exp ( )log(1 − ) + ( )log( )∼ ∼

k

j

J

l k

K

z k

j

J

z k

=1 = +1 =1
j j

(22)

Be γ γ∝ ( , )
k k,1 ,2 (23)

with

∑ ∑ ∑γ p k γ α p l= 1 + ( ) and = + ( ).∼ ∼
k

j

J

z k

j

J

l k

K

z,1
=1

,2
=1 = +1

j j
(24)

• VE-Z step This step is divided into J VE-Zj steps. Since we assume

p z( ) = 0∼
z j
j

for z K>j , we only need to compute the distributions for

z K≤j ,

⎛

⎝

⎜
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟∑h τp z p z π β p z( ) ∝ exp E [log ( | )] + E log ( ) + ( )∼ ∼

z j p j j p z z

i j

z j

∼

∼ ∼
j Hj τ j i

(25)

where

∑τπ τ τE [log ( )] = E [log ] + E [log(1 − )].p k p k

l

k

p l

=1

−1

∼ ∼ ∼
τ τk τl (26)

The expectations above can be computed using the fact that p∼
τk
is a

beta distribution, i.e., Be γ γ( , )
k k,1 ,2 defined by (24)

τ Ψ γ Ψ γ γE [log( )] = ( ) − ( + )p k k k k,1 ,1 ,2∼
τk (27)

τ Ψ γ Ψ γ γE [log(1 − )] = ( ) − ( + )p k k k k,2 ,1 ,2∼
τk (28)

where Ψ (. ) is the digamma function defined by

Ψ z
d

dz
Γ z

Γ z

Γ z
( ) = log ( ) =

′( )

( )
.

The term hp zE [log ( | )]p j j∼
Hj

is computed as

h m hp z ΣE [log ( | )] ∝ ( ; , ).p j j H k k∼
Hj j (29)

where mHj
is the mean of the voxel-dependent HRF obtained in the

VE-H step (see Appendix A(i)).

• VM step The maximization step in this extended NP-JPDE is

different when compared to the one of the JPDE model in Chaari

et al. [9]. As a consequence of the added hierarchical terms, it can be

rewritten as

Fig. 1. Graphical model describing dependencies between observed and latent variables

involved in the NP-JPDE generative model for a given region of interest with J voxels.

Observed variables are shaded in grey. J and M refer to the voxel and stimulus levels,

respectively.
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The two new maximization steps of the NP-JPDE model when

compared to the JPDE one are associated with the parameters α

and βz. Maximizing (30) with respect to α leads to

τα p α= argmaxE [log ( ; )]r

α
p

( )
∼
τ
r( )

(31)

where a gamma prior is placed over the scaling parameter α with

parameters s s( , )1 2 . The gamma distribution is conjugate to the stick

lengths and the parameters s1 and s2 are given by

∑s s K s s τ= + − 1 and = − E [log(1 − )].
k

K

p k1 1 2 2
=1

−1

∼
τk (32)

After computing these parameters, we replace α in (24) with its

expectation αE [ ] =q

s

s

1

2
.

Maximizing (30) with respect to βz leads to

z τβ p β= argmaxE [log ( | ; )].
z

r

β
p p z

( )
∼ ∼

z
z
r

τ
r( ) ( )

(33)

This step does not admit an explicit closed-form expression but can

be solved numerically using gradient ascent schemes. This solution is

computationally expensive. For this reason, the experiments con-

sidered hereafter were conducted with a fixed value of βz adjusted

using cross validation.

5. Validation

The NP-JPDE model was validated using synthetic and real data

experiments via appropriate comparisons to assess its performance.2

These experiments are described in this section.

5.1. Synthetic fMRI time series

First, the proposed non-parametric Bayesian algorithm is compared

with the strategy adopted in Albughdadi et al. [1] which consists of

selecting the model that provides the highest free energy. In a second

step, the performance of the NP-JPDE model is assessed for large grid

size and number of parcels in the ROI under study. The final part is

dedicated to highlight the difference between the automatic hemody-

namic brain parcellation provided by the NP-JPDE model and other

parcellation techniques from the literature.

• NP-JPDE model validation and comparison with other

hemodynamic parcellation algorithms (JPDE model)

To validate the NP-JPDE model, three different synthetic experi-

ments referred to as Exps 1–3 were conducted. Different parcellation

masks were used in each experiment to generate BOLD signal

according to (4). Two experimental conditions (M=2) were consid-

ered with 30 trials for each of them. The reference activation labels

are shown in Fig. 2 (q1 and q2). Using Pyhrf, the NRLs were drawn

according to their prior distribution conditionally to the activation

labels Q of Fig. 2. Given these 20×20 binary labels, the NRLs were

simulated as follows, for m a q= 0, 1: | = 0 ∼ (0, 0.5)j
m

j

m and

a q| = 1 ∼ (3.2, 0.5)j
m

j

m (Fig. 2 (a1 and a2). The onsets of these trials

were randomly generated with a mean inter stimuli interval of 3 s and

a variance of 5 s. The fMRI time series y
j
were then generated

according to (4) using tΔ = 0.5 and TR=1 s. As a ground truth for the

parcellation, different HRFs groups were considered, each with

K ω= + 1ω parcels where ω ∈ {1, …, 3}. The HRFs associated with

these groups were selected from the ground truth HRFs h( )k k
K
=1

ω

shown

in Fig. 3. Reference parcellations for the three experiments are

displayed in Fig. 4. These reference parcellations were chosen with

different cardinalities and overlap with activation areas in order to

investigate the robustness of the NP-JPDE model to the total amount

of evoked activity in each parcel. Indeed, from a statistical point of

view, the estimation of parcels involving a large amount of activated

voxels should be more accurate than the estimation of parcels

overlapping only a few activated voxels. Importantly, to mimic a real

scenario in all experiments, we set the percentage of the activated

voxels to be approximately 53% of the total number of voxels (this

percentage was calculated by performing a bitwise OR between the

reference activation binary labels of the two experimental conditions

Fig. 2). Table 1 reports for each experiment the percentage of

activated voxels in each parcel of the ground truth. These synthetic

fMRI time series were then processed by the JPDE and NP-JPDE

models. Results obtained with the two models were compared

especially in terms of model selection. When using the original

JPDE, three competing models K ω= + 1ω where ω ∈ {1, …, 3}
were run and their corresponding free energy values were computed

following the proposed model selection procedure in Albughdadi et al.

[1]. As regards the NP-JPDE, it is worth noting that we do not need to

specify any specific initialization. Hence, the latter was done ran-

domly in contrast to the shown initializations for the original JPDE

reported in Fig. 4[bottom]. The NP-JPDE model only requires to set

the maximum number of parcels K (truncation level) for the varia-

tional approximation. This number was set to K=20 for the three

experiments, while the Potts parameter βz was fixed to 1.2 for the

spatial regularity of the parcellation.3 The parameter βm for activa-

tion classes which corresponds to the m-th experimental condition is

estimated in the maximization step (as in Appendix A(v)). The prior

values over the scaling parameter α of the DPMM were set to

s s= 20, = 51 2 to be estimated in the VEM algorithm. The estimated

parcellations obtained by the two JPDE versions are shown in Fig. 5.

This figure shows accurate parcellation estimates from a visual point

of view. A comparison with the ground truth allows one to conclude

that the proposed NP-JPDE algorithm recovers accurate parcels

especially for activated parcels. Quantitative evaluation of the parcel-

lation estimates is provided in Table 2 where the error rate with

respect to the ground truth is given. First, one can notice the small

error probabilities for both models in all experiments. Furthermore,

the NP-JPDE outperforms the original JPDE seen in the error

reported for experiments 2 and 3. This remark corroborates the

better visual performance of the proposed NP-JPDE model. To

investigate more deeply the robustness of the parcellation estimation

using the NP-JPDE model, the confusion matrix for each of the three

experiments was computed and shown in Tables 3–5. We observed

that the proposed NP-JPDE is highly accurate regarding the parcella-

tion estimation step as the overlap between the reference and

estimate for each parcel is larger than 95% in all experiments.

In order to further investigate the robustness of the proposed

model, Table 6 provides the mean square errors (MSEs) for the NRLs

and activation labels associated with the JPDE and NP-JPDE models.

These results corroborate the fact that the NP-JPDE model ensures

precise estimation of the NRLs for both experimental conditions and

outperforms the classical JPDE version. The construction of the

parcellation for the NP-JPDE model has therefore very little impact

on the NRL estimates and the detection task. Next, we investigated the

accuracy of the estimation task by looking at the HRF estimates using

the NP-JPDE model as reported in Fig. 6. A comparison between the

reference and estimated HRF shapes shows that the NP-JPDEmodel is

2 These experiments were implemented in Python within the framework offered by the

Pyhrf software [36], see also http://pyhrf.org. 3 This value of βz was adjusted by cross validation.



able to recover precise hemodynamics profiles and they are close to the

HRF estimates of the original JPDE version (shown in the same

figure).

Last, we studied the convergence of the number of parcels over

iterations within the NP-JPDE. To this end, we present in Fig. 7 the

parcellation estimate for Exp 2 along different iterations until con-

vergence. Starting with a random initialization, this figure shows that

after about 7 iterations all the main parcels are well established.

Furthermore, for the same experiment, fifty runs of the VEM algorithm

using different random initializations were performed and the sub-

sequent box plot graph was drawn to investigate the sensitivity of the

NP-JPDE model to this setting. Fig. 8 shows the evolution of the

number of parcels over iterations for the fifty runs. It appears first that

Fig. 2. Reference activation labels and NRLs for the two experimental conditions (grid size=20 × 20).

Fig. 3. Ground truth HRF shapes h k K( , = 1, …,k
ω with ω = {1, …, 3}) used for

generating synthetic fMRI time series.

Fig. 4. Ground truth parcellations used for the 3 experiments and corresponding initialization masks (only used for the original version of the JPDE approach) (grid size=20×20).

Table 1

Percentage of activated voxels in each parcel of the ground truth parcellations for the

three experiments. The parcels indexes are shown in Fig. 4.

# Parcel Exp 1 Exp 2 Exp 3

1 66.7% 22.2% 19.5%

2 33.3% 44.5% 44.5%

3 – 33.3% 33.3%

4 – – 2.7%



all the parcels were present after the first few iterations. Second, this

number decreased through the iterations. Finally, we investigated the

computational load. For doing so, we computed the running time for

the standard JPDE framework by accumulating all elapsed times

required for assessing the free energy associated with each candidate

model, as done in Albughdadi et al. [1]. Using a machine with 8 cores,

each corresponding to an Intel® Xeon(R) CPU E3-1240 v3 chipset

clocking at 3.40 GHz processor and 16 GB of RAM, the four investi-

gated models in the classical JPDE framework run in about 35 mins

whereas for the NP-JPDE model it takes less than 9 min. Thus, the

computational cost of the NP-JPDE model is reduced when compared

Fig. 5. Parcellation estimates for the three experiments using the original JPDE and NP-JPDE (grid size=20×20).

Table 2

Error probabilities on the parcellation estimates using the original JPDE and the NP-

JPDE algorithms.

Model Exp 1 Exp 2 Exp 3

NP-JPDE 1.5% 0.25% 1.5%

JPDE 1.5% 2.75% 3.25%

Table 3

Confusion matrix for Exp 1. (NP-JPDE model). RP and EP refer to the reference and the

estimated parcellations, respectively.

RP

EP Parcel 1 Parcel 2

Parcel 1 1.0 0.046

Parcel 2 0.0 0.954

Table 4

Confusion matrix for Exp 2. (NP-JPDE model). RP and EP refer to the reference and the

estimated parcellations, respectively.

RP

EP Parcel 1 Parcel 2 Parcel 3

Parcel 1 1.0 0.0 0.008

Parcel 2 0.0 1.0 0.0

Parcel 3 0.0 0.0 0.992

Table 5

Confusion matrix for Exp 3. (NP-JPDE model). RP and EP refer to the reference and the

estimated parcellations, respectively.

RP

EP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 1.0 0.013 0.0 0.0

Parcel 2 0.00 0.961 0.0 0.0

Parcel 3 0.0 0.0 1.0 0.023

Parcel 4 0.0 0.026 0.0 0.977

Table 6

MSEs of NRL estimates and activation labels for the JPDE and NP-JPDE models.

Exp 1 Exp 2 Exp 3

JPDE NP-JPDE JPDE NP-JPDE JPDE NP-JPDE

NRLs m=1 0.016 0.007 0.017 0.008 0.017 0.008

m=2 0.012 0.006 0.012 0.006 0.012 0.006

Labels m=1 0.003 0.004 0.011 0.003 0.011 0.003

m=2 0.003 0.003 0.003 0.002 0.003 0.003



to free energy calculations of many candidate models.

• Case study: The NP-JPDE model for a large grid size and

more parcels

Exp 4 was conducted using synthetic BOLD fMRI time series for

a grid size of 200×200 with 11 parcels. The generated synthetic data

was tested using the NP-JPDE model with the same experimental

setup described in Section 5.1. The estimated parcellation using the

NP-JPDE model is shown in Fig. 9 along with the ground truth

parcellation. The error probability of parcellation was 1.6%. As

regards the HRF profiles of the estimated parcels, they are shown in

Fig. 10 along with their ground truths where we can see a good

match between the estimates and references. Moreover, it is

interesting to note that even the HRFs of parcel 5, 6 and 8, 11 have

similar characteristics, the NP-JPDE model is still able to discrimi-

nate them. The time to peak (TTP) and full width at half maximum

(FWHM) values of the ground truth and estimated HRFs are

Fig. 6. HRF estimates for the three experiments using JPDE and NP-JPDE models.

Fig. 7. Parcellation estimates for Exp 2 using the NP-JPDE model along successive iterations (grid size=20×20).

Fig. 8. Boxplot for fifty different runs of Exp 2 using the NP-JPDE model showing the

convergence of the parcellation up to 30 iterations. The convergence is achieved from

iteration 16.

Fig. 9. Parcellation estimates obtained using the NP-JPDE model for a synthetic fMRI

BOLD time series with 11 parcels (grid size=200×200).



summarized in Table 7. These results confirm that the NP-JPDE

model is still reliable for larger number of parcels and grid size.

• Comparison with other parcellation methods

Finally, we use the synthetic data of Exp 2 to compare the

hemodynamic parcellation obtained using the NP-JPDE model with

other parcellation approaches as the K-means and Ward's algo-

rithms [35,38]. The parcellation results of these algorithms are

shown in Fig. 11. It is clear that both algorithms are not able to

detect the three hemodynamic territories in the ground truth

(Fig. 4[middle-top]). Moreover, the estimated parcellations are also

affected by the activation labels of the two experimental conditions.

This observation confirms that the standard parcellation techniques

can be easily influenced by the BOLD signal level in the activated

area.

5.2. Real data

Two experiments were conducted on real fMRI data to validate the

proposed NP-JPDE model with two regions of interest (ROI) under

consideration. Exp 7 and Exp 8 focused on the right motor and bilateral

occipital ROIs, respectively. These ROIs are shown in Fig. 12 and were

defined from the statistical results of a standard subject-level GLM

analysis of fMRI data. More precisely, Student-t maps associated with

the two contrasts of interest, namely (Left Click - Right Click)

and (Visual stimuli - Auditory stimuli), were thresholded at

p=0.05, corrected for multiple comparisons according to the FWER

criterion, see Badillo et al. [3], Chaari et al. [10] for details. The fMRI

data were collected using a gradient-echo EPI sequence (TE=30 ms/

TR=2.4 s/thickness=3 mm/FOV=192×192 mm2, matrix size: 96×96)

at a 3 Tesla during a localizer experiment [32]. Sixty auditory, visual

and motor stimuli were involved in the paradigm and defined in ten

experimental conditions M( = 10) (see [3,10] for details). During this

paradigm, N=128 scans were acquired. For both experiments, we

considered the truncation level K=20, the parameter of the HMRF βz
was empirically set to 1.8 and the parameters of the gamma prior for

Fig. 10. HRF estimates obtained using the NP-JPDE model for a synthetic fMRI BOLD

time series with 11 parcels (Exp 4).

Table 7

Computed TTP and FWHM for the ground truth and estimated HRFs of the parcels in

Exp 4 where the identical values are in bold font.

HRF Ground truth Estimated

TTP FWHM TTP FWHM

HRF 1 2.0 5.5 2.0 5.5

HRF 2 5.0 6.0 5.0 6.0

HRF 3 6.0 7.0 6.0 7.0

HRF 4 8.0 8.5 8.0 8.5

HRF 5 4.0 9.0 3.5 9.0

HRF 6 5.0 9.5 5.5 9.5

HRF 7 10.0 7.0 10.0 6.5

HRF 8 11.0 7.5 10.5 7.5

HRF 9 12.0 7.5 11.5 7.5

HRF 10 9.5 7.5 9.5 7.5

HRF 11 11.0 7.0 11.0 7.5

Fig. 11. Parcellation estimates obtained using the K-means and Ward's algorithms with 3, 5 and 7 parcels for the synthetic BOLD time series of Exp 2.



the scaling parameter α were set to s = 201 , s = 52 .4

In Exp 5, two parcels were estimated in the right motor cortex.

Different slices of the estimated parcellation are shown in Fig. 13. The

HRF shape estimates are shown in Fig. 14(a) along with the canonical

HRF and the HRF estimated with the JDE model. These HRF estimates

have the same value of the time to peak (TTP) and the full width at half

maximum (FWHM): TTP=4.8 s and FWHM=4.2 s. As regards the HRF

obtained with JDE, the TTP and FWHM values are 4.8 s and 3.6 s,

respectively. We notice that both models recover the same TTP whereas

the JDE yields a slightly narrower HRF (lower FWHM). The Euclidean

distances between the HRF estimates themselves and the canonical

HRF are reported in Table 8 indicate that the NP-JPDE model provides

closer HRF estimates to the canonical one (average Euclidean distance

of 0.4) compared to the JDE model (average Euclidean distance of

0.43). In this sense, the NP-JPDE model provides more coherent

results than the JDE one in terms of closeness of the HRF estimates to

the canonical shape in the motor cortex as it has already been shown in

the literature [3]. As regards the NRL estimates, the focus of the

experiment is on the left and right click visual and auditory experi-

mental conditions which are expected to elicit evoked activity in the

right motor cortex. Taking the left and right auditory experimental

conditions as an example, Fig. 15 shows the NRL estimates using the

NP-JPDE and JDE models (with respect to the left and right auditory

experimental conditions) and the computed contrast (auditory left

click-auditory right click). These results confirm the coherence between

the NRL estimates obtained with the JDE and NP-JPDE models,

especially in terms of maximum activation location and amplitude

values.

The NP-JPDE was also run for Exp 6 on the bilateral occipital

cortex. Four parcels were detected as shown in Fig. 16. The corre-

sponding HRF shape estimates for these parcels are shown in

Fig. 14(b). These HRF estimates are displayed along with the canonical

HRF and the one estimated using the JDE model. The computed TTP

for the HRF profiles of parcels 1, 2 and 4 is TTP=5.4 s, while for parcel

3 we have TTP=6.0 s. The FWHM was also computed and is equal to

4.2 s for parcels 1 and 4, and to 4.8 s for parcels 2 and 3. As regards the

HRF estimated using the JDE model, we have TTP=5.4 s and

FWHM=4.2 s. Moreover, Table 9 reports the computed Euclidean

Fig. 12. Anatomical localization of brain regions. On top, the ROI is located in the right motor cortex and consists of a single connected component. At the bottom, the ROI is located in

the primary visual cortex and made up of two connected components, one in each hemisphere.

Fig. 13. Consecutive slices of the estimated parcellation located in the right motor cortex.

Fig. 14. HRF shape estimates using the NP-JPDE and JDE models in the right motor cortex (a) and the bilateral occipital cortex (b) along with the canonical HRF.

Table 8

Euclidean distance between the HRF estimates in the right motor cortex and the

canonical HRF. Distance between the individual NP-JPDE HRF estimates are also

provided.

HRF 1 HRF 2 JDE

Canonical HRF 0.37 0.43 0.43

HRF 2 0.30 – –

4 These parameters were determined empirically by cross validation.



distances between the different HRF estimates and the canonical HRF.

It also reports the same distance between the individual NP-JPDE HRF

estimates. The reported distances indicate that the NP-JPDE model

provides closer HRF estimates to the canonical shape with average

Euclidean distance of 0.42. More interestingly, it is clear that the NP-

JPDE model is able to discriminate between parcels that have very

close HRFs in terms of Euclidean distance, namely those of parcels 1

and 2. Indeed, these two parcels have similar TTPs, but different

FWHM values. They are therefore detected as different parcels by the

NP-JPDE model.

Fig. 17 shows the NRL estimates for some of the experimental

conditions which are supposed to induce evoked activity in the bilateral

occipital cortex (namely, video calculations and video sentences). The

obtained NRL estimates with the NP-JPDE and the JDE are similar in

terms of amplitude values and the location of the highest activation.

6. Discussion and conclusion

In this paper, we proposed a new approach to estimate the number

of hemodynamic parcels in fMRI data analysis where model selection

was formulated as a clustering issue. This approach is based on a

Dirichlet process mixture model combined with a hidden Markov

random field. A direct generalization of the Potts model that uses a

stick breaking representation allows for the representation of an

infinite number of states. The proposed non-parametric HMRF frame-

work allows an automatic estimation of number of parcels from the

fMRI data and adds spatial constraints on the connexity of the

estimated parcels. The JPDE model, proposed in Chaari et al. [11,9],

was extended using this non-parametric Bayesian HMRF yielding the

so called NP-JPDE model. The NP-JPDE relies on the VEM as an

inference strategy as in the JPDE model but with two new expectations

Fig. 15. NRL estimates for the auditory left and right click experimental conditions and their computed contrast (left click-right click) using NP-JPDE and JDE models.

Fig. 16. Consecutive slices of the estimated parcellation located in the occipital cortex.

Table 9

Euclidean distance between the HRF estimates in the bilateral occipital cortex and the

canonical HRF. Dinstance between the individual NP-JPDE HRF estimates are also

provided.

HRF 1 HRF 2 HRF 3 HRF 4 JDE

Canonical HRF 0.42 0.41 0.43 0.41 0.47

HRF 2 0.06 – 0.22 0.20 –

HRF 3 0.17 – – 0.35 –

HRF 4 0.23 – – – –



steps (namely, VE-Z and τVE − steps) while the others remain the

same as in the classical JPDE model. Moreover, two new maximization

steps result from the added hierarchical levels (VM-α and VM-βz).

Synthetic and real data experiments were used to validate the

proposed approach. Using synthetic data experiments, the proposed

NP-JPDE model provided more accurate parcellation estimates when

compared to the JPDE model with model selection [1]. Moreover, the

HRF estimates and activation detection results obtained using both

models were consistent. We also investigated the performance of the

NP-JPDE in terms of convergence speed and computational time, and

we showed again its superiority over its ancestor. On real fMRI data, we

used two ROIs to validate the proposed approach, the right motor

cortex and the bilateral occipital area embodying the primary visual

cortices. In the right motor cortex, two different parcels were estimated

with HRF estimates close to the canonical HRF. These results came

consistent with the HRF estimate of the JDE model and with the

conclusion in Badillo et al. [3]. In the bilateral occipital cortex, the left

and the right parcels showed similar hemodynamic territories. The

HRF estimates with the NP-JPDE were close to the canonical HRF

especially in terms of TTP and they were better recovered than using

the JDE model. For both experiments, the NRL estimates using the

JDE and NP-JPDE models were coherent. Future work will focus on

extending the NP-JPDE model for multi-subject studies to derive a

meaningful group-level parcellation and HRF estimates in a non-

parametric framework.

Appendix A. Other VEM steps

(i) VE-H step: Using (16) and standard algebra, p∼
H
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(iii) VE-Q step: A product approximation is assumed such that Q qp p( ) = ∏ ( )∼ ∼
Q j
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steps. Using (18), for m M= 1, …, and j J= 1, …, , the following result is obtained
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Fig. 17. NRL estimates for the visual sentences and calculation experimental conditions using NP-JPDE and JDE models.
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(iv) μ vM−( , ): Maximizing (30) w.r.t μ v( , ) yields
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For i ∈ {0, 1} and m M∈ {1, …, } the following result is obtained
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where p p i= ∑ ( )∼ ∼
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(v) βM− : Maximizing with respect to β, (30) reads
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Using the mean-field approximation [8] leads to a function that can be optimized using a gradient algorithm. An exponential prior with mean

λβm
is used to penalize each βm. The expression to optimize βm is
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(vi) L ΓM−( , ): Maximizing with respect to L Γ( , ) and factorizing over voxels j ∈ , the following expression needs to be computed
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Maximizing w.r.t ℓ j leads to the following result
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Knowing that σΓ Λ=j j j
−2 and computing the derivative w.r.t ℓ j yields
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where F2 is a function linking the estimates σj
r2( ) with ℓ j
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Maximizing w.r.t hk for a given k yields
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