
E V E N T H A N D L I N G I N B U S I N E S S P R O C E S S E S

flexible event subscription for business process enactment

sankalita mandal

business process technology group

hasso plattner institute

digital engineering faculty

university of potsdam

potsdam , germany

dissertation

zur erlangung des akademischen grades eines

“doctor rerum naturalium”
– dr . rer . nat. –

date of defense : 17/12/2019

December 2019

This work is licensed under a Creative Commons License:
Attribution – 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/

Supervisor: Prof. Dr. Mathias Weske, University of Potsdam
Reviewers: Prof. Dr. Matthias Weidlich, HU Berlin, and
Dr. Remco Dijkman, Eindhoven University of Technology

Sankalita Mandal: Event Handling in Business Processes,
© December 2019

Published online at the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-44170
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-441700

A B S T R A C T

Business process management (BPM) deals with modeling, executing,
monitoring, analyzing, and improving business processes. During exe-
cution, the process communicates with its environment to get relevant
contextual information represented as events. Recent development of
big data and the Internet of Things (IoT) enables sources like smart
devices and sensors to generate tons of events which can be filtered,
grouped, and composed to trigger and drive business processes.

The industry standard Business Process Model and Notation (BPMN)
provides several event constructs to capture the interaction possibilities
between a process and its environment, e.g., to instantiate a process, to
abort an ongoing activity in an exceptional situation, to take decisions
based on the information carried by the events, as well as to choose
among the alternative paths for further process execution. The specifi-
cations of such interactions are termed as event handling. However, in
a distributed setup, the event sources are most often unaware of the
status of process execution and therefore, an event is produced irre-
spective of the process being ready to consume it. BPMN semantics
does not support such scenarios and thus increases the chance of pro-
cesses getting delayed or getting in a deadlock by missing out on event
occurrences which might still be relevant.

The work in this thesis reviews the challenges and shortcomings of
integrating real-world events into business processes, especially the sub-
scription management. The basic integration is achieved with an architec-
ture consisting of a process modeler, a process engine, and an event
processing platform. Further, points of subscription and unsubscription
along the process execution timeline are defined for different BPMN
event constructs. Semantic and temporal dependencies among event
subscription, event occurrence, event consumption and event unsub-
scription are considered. To this end, an event buffer with policies for
updating the buffer, retrieving the most suitable event for the current
process instance, and reusing the event has been discussed that sup-
ports issuing of early subscription.

The Petri net mapping of the event handling model provides our ap-
proach with a translation of semantics from a business process perspec-
tive. Two applications based on this formal foundation are presented
to support the significance of different event handling configurations
on correct process execution and reachability of a process path. Pro-
totype implementations of the approaches show that realizing flexible
event handling is feasible with minor extensions of off-the-shelf process
engines and event platforms.

iii

Z U S A M M E N FA S S U N G

Das Prozessmanagement befasst sich mit der Modellierung, Ausfüh-
rung, Überwachung, Analyse und Verbesserung von Geschäftsprozes-
sen. Während seiner Ausführung kommuniziert der Prozess mit sei-
ner Umgebung, um relevante Kontextinformationen in Form von Er-
eignissen zu erhalten. Der jüngste Fortschritt im Bereich Big Data und
dem Internet der Dinge ermöglicht Smart Devices und Sensoren eine
Vielzahl von Ereignissen zu generieren, welche gefiltert, gruppiert und
kombiniert werden können, um Geschäftsprozesse zu triggern und vor-
anzutreiben.

Der Industriestandard Business Process Model and Notation (BPMN)
stellt mehrere Ereigniskonstrukte bereit, um die Interaktionsmöglich-
keiten eines Prozesses mit seiner Umgebung zu erfassen. Beispielswei-
se können Prozesse durch Ereignisse gestartet, laufende Aktivitäten in
Ausnahmefällen abgebrochen, Entscheidungen auf Basis der Ereignisin-
formationen getroffen, und alternative Ausführungspfade gewählt wer-
den. Die Spezifikation solcher Interaktionen wird als Event Handling be-
zeichnet. Allerdings sind sich insbesondere in verteilten Systemen die
Ereignisquellen des Zustands des Prozesses unbewusst. Daher werden
Ereignisse unabhängig davon produziert, ob der Prozess bereit ist sie
zu konsumieren. Die BPMN-Semantik sieht solche Situationen jedoch
nicht vor, sodass die Möglichkeit besteht, dass das Auftreten von rele-
vanten Ereignissen versäumt wird. Dies kann zu Verzögerungen oder
gar Deadlocks in der Prozessauführung führen.

Die vorliegende Dissertation untersucht die Mängel und Herausfor-
derungen der Integration von Ereignissen und Geschäftsprozessen, ins-
besondere in Bezug auf das Subscription Management. Die grundlegende
Integration wird durch eine Architektur erreicht, die aus einer Prozess-
modellierungskomponente, einer Ausführungskomponente und einer
Ereignisverarbeitungskomponente besteht. Ferner werden Points of Sub-
scription and Unsubscription für verschiedene BPMN-Ereigniskonstrukte
entlang der Zeitachse der Prozessausführung definiert. Semantische
und temporale Abhängigkeiten zwischen der Subscription, dem Auftre-
ten, dem Konsumieren und der Unsubscription eines Ereignisses wer-
den betrachtet. In dieser Hinsicht wird ein Event Buffer diskutiert, wel-
cher mit Strategien zum Update des Puffers, zum Abruf der geeigneten
Ereignisse für den laufenden Prozess, sowie zur Wiederverwendung
von Ereignissen ausgestattet ist.

Die Abbildung des Event Handling Modells in ein Petri-Netz versieht
den beschriebenen Ansatz mit einer eindeutigen Semantik. Basierend
auf diesem Formalismus werden zwei Anwendungen demonstriert, die
die Relevanz verschiedener Konfigurationen des Event Handlings für

v

eine korrekte Prozessausführung aufzeigen. Eine prototypische Imple-
mentierung des Ansatzes beweist dessen Umsetzbarkeit durch geringe
Erweiterungen bestehender Software zur Prozessausführung und Ereig-
nisverarbeitung.

vi

P U B L I C AT I O N S

The supporting publications for the research work presented in this
thesis are:

• Sankalita Mandal and Mathias Weske. “A Flexible Event Han-
dling Model for Business Process Enactment.” In: 22nd IEEE Inter-
national Enterprise Distributed Object Computing Conference, EDOC.
IEEE Computer Society, 2018, pp. 68–74. DOI: 10.1109/EDOC.2018.
00019. URL: https://doi.org/10.1109/EDOC.2018.00019.

• Sankalita Mandal, Matthias Weidlich, and Mathias Weske. “Events
in Business Process Implementation: Early Subscription and Event
Buffering.” In: Business Process Management Forum - BPM Forum.
Vol. 297. Lecture Notes in Business Information Processing. Sprin-
ger, 2017, pp. 141–159. DOI: 10.1007/978-3-319-65015-9_9. URL:
https://doi.org/10.1007/978-3-319-65015-9_9.

• Sankalita Mandal, Marcin Hewelt, and Mathias Weske. “A Frame-
work for Integrating Real-World Events and Business Processes in
an IoT Environment.” In: On the Move to Meaningful Internet Sys-
tems. OTM 2017 Conferences - Confederated International Conferences:
CoopIS, C&TC, and ODBASE, Proceedings, Part I. Vol. 10573. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 194–212.
DOI: 10.1007/978-3-319-69462-7_13. URL: https://doi.org/10.

1007/978-3-319-69462-7_13.

• Sankalita Mandal. “A Flexible Event Handling Model for Us-
ing Events in Business Processes.” In: Proceedings of the 9th In-
ternational Workshop on Enterprise Modeling and Information Systems
Architectures. Vol. 2097. CEUR Workshop Proceedings. CEUR-
WS.org, 2018, pp. 11–15. URL: http://ceur-ws.org/Vol-2097/
paper2.pdf

• Luise Pufahl, Sankalita Mandal, Kimon Batoulis, and Mathias
Weske. “Re-evaluation of Decisions Based on Events.” In: Enter-
prise, Business-Process and Information Systems Modeling - 18th Inter-
national Conference, BPMDS. Vol. 287. Lecture Notes in Business
Information Processing. Springer, 2017, pp. 68–84. DOI: 10.1007/
978-3-319-59466-8_5. URL: https://doi.org/10.1007/978-3-319/
59466-8_5.

• Sankalita Mandal, Marcin Hewelt, Maarten Östreich, and Mathias
Weske. “A Classification Framework for IoT Scenarios.” In: Busi-
ness Process Management Workshops - BPM 2018 International Work-
shops. Vol. 342. Lecture Notes in Business Information Processing.

vii

https://ieeexplore.ieee.org/document/8536150
https://ieeexplore.ieee.org/document/8536150
https://doi.org/10.1109/EDOC.2018.00019
https://link.springer.com/chapter/10.1007/978-3-319-65015-9_9
https://doi.org/10.1007/978-3-319-65015-9_9
https://link.springer.com/chapter/10.1007/978-3-319-69462-7_13
https://doi.org/10.1007/978-3-319-69462-7_13
https://doi.org/10.1007/978-3-319-69462-7_13
http://ceur-ws.org/Vol-2097/paper2.pdf
http://ceur-ws.org/Vol-2097/paper2.pdf
https://link.springer.com/chapter/10.1007/978-3-319-59466-8_5
https://link.springer.com/chapter/10.1007/978-3-319-59466-8_5
https://doi.org/10.1007/978-3-319 / 59466-8_5
https://doi.org/10.1007/978-3-319 / 59466-8_5

Springer, 2018, pp. 458–469. DOI: 10.1007/978-3-030-11641-5_36.
URL: https://doi.org/10.1007/978-3-030-11641-5_36.

• Sankalita Mandal. “Events in BPMN: The Racing Events Dilemma.”
In: Proceedings of the 9th Central European Workshop on Services and
their Composition (ZEUS). Vol. 1826. CEUR Workshop Proceed-
ings. CEUR-WS.org, 2017, pp. 23–30. URL: http://ceur-ws.org/
Vol-1826/paper5.pdf.

• Maximilian Völker, Sankalita Mandal, and Marcin Hewelt. “Test-
ing Event-driven Applications with Automatically Generated Ev-
ents.” In: Proceedings of the BPM Demo Track and BPM Disserta-
tion Award co-located with 15th International Conference on Business
Process Management. Vol. 1920. CEUR Workshop Proceedings.
CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-1920/BPM_
2017_paper_182.pdf.

• Jonas Beyer, Patrick Kuhn, Marcin Hewelt, Sankalita Mandal, and
Mathias Weske. “Unicorn meets Chimera: Integrating External
Events into Case Management.” In: Proceedings of the BPM Demo
Track 2016 Co-located with the 14th International Conference on Busi-
ness Process Management. Vol. 1789. CEUR Workshop Proceedings.
CEUR-WS.org, 2016, pp. 67–72. http://ceur-ws.org/Vol-1789/

bpm-demo-2016-paper13.pdf.

In addition to above publications, I was also involved in the following
research indirectly contributing to this thesis:

• Marcin Hewelt, Felix Wolff, Sankalita Mandal, Luise Pufahl, and
Mathias Weske. “Towards a Methodology for Case Model Elicita-
tion.” In: Enterprise, Business-Process and Information Systems Model-
ing - 19th International Conference, BPMDS. Vol. 318. Lecture Notes
in Business Information Processing. Springer, 2018, pp.181–195.
DOI: 10.1007/978-3-319-91704-7_12. URL: https://doi.org/10.

1007/978-3-319-91704-7_12.

• Adriatik Nikaj, Sankalita Mandal, Cesare Pautasso, and Mathias
Weske. “From Choreography Diagrams to RESTful Interactions.”
In: Service-Oriented Computing - ICSOC 2015 Workshops - WESOA.
Vol. 9586. Lecture Notes in Computer Science. Springer, 2015, pp.
3–14. DOI: 10.1007/978-3-662-50539-7_1. URL: https://doi.org/
10.1007/978-3-662-50539-7_1.

viii

https://link.springer.com/chapter/10.1007/978-3-030-11641-5_36
https://doi.org/10.1007/978-3-030-11641-5_36
http://ceur-ws.org/Vol-1826/paper5.pdf
http://ceur-ws.org/Vol-1826/paper5.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_182.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_182.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf
https://link.springer.com/chapter/10.1007/978-3-319-91704-7_12
https://doi.org/10.1007/978-3-319-91704-7_12
https://doi.org/10.1007/978-3-319-91704-7_12
https://link.springer.com/chapter/10.1007/978-3-662-50539-7_1
https://doi.org/10.1007/978-3-662-50539-7_1
https://doi.org/10.1007/978-3-662-50539-7_1

A C K N O W L E D G M E N T S

The journey of a PhD thesis takes lot more than just the scientific con-
tributions promised in it. The past four years made me stronger as a
researcher, as a colleague, and also as a person. I always see my life as
an expanding collage of experiences, and now that I look back, I realize
there are so many people who added colors to it!

Speaking of the researcher life, I am so glad that I ended up being
a PhD student under Prof. Mathias Weske’s supervision. I appreciate
how you give us the freedom of finding our interest areas while guiding
us to take the right decisions. I have been privileged to be a part of the
BPT ecosystem that you drive so efficiently. At the same time, being
part of the HPI research school was a great exposure to the work being
done in other streams of computer science.

I am grateful that Prof. Matthias Weidlich and Dr. Remco Dijkman
have agreed to be my reviewers. Both of their work influenced my re-
search significantly. Matthias, you have always been my favorite. Thank
you for all the long valuable discussions, collaborating with you has
been truly a nice learning experience.

A special credit goes to Anne Baumgraß for triggering my interest
in complex event processing and being a skilled mentor for the initial
months. Later, I shared the major part of my research and teaching
activities with Marcin Hewelt. Thanks Marcin for always answering
my questions with a smile. This brings me to express my gratitude
to all the previous BPT members who have shared some part of their
academic stay with me and gave me a warm welcome to the group.

A big applause to my current colleagues for making time to proof-
read my thesis chapters. Luise, Stephan, Kiarash, Adrian, Sven, Jan,
Marcin, Simon – thanks for all the thoughtful feedback that enriched
the content of this work. You guys are amazing, not only for being
smart researchers, but also for being so humorous and supportive and
patient with my random crazy stories. I would like to give additional
courtesy to my ‘Allround Enhancement Executive’ Stephan, who has
always been there to help, be it checking a formalism or correcting an
email in German; and my ‘Chief Aesthetics Counselor’ Jan, who volun-
teered to make this thesis look prettier and also designed the cover.

And then there are Adriatik and Kimon, coinciding the writing phase
with whom has been absolutely blissful for sharing the excitement of
finally finishing the PhD, and more than that, for sharing the huge
amount of stress that suppresses that excitement! Kimon, thanks a
lot for all those long hours of working together, for all the help with
scientific and paper work, and for all your unique ways of motivating
when I felt low.

ix

The journey of completing the PhD would not have been so accom-
plishing without being able to bring my parents over for the first time
in Europe and witness them being proud while visiting my workplace.
My musical family including my guitarists and co-artists, thanks for
being my refuge. Lastly, all my wonderful friends across Germany and
back in India, thanks for being on board through good and bad times.

x

C O N T E N T S

I introduction & foundations 1

1 introduction 3

1.1 Problem Statement 4

1.2 Research Objectives 6

1.3 Contributions 8

1.4 Structure of Thesis 10

2 business process management 13

2.1 BPM Life Cycle 13

2.2 Business Process Model and Notation 15

2.2.1 Core Elements 15

2.2.2 Events in Business Processes 18

2.3 Petri Nets 20

2.4 BPMN to Petri Net Mapping 22

3 complex event processing 27

3.1 Basic Concepts 27

3.2 Event Distribution 29

3.3 Event Abstraction 31

3.4 Event Processing Techniques 34

4 related work 41

4.1 Overview 41

4.2 External Events in BPM 42

4.3 Integrated Applications 44

4.4 Flexible Event Subscription & Buffering 47

4.5 Summary 49

II conceptual framework 51

5 integrating real-world events into business pro-
cess execution 53

5.1 Motivation & Overview 53

5.2 Requirements Analysis 54

5.2.1 R1: Separation of Concerns 55

5.2.2 R2: Representation of Event Hierarchies 56

5.2.3 R3: Implementation of Integration 57

5.3 System Architecture 57

5.3.1 Distribution of Logic 58

5.3.2 Use of Event Abstraction 59

5.3.3 Implementation Concepts 61

5.4 Summary & Discussion 63

6 flexible event handling model 65

6.1 Motivation & Overview 65

6.2 Event Handling Notions 69

xi

xii contents

6.2.1 Business Process View 69

6.2.2 Event Processing View 73

6.3 Flexible Subscription Management 74

6.3.1 Points of Subscription 75

6.3.2 Points of Unsubscription 77

6.3.3 Event Buffering 78

6.3.4 Semantic Interdependencies 80

6.4 Summary & Discussion 81

7 formal execution semantics 83

7.1 Motivation & Overview 83

7.2 Petri Net Mapping 85

7.2.1 Event Handling Notions 85

7.2.2 Points of Subscription 86

7.2.3 Points of Unsubscription 91

7.2.4 Event Buffering 93

7.3 Summary & Discussion 96

III evaluation & conclusions 99

8 application of concepts 101

8.1 Execution Trace Analysis 101

8.1.1 Correctness Constraints 101

8.1.2 Impact of Event Handling 105

8.1.3 Discussion 106

8.2 Reachability Analysis 107

8.2.1 Communication Model 108

8.2.2 Impact of Event Handling 110

8.2.3 Discussion 112

8.3 Summary 114

9 proof-of-concept implementation 115

9.1 Basic Event Interaction 115

9.1.1 Unicorn Event Processing Platform 116

9.1.2 Gryphon Case Modeler 117

9.1.3 Chimera Process Engine 119

9.1.4 Event Integration Sequence 120

9.2 Flexible Event Subscription with Buffering 122

9.2.1 BPMN Extension 123

9.2.2 Unicorn Extension 127

9.2.3 Camunda Extension 129

9.3 Summary 132

10 conclusions 133

10.1 Summary of Thesis 133

10.2 Limitations and Future Research 135

bibliography 139

L I S T O F F I G U R E S

Figure 1 Overview of research steps for the thesis. 7

Figure 2 Relevance of Information Systems research [19]. 8

Figure 3 Summary of research contributions. 11

Figure 4 Business process management (BPM) lifecyle. 14

Figure 5 State transition diagram for activity lifecycle. 16

Figure 6 BPMN tasks. 16

Figure 7 BPMN gateways. 17

Figure 8 BPMN events, as presented in BPMN 2.0 Poster
by BPM Offensive Berlin (cf. http://www.bpmb.
de/index.php/BPMNPoster). 19

Figure 9 Mapping of BPMN task to Petri net modules. 23

Figure 10 Mapping of BPMN gateways to Petri net mod-
ules. 23

Figure 11 Mapping of BPMN event constructs to Petri net
modules. 24

Figure 12 Mapping of BPMN boundary event construct to
Petri net module. 24

Figure 13 Event processing network. 28

Figure 14 Data in rest vs. data in motion. 29

Figure 15 Communication models for event distribution. 30

Figure 16 Applications of event abstraction in context of
process execution. 32

Figure 17 Event abstraction for order tracking in an online
shop. 33

Figure 18 Stream processing operations on events. 33

Figure 19 State changes for an event query in an event pro-
cessing platform. 34

Figure 20 An example EPN showing the different compo-
nents. 35

Figure 21 Event hierarchy showing Transaction and events
derived from it. 36

Figure 22 Screenshot from Unicorn showing generation of
complex events following pre-defined rules. 40

Figure 23 Overview of discussed research areas as related
work. 41

Figure 24 Usecase from the logistics domain 55

xiii

http://www.bpmb.de/index.php/BPMNPoster
http://www.bpmb.de/index.php/BPMNPoster

xiv List of Figures

Figure 25 Proposed system architecture for event-process
integration. 58

Figure 26 Event subscription and correlation within a pro-
cess engine and an event platform. 62

Figure 27 Collaboration diagram motivating the need for
flexible subscription. 66

Figure 28 Dependencies among the event handling notions:
event subscription, occurrence, consumption, and
unsubscription. 69

Figure 29 Event construct classification put in example pro-
cess models. 71

Figure 30 Lifecycle of an event w.r.t. requisite for a process
execution. 73

Figure 31 Interaction from event processing platform’s per-
spective. 74

Figure 32 Process execution timeline. 75

Figure 33 Points of (Un)-Subscription. 78

Figure 34 Interdependencies among the aspects of flexible
event handling. 80

Figure 35 Event handling notions represented by Petri net. 86

Figure 36 Scenarios considering the separate notions of event
occurrence and event consumption. 86

Figure 37 Petri net modules for mandatory event construct. 87

Figure 38 Petri net module for boundary event construct. 88

Figure 39 Petri net modules for racing event construct. 90

Figure 40 Petri net modules for exclusive event construct. 91

Figure 41 Petri net modules for points of unsubscription. 92

Figure 42 Petri net showing event matching, correlation,
and buffering. 94

Figure 43 Petri net showing a mandatory event construct
with subscription at process instantiation and un-
subscription at event consumption. 102

Figure 44 Excerpt from motivating example presented in Fig-
ure 27 in Chapter 6. 106

Figure 45 Petri net with subscription at event enablement and
unsubscription at event consumption. 106

Figure 46 Petri net with subscription at process instantiation
and unsubscription at event consumption. 107

Figure 47 Transition diagram for a process model (M) and
corresponding environment models (E, E ′). 109

Figure 48 Different subscription configurations for receiv-
ing event z. 110

List of Figures xv

Figure 49 Process Model M communicating with environ-
ment. 110

Figure 50 A chosen path in process and the set of corre-
sponding paths in environment with varying sub-
scription configuration. 111

Figure 51 A chosen path in process and the set of corre-
sponding paths in environment with varying con-
sumption configuration. 111

Figure 52 A chosen path in the process and the set of cor-
responding paths in environment with early sub-
scription for z and w. 113

Figure 53 BPMN process model with boundary event and
the corresponding transition system. 113

Figure 54 Detailed system architecture showing specific com-
ponents and the sequence of integrating events
into processes. 115

Figure 55 Architecture of event processing platform Uni-
corn. 116

Figure 56 Modeling of subscription queries with extended
field (in right) for event annotation in Gryphon. 118

Figure 57 Event data from LongDelay is written into a newly
created data object Delay using a JSON path ex-
pression. 119

Figure 58 Architecture of the Chimera process engine . 120

Figure 59 The sequence of communication between Gryphon,
Chimera, and Unicorn for the integration of events
into processes. 121

Figure 60 BPMN+X model showing extension of BPMN Mes-
sage element. 124

Figure 61 An example process with embedded subscrip-
tion definition for the intermediate catching mes-
sage event. 126

Figure 62 Extended architecture for flexible event handling. 127

Figure 63 UML Class diagram of Camunda process engine
plugin. 130

L I S T I N G S

Listing 1 Event type definition of Transaction 35

Listing 2 Example of Project EPA 37

Listing 3 Example of Translate EPA 37

Listing 4 Example of Enrich EPA 37

Listing 5 Example of Aggregation EPA 38

Listing 6 Event types Withdrawal and FraudAlert 38

Listing 7 Example of Compose EPA 39

Listing 8 Event type definitions for motivating example 60

Listing 9 Event abstraction pattern for LongDelay 60

Listing 10 Example of event patterns 74

Listing 11 XML interpretation of BPMN+X model 124

Listing 12 Excerpt from the XML interpretation of the BPMN
process modeled in Fig. 59 showing process struc-
ture and extended elements enabling flexible sub-
scription 126

xvii

A C R O N Y M S

BPM Business Process Management

CEP Complex Event Processing

IoT Internet of Things

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

EPC Event-driven Process Chain

EPA Event Processing Agents

EPN Event Processing Network

EPS Event Processing Systems

DBMS Database Management Systems

SEP Simple Event Processing

ESP Event Stream Processing

PN Petri Net

SQL Structured Query Language

JMS Java Message Service

REST Representational State Transfer

CQL Continuous Query Language

IS Information Systems

CPN Coloured Petri Nets

EPP Event Processing Platform

ERP Enterprise Resource Planning

UUID Universally Unique Identifier

EIP Enterprise Integration Patterns

xix

Part I

I N T R O D U C T I O N & F O U N D AT I O N S

1
I N T R O D U C T I O N

“The event concept is simple yet powerful.”
– Etzion & Niblett, Event Processing in Action [46]

Medical science says, every second of every day, our senses bring in way
too much data than we can possibly process in our brains1. The situation
for software systems is similar in the era of the Internet of Things
(IoT), since now we have the technological advancements to translate
the physical senses into digital signals [9]. Millions of sensors are pro-
ducing a huge amount of events that carry data or information which
can be interpreted to gain insight about the environmental occurrences.
We are already familiar with the concepts of “big data explosion” [65]
and “data being the new oil” [124]. However, there is a subtle yet
very significant paradigm shift in terms of processing data. Instead of
the static data stored in large databases, the last decade focused more
on the dynamic data or data in motion. Rather than using the data
afterwards for analyzing what happened in the past, the events give us
insight about the current situation or even predict the future, so that
we can react to the environmental occurrences in a timely manner [74].
But while the amount of available information is rapidly increasing, the
time window during which the information is relevant, i.e., the self-life
of the information is decreasing, so is the reaction time [102].

Research fields such as data science, data engineering, and Complex
Event Processing (CEP) explore concepts and technicalities for extract-
ing insight from data. The event processing platforms connect to event
sources to receive streams of events, and perform range of operations to
have a meaningful interpretation of the data carried by the events [56].
Often, put together a few events occurred in a specific pattern, higher
level business information are derived that influence organizational pro-
cesses. For instance, a sudden fall in stock market prices might demand
a company to postpone a release of their new product. Another exam-
ple could be an airlines offering the passengers alternative connections
after there is a strike at a specific airport. When it comes to organi-
zational processes, Business Process Management (BPM) is the field of
research that deals with the overall support for modeling, executing,
monitoring, evaluating, and improving them [134].

Given the situation, it is highly important to get access to the rele-
vant information that can influence a business process, and to take the
necessary steps as soon as a certain circumstance has occurred. Such
external influences are represented as event constructs in a business pro-
cess. Business Process Model and Notation (BPMN) [94] is the industry

1 https://www.brainyquote.com/quotes/peter_diamandis_488485

3

https://www.brainyquote.com/quotes/peter_diamandis_488485

4 introduction

standard for modeling and executing business processes. BPMN is a
highly expressive language and provides several event constructs to
capture the interaction possibilities between a process and its environ-
ment. According to the standard, events can be used to instantiate
a process, to abort an ongoing activity in an exceptional situation, to
take decisions based on the information carried by the events, as well
as to choose among the alternative paths for further process execution.
On one hand, a process can receive these events from the event sources
distributed in the environment. On the other hand, the process can also
produce events to send a message or a signal to the environment [27].
The specifications of such interactions are termed as event handling.

Despite having the provisions for integrating external information
into processes, so far there is no clear guideline for event handling
from a business process perspective, such as how to receive a business
level event from the raw event sources, when to start listening to an
external occurrence, and how long a particular event is relevant for pro-
cess execution. Research gaps for an efficient communication between
events and processes are outlined in detail in Section 1.1. This brings
the opportunity to explain how those questions are addressed in this
work, described as the research objectives in Section 1.2. Next, the con-
tributions of this thesis are listed in Section 1.3. Lastly, the structure of
the thesis is sketched in Section 1.4.

1.1 problem statement

Business process models incorporate environmental happenings in the
form of external events. These events play a significant role in process
enactment — they can drive the process execution flow, and can provide
information for decision making. Standard notations and languages for
modeling and executing business processes provide event constructs to
capture the communication with environment. Business Process Execu-
tion Language (BPEL) [92] has been popular in the BPM community for
last two decades. In BPEL, events are either messages received (or sent)
by activities from (to) other webservices, or timers. BPEL’s <receive>
activity defines an Endpoint (URL, Port, operation) that needs to be
invoked to receive an event. <onAlarm> activitiy waits for a duration of
time or until a specified point in time [72].

While BPEL has a narrow range of events (message, receive, and
timer), the de facto standard BPMN offers a much wider understand-
ing of events [130]. Happenings in the world might impact a business
process in various ways, rather than just a message sent to the process
instance, or a timer based alarm. To accommodate that, BPMN defines
events that can be placed as a start event to instantiate a process, as an
intermediate event to represent communication with other process par-
ticipants, and as an end event to signify the completion of the process.
Also, several event types are specified to capture different semantics of

1.1 problem statement 5

the communication, e.g., broadcasting a news to all process participants
and representing an error state. These event constructs are visualized
as dedicated nodes in process models, abstracting from the technicali-
ties such as subscribing to the event source, receiving it during process
execution, and consuming the information carried by it.

However, BPEL and BPMN both completely ignore the details about
the event sources and event abstraction hierarchy that are significant for
successfully receiving the required information in the processes. Other
languages such as UML Activity Diagrams [95] also neglect the above
issues. Standard process engines like Camunda [24] support BPMN
events for starting a process instance and for selecting between alter-
native paths following a gateway. Lack of support for

event handling in
BPM

Nevertheless, even in the execution
level, the engines do not care about the receiving part of the message
event. For instance, Camunda has interfaces that can be connected to
a Java Message Service (JMS) queue2 or a Representational State Trans-
fer (REST) interface [105]; but the reception of messages is not imple-
mented.

Event handling details the specification of how a process interacts
with its environment and how the environmental occurrences impact
the process execution. Considering the semantics for event handling,
especially the guidelines with respect to subscription for intermediate
catching events, BPMN specification [94] states:

‘For Intermediate Events, the handling consists of waiting for the Event
to occur. Waiting starts when the Intermediate Event is reached. Once the
Event occurs, it is consumed. Sequence Flows leaving the Event are followed
as usual.’ [BPMN 2.0, Sect. 13.4.2]

That is, when the control-flow reaches the event construct, it is en-
abled and a process instance starts waiting for the event to happen.
Once it happens, the control-flow is passed down to next activities.
As a consequence, a process instance may not react to an event that
occurred earlier than its control-flow reached the respective event con-
struct. The assumption that “an event occurs only when the process
is ready to consume it” is severely restricting in various real business
scenarios. Especially in a distributed setup or in an IoT environment,
where the event sources are not aware of the current execution status of
the process, it might cause the process to get delayed by waiting for the
next occurrence of the event. Even worse, if the event is not published
regularly then once the process misses the event occurrence, the process
execution gets in a deadlock.

Taking into account the fact that creation of event by the environment
is decoupled from process execution status, existing event handling se-
mantics raise the following research questions:

• RQ1: When to subscribe to an event source?
This of course depends on the data availability that is needed

2 https://www.oracle.com/technetwork/articles/java/introjms-1577110.html

https://www.oracle.com/technetwork/articles/java/introjms-1577110.html

6 introduction

to create a subscription. But the necessary information can be
available at different points of time during process execution, ear-
lier than enablement of the event construct. Also, instance spe-
cific data might not be needed for subscribing to certain events.
Therefore, flexible yet unambiguous semantics enabling early sub-
scription are needed to specify when it is feasible and when it is
recommended to start listening to a particular event occurrence.

• RQ2: For how long to keep the subscription?
After an event is consumed, the process instance does not need
it any more. But there might be other points in time when the
event looses the relevance to the process instance even before it is
consumed. Hence, possibilities and need for an unsubscription is
worth discussing in the context of early subscription.

• RQ3: How to store and retrieve the relevant events for a specific process
execution?
Early subscription calls for storing the events until the process is
ready to consume it. But if by the time there are more than one
occurrences of a certain event type, then the following aspects
have to be decided.

– How many events should be stored of the same type?
– Which one of them is the most relevant for a specific in-

stance?
– Is the event information reusable?

To summarize, most process specification languages share the same
limitations described above. The lack of flexibility in event handling
semantics limits the interaction scope between a process and its envi-
ronment. The research objectives to address these issues are described
next.

1.2 research objectives

The goal of the thesis is to provide a formal event handling model for
business process enactment. The event handling model shall facilitate
flexible event subscription to fit the need of real-world distributed en-
vironment where event sources send information to business process
management systems without knowing the internal process execution
status.

Essentially, the event handling model defines the notions of a busi-
ness process creating a subscription to start listening to an event, the
occurrence of the event that is relevant for the process, consumption of
the event following the process control-flow, and unsubscription to stop
receiving the event notification. The subscription and unsubscription
can be done at several milestones along the process execution timeline.
The business-level event can either directly be produced as a raw event

1.2 research objectives 7

by an event source, or can be an aggregated one generated using event
abstraction hierarchies by an event processing platform. The process
can consume the event as soon as it occurs, given there is a subscrip-
tion issued before, or the event can be temporarily stored in a buffer
until the process execution is ready to consume it. The event handling
notions and their interdependencies shall be defined explicitly.

The aim is to come up with a platform independent formal model
that considers the separate event handling notions instead of abstract-
ing the details in an event construct. This gives unambiguous and clear
semantics for correct process execution while considering event-process
interactions. The concepts of early subscription and event buffering are in-
tended to leverage an extended timespan of using relevant events for
a process and thereby mitigating the possibility of the process getting
delayed or getting stuck while waiting for the event occurrence. The
objective of highlighting different possible points of (un)-subscription is
to enhance the flexibility of the event-process interplay.

The flow of building up concepts and technicalities during the the-
sis journey follows an explorative path, as shown in Figure 1. The
goal of having a detailed event handling model raised the demand to
understand the role of complex events in business processes. There-
fore, extensive literature study in the area of using complex event pro-
cessing in business process management has been carried out. Along
with building up the knowledge base, some hands on applications are
also developed. For instance, using complex event processing to en-
able re-evaluation of decisions based on context information is explored
in [101]. Integration challenges such as impact of probable latency be-
tween the occurrence time of an event and detection time of that event
in the process execution engine has been discussed in [78].

Integration of
external events into
business processes

Importance of
complex event

processing in BPM

Early event
subscription and
event buffering

Flexible event
handling with

Petri Net mapping

Figure 1: Overview of research steps for the thesis.

The investigation of state-of-the-art revealed that business process
management (BPM) and complex event processing (CEP) are well es-
tablished fields as individual research areas; however, an integration
framework of the two worlds is missing. This led to basic and advanced
understanding of the challenges of integrating external events into busi-
ness processes, both in process design level, and process execution level.
Thus, the next research phase has been dedicated to build an end-to-
end solution that integrates external events into business processes [80].
While the integrated architecture met the basic requirements, it was
not enough to capture the flexibility needed by real-world scenarios
present in distributed setups. In the next research phase, concepts for
early event subscription and event buffering [82] are introduced to in-
duce the needed flexibility to communicate with the event sources. The

8 introduction

final phase, flexible event handling with Petri net mapping, extends the
concept of early subscription and adds formal semantics to the event
handling notions from a business process perspective.

1.3 contributions

In Information Systems (IS) research, it is important for a contribution
to be relevant. According to Benbasat and Zmud [19], a research con-
tent is relevant when it fulfills the following three criteria:

• Interesting: whether the research address the challenges that are
of concern to IS professionals,

• Current: whether the research considers state-of-the-art technolo-
gies and business issues, and

• Applicable: whether the research is utilizable by practitioners.
Figure 2 summarizes the criteria for a relevant research in IS. Addition-
ally, the research should be accessible to the IS professionals, written in
a well understandable and fluent style.

Interesting

Current

Applicable

Relevance

Figure 2: Relevance of Information Systems research [19].

Keeping that in mind, the research contributions added by this thesis
are argued to be relevant while outlining the highlights in the following.

• Requirements Analysis. Based on the current status of the BPMN
specification, the standard process engines, and with the help of
domain experts, we present the requirements for an integrated
architecture. The need for flexible event subscription points are
detailed based on a usecase. The requirements elicitation is done
in close collaboration with researchers as well as business pro-
fessionals from the field. The integration challenges have been
agreed to be of concern to all of them, making the contribution
interesting.

• Integrated Framework. Addressing the requirements, an integrated
architecture enabling efficient communication between external
events and business processes are established. The framework ful-
fills the conceptual requirements such as separation of concerns
between event processing logic and business process specification,
exploiting event abstraction hierarchies to map raw-level events
to higher-level business events. It also considers the technical
requirements such as subscribing to an event source, receiving

1.3 contributions 9

events, and reacting to them. The generic architecture is realized
with a process editor, a process engine, and an event processing
platform as a proof-of-concept implementation.

• Flexible Event Handling Model. This is the main contribution of this
dissertation. The work done in the course of this thesis introduces
the concepts for flexible event handling, formalizes them, and pro-
vides implementation to show the feasibility of the concepts. Con-
sidering the shortcomings of current notation and process engines
make this contribution current. While the overall contribution pro-
vides flexible subscription configurations for process execution,
this can be further divided into the following sub-contributions:

– The event handling notions for subscription, occurrence, con-
sumption, and unsubscription of an event are discussed sep-
arately from the business process view as well as the event
processing view. The temporal constraints between the no-
tions are also explored.

– Considering the usecase needs, the constrains between the
event handling notions, and the process execution timeline;
four points of subscription are specified. This addresses the re-
search question “RQ1: When to subscribe to an event source?”.
The points of subscription cover the BPMN semantics of lis-
tening to an event when the control-flow activates the event
construct, and extends the possibility for an early subscription
at process instantiation, at process deployment, and at en-
gine initiation. This enables the process to receive an event
even when the execution flow is not ready to consume it, to
increase the chance of including an early occurrence of an
event while it is still relevant for the process.

– The concept of early subscription raises the need for storing
the events temporarily till it is consumed by the process. This
brings us to the next contribution, namely, an event buffer
with buffer policies to control the lifespan for keeping an
event in the buffer, to determine the most suitable event for a
process instance when more than one occurrences have hap-
pened in between the subscription and consumption, and to
facilitate reuse of an event information across instances as
well as across processes. These buffer policies answer the
questions discussed in the context of “RQ3: How to store and
retrieve the relevant events for a specific process execution?”.

– Similar to the points of subscription, the points of unsubscrip-
tion are also specified to address “RQ2: For how long to keep
the subscription?”. Though unsubscription is not mandatory,
it is recommended to avoid engine overhead with events that
are not relevant any more. The interdependencies among the

10 introduction

chosen event handling configurations are discussed in this
context to guide a correct and efficient process execution.

– Finally, all the above concepts for flexible event handling are
given formal semantics by mapping the concepts to Petri net
modules, classified by the types of event constructs. While stan-
dard Petri nets are used for a clear semantics for the event
handling notions and points of (un)-subscription, Coloured
Petri Nets (CPN) are used to formalize the buffer policies.
Thus, this thesis provides a formally grounded flexible event
handling model for business processes and fulfills the re-
search objectives. Based on the formal semantics, two appli-
cations demonstrating the impact of selecting event handling
configurations are included as well, adding to the applicability
of the contribution.

Figure 3 visualizes the summary of the contributions. The parts high-
lighted in green are the concepts built up during the course of the thesis,
while the highlighted part in orange signifies the extension of existing
mapping technique.

1.4 structure of thesis

After the introduction to the motivation, problem statement, research
objectives, and contributions; this section outlines the structure of the
complete thesis. This thesis consists of three main parts, as described
below.

part i : introduction & foundations . This is the first part
of the thesis and we are already in this part. After the introduction
chapter, the preliminaries are given based on which the research has
been conducted. Since the thesis is vastly emerged into the concepts
from both business process management and complex event process-
ing fields, each of them are discussed as foundations. Chapter 2 starts
with the BPM lifecycle. Our work is based on the specifications and
shortcomings of Business Process Model and Notation. Therefore, in-
troduction to the relevant core elements of BPMN 2.0 are given in this
chapter. The role of events in BPMN is discussed in more detail. As a
more formal process execution notation, Petri nets are introduced. The
existing mapping from BPMN to Petri net by Dijkman et al. [37] is con-
sidered as a foundation as well, since this is later extended for mapping
the event handling configurations. In Chapter 3, the basic concepts of
event processing such as event abstraction, event queries, and event
pattern matching are introduced. Chapter 4 concludes this part of the
thesis with extensive discussion about the related work that focus on
integrated applications of CEP and BPM as well as event subscription
and buffering concepts.

1.4 structure of thesis 11

Co
m

pl
ex

 E
ve

nt
 P

ro
ce

ss
in

g

B
PM

N

Ev
en

t
Co

ns
tr

uc
ts

+
Ev

en
t

H
an

dl
in

g
Co

nf
ig

ur
at

io
ns

Ev
en

t
B
uf

fe
ri
ng

+

B
uf

fe
r

Po
lic

ie
s

Po
in

t
of

Su

bs
cr

ip
ti
on

Po
in

t
of

U
ns

ub
sc

ri
pt

io
n

Ev
en

t
St

re
am

s

Ev
en

t
H

an
dl

in
g

N
ot

io
ns

Pe
tr

i N
et

 M
ap

pi
ng

Ev
en

t
Co

ns
um

pt
io

n
Ev

en
t

Su
bs

cr
ip

ti
on

R
el

ev
an

t
O

cc
ur

re
nc

e

Ev
en

t
U
ns

ub
sc

ri
pt

io
n

C e
1

C e
2

O
e1

O
e2

U
e1

,e
2

P
(C

e1
, y

1)

P
(C

e2
, y

2)

P
(g
, C

e1
)

P
(g
, C

e2
)

P
(S

e1
,e
2,

O
e1
,e
2)

S e
1,
e2

e s

P
(e

s,
a)

P
(P
D,
 e

s)

Fi
gu

re
3

:S
um

m
ar

y
of

re
se

ar
ch

co
nt

ri
bu

ti
on

s.

12 introduction

part ii : conceptual framework . This part of the thesis intro-
duces the core contributions. We start with the basic integrated architec-
ture to use real-world events into business processes in Chapter 5. The
requirements elicitation for integration challenges are described first.
Next, the solution architecture fulfilling the requirements is illustrated.
Chapter 6 goes deeper into event subscription mechanism and defines
the advanced event handling concepts. The flexible subscription man-
agement with different subscription and unsubscription configurations
are explored in this chapter. The event buffering concept with the buffer
policies are also discussed in this context. Next, in Chapter 7, formal
semantics are assigned to the event handling concepts. This includes
Petri net mapping for the event handling notions, the points of subscrip-
tion and unsubscription for each event construct, and the event buffer
policies.

part iii : evaluation & conclusions . The last part of the the-
sis turns to evaluation of the concepts introduced so far. First, Chap-
ter 8 demonstrates the applicability and significance of event handling
concepts based on the formal semantics. Trace analysis is used as a
verification method for correct process execution. Based on the Petri
net mapping, temporal constraints for each pair of event construct and
point of subscription are defined for this application. Further, reach-
ability analysis of a process path is investigated in presence of early
subscription and reuse of events. As proof-of-concept, both basic and
advanced event handling implementation are discussed in Chapter 9.
Using a process modeler, a process engine, and an event processing
platform; the solution architecture is implemented to enable basic event-
process interactions. To realize flexible event handling, BPMN notation
is extended to specify event handling configurations. Next, the event
processing platform is extended to incorporate buffer functionalities.
As a complement to the event processing platform, an open-source pro-
cess engine is adapted to control the time of issuing a subscription.
Finally, this thesis is summarized in Chapter 10 along with discussions
about the limitations and future research directions.

2
B U S I N E S S P R O C E S S M A N A G E M E N T

Processes are everywhere, in our everyday lives. Whenever we aim to do
something repetitively, we tend to follow certain steps. As soon as these steps

and the end result bear business value, it becomes even more important to
perform the tasks in a structured way and to consider the alternative

approaches to execute the tasks to get a better result. Business processes
capture these steps, the order between them, the decisions needed to be taken

and the information influencing the decisions. The work presented in this
thesis is grounded in the vast concepts of business process management

(BPM). This chapter introduces the relevant ideas and techniques from the
field of BPM which are necessary to follow the advanced work. Namely, the

core concepts of modeling and enacting business processes are discussed with
the help of standard notations such as Business Process Model and Notation

and Petri Net (PN), along with the mapping from one to another.
Furthermore, the use of external events in business processes are explored in

detail to understand the aspects and challenges of the integration.

2.1 bpm life cycle

Several definitions of a business process can be found in [22, 42, 64, 69,
116, 134]. We abide by the definition given by Weske in [134], that says
a business process is a set of activities performed in a coordinated man-
ner in a business or technical context to achieve pre-defined business
goal(s). The complete process of supporting the design, administra-
tion, configuration, enactment and analysis of business processes with
various concepts, methods, and techniques is known as Business Process
Management (BPM). This section explains the phases of business process
management to understand the underlying concepts and technologies
in more detail. Figure 4 represents the business process lifecycle, as
discussed in [134].

The entry point to the cycle is the Design and Analysis phase. BPM
is a model-driven approach [42]. In this phase, the business processes
are extracted and represented visually in a model. The processes can
be elicited using different techniques such as interviewing the knowl-
edge workers, observing the activities they perform, or conducting a
workshop to model the process together with the domain experts [77].
Instead of extracting the model from the knowledge workers, they can
also be discovered from the execution logs documented by the Enter-
prise Resource Planning (ERP) system or relational databases, using
process mining techniques [124]. Typically, a process consists of the
key activities to achieve certain goal(s), the decision points along the

13

14 business process management

Figure 4: Business process management (BPM) lifecyle.

way to reach the goal(s), and the interactions with other processes or
the environment that influence the tasks performed and the decisions
taken. After extracting the process, it is modeled formally using a spe-
cific business process modeling notation. Once modeled, the process
is simulated and verified to make sure it covers the complete set of
execution possibilities and serves the modeling goal(s).

The next phase is Configuration of the process model to implement
it. The implementation of the process can be done with or without a
dedicated IT system [41]. If there is a dedicated IT system, such as
a process engine, then the modeled process is enhanced with further
technical details which are parsed and followed by the process engine
to execute the process. If there is no IT support for process execution,
then certain rules and procedures are distributed among the human
resources responsible for conforming to the process while executing it
manually.

In the Enactment phase, the configured process is actually executed
following the process specification. There can be several executions of
a single process. Each execution is one process instance. The process
engine logs these execution data at runtime. This information can be
used to monitor the status of the process execution at anytime during
the execution [51, 120].

Next, Evaluation is done to check the conformance of the process ex-
ecution with the process specification. The execution traces logged by
the engine is analyzed in this phase to find the bottlenecks or devia-
tions from actual model [25, 87, 132]. Evaluation can also detect per-
formance metrics of a process. The process is further improved based
on that, e.g,. by increasing the flexibility, efficiency, effectiveness, and
user satisfaction. Again, process mining techniques are often applied
to the execution logs for conformance checking or performance evalu-
ation [1, 66, 90]. Finding the patterns of state transition events leading
to good or bad states by analyzing the execution log data is another

2.2 business process model and notation 15

evaluation aspect. This is then used for predictive monitoring during
future process executions [10, 43, 51, 52, 86, 107].

2.2 business process model and notation

As discussed above, the first step for process implementation is to
model the process visually following the behavioral specifications. Later,
these specifications are executed for each process instance. In addition,
process models are discovered from the execution log for checking the
conformance between an intended behavior and corresponding actual
behavior [124]. Thus, process models lie at the heart of business process
management.

Several languages and notations are available for process description.
Depending on the purpose of process modeling, the most suitable lan-
guage can be selected. For describing structured processes, procedu-
ral languages such as Business Process model and Notation (BPMN)1,
Event-driven Process Chain (EPC)2, Web Service Business Process Exe-
cution Language (BPEL)3 might be used. Whereas for describing more
flexible processes, there are approaches such as declarative [97], artifact-
centric [59] or hybrid. The declarative modeling languages do not bind
the activities in a sequence, rather specify some constraints that should
be followed while executing them. However, the non-procedural ap-
proaches are still evolving, whereas procedural languages have already
been in use in business context for years [98]. We followed the industry
standard BPMN 2.0 for our work. The basic concepts of BPMN relevant
to our work are described next.

2.2.1 Core Elements

In essence, a process model is a graph with nodes and edges [134]
where nodes can be activities — representing a task, gateways — rep-
resenting branching in process execution, and events — representing
relevant occurrences influencing the process. A process model is used
as a blue print for a set of process instances which are the individual
executions of this process.

Each process instance consists of several activity instances. These
activity instances traverse through different life cycle states, as shown
in Figure 5. Once the process is instantiated, each activity is initialized.
This puts the activity instances in state init. As soon as the incoming
flow of an activity is triggered, it enables the instance and changes the
state to ready. Activity life cycleWith the start of activity execution, the state changes to
running. Finally, the activity instance is terminated once the execution is
completed. In some cases, while the activity instance is yet not started,
the process execution chooses a different path. This puts the activity

1 https://www.omg.org/spec/BPMN/2.0/

2 https://www.ariscommunity.com/event-driven-process-chain

3 https://www.oasis-open.org/committees/wsbpel/

https://www.omg.org/spec/BPMN/2.0/
https://www.ariscommunity.com/event-driven-process-chain
https://www.oasis-open.org/committees/wsbpel/

16 business process management

Figure 5: State transition diagram for activity lifecycle.

into the skipped state. Also, due to the occurrence of an exceptional sit-
uation, a running activity instance can switch to canceled state. During
one process instance execution, an activity can be re-instantiated after
it is terminated or canceled.

An activity can be a task that represents the atomic step in a process,
a sub-process that abstracts the lower-level process within an activity, or
a call activity that calls and gives the control to a global task. Depending
on the nature of the task, it can be classified in following categories: Ser-
vice task — performed by calling a web service or any other automated
service, Send task — responsible for sending a message to an external
participant, Receive task — responsible for receiving message from an
external participant, User task — performed by a human user, Manual
task — performed without any support of execution engine, Business
rule task — abstracted decision logic involved in the activity [96], and
Script task — executed by process engine. Different types of BPMN
tasks are visualized in Figure 6 with their standard icons.

Service
Task

Send
Task

Receive
Task

User
Task

Manual
Task

Business
Rule Task

Script
Task

Figure 6: BPMN tasks.

The control flow maintaining the sequence among these activities can
be optimized using gateways. There are six types of gateways to specify
the branching behaviors, as described below. Exclusive gateways are
used for alternative paths based on data-based decisions.Gateways Only one of
the outgoing branches following the exclusive gateway can be chosen
for a process instance execution. The converging exclusive gateway
merges the alternative branches. On the contrary, inclusive gateways can

2.2 business process model and notation 17

Exclusive

Inclusive

Parallel

Parallel
event-based

Complex

Event-based

Figure 7: BPMN gateways.

be used to choose one or multiple paths among the alternatives. As
the name suggests, the parallel gateway leads the process execution to
branches that can be executed in parallel, independent of each other.
Here, all the branches following the gateway have to be executed in
order to move further. While the exclusive or inclusive gateways are
based on data-based decisions, the event-based gateway directs the path
to execute depending on the event occurrence order. The first event to
occur among the events after the gateway leads the further execution
in this case. Parallel event-based gateway needs all the associated events
to be triggered for process completion. For more complex and specific
branching conditions (such as when three out of five branches are to
be executed), complex gateways might be used. Figure 7 summarizes the
different types of BPMN gateways along with their notations.

BPMN offers several event constructs to represent the interaction be-
tween two processes as well as a process and its environment. Since
this thesis intensely deals with events in business processes, an elabo-
rate description of BPMN events is given later in Section 2.2.2. Based
on the above discussion, we now formally define the relevant concepts
of a process model for our work in the following.

Definition 2.1 (Process Model).
A Process Model is a tuple M = (N, cf,B) with

• a finite non-empty set of nodes N = NA ∪NE ∪NG where NA,
NE, and NG are pairwise disjoint sets of the activities, the events,
and the gateways, respectively,

• a control flow relation cf ⊆ N×N, and
• a function B that maps the activities to the associated boundary

event(s).
• NE = ES ∪EI ∪EE, where ES, EI, and EE are pairwise disjoint sets

of start events, intermediate events, and end events, resp.
• EI = EIC ∪ EIT where EIC and EIT are pairwise disjoint sets of

intermediate catching events and intermediate throwing events,
resp.

• NG = GA ∪GX ∪GE, where GA, GX, and GE are pairwise disjoint
sets of AND gateways, XOR gateways, and event-based gateways.

18 business process management

• B : NA → P(EIC) where P(EIC) is the power set of the intermedi-
ate catching events.

�

For an activity A ∈ NA, let Ab,At,Ac be the beginning, termination
and cancellation of A, respectively. A start event is always a catching
event, i.e., the process receives the event whereas an end event is always
a throwing event, i.e., the process produces the event. The preset of a
node n ∈ N is defined as •n = {x ∈ N | (x,n) ∈ cf}. The postset of a
node n ∈ N is defined as n• = {x ∈ N | (n, x) ∈ cf}.

2.2.2 Events in Business Processes

Events are the happenings that are relevant to process execution. It can
signify the state changes for an activity, the state changes of a data ob-
ject, and the communication with the environment [75]. The processes
can consume events using the catching events, and can also generate
events, modeled as throwing events. A process always gets instantiated
by a start event which can be a catching event received from the envi-
ronment or an engine generated event. Each process path should ter-
minate with an end event. Start events are always catching events and
end events are always throwing events. The intermediate events happen
in between start and end of a process and they can either be throwing
or catching by behavior.

BPMN specifies a range of event constructs to capture different se-
mantics of happenings that influence a process execution. The complete
description of BPMN events are found in the standard [94]. Figure 8

gives brief introduction to the events and classifies them according to
start, intermediate, and end events as well as their catching and throw-
ing nature. The event types used in this thesis are described in detail
below.

blank event. This do not add any special semantics to the event.
Rather, it just signifies the state depending on the position. Blank events
can be used as a start event, throwing intermediate event, and end
event.

message event. This is used for massage flow between process par-
ticipants. It can be both throwing (sending message) and catching (re-
ceiving message). Message events are also used for receiving external
information into processes. Message events might have data association
to implement the input of information to the event payload by the send-
ing process and to write the information carried by the event to a data
object to use it further in the receiving process. If the message event is
attached to an activity (boundary event), then it works as an exception
trigger and initiates an exception handling path in the process. If the
boundary event is interrupting, then the associated activity is canceled
upon firing of the event.

2.2 business process model and notation 19

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ-

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off-page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
-P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

S
ta

n
d
a
rd

E
v
e
n
t

S
u
b
-P

ro
c
e
ss

N
o
n
-I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
-

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub-Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub-Process

An Event Sub-Process is placed into a Process or

Sub-Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non-

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Task or Process reused in the current Process. A

call to a Process is marked with a symbol.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub-Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Conversation defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub-Conversation, a

compound conversation element.

A Conversation Link connects

Conversations and Participants.

Inclusive Gateway

When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway

Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event-based Gateway

(instantiate)

Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event-based Gateway

(instantiate)

The occurrence of all subsequent

events starts a new process

instance.

Multi Instance Pool

(Black Box)

Conversation

Sub-Conversation

Pool

(Black Box)

Participant B

The order of message

exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes

represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached

to pools, activities, or

message events. The Message

Flow can be decorated with

an envelope depicting the

content of the message.

Data

Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e-mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process.A kind of input parameter.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Collaboration Diagram

P
o
o
l
(W

h
it

e
 B

o
x
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task

represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Sub-Choreography contains

a refined choreography with

several Interactions.

Multiple

Participants Marker

Swimlanes

BPMN 2.0 - Business Process Model and Notation

Collection

Ad-hoc Subprocess

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Subprocess

Event-based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Subprocess

Event Subprocess

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Subprocess

condition

http://bpmb.de/poster

Participant A

Participant C

Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

(decorator)

Response

Message

(decorator)

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event-based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

A Call Conversation is a wrapper for a

globally defined Conversation or Sub-

Conversation. A call to a Sub-conversation

is marked with a symbol.

Sub-Choreography

Participant A

Participant C

Participant B

Call

Choreography

Participant A

Participant B

A Call Choreography is a

wrapper for a globally

defined Choreography Task

or Sub-Choreography. A call

to a Sub-Choreography is

marked with a symbol.

Input

A Data Output is data result of the entire

process. A kind of output parameter.

A Data Association is used to associate data

elements to Activities, Processes and Global

Tasks.

denotes a set of

Participants of the

same kind.

Message

a decorator depicting

the content of the

message. It can only

be attached to

Choreography Tasks.

P
o
o
l

(B
la

c
k

B
o
x
)

Pool (Black Box)

Pool

(Black Box)

© 2011

S
ta

n
d
a
rd

Figure 8: BPMN events, as presented in BPMN 2.0 Poster by BPM Offensive
Berlin (cf. http://www.bpmb.de/index.php/BPMNPoster).

http://www.bpmb.de/index.php/BPMNPoster

20 business process management

timer event. This is a process (engine) generated event that gets
enabled with the control flow reaching the event construct and fires
once the specified time has passed. Since the firing is received as a
trigger to the process, it is always a catching event for the process. Timer
event can be conditioned as a specific fixed date and time (2019-02-25

16:25:14), as a time duration (50 min), and as a time cycle (every Monday
at 9:00 am). The timer event can be set as a start event, except from the
time duration condition. It can also be used as a catching intermediate
event, including usage as a boundary event.

2.3 petri nets

Petri nets are one of the most popular and standard techniques to rep-
resent the behavior of concurrent systems [69]. It is named after Carl
Adam Petri, who visioned the initial foundation for Petri nets in 1962.
The net is composed of places and transitions, connected with directed
arcs between them in a bipartite manner. The transitions represent ac-
tive components of a system, such as activities, events or gateways in
a process. On the other hand, the places are used to model the pas-
sive components, e.g., the input place models the precondition and the
output place models the postcondition of a transition. We chose Petri
nets for our mapping since it gives clearer implementation semantics
than BPMN. The Petri net semantics used here follow the definitions
proposed in [69] and [131].

A marking of a Petri net signifies the system state. A marking is a
snapshot of the distribution of tokens over the places of the net. The
firing of a transition can change the marking, i.e., the state of the system.
Firing of transitions are considered as atomic step. The behavior of
the system is described by all firing sequences of a net that start with
an initial marking. A single firing sequence is named as a trace. The
relevant definitions are quoted in the following:

Definition 2.2 (Petri Net).
A Petri net is a tuple N = (P, T , F) with

• a finite set P of places,
• a non-empty, finite set T of transitions, such that T ∩ P = ∅, and
• a flow relation F ⊆ (P× T)∪ (T × P).

�

A marking of N is a function M : P →N0, that maps the set of places
to the natural numbers including 0. M(p) returns the number of tokens
on the place p ∈ P. Let M be the set of all markings of N. A Petri net
system is a pair S = (N,M0), where N is a Petri net and M0 ∈M is the
initial marking. A sequence of transitions σ = t1, t2, . . . , tn,n ∈ N, is a
firing sequence, iff there exist markings M0, . . . ,Mn ∈M, such that for
1 6 i 6 n, transition ti changes the system from (N,Mi−1) to (N,Mi).

2.3 petri nets 21

The set of traces = contains all firing sequences σ, such that σ is enabled
in M0.

The simplest form of Petri net is a Condition Event Net where the
places represent conditions and the transitions represent events. If a
condition is met then there is a single token on the place representing
that condition and it enables the firing of the succeeding event. Note
that a transition is enabled only if there is no token on any output place
of the event which is not an input place as well. A Place Transition
Net, on the other hand, allows multiple tokens in a place. The number
of tokens in a place is generally unbounded. Depending on the need
of workflow, the number of tokens in an input place (to be consumed
by events) and number of tokens in an output place (to be produced
by events) can be defined using a weighing function. Extensions of

Petri nets
The classic Petri

nets are representations of discrete states, as defined by their markings.
In real-life workflows, however, continuous parameters such as time is
often an important concern. There exist hybrid Petri nets where time-
dependency of a place, transition, and arc can be described. Time Petri
Net, Timed Petri Net, and Petri Net with Time Windows are such exten-
sions [100].

Another aspect that is ignored in the traditional Petri nets is the dif-
ferentiation of the tokens based on the data they carry. Coloured Petri
Nets (CPN) address this shortcoming by extending Petri nets with data
handling concepts. The places are typed with a colour set that deter-
mine the data type of the tokens that can be kept in that place. In
complement, the tokens are assigned definite colours, i.e., values of the
specified data type. The flow arcs are annotated with arc expressions
that contain functions and variables. The arc expressions specify how
tokens might be consumed and produced upon firing of a transition.
Additionally, the transitions are restricted with guard conditions which
are Boolean predicates that need to be true to fire the transition. The
definition of Coloured Petri Net is given in the following, based on the
definitions provided in [63, 135]. An exhaustive discussion on different
kinds of Petri nets is found in [104].

Definition 2.3 (Coloured Petri Net).
A Coloured Petri net is a tuple CN = (Σ,P, T ,A,N,C,E,G) with

• a non-empty, finite set Σ of typed colour sets,
• a finite set P of places,
• a non-empty, finite set T of transitions, such that T ∩ P = ∅,
• a finite set A of arc identifiers, such that P∩ T = P∩A = T ∩A = ∅,
• a node function N : A→ (P× T)∪ (T × P),
• a colour function C that associates the places with a typed colour

set, such that C : P → Σ,
• an arc expression function E : A→ Expr, and

22 business process management

• a guard function G : T → BooleanExpr.

�

The initial marking of CN follows the same semantics as that of N, as
presented in Definition 2.2. In addition, we define a list of m elements
as l = 〈x1 . . . xm〉 to specify arc expressions and guard conditions. |l| =
m denotes the length of the list. The i-th element of the list is referred
as l(i) = xi.

2.4 bpmn to petri net mapping

In the design and analysis phase of business process management lifecy-
cle (Section 2.1), the processes are verified and simulated after modeling
to make sure that it is sound and free from any deadlock or livelock.
BPMN satisfies the requirements to be an expressive and user-friendly
graphical notation to design processes efficiently. However, when it
comes to static analysis, BPMN lacks the needed unambiguity and clear
formal semantics for model checking [63]. On the other hand, there are
popular tools for semantic analysis that uses Petri nets as input.Motivation Map-
ping BPMN process structures to Petri nets thus assigns clear semantics
to the process behavior and enables the model to have a proper analy-
sis. This section describes the mapping of core BPMN elements to Petri
nets as formulated by Dijkman et al. [37]. The mapping focuses on the
control-flow aspects of BPMN and abstracts from the organizational as-
pects such as pools and lanes. Only the relevant concepts are discussed
here, the readers are referred to the main paper for more details. The
work in this thesis further extends this formalism with the concepts for
event handling (cf. Chapter 7).

task . A task in a BPMN process is mapped to a transition with the
same label in Petri net. The transition has one input and one output
place that connects it with the predecessor and successor node, respec-
tively. For a task T , x denotes the predecessor node of T , y denotes
the successor node of T . Places with dashed borders mean they are not
unique to one module, i.e., they can be used to connect with other mod-
ules that map other BPMN artifacts. Figure 9 visualizes the mapping.

gateways . The fork and join gateways for both XOR and AND are
mapped to silent transitions that represent their routing behavior. The
XOR split has one common place for all outgoing branches that is fol-
lowed by separate silent transition for each branch. This captures the
data-driven decision alternatives and the exclusivity of the branches.
The AND split shares the token from one place to the parallel branches
through a single transition. The XOR join merges the transitions for
each branch to a common output place for passing the token to next
node, whereas in case of an AND join, the corresponding silent transi-
tion needs a token in each branch for firing. For event-based gateways

2.4 bpmn to petri net mapping 23

BPMN Task <Petri net Module

Figure 9: Mapping of BPMN task to Petri net modules.

BPMN Gateway <Petri net Module BPMN Gateway <Petri net Module

BPMN Gateway <Petri net Module

Figure 10: Mapping of BPMN gateways to Petri net modules.

the silent transitions are replaced by transitions reflecting each event
after the gateway. These transitions share a common place for having
the input token to capture the racing situation. Figure 10 shows BPMN
gateways and corresponding Petri net modules. x, x1, x2 denote the
predecessor nodes and y,y1,y2 denote the successor nodes of gateway.

events . According to the mapping techniques by Dijkman et al., the
intermediate events are mapped exactly in the same way as the tasks
— a transition with the same label as the event, with one input and
one output place to connect to the previous and next node, as shown
in Figure 11. However, a start event does not have any incoming edge
and is mapped to a place followed by a silent transition that signals
the instantiation of the process. Similarly, an end event does not have
an outgoing edge which is reflected by the silent transition in the that
leads to the end place.

The boundary events are mapped to transitions with same label that
share a common input place with the transition mapping the associated
task, as presented in the Petri Net Module in Figure 12. Boundary eventAs long as the
task is not executed, the event can steal the token from the common

24 business process management

BPMN Event <Petri net Module

Figure 11: Mapping of BPMN event constructs to Petri net modules.

place and fire to initiate the exception handling path. Note that the
mapping of boundary event according to Dijkman et al. [37] assumes
atomic execution of the associated task. Precisely, the firing of the tran-
sition mapped to the associated task means the task has been executed,
therefore, “terminated”. Once the task is terminated, the boundary
event can not occur any more, since the token from the shared input
place is consumed by the task. In case the boundary event occurs be-
fore the task is terminated, the event consumes the token instead. As a
result, the task can not terminate any more.

BPMN Event <Petri net Module

Revised Petri net Module

Figure 12: Mapping of BPMN boundary event construct to Petri net module.

However, the semantics of boundary event demands to consider the
duration of the associated task explicitly, since the token from the com-
mon place is allowed to be stolen by the event only when the task is in
the “running” state. Moreover, the associated task has to be cancelled if
the boundary event occurs. The Revised Petri Net Module with separate
transitions for the beginning of task T (Tb), termination of task T (Tt),
and cancellation of task T (Tc) is shown in Figure 12. Here, the shared
place for the boundary event and the termination of the task receives
the token only after the activity has begun. Now the previous semantic

2.4 bpmn to petri net mapping 25

of a racing condition between the transitions depicting the boundary
event e and the termination of the task Tt apply. If the boundary event
does not occur when the activity is running, the task terminates at a
due time and the next node in the normal branch is activated, shown
by the place P(Tt,y1). On the contrary, once the boundary event occurs
before the activity terminates, a token is placed at the input place of
the transition Tc as well as at the input place of the next node in the
exceptional branch, shown by the place P(e,y2).

3
C O M P L E X E V E N T P R O C E S S I N G

An event is a specific occurrence at a specific point in time. These events form
streams of information that can be analyzed to gain insight about the series of

happenings. Complex event processing (CEP) is the field of research to
investigate the concepts and techniques for efficient processing of the large

number of events which could be related to each other by causal, temporal, or
structural means. Event processing enables the analysis and automation of

information exchange between distributed IT systems that can be beneficial to
several application domains such as health care, logistics, surveillance,

agriculture, production line, and the Internet of Things (IoT). The current
thesis exploits complex event processing techniques to make business

processes aware of and reactive to a relevant contextual occurrence, leading to
increased efficiency and flexibility. This chapter introduces the basic concepts

from the CEP area, followed by detailed event processing techniques used in
the course of this work.

3.1 basic concepts

In the business process management world, the term event can refer
to several overlapping yet distinguishable concepts. The state changes
during process execution are recorded by the process engine in an event
log. These are generally known as transitional events. The state changes
in activity lifecycle discussed in Section 2.2.1 will generate such events,
e.g., beginning and termination of a certain activity. Process mining
applications rely on these event logs for process discovery [1]. The
BPMN events described in Section 2.2.2 refer to the event nodes defined
in BPMN standard to model the communication of a process with its
environment. These nodes are mapped to the actual outer world occur-
rences, known as external events.

In essence, events are anything that has happened (e.g., an accident)
or is supposed to have happened (e.g., a fraud login attempt) at a spe-
cific point in time in a specific context [46]. In an everyday life, we
are surrounded by real events such as waking up with an alarm, get-
ting a coffee, a train getting canceled on our way to work, an accident
on the highway that makes us take a detour, and finally reaching our
destination. The real events are digitized to create an event object and
use the information further. Event objects or events can be generated
by sensors, mobile devices, business processes, or even human beings.
These event sources or event producers can produce events in different
formats such as XML, CSV, RSS feed, plain text, email and so on. The
entities listening to such events and using the information carried by

27

28 complex event processing

Sensors

Processes

Web API

Emails

Event Producers

Phone Call

RFID Tag

Event Consumers

Event
Processing

Agents

Figure 13: Event processing network.

the events are called event consumers. Again, event consumers can be a
person as well as a system, e.g., a BPMS.

However, often the raw events produced by the event producers are
too low-level for the event consumers. For example, a single login at-
tempt might not be interesting, but five consequent wrong login at-
tempts might raise a fraud alert. Hence, Event Processing Agents (EPA)
are employed to perform a large range of operations on events from sin-
gle or multiple event sources. Event producers, event consumers, and
EPAs together form an Event Processing Network (EPN). Figure 13 shows
the entities and their connections in an event processing network.

Events that occur in a stateless way are called atomic events. They do
not take any time to occur, e.g., the single login attempt in previous
example. But to come up with the fraud alert, it is necessary to observe
five consequent login events for the same account. Here, fraud alert
can be an example of a complex event. Each atomic and complex event
has a timestamp and an unique identification. Additionally, the events
might carry data, often called payload, which can be used in further
applications.

An event producer produces events of specific types. The events of
the same event type are the instances of that type. Each event of the
same type has the same structure. The attribute values for events are
specific to that instance. Based on the description above, an event can
be defined as follows:

3.2 event distribution 29

DBMS

query result

EPS
(Queries

are stored)

event stream

subscription notification

(Data is
stored)

Figure 14: Data in rest vs. data in motion.

Definition 3.1 (Event).
An Event is a tuple E = (et, id, ts,pl) where

• et is the event type, i.e., the list of attributes with assigned datatype,
• id is the identification, i.e., the unique identifier assigned to each

event,
• ts is the timestamp, i.e., the point in time when the event occurs,

and
• pl is the payload, i.e., the key-value pairs of the attributes of the

corresponding event type et.

�

Both Event Processing Systems (EPS) and Database Management Sys-
tems (DBMS) use query languages to calculate insightful results from
the data. However, event processing in its essence, has a complemen-
tary orientation compared to DBMS. Difference in

approach between
EPS & DBMS

In databases, the data is stored
and updated periodically. The queries are fired on a set of static data to
return results matching the queries. For EPS, the queries are registered
instead. The queries are checked with each new event in the event
stream(s). Whenever a matching event occurs, the corresponding query
is satisfied. Figure 14 visualizes the different approaches towards static
data and dynamic data.

3.2 event distribution

In an event processing network, the event producers, event processing
agents, and event consumers communicate through their interfaces and
may follow different communication patterns. The event producers and
event consumers can talk directly to each other. They might also com-
municate indirectly through a channel – such as a network of EPA(s), an
event bus, or an event processing platform. The communication can be
either pull-style or push-style in nature. In a pull-style communication
the initiators of the conversations send requests to fetch the information
from the producers and waits till the reply is received before they can
start working on the next task [46]. Thus, pull-style communication

30 complex event processing

Pull

Request/
Response

Anonymous
Request/
ResponseIn

di
re

ct

Push

Callback

Publish/
Subscribe

D
ir

ec
t

Figure 15: Communication models for event distribution.

is synchronous in nature. On the contrary, in push-style communica-
tion the initiator invokes the communication, keeps working on other
task(s), and receives the response at a point of time in future without
waiting idly for it, making the communication asynchronous in nature.
Based on the above two aspects the communication models for event
distribution can be classified as shown in Figure 15.

request/response model . Request/response model is followed
extensively in service-oriented architectures and distributed computing.
Here, the initiator directly sends the request for information or update,
such as a client-server framework or a remote procedure call. The server
then sends the information or a confirmation that the update request is
received, respectively. The nature of request/response communication
is usually synchronous.

anonymous request/response model . This is similar to re-
quest/response, but the provider is not specified directly [89]. Instead,
a random provider or a set of providers receive the request. For exam-
ple, in the shared car system Uber1 a set of nearby drivers are informed
when the passenger sends a request.

callback model . Following this communication model the con-
sumers subscribe for specific events directly to the producers along with
a callback address. After the subscription is done the consumers can
focus on other tasks, since callback is asynchronous in nature. Once the
subscribed event occurs, the event producer pushes the notification to
the consumers who have already subscribed for the specific event, since
the producer has the callback addresses of the consumers.

While callback method is popular as part of the programming lan-
guage Java, a non-technical example of callback model can be ordering
a meal in a restaurant – the consumer orders a specific meal and talks
to other people or works on her laptop. When the meal is ready, she is
served the meal at her table. Thus, callback is a direct but asynchronous
communication between the producer and the consumer.

1 https://medium.com/@narengowda/uber-system-design-8b2bc95e2cfe

https://medium.com/@narengowda/uber-system-design-8b2bc95e2cfe

3.3 event abstraction 31

publish/subscribe model . Event-driven systems use publish/-
subscribe principle [58] intensively to access event information. This is
similar to callback, but the producers and consumers do not commu-
nicate directly, rather they are connected through a channel such as a
message queue or an event service. In a subscription-based publish/-
subscribe model consumers register their interest in specific events by
issuing a subscription. Whereas, in an advertisement-based publish/-
subscribe model, the producers issue advertisements to show their in-
tend to publish certain events in future. Following the advertisement
the consumers subscribe for the events they want.

Once a consumer subscribes to an event, it can consume the event
whenever it occurs and as many times as it occurs. If the consumer
issues an unsubscription for the event at a certain point, no further
consumption of that event is possible by that specific consumer. Also,
the producer might choose to unadvertise a specific event at some point.

Publish/subscribe communication model has the following advan-
tages over the other communication models, making it the popular
choice for event-driven architectures for the last two decades [46, 58, 89].

• This is a push-style distribution, i.e., the consumer subscribes
once and until unsubscription the event notifications are pushed
by the channel as soon as and as many times as it has a matching
event to distribute. The other communication model such as re-
quest/response on the other hand is pull-style, i.e., the consumer
needs to fetch the event in a regular basis to have updated noti-
fication about the event occurrence. The push-style makes pub-
lish/subscribe more efficient in terms of processing latency and
overhead for the consumers [89].

• Being an indirect interaction pattern, the producers and consumers
are connected through an intermediate channel, not being aware
of each other. This supports loose coupling such as easy addi-
tion and deletion of the consumers and reuse of events. The
event producer do not need to keep track of the consumers and
the event consumers can have multiple subscriptions to multiple
event sources, since the task of event distribution is delegated to
the dedicated event service.

• Finally, the asynchronous communication allows the consumers
to work on other tasks rather than waiting idly for the event oc-
currence.

3.3 event abstraction

The main goal of event processing is to interpret the data representing
environmental occurrences in a meaningful way. Thereby, it is impor-
tant to find the connections between the events. An event hierarchy rep-
resents the intra- and inter-relations among events from separate event

32 complex event processing

Process Execution

Event Sources

Event Logs

Event
Abstraction

legend

Other data
sources

Figure 16: Applications of event abstraction in context of process execution.

streams. The raw events produced by the event sources are clustered
together, using temporal or semantic information. Afterwards, the clus-
tered events are used to derive business events for consumers. The
notion of deriving information ready to be analyzed from events that
are recorded at a lower granularity is known as event abstraction [74].

Event abstraction is used in several application domains to hide the
complexity of event aggregation and other operations (explained later
in Section 3.4) done on raw event streams. In process mining, this is
vastly used to prepare the event log for process discovery. The data
elements are grouped by means of clustering [54] and supervised learn-
ing techniques [119], to map to a single event representing an activity
state change. More advanced techniques include exploring behavioural
structures that reveal activity executions via identifying control flow
patterns such as concurrency, loops, and alternative choices [83]. Natu-
ral language processing enriched with contextual information [11, 106]
is also a popular technique for event abstraction when a process model
is available. Further, insight about the domain and context of process
execution leads to successful event abstraction that enables mapping
sensor data to engine logged events [114]. Since the context data is not
always available in a single database, event abstraction on several data
stores used by process execution might be efficient [16].

The areas with process execution in the center of application for event
abstraction is shown in Figure 16 where the arrows depict use of event
abstraction techniques. The above mentioned works in the process min-
ing area concentrate on the event hierarchy from low-level data ele-
ments from several sources to higher-level events logged by the process
engine and from the event log to activity execution in a process. On the
contrary, the focus of this work is on event abstraction applications from
the event sources to process execution [67]. Using the term abstraction
in this context signifies coming up with the higher-level events required

3.3 event abstraction 33

Timestamp Location Status of Packet

2019‐02‐27 17:19:32 Shipped

2019‐02‐27 14:56:00 Warehouse Package left warehouse

2019‐02‐27 08:54:34 Warehouse Awaiting shipment

2019‐02‐26 17:55:55 Warehouse Awaiting packaging

2019‐02‐26 17:15:05 Warehouse Order confirmed and
Awaiting picking

2019‐02‐26 17:14:09 Warehouse Order paid successfully

2019‐02‐26 17:13:10 Warehouse Order submitted

Packet
dispatched

Online Shop

Customer

Figure 17: Event abstraction for order tracking in an online shop.

by the event consumers such as process engines from the layers of low-
level events generated by the event sources such as sensors.

A real-life example of such an application of event abstraction is vi-
sualized in Figure 17. Upon receiving an order, an online shop tracks
the status of the packet. However, only when the order is confirmed,
picked, packaged, and shipped; the customer gets notified about the
packet being dispatched. Here, the internal events are important for
the online shop to monitor that the shipment of the packet followed
correct steps, but they are too fine-granular for the customer.

To realize event abstraction, the EPAs operate on event streams gen-
erated by the event sources. An event stream consists of a set of events
of the same event type. Performing operations on events can be done in
different multitudes depending on the event hierarchy needed to come
up with the higher-level business event from the low-level raw events.
It can be classified in following three categories: Simple Event Processing
(SEP) — operations are done on a single event, Event Stream Process-
ing (ESP) — more than one events from the same event stream is ag-
gregated, and Complex Event processing (CEP) — multiple events from
multiple event streams are acted on. The event streams with different
possibilities of processing are shown in Figure 18.

SEP ESP CEP

event stream 1

event stream 2

Figure 18: Stream processing operations on events.

Often, several EPA functionalities are consolidated in an Event Pro-
cessing Platform (EPP). EPPs are able to connect to different event
sources, perform complex event processing operations on the event
streams, and notify the BPMS about a specific happening. We use the

34 complex event processing

event streams

registered unregistered1st clause
satisfied matched

2nd clause
satisfied

3rd clause
satisfied

nth clause
satisfied

...

partially satisfied

Figure 19: State changes for an event query in an event processing platform.

terms EPP and CEP platform interchangeably in the thesis. The advan-
tages and underlying technicalities of integrating a CEP platform to a
process engine are discussed further in Chapter 5.

A CEP platform evaluates incoming event streams based on pre-
defined rules for event abstraction, known as event query. The process-
ing of an event query is represented as a state transition diagram in Fig-
ure 19. Once the query is registered at the platform, it is checked for
a match on every event occurrence across the connected event streams.
An event query can have several clauses similar to Structured Query
Language (SQL) queries. Once the first clause is satisfied, the query
enters the state partially satisfied. Depending on the complexity, the
query stays in this state for a while, although the internal state changes
with each clause being satisfied. As soon as the last (n-th) clause is sat-
isfied, the query is considered to be matched. A query can be matched
several times until it is unregistered from the platform, visualized with
the loop sign inside the partially satisfied state. The next section intro-
duces the complex event processing techniques that can be applied on
event streams to build an event hierarchy by satisfying clauses of an
event query.

3.4 event processing techniques

Event processing operations can be classified in three major categories,
namely filtering, grouping, and derivation. A brief introduction about the
EPAs are given below. All the CEP techniques described below can be
implemented in flexible order and combination. Figure 20 shows an
example event processing network. We have two event producers and
one consumer. The filter agent takes the event streams from both the
producers as input. Based on the filter expression (shown as the round
corner rectangle inside the EPA), it filters in a subset of input events and
feed to the group EPA. The group EPA then clusters the filtered events
according to the grouping criteria. Next, the derive EPA composes a
higher level event from each group and sends them to the consumer.

Query languages (similar to SQL) are built for the specific purpose of
writing queries that can process the event streams. We follow the syn-

3.4 event processing techniques 35

Event
Producer 2

Event
Consumer

Group
EPA

Derive
EPA

Filter
EPA

Event
Producer 1

Figure 20: An example EPN showing the different components.

tax and semantics of ESPER Event Processing Language (EPL)2, which
is a declarative domain specific language based on SQL, designed for
processing events with time-based information. As a running example
throughout this section, let us think of a bank issuing credit cards to
customers who also have a standard account at the bank. Each credit
card transaction is recorded to the bank with transaction id, customer
name, the status of the card (silver/gold/platinum), the amount cred-
ited along with the purpose, and the location (country) where the trans-
action was initiated. The event type Transaction is represented as XML
schema definition in Listing 1.

Listing 1: Event type definition of Transaction

<?xml version=" 1.0 " encoding="utf−8"?>
<xs:schema xmlns:xs=" http://www.w3. org/2001/XMLSchema"
xmlns="Transaction .xsd" targetNamespace="Transaction .xsd"
elementFormDefault=" qualified ">
<xs:element name="Transaction">

<xs:complexType>

<xs:sequence>

<xs:element name=" transactionId" type=" xs:string "
minOccurs="1" maxOccurs="1" />

<xs:element name="customerName" type=" xs:string "
minOccurs="1" maxOccurs="1" />

<xs:element name="cardStatus" type=" xs:string "
minOccurs="1" maxOccurs="1" />

<xs:element name="creditAmount" type="xs:double"
minOccurs="1" maxOccurs="1" />

<xs:element name="purpose" type=" xs:string "
minOccurs="1" maxOccurs="1" />

<xs:element name=" location " type=" xs:string "
minOccurs="1" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

filtering . Filtering is a stateless operation performed on a single
event stream. It is done based on the evaluation of certain filter ex-
pressions on event attributes. If the filter expression evaluates to true,

2 http://esper.espertech.com/release-5.5.0/esper-reference/html/index.html

http://esper.espertech.com/release-5.5.0/esper-reference/html/index.html

36 complex event processing

T_Filtered
• transactionId
• customerName
• cardStatus
• creditAmount
• purpose
• location

Transaction
• transactionId
• customerName
• cardStatus
• creditAmount
• purpose
• location

T_Aggregated
• avgCredit

T_Projected
• transactionId
• creditAmount
• purpose

FraudAlert
• t1 (transactionId)
• t2 (withdrawalId)
• customerName
• location1
• location2
• amount
• purpose

T_Enriched
• transactionId
• customerName
• cardStatus
• creditAmount
• purpose
• location
• dollarAmount
• serviceCharge

Withdrawal
• withdrawalId
• customerName
• amount
• purpose
• location

T_Translated
• transactionId
• customerName
• cardStatus
• creditAmount
• purpose
• location
• dollarAmount

Figure 21: Event hierarchy showing Transaction and events derived from it.

then the event is sent to the output stream, otherwise it is discarded.
The bank might want to know all credit card transactions done by their
platinum customers. There, an event filter can be implemented with
filter expression Transaction.cardStatus = ‘Platinum’.

grouping . Grouping EPAs take single or multiple event streams as
input and produces clusters of events as output. Grouping can be per-
formed based on time, number of events, location, and attribute values.
In context of the credit card example, fixed time window (all transac-
tions during weekend) or sliding time window (transactions in each
hour) can be used as temporal grouping.

Similar to the time interval, events can also be used to determine the
interval boundaries. In this case, continuous event window or sliding
event window can be defined. A customer can be charged for the trans-
actions initiated each week. This is an example for continuous event
window. On the other hand, to be alerted of misuse of the credit card,
every three ATM withdrawal events following an overseas withdrawal
can be monitored. Sliding event window will be appropriate for track-
ing the withdrawals in this case.

Related to the credit card scenario, location based grouping can also
be useful, e.g., all withdrawals outside Euro zone should be grouped to
be charged for currency conversion. Last but not the least, the events
can be grouped based on a specific attribute value. If the bank provid-
ing credit cards wants to know how many transactions over 500 Euro
take place on average for the platinum card holders, they might group
all filtered events with Transaction.creditAmount > 500.

derivation. The derivation EPAs can take single events or groups
as input and modify them in several ways, as shown in Figure 21. A
project EPA takes a single event, selects a subset of its attributes, and
produces a corresponding event. Here, the number of attributes are

3.4 event processing techniques 37

reduced, but no attribute value is changed. For example, the bank
might want to know how much amount is credited for which purpose
such as online shopping or travel booking. Therefore, they generate a
projected event from each Transaction event as presented in Listing 2.

Listing 2: Example of Project EPA

INSERT INTO T_Projected

SELECT t.transactionId as transactionId,

t.creditAmount as creditAmount,

t.purpose as purpose

FROM PATTERN[every t=Transaction];

On the contrary, an enrich EPA adds more attribute to an event, adding
data from external sources. A translate EPA can also add attributes by
modifying an existing attribute value, rather translating an attribute
value to a corresponding value. For example, the amount in a credit
card transaction can be changed from Euro to Dollar using translation.
Afterwards, service charge for conversion can be added according to the
bank rate stored separately, as shown in Listing 3 followed by Listing 4.

Listing 3: Example of Translate EPA

INSERT INTO T_Translated

SELECT t.transactionId as transactionId,

t.customerName as customerName,

t.cardStatus as cardStatus,

t.creditAmount as creditAmount,

t.purpose as purpose,

t.location as location,

(t.creditAmount)*1.14 as dollarAmount

FROM PATTERN[every t=Transaction];

Listing 4: Example of Enrich EPA

INSERT INTO T_Enriched

SELECT tr.transactionId as transactionId,

tr.customerName as customerName,

tr.cardStatus as cardStatus,

tr.creditAmount as creditAmount,

tr.purpose as purpose,

tr.location as location,

tr.dollarAmount as dollarAmount,

(tr.dollarAmount)*rate as serviceCharge

FROM PATTERN[every tr=T_Translated];

An aggregation EPA takes groups of events as input. A single event is
derived from one group of events, aggregating them based on certain at-
tribute values. Calculating average credit amount for the platinum card

38 complex event processing

holders on a day can be an example of aggregation, as shown in the
listing below. Other operations can be to calculate the maximum/mini-
mum/total amount, and the number of transactions.

Listing 5: Example of Aggregation EPA

INSERT INTO T_Aggregated

SELECT Avg(creditAmount) as AvgCredit

FROM T_Filtered.win:time(24 hour);

Compose EPA, on the other hand, takes input events from multiple
event streams and comes up with a composed event as output. These
events from different streams can be joined based on common attribute
values, can be used to identify a pattern based on their order of occur-
rences, or can be calculated to identify a certain trend, among many
other possibilities [34, 127]. A fraud detection rule can be brought up
in this context. As obvious, along with the credit card transactions,
the bank also records all the ATM withdrawals for its customers. Now,
if a withdrawal is observed within an hour of a credit card transaction
where the location of withdrawal is a different country than the location
of initiating the transaction, a misuse of the card is suspected.

The event type Withdrawal and FraudAlert are defined in Listing 6,
whereas the rule for composing the fraud alert can be written using
Esper EPL is shown in Listing 7.

Listing 6: Event types Withdrawal and FraudAlert

<?xml version=" 1.0 " encoding="utf−8"?>
<xs:schema xmlns:xs="http://www.w3. org/2001/XMLSchema"
xmlns="Withdrawal .xsd" targetNamespace="Withdrawal .xsd"
elementFormDefault=" qualified ">
<xs:element name="Withdrawal">

<xs:complexType>

<xs:sequence>

<xs:element name="withdrawalId" type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name="customerName" type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name="amount" type="xs : double"
minOccurs="1" maxOccurs="1" />

<xs:element name="purpose" type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name=" location " type="xs : string "
minOccurs="1" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

3.4 event processing techniques 39

<?xml version=" 1.0 " encoding="utf−8"?>
<xs:schema xmlns:xs="http://www.w3. org/2001/XMLSchema"
xmlns="FraudAlert .xsd" targetNamespace="FraudAlert .xsd"
elementFormDefault=" qualified ">
<xs:element name="FraudAlert">

<xs:complexType>

<xs:sequence>

<xs:element name=" t1 " type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name=" t2 " type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name="customerName" type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name=" location1 " type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name=" location2 " type="xs : string "
minOccurs="1" maxOccurs="1" />

<xs:element name="amount" type="xs : double"
minOccurs="1" maxOccurs="1" />

<xs:element name="purpose" type="xs : string "
minOccurs="1" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 7: Example of Compose EPA

INSERT INTO FraudAlert

SELECT t.transactionId as t1,

w.withdrawalId as t2,

t.customerName as customerName,

t.location as location1,

w.location as location2,

w.amount as amount,

w.purpose as purpose

FROM PATTERN[every(t=Transaction->w=Withdrawal)].win:time(60 min)

WHERE t.customerName=w.customerName

AND t.location!=w.location;

To test the event processing operations, all the event types and event
processing rules discussed above have been defined in Unicorn3, an
event processing platform that uses the Esper engine and EPL for ex-
ecuting queries. Upon receiving a Transaction event followed by a
Withdrawal event, Unicorn produces the list of events shown in Fig-
ure 22.

3 https://bpt-lab.org/unicorn-dev/

https://bpt-lab.org/unicorn-dev/

40 complex event processing

Figure
2

2:Screenshot
from

U
nicorn

show
ing

generation
of

com
plex

events
follow

ing
pre-defined

rules.

4
R E L AT E D W O R K

“What do researchers know? What do they not know? What has been
researched and what has not been researched? Is the research reliable and

trustworthy? Where are the gaps in the knowledge? When you compile all
that together, you have yourself a literature review.”

– Jim Ollhoff, How to Write a Literature Review1

4.1 overview

In this chapter, we outline the existing research that are closely relevant
to the work presented in this thesis. To begin with the literature review,
the status of using external events in BPM is discussed in Section 4.2,
having a focus on the IoT context. This is helpful for positioning the
thesis with respect to the significance of the contribution and the chal-
lenges associated with it. As narrated in Chapter 1, this thesis builds a
detailed subscription management system based on a basic framework
integrating external events into business processes. Therefore, the basic
integration work involving CEP and BPM are explored in Section 4.3.
This section highlights the use of concepts from complex event process-
ing area in different phases of business process management lifecycle,
and the integrated applications that exploit concepts from both CEP
and BPM fields. Next, the event subscription mechanism and event
buffer middlewares from BPM world as well as related research fields
are discussed in Section 4.4. The chapter ends with a summary of re-
lated work in Section 4.5. The overview of the research areas covered
in this chapter is given in Figure 23.

Related Work

External Events
in BPM

Event
Subscription &

Buffering

Integrated
Applications

Figure 23: Overview of discussed research areas as related work.

1 https://www.goodreads.com/book/show/19072895

41

https://www.goodreads.com/book/show/19072895

42 related work

4.2 external events in bpm

Process executions are often supported by dedicated IT systems and the
transitional events are logged by enterprise software systems to record
the state changes in the cases correlated to the business processes. This
results in event streams that can be used as input for several applica-
tions related to business process analytics [40] such as process discovery,
compliance checking with respect to process specification violations,
and finding the performance bottlenecks. Ever since the IoT enabled
big data got accessible by the IT systems, new business scenarios are
raising that can exploit the era of digitization [53]. This leads to use
not only the transitional events, but also the external events as source
of information to have better process analytics. However, using IoT
concepts in BPM and (vice versa) calls for a detailed understanding
of the IoT field. [38] shows the important building blocks for IoT busi-
ness model based on an extensive survey, represented with the Business
Model Canvas2.Understanding the

Internet of Things
To understand the actors in IoT applications and the

interactions between them, detailed surveys are available that list the
commonly used technologies, concepts, and architectures for an IoT
project [6]. More focused classification applicable in a BPM context can
be found in [82] where the authors traverse through a large number of
IoT scenarios and suggest certain usecases where BPM and IoT can ben-
efit from each other. For instance, to employ a BPMS as the controller of
the interacting things, i.e., the sensors, actuators, and complex devices
can help to monitor the big picture of a distributed IoT application.

The use of external events in business processes in an IoT context
is also being explored in multiple recent work. In [112], the authors
suggest that IoT applications are data-intensive where the data needs
pre-processing for getting ready for analysis. These data might trigger
business activities in real time, communicated through ubiquitous com-
munication means to the users. To handle these features of IoT environ-
ment, process models need to be re-engineered — either with extended
modelling elements or with rearrangement of the activities. To bridge
the abstraction gap of raw data and business events in execution level,
use of context variables is suggested. In a related publication realizing
the requirements [111], the authors argue that for an IoT-aware process
execution setup, a BPMS must be aware of current values of IoT objects
while the defined variable must be referenced in the executed process
model. Moreover, the responsible users executing the tasks must be
notified on mobile devices in real time about the context-specific knowl-
edge according to the access rights of the users. As an evaluation of the
concepts, the authors conducted a case study in corrugation industry.
The real-world objects such as the IoT devices were connected to hu-
man operators using wearable devices. A BPMS controlled the data
exchange via a communication middleware that includes an IoT data

2 https://www.strategyzer.com/canvas/business-model-canvas

https://www.strategyzer.com/canvas/business-model-canvas

4.2 external events in bpm 43

server. A group of operators with wearable IoT devices received status
of the ongoing activities, remaining time to start the next activity, and
error messages; where the other group did not use any wearable device.

IoT-aware process
execution

The study shows application of the IoT enhanced BPMS leads to less
machine stops because users had context information that helped them
to recognize the reactions needed to a situation in an efficient way.

Events are usual representations for exceptions in business process
context. Recent studies show that exceptions are an inevitable yet
highly influencing factor when it comes to performance of a process [39].
The survey classifies the exception patterns that might unsettle the nor-
mal control flow and evaluates the throughput time for each of the
patterns. The case study presented in [129] shows similar results about
handling unprecedented events and process performance for declara-
tive process execution as well. Here, two groups of students (non-
experts) had to execute a journey in order to meet a predefined busi-
ness value, keeping in mind certain constraints. One group had no
unexpected event, whereas the other group encountered with increas-
ing time of activities and traffic disruption that caused the participants
to rearrange the journey partially. Business value and number of failed
journeys were calculated as evaluation parameters. The results show
that the participants having to adapt to unforeseen environmental oc-
currences had significantly higher difficulty to plan the journey.

While the advantages of integrating IoT and BPM are already es-
tablished, the challenges are being investigated as well. In [108], it
is claimed that BPM is still not ready to utilize the huge benefits big
data analytics can offer. The authors classify data-intensive operations
in BPM into following categories: event correlation, process model dis-
covery, conformance checking, runtime compliance monitoring, process
enhancement, and predictive monitoring. They propose the term pro-
cess footprints that include process model, transitional events logged by
the IT systems, external events i.e., sensor data received during process
execution, as well as any social media interaction or user interaction
that happens in the enactment phase. All these source of information
are highly valuable since delay or non-detection of any of those can
have a harmful impact on the organizations.

An exhaustive discussion on the mutual benefits and challenges of
IoT and BPM is found in [61]. The list of challenges cover the complete
integration aspects such as the physical deployment of sensors in a cost-
effective way, visualization of both automated activities and manual
tasks, considering new scenarios that are sometimes unstructured and
distributed, Challenges of

integrating IoT &
BPM

having loosely coupled small fragments of processes rather
than a big predefined process, coming up with specifications for the
abstraction level, and autonomous level. Also, the social role of the pro-
cess participants is discussed in this context. The technical challenges
mention that large amount of available data demands advanced guide-

44 related work

lines for event handling, online conformance checking, and resource
utilization.

Another significant research work by Soffer et al. [117] explores the
challenges and opportunities with respect to integrating event streams
and business process models. The authors detect four key quadrants
for combining CEP and BPM according to BPM lifecycle phases. Enrich-
ing expressiveness of process models in design phase and using CEP
constructs for process mining in evaluation phase look at the integra-
tion aspects from CEP to BPM. In configuration phase, deriving CEP
rules from process models is proposed to determine which activities
to monitor and which event occurrences are important to notice. Fur-
ther, executing processes via CEP rules in execution phase is proposed.
This essentially means mapping external (sensor) events to transitional
events to automate beginning and termination of an activity without
involving the user. The configuration and execution phase here focus
on the flow of control from BPM to CEP. For all of the key quadrants,
challenges and benefits are discussed with the support of existing work.

Having discussed the aspects and challenges of integrating events in
business processes to enable the collaboration with big data, IoT, and
CEP; the rest of the section showcases specific applications where the
concepts from CEP has been used in BPM scenarios.

4.3 integrated applications

The concept of event driven business process management (EDBPM)
has been already in discussion for more than ten years [128]. So far,
several approaches have been presented aiming to extend BPMN with
modeling constructs for concepts of CEP [7, 13, 45]. Krumeich et al.
give a comprehensive overview of the state-of-the-art in using events
for event-driven architectures (EDA) or BPM in [67]. While some of
those propose conceptual enhancement, some provide execution sup-
port in the form of an engine. For instance, the work by Kunz et al. [68]
suggest the mapping of event processing queries to BPMN artifacts.
The authors propose to map the parts of an EPL query to an event-
sensitive BPMN element (BPMN service task).Modelling

extensions
The task reads the data

objects as incoming data flow to specify FROM clause, takes data object
collections to realize the SELECT clause. Once the data values match the
WHERE clause of the EPL query, a boundary conditional event is fired to
trigger the exceptional flow. Another approach in the same line is by
Appel et al. [7] where the authors integrate complex event processing
into process models by means of event stream processing tasks that
can consume and produce event streams. An approach from the other
direction is presented in [132], where event queries are derived from
the control flow of a process model, deploy them to an event engine
and use them to find violations of the control flow. A similar derivation
of event queries from the process model is done by [10].

4.3 integrated applications 45

The authors in [13] suggest to integrate descriptions of event patterns
into process modeling languages and consequently extend engines to
handle such patterns, as they argue that both process and events are
integral aspects to be captured together. They present a catalog of event
patterns used in real-world business processes and find that most of
those patterns are neither supported by BPEL nor BPMN. For example,
they identify support for event hierarchies, i.e. abstraction of low-level
events into high-level business events, as an important feature which
is not yet supported. Similar to modelling complex events, configuring
process models to model the interactions in an internet of things context
is addressed in [118]. The author proposes modelling IoT resources
w.r.t. shareability and replicability and builds a cross-domain semantic
model with concepts from both BPM and IoT domain, validated by
prototype tools.

Besides design level integration, several execution level applications
have been developed to take advantage of event processing concepts
for business processes. For instance, [45] propose an IT solution archi-
tecture for the manufacturing domain that integrates concepts of SOA,
EDA, business activity monitoring (BAM), and CEP. Application areasThey suggest to
embed event processing and KPI calculation logic directly into process
models and execute them in an extended BPMN engine. The authors
sketch such an engine for executing their extended process models, but
refrain from giving technical details. However, they suggest that some
processes collect simple events, evaluate and transform them, and pro-
vide high-level events for use in other process instances, realizing an
event hierarchy.

For processes, in which some tasks are not handled by the process
oriented information system (POIS), monitoring of events can be used
to determine the state of these tasks, e.g. to detect that an user task
terminated. When a process is not supported by a POIS at all, moni-
toring can still capture and display the state of the process by means
of events. For example, Herzberg et al. [56] introduce Process Event
Monitoring Points (PEMPs), which map external events, e.g. a change in
the database, to expected state changes in the process model, e.g. ter-
mination of a task. Whenever the specified event occurs, it is assumed
that the task terminated, thus allowing to monitor the current state of
the process. The authors separate the process model from the event
processing and allow the monitored events to be complex, high-level
events. The approach has been implemented, however the event data
is not used by and does not influence the process activities. Rather, the
engine uses them to determine the current state of the process instance.
Similar frameworks for predictive monitoring of such continuous tasks
in processes are presented in [23, 127]. The framework by Cabanillas
et al. [23] defines monitoring points and expected behavior for a task
before enactment. Event information from multiple event streams are
captured and aggregated to have a meaningful insight. These aggre-

46 related work

gated events are then used to train the classifier and later the classifier
can analyze the event stream during execution of the task to specify
whether the task is following a safe path or not.

Processes from the logistics domain contain long-running activities,
and therefore, needs continuous monitoring (e.g. shipment by truck).
In these scenarios external events, e.g. GPS locations sent by a tracking
device inside the truck, can provide insight into when the shipment task
will be completed. Appel et al. [7] integrate complex event processing
into process models by means of event stream processing tasks that can
consume and produce event streams. These are used to monitor the
progress of shipments and terminate either explicitly via a signal event
or when a condition is fulfilled, e.g. the shipment reached the target ad-
dress. While these tasks are active, they can trigger additional flows if
the event stream contains some specified patterns. The authors provide
an implementation by mapping the process model to BPEL and con-
necting the execution to a component called eventlet manager that takes
care of event processing.Process monitoring [18] takes one step further and shows how
the event driven monitoring influences the process execution in a multi-
modal transportation scenario. The authors use a controller that is used
as a dashboard for controlling and monitoring the transportation pro-
cesses that is connected to an event processing platform. The events im-
pacting the transportation are visulaized in the dashboard. In the back-
ground, the processes are executed in Activiti3, a BPMN-based process
engine. In this context, another publication [17] explains a methodology
for using events in business process monitoring and execution. Based
on a usecase in logistics domain, requirements and lessons learned are
described for process design, execution, and required event processing.
Here, the authors argue that event subscription information should be
annotated to the process model such that the subscription queries are
automatically registered to the event platform by a process engine.

Another advanced monitoring approach is proposed in the recent
research [85]. The author suggest artifact-driven business process mon-
itoring that considers the changes in the state of the artifacts participat-
ing in a process to detect when activities are being executed. Using this
technology, smart objects can autonomously infer their own state from
sensor data. This approach is helpful for exploiting IoT paradigm while
monitoring inter-organizational processes where a monitoring platform
can not cross the border of an organization. SMARTifact, an artifact-
driven monitoring platform has been built as a prototype.

Pufahl et al. in [101] present another application of complex event
processing, used for efficient decision making in business processes.
The authors here consider updated event information to re-evaluate de-
cision till the point a reset is possible. To receive the updated events,
the subscription query is enriched with the decision logic behind the
current execution path and only interrupts the execution if the event

3 https://www.activiti.org/

https://www.activiti.org/

4.4 flexible event subscription & buffering 47

data result in a different decision. More applications regarding event
processing in BPM are found in [5, 33, 91, 113, 138].

While the above research shows a large sample of applications inte-
grating events and processes, research are being done to enhance the
performance of such applications as well. Fardbastani et al. looks at a
different aspect of process monitoring in presence of events [50]. The
authors argue that distribution of CEP responsibilities are needed to en-
able large scale event-based business process monitoring. They suggest
to either distribute parts of event abstraction rules to multiple EPAs,
or to cluster CEP engines on independent computational nodes. Performance

optimization
A dis-

tributed architecture named dBPM is developed based on the latter idea.
This includes several BPMSs, coordinators that control resource utiliza-
tion by routing the events from a BPMS to assigned CEP node(s), the
CEP nodes, and the event consumers. A case study involving processes
of customs administration shows increasing the number of CEP nodes
leads to almost linear increase in the throughput of process monitoring.

The approach proposed by Weidlich et al. [133] looks at efficient ways
of event pattern matching from another perspective. The authors here
map different pattern matching rules to behavioral constraints that are
derived from the process models. Based on the knowledge extracted
from the process model specification, the probable event occurrence
sequences are written in this approach. The constraints elicited from
behavioural profiles [131] are considered while writing the valid event
sequences. This, in turn, leads to an optimized performance with re-
spect to event pattern matching following execution plans that include
temporal and context information for transitional events as well as the
subscription mechanism (push/pull) used to receive an event from the
event platform.

4.4 flexible event subscription & buffering

This section focuses on the specific work related to event subscription
and buffering. From a business process perspective, there is very lim-
ited research that includes flexible event subscription semantics. The ex-
isting integrated applications for event-process integration [17, 113, 140]
and distributed systems [71, 125] follow the basic publish-subscribe
paradigm [58] to implement subscription and notification of events. The
state-of-the-art BPMN process engines [2, 24], on the other hand, real-
ize the BPMN semantics of listening to an event when the control flow
reaches the event node and ignore the scenarios demanding increased
flexibility in event handling.

However, there are few significant ones that have been great inspi-
ration to our work. For instance, the causal relationship stated by
Barros et al. in [13] is the one we have extended for more explicit
event handling. A comparison between the dependencies suggested by
the authors in [13] and the one followed by the event handling model

48 related work

proposed in this thesis is found in Section 6.2. The CASU framework
proposed by Decker and Mendling [36] is another work that has highly
influenced our work. The framework is built to conceptually analyze
how processes are instantiated by events.Subscription

management in
business processes

The name of the framework
is an abbreviation that considers when to create new process instances
(C), which control threads are activated due to this instantiation (A),
which are the remaining start events that the process instance should
still subscribe to (S), and when should the process instance unsubscribe
from these events (U). While this essentially talks about point of (un)-
subscription as well as the duration of a subscription, our work gives
more detailed and formal semantics. Moreover, the authors in [36] re-
strict themselves to the start events, whereas we focus on the interme-
diate catching events that bring in much more variety and complexity
in semantics.

While on the one hand event subscription is neglected in BPM com-
munity, on the other hand, this has gained a lot of attention in the com-
plex event processing research. Event-based systems such as JEDI [31],
Hermes [99], STEAM [84] and event processing engines such as Cayunga
[21] and ESPER offer detailed description about the subscription mecha-
nism and the event processing middlewares. A formal semantics of the
middleware designs for Enterprise Integration Patterns (EIP) is given
using coloured Petri nets in [49].

In publish-subscribe system, subscriptions can follow different mod-
els [12], as listed below:

• Topic-based: the subscriber shows interest in a specific topic and
starts getting notified about all the events related to that topic [14],

• Content-based: the subscriber specifies filtering conditions over the
available notifications [4, 31, 99],Publish-Subscribe

models • Type-based: a specific event type is subscribed to [47],
• Concept-based: subscription is done on a higher abstraction level,

without knowing the structure or attribute of the events [29], and
• Location-aware: location-aware notifications supporting the mobile

environment [84].
Advanced event based system such as PADRES [60] takes into ac-

count the event information that has happened in the past in addition to
the traditional publish-subscribe mechanism that considers only events
that might happen in the future. This event processing network consists
of several brokers which are essentially event processing engines. These
engines can talk to the next neighbors in the network using content-
based publish-subscribe model. For accessing historic events, the bro-
kers are attached to databases. The subscribers can fetch the stored
data from the databases attached to the publishers. The unsubscription
is done once the requested result set has been published.

Apache Kafka4 is a large-scale distributed streaming platform that
is renowned in industries as well as for academic applications. Kafka

4 https://kafka.apache.org/

https://kafka.apache.org/

4.5 summary 49

implements topic-based subscription where consumers can subscribe
to multiple topics. These topics are stored as records with unique
key-value pair with a timestamp. MiddlewareThe combination of messaging, stor-
ing, and stream processing functionalities added with the fault-tolerant,
durable exchange of records offered by Kafka makes it a popular event
stream buffer.

While most of the event stream processing platforms offer buffering,
Sax et al. [109] handles data arrival with out-of-order timestamps with-
out explicit buffering. The approach prioritizes low processing of online
data handling over traditional data buffering and reordering of records.
The dual streaming model proposed by the authors consists tables that
capture the updates of data arrival for a streaming operator such as
an aggregation operator with specific grouping/filtering conditions. In
turn, a changelog stream updates the records for an operator whenever
a new record with the same key is available. This retains the consistency
in the logical and physical order of data. The model is implemented in
Apache Kafka to show the feasibility of the concepts.

4.5 summary

Transitional events, i.e., events logged by process engines and exter-
nal events, i.e., events received from environmental sources such as
sensors, as well as hybrid approaches including both are used exten-
sively for process analytics [40]. This involves plenty of applications
for process discovery, process conformance checking, and process mon-
itoring [1, 7, 17, 23, 56, 85, 127]. Concepts from CEP research field
has already gained popularity for modeling [7, 13, 45, 68] and exe-
cuting [10, 132] these integrated applications. Data stream process-
ing languages such as Continuous Query Language (CQL) [8], and
complex event processing languages such as Esper EPL [44] offer a
big range of operations to aggregate the events based on timestamps
and attribute values. More advanced event specification language like
TESLA [32] provide rules that are formally defined and considers the
requirements of larger set of application scenarios. Built on publish-
subscribe communication style, the distributed agent based systems
such as PADRES [60] maintains the strong influence of event processing
at its core.

Recently, integrated applications are being developed that enable the
event sources such as sensors to talk to each other as well as to talk to
a controller, e.g., a BPMS [82, 112]. This has two reasons: On one hand,
the advent of IoT era makes the event information highly accessible for
the IT systems [6, 38], and on the other hand, new business scenarios
are emerging that involve highly intense communication between the
process participants and execution environment [53]. At the same time,
handling big data efficiently in BPMS [108], load balancing of CEP oper-
ations for scalability [50], and optimization of event processing [133] are

50 related work

emerging to address the challenges of integrating external events and
event processing techniques in business process management [61, 117].

Since the interaction plays a pivotal role in event driven process exe-
cution, it also demands a more flexible event handling mechanism [81].
However, even if there are several applications consisting of BPMN pro-
cesses that exploit the information carried by the external events, less
attention is given for a standardized generic event handling model.

There exist significant amount of research work for flexible process
execution such as case management [35, 57, 70, 103, 110]. Also, there
are approaches that propose redesigning processes to avoid unwanted
delays and deadlocks [30, 78]. Nevertheless, only a small set of work
considers flexibility in terms of event subscription management. On
the contrary, the complex event processing field is well enriched with
concepts and technicalities for subscription-notification, event stream-
ing, and event buffering. Our work addresses these shortcoming and
proposes an advanced event handling model for more flexible commu-
nication between processes and events.

Part II

C O N C E P T U A L F R A M E W O R K

5
I N T E G R AT I N G R E A L - W O R L D E V E N T S I N T O
B U S I N E S S P R O C E S S E X E C U T I O N

This chapter presents the conceptual and technical challenges to enable a basic
end-to-end integration of external event information into business processes.

First, the requirements have been elicited. This includes design level
requirements such as separation of business process specification and complex

event processing techniques; as well as implementation level requirements
such as event subscription and correlation. Later, the conceptual framework

has been proposed to address those requirements. A prototypical
implementation of the proposed framework is discussed in Chapter 9. The

integrated architecture has been published in “A Framework for Integrating
Real-World Events and Processes in an IoT Environment” [80].

5.1 motivation & overview

Business process management (BPM) and complex event processing
(CEP) are well explored fields in their own right and it has already
been established that they can complement each other significantly [46].
Lately, the development of Internet of Things (IoT) caused the availabil-
ity of an abundance of data, also referred to as big data explosion. Busi-
ness processes can take advantage of this era of digitization of physical
properties and react to the environment as soon as there is a certain
change that might impact the process flow. In other words, event in-
formation enhances business processes to be more flexible, robust, and
efficient to take reactive measures.

On the other hand, complex event processing techniques provide
means to filter, correlate, and aggregate raw events produced by the
sensors to come up with a more meaningful business level event. IoT enabled business

processes
The

IoT raises business scenarios that were not possible before, such as re-
motely controlling devices in a smart home1,2, facilitating thousands of
gadgets in a smart factory3, or simply tracking valuable objects4. These
scenarios include frequent communication between the devices, sensing
data, interpreting it, and actuating the reactions. BPM concepts can be
beneficial in controlling and monitoring these interactions [82]. Emerg-
ing applications of predictive monitoring in an IoT environment [5, 91]

1 Samsung Family Hub.
http://www.samsung.com/us/explore/family-hub-refrigerator/

2 Nest Learning Thermostat. https://store.nest.com/product/thermostat/
3 Daimler Smart Production. http://www-05.ibm.com/de/pmq/_assets/pdf/IBM_SPSS_

Case_Study_Daimler_de.pdf

4 DHL Luxury Freight Tracking. http://www.dhl.fr/en/logistics/industry_sector_
solutions/luxury_expertise.html

53

http://www.samsung.com/us/explore/family-hub-refrigerator/
https://store.nest.com/product/thermostat/
http://www-05.ibm.com/de/pmq/_assets/pdf/IBM_SPSS_Case_Study_Daimler_de.pdf
http://www-05.ibm.com/de/pmq/_assets/pdf/IBM_SPSS_Case_Study_Daimler_de.pdf
http://www.dhl.fr/en/logistics/industry_sector_solutions/luxury_expertise.html
http://www.dhl.fr/en/logistics/industry_sector_solutions/luxury_expertise.html

54 integrating real-world events into business process execution

often employ CEP techniques to understand and detect the patterns of
environmental occurrences that might lead the system to a bad state
and complement it by triggering business processes for preventing the
bad state in a proactive way.

The work presented in this thesis revolves around the idea of inte-
grating contextual information, represented in form of events, during
run-time of a business process execution. Even though there is lot
of research going on individually in both the areas of BPM and CEP,
there has been no solid guideline or framework to integrate these two
worlds, conceptually as well as technically (cf. Chapter 4 for more de-
tails). Hence, it was required to build an integrated architecture that
encompasses the whole cycle of event-process communication; starting
from aggregating raw events into business events, via detecting and
extracting the event information to map it to process variables, up until
reacting to the event following a business process specification.

The rest of the chapter is structured as follows: first, we identify the
requirements to build an integrated architecture. The requirements are
described with the help of a motivating example from the logistics do-
main in Section 5.2. Based on the requirements, the integrated system
architecture is presented in Section 5.3. Finally, Section 5.4 summarizes
the chapter.

The integrated architecture presented in this Chapter includes event
processing platform Unicorn (see Section 9.1.1), process engine Chimera
(see Section 9.1.3), and process modeler Gryphon (see Section 9.1.2).
Most part of Unicorn [18] and an initial version of Chimera, known as
JEngine [55], was developed before the author started working at the
chair of Business Process Technology5 at Hasso Plattner Institute, Uni-
versity of Potsdam.Acknowledgements However, Unicorn and Chimera did not have any
interaction yet and Gryphon did not exist either. The integration frame-
work was developed in the context of an industry project with Bosch
Software Innovations GmbH [20]. The work presented in this Chap-
ter is jointly developed with Marcin Hewelt, partly as co-supervisors of
Bachelor project for consecutive two years (2015-16 and 2016-17), and
has been published in CoopIS 2017 [80].

5.2 requirements analysis

An extensive analysis of the aspects to consider and the challenges to
overcome while integrating events and processes is the basis of the pro-
posed architecture. First, the standard process engines are explored to
learn about the state-of-the-art. To scope the work, we consider the pro-
cess engines that implement the semantics for usage of activities and
events in a process model according to the BPMN specification [94].
The literature survey discussed in Chapter 4 gave us insight about the
conceptual dimensions required for the integration framework. The

5 https://bpt.hpi.uni-potsdam.de/Public/

https://bpt.hpi.uni-potsdam.de/Public/

5.2 requirements analysis 55

useCase

Load
goods

Calculate
shortest

routeTransport
plan

received

Drive to
warehouse

Drive to
destination

Long
delay

Re-
calculate

route

Drive along
updated

route

Deliver
goods

Figure 24: Usecase from the logistics domain

project partners and domain experts from both academia and indus-
try contributed vastly to extract use cases that include communication
between processes and their environment.

One such use case from the logistics domain is shown in Figure 24.
The process starts when the truck driver receives the transport plan
from the logistics company. Motivating example

capturing
importance of event
integration

Then she drives to the warehouse to load
the goods. Once the goods have been loaded, the driver follows the
shortest route to reach the destination. While driving, the driver gets
informed in case there is a long delay caused by an accident or traffic
congestion. If the notification for a long delay is received, the driver
stops following the initial route and calculates an alternative way which
might be faster. Note that in reality a driver can recalculate the route as
often as she wants to while driving to the destination, but this is implicit
in the driving activity; the explicit activity for recalculating the route is
executed only when it is triggered by the long delay event. Once the
destination is reached the goods are delivered and the process ends.
This can be easily related to all of us driving on a highway, listening
to the radio to be updated about the traffic situation, taking a detour if
there is a traffic congestion. The more interesting business value here
is that the logistics companies generally control the transportation of
50-200 trucks and they need to know the whereabouts of the trucks
continuously to update the estimated time of delivery. Therefore, au-
tomating the process by using a process engine to execute and monitor
the transportations is efficient. Having the above scenario as a basis, the
requirements for using events in processes are identified and described
in the remainder of this section.

5.2.1 R1: Separation of Concerns

Using external information in business processes is essentially equiva-
lent to connecting the two fields of business process management and
complex event processing. Process engines could directly connect to
event sources to get notifications. This may be done by querying their
interfaces, listening to event queues, or issuing subscriptions. However,
from a software engineering perspective, this design decision would
dramatically increase the complexity of the engine. Also, it will violate
established architectural principles like single responsibility and modu-
larity. The separation of concerns, i.e., separation of process execution
behavior and complex event processing techniques is therefore consid-
ered a major requirement.

56 integrating real-world events into business process execution

Different event sources produce events in different formats (e.g., XML,
CSV, JSON, plain text) and through different channels (e.g., REST, web
service, or a messaging system). In the example scenario, the probable
event sources are the logistics company, the GPS sensor in the vehicle,
and the traffic API. Each of them might have their own format of pub-
lished events.Significance of event

processing platform
If the process engine needs to directly connect with event

sources, it has to be extended with adapters for each of the sources to
parse the events. After the event sources are connected, there is also
the need for aggregating those events to generate the business event
needed for the process. This yields yet another component in the pro-
cess engine that retains the event processing techniques and operates
on the event streams.

From an architectural point of view, to include all the event process-
ing functionalities in a process engine will increase the complexity and
redundancy of the engine to a great extent. From a logical perspective,
process engines are meant for controlling the execution of process in-
stances following the process specification, not for dealing with event
processing. Besides, certain events can be interesting for more than one
consumer. For example, the long delay event might be relevant not only
for the truck drivers, but also for other cars following the same route.
Having a single entity responsible for both process execution logic and
event process techniques is, therefore, not a preferred option.

5.2.2 R2: Representation of Event Hierarchies

Simple event streams generated from multiple event sources can be ag-
gregated to create complex higher-level events. One could propose to
use BPMN parallel multiple events to represent the event hierarchy, at
least to show the connection among simple and complex events. How-
ever, using that approach one cannot express the various patterns of
event abstraction such as sequence, time period, count of events or the
attribute values. Different patterns of event sequences are thoroughly
discussed in [75]. A structured classification for composite events can
be found in [13]. Expressing event processing patterns using process
artifacts would complicate the process model and defeat its purpose
of giving an overview of business activities for business users and ab-
stract from underlying technicalities. As a user of BPM, one would be
interested to see only the higher-level event that influences the process,
rather than the source or the structure of the event. For example, the
driver is only interested to know if there is a long delay that might
impact her journey, but she does not care what caused the delay.

An event hierarchy essentially takes care of the flow of informa-
tion from the low-level events to the higher-level events. As explained
in Chapter 3, single event streams can be filtered based on certain time
windows, specific numbers of event occurrences, or attribute values of
the events. Also, multiple events from multiple event streams can be
aggregated based on predefined transformation rules to create complex

5.3 system architecture 57

events relevant to a process. Exploiting event hierarchies, the process
model includes only the high-level business events relevant for the pro-
cess and easily understandable by business users. The model is not
supposed to be burdened with details of event sources and abstraction
techniques. However, the business event on top of the hierarchy needs
to be mapped to the BPMN event modeled in the process.

5.2.3 R3: Implementation of Integration

The two requirements above address the logical distribution made from
the architectural point of view and the conceptual mapping of event
processing to process execution. Now we define the following technical
requirements to realize the integration of events and processes from an
implementation aspect.

r3 .1 : binding events . The business events modeled in the pro-
cess model need to be correlated with the higher-level event defined by
the event hierarchy in the CEP platform to make sure that the correct
event information is fed to the process. For example, the driver should
be informed only about delays on the route she is following.

r3 .2 : receiving events . The process engine should listen to spe-
cific event sources to get notified once the relevant event occurs. Essen-
tially, an event can occur at any time, often independent of the process
execution status. However, unless the process explicitly subscribes to a
specific event, the event occurrence will not be detected in the process
engine. In other words, the driver must subscribe for the Long delay

event modeled in Figure 24 to get a notification about it.

r3 .3 : reacting to events . The consumption and further use of
event information in later process execution should be provisioned.
Sometimes, only the event occurrence is required to trigger certain
reactions, such as instantiating a sequence of activities for exception
handling. In other cases, the payload or the data carried by the events
can also be valuable for process execution. For example, the driver
might need to decide which alternative route is faster than the current
one. The duration of the delay will be helpful for this decision making.
Therefore, information carried by the events should be stored for later
use in the process.

5.3 system architecture

This section presents the architectural framework to enable an efficient
integration of external events into business processes. The concepts
are explained using the same example presented in Figure 24. Our

58 integrating real-world events into business process execution

CEP
Platform

Process
Engine

Process
Modeler

Client

Cl
Web

Browser

Client
R

R

Event
Source

Event
Source

Event
Source

Model
Repository

Figure 25: Proposed system architecture for event-process integration.

system architecture includes three components: Gryphon6, the process
modeler; Chimera7, the process engine; and Unicorn8, the event process-
ing platform [121]. Exhaustive information about the components, their
features, and interplay are found in Chapter 9.

Note that even though some technical details are discussed with ex-
amples based on these components, the integration architecture is in-
dependent of specific engines, platforms, technologies, and interfaces.
The conceptual and technical solutions to address the requirements dis-
cussed above are described below. They can be implemented using any
process modeler, process engine, and event processing platform com-
municating with each other following the proposed framework. The
generic components along with the connections between them are visu-
alized in Figure 25.

5.3.1 Distribution of Logic

To address the issues raised by R1: Separation of Concerns, we propose to
employ a complex event processing platform in addition to the process
engine. CEP platforms are able to connect to different event sources
and can perform further operations on event streams [56]. They can
receive events, parse them, filter them and transform them to create
new events. The event consumers can then subscribe to the event plat-
form to be notified of the relevant events. This solution keeps the pro-
cess execution and event processing logic separate, resulting in no extra
overhead to the process engine. Since the CEP platform is a stand-alone
entity, multiple process engines or other consumers can subscribe to a
certain event, facilitating the reuse of event information. This separa-
tion of logic is also efficient from the maintenance perspective. If there
is a need to change the event source or the abstraction logic, then the
process model does not need to be altered.

6 https://github.com/bptlab/gryphon

7 https://github.com/bptlab/chimera

8 https://github.com/bptlab/Unicorn

https://github.com/bptlab/gryphon
https://github.com/bptlab/chimera
https://github.com/bptlab/Unicorn

5.3 system architecture 59

event processing logic . According to the usecase model, we
need two events for the transport process: a catching start event and
a catching interrupting boundary event. The start event, sent by the lo-
gistics company, contains the location of the warehouse to load goods,
the destination for delivery and the deadline for delivery. This is an
example of a simple event which might be sent to the truck driver via
email or as a text message directly from the logistics company. The
boundary event, on the other hand, is a higher-level business event that
needs to be aggregated from the raw events. This complex event is
created in the event processing platform, in our case Unicorn. Since we
did not have access to real “truck positions”, we used the sensor unit
Bosch XDK developer kit9, a package with multiple integrated sensors
for prototyping IoT applications. The sensors were used to mock the
location of the truck. The unit sends measurement values over wireless
network to a gateway. The gateway then parses the proprietary format
of the received data and forwards it to Unicorn using the REST API. The
traffic updates were received from Tomtom Traffic Information10. The
next section discusses how the raw events from the connected event
sources are aggregated to the business event.

process execution logic . In our system architecture, the process
engine is responsible for carrying out the deployment, enactment, and
execution of processes. The Chimera process engine follows BPMN se-
mantics for executing process specification. The processes are modeled
in an additional editor before the models are deployed to the engine.
Each occurrence of a start event triggers a process instance. Following
the process model, the activities are carried out. The intermediate catch-
ing events are awaited once the corresponding event node is enabled.
Upon occurrence of a matching event, the process engine gets the in-
formation from the CEP platform. The processes are able to send and
receive messages among themselves, controlled by the process engine
itself. The data-based decisions are taken based on the information
generated during process execution, optionally stored in a data object.
The event-based decision points such as an activity with a boundary
event or an event-based gateway receive external events through the
CEP platform.

5.3.2 Use of Event Abstraction

To hide the complexity behind the event hierarchy, the notion of event
abstraction is implemented. Based on the subscription query, an ab-
straction rule is defined in the CEP platform. The platform then keeps
listening to the relevant event sources. Having received each event, the
abstraction rule is evaluated. If the event occurrence matches any part
of the rule, the rule is partially satisfied. Once there is enough event in-

9 http://xdk.bosch-connectivity.com

10 https://www.tomtom.com/en_gb/sat-nav/tomtom-traffic/

http://xdk.bosch-connectivity.com
https://www.tomtom.com/en_gb/sat-nav/tomtom-traffic/

60 integrating real-world events into business process execution

formation to satisfy the complete rule, the output event is generated. At
this point, the CEP platform checks if there is still an existing subscriber
for this specific high-level event. The subscribers are notified about the
occurrence of the high-level event accordingly. Only this event is mod-
eled in the business process, therefore it is also called business level
event or business event. The whole event hierarchy is represented in
the event abstraction rule and thus hidden from the process model,
satisfying R2: Representation of Event Hierarchies.

In our example usecase, if there is a delay above a threshold, a
LongDelay event is produced. In addition, the location of the source
of delay should be ahead of the current GPS location of the truck. In
Unicorn, event abstraction rules are created accordingly for the event
LongDelay. Since Unicorn has the Esper engine at its core, we used Es-
per Event Processing Language (EPL) [44] for writing event abstraction
rules. The event types can be defined in Unicorn as shown in Listing 8.

Listing 8: Event type definitions for motivating example

CREATE schema Disruption

(latitude double, longitude double,

reason string, delay double);

CREATE schema CurrentLocation

(latitude double, longitude double,

destLat double, destLong double);

CREATE schema LongDelay

(reason string, delay double,

destLat double, destLong double);}

The rule for creating LongDelay is given in Listing 9. Note that the
function distance() is not defined in EPL, but has been implemented
additionally to find out if the disruption is ahead of the truck or not.
The function takes the latitude and longitude of a certain location and
the destination as input parameters. With those values, it then calcu-
lates the distance between the specified location and the destination.

Listing 9: Event abstraction pattern for LongDelay

INSERT INTO LongDelay

SELECT d.reason as reason, d.delay as delay,

l.destLat as destLat, l.destLong as destLong

FROM pattern[every d=Disruption-> l=CurrentLocation

WHERE distance(d.latitude, d.longitude, destLat, destLong)

< distance(l.latitude, l.longitude, destLat, destLong)];

5.3 system architecture 61

5.3.3 Implementation Concepts

This section elaborates on how the technical challenges for the imple-
mentation are handled in the integration framework. The following
discussion proposes solutions to the requirements elicited as part of R3:
Implementation of Integration.

event binding . In Chapter 3 we mentioned events with different
properties: transitional events, external events, BPMN events. Event
binding is the concept of mapping these different kinds of events to
each other.

To map the external events to BPMN events, catching message event
constructs are modeled in processes. The catching message events can
be used as start event, normal intermediate event, boundary event,
and in association with an event-based gateway. The process needs
to subscribe to the events to catch them during execution. We extend
the process models by event annotations that are used as event binding
points. To enable the subscription, a subscription query is added for
each event at design time. Only simple queries for subscribing to the
business event are added in the model. Event subscription

query
More complex event queries

to produce these high-level events are generated by abstraction rules
inside the event processing platform, as per R2. For the current use-
case, the external event LongDelay needs to be mapped to the BPMN
event Long delay. The annotation for this event is “SELECT * FROM

LongDelay” which abstracts from the complexity of event queries dealt
in CEP platform.

The other event binding point needed is to map the transitional events,
i.e., lifecycle transitions, to BPMN events. Since we know the location of
the destination and we receive the regular GPS updates from the truck
driver, we can match the latitude and longitude for both of them. If
they match, we can conclude that the truck has reached its destination.
This event matching specifies the binding point according to which the
engine changes the state of the activity Drive to destination or Drive
along updated route from running to terminated. The state transition
points can be used to monitor the status of the process, and to auto-
matically change the state of an activity instance [16]. For example,
the begin and termination states of the activities Load goods or Deliver

goods can be used to track the status of the shipment. Again, the cancel-
lation of the activity Drive to destination might trigger postponing
the estimated time of delivery due to delay. This will be an example
of mapping transitional events to external events (i.e., external to the
“updating delivery time” process).

event subscription & correlation. Once the process is mod-
eled, it is deployed to the process engine along with the event queries.
The deployed model is then parsed and ready to be executed. The event
types and queries are sent to the event processing platform. They are

62 integrating real-world events into business process execution

Process
Engine

Event
Platform

POST [Subscription Query + Notification Path]

UUID

Event
Occurrence

Delete Query

Event Notification

Match
UUID

Figure 26: Event subscription and correlation within a process engine
and an event platform.

registered and stored there. Once a matching event occurs, the process
engine gets notified about it.

Process models serve as the blueprint for process instances [134].
Event subscription can be done for a process model or for a specific
process instance [79]. For the basic integration, the start events are
always subscribed to at the time of deployment. Thus, subscription
for Transport plan received is done at process deployment. In our
case, the truck driver might register to the mailing list of the logistics
company to receive transport plans. The process gets instantiated with
the occurrence of start event(s). Subscriptions for intermediate events
are made once the control-flow reaches the event constructs, during
instance level execution. In the example process, the annotation for
the event binding point of Long delay is registered for each process
instance separately once the activity Drive to destination begins.

Unsubscription from an intermediate event is done once the event is
consumed or the associated activity is terminated in case of a bound-
ary event. Accordingly, the driver stops listening to Long delay once
she changes the route or reaches the destination. The start events are
unsubscribed from only when the process is undeployed. Note that
this is the subscription semantics as defined by BPMN. The work in
this thesis further explores the complete subscription mechanism with
other possible points in time when subscription and unsubscription can
be done. Details about flexible (un)-subscription are found in later parts
of the thesis (see Chapter 6 & Chapter 7).

From a technical viewpoint, we extend the execute-method of the
event nodes. When the process execution flow reaches this event node,

5.4 summary & discussion 63

the subscription query and a notification path is sent to the event pro-
cessing platform (EPP). The EPP responds with an Universally Unique
Identifier (UUID) which is then stored in the process engine as a cor-
relation key. Every time an event occurs, the EPP checks if there is
an existing subscription for this event. If a matching query is found,
then the notification is sent to the provided path along with the UUID.
Now, upon receiving the notification, the process engine matches this
UUID to the ones stored before and correlates the event to the correct
process instance. Once the event is consumed, the leave-method of the
event node performs a DELETE operation for unsubscription. The above
sequence is depicted in Figure 26.

event consumption. In several scenarios, reacting to an external
event can only mean the occurrence of a BPMN event. The process spec-
ification according to BPMN semantics is simply followed to complete
the reaction. The occurrence of a start event will always create a new
instance of the process. If the Long delay event occurs in our usecase,
following the semantics of BPMN interrupting boundary event, the as-
sociated Drive to destination activity will be aborted. An exception
branch will be triggered additionally, which will lead to the activity
Re-calculate route.

For using the event payload in further process execution, there should
be provisions to store the event data. We suggest mapping the data
contained in the notification to the attributes of a data object. This
data object might already exist at the time the event notification is re-
ceived. Otherwise it is created anew upon receiving the event. For
each attribute of the data object, there exists a mapping that derives the
attribute value from the event information and maps it to the outgoing
data object.

There can also be a third kind of reaction to an event, such as chang-
ing a lifecycle state based on an external event information. This has
already been discussed as event binding point.

5.4 summary & discussion

Business process management and complex event processing comple-
ment each other to monitor and control interacting devices, especially
in an IoT related context. The work presented above assembles the nec-
essary parts of integrating these two areas. We gather the requirements
to build the framework with reference to a usecase from the logistics
domain. Namely, we address the following major aspects:

• Separation of concerns between business process behavior and
complex event processing techniques by enabling an event pro-
cessing platform and a process engine to communicate with each
other,

64 integrating real-world events into business process execution

• Representation of event hierarchies in the event query (abstraction
rule) while abstracting the complexity from the process model,

• Implementation challenges for event integration into business pro-
cesses such as event binding and subscription, correlation, and
consumption of events.

The conceptual framework and an integrated architecture are com-
posed to this end, which enable the basic interaction between processes
with the environment. Though the technical details are described with
Gryphon, Chimera, and Unicorn; the framework is independent of any
specific platform, language, or technology. The process specification
follows BPMN semantics and realizes the reaction to an event accord-
ing to the semantics defined in the standard. Our solution architecture
handles the basic BPMN event constructs such as message or timer
events, boundary events and event-based gateways. The event data can
be stored in a data object to use further in decision making or execu-
tion of an activity. However, more complex event constructs like signal,
error, or parallel events have not been considered in the current work
and are yet to be implemented.

While exploring the scenarios where event-process communication
plays a big role, we stumbled upon situations where the standard se-
mantics for subscription management are not enough. These situations
demand more flexibility with respect to the subscription lifetime to fit
the needs of a distributed setup. The next chapter digs deeper into the
need of flexibility for event subscription and proposes a flexible event
handling model for business processes.

6
F L E X I B L E E V E N T H A N D L I N G M O D E L

After an introduction to basic event handling, this chapter advances to the
flexible event handling model that enables early subscription to the events.

Event handling notions such as subscription, occurrence, consumption, and
unsubscription are discussed individually from a process execution context.

The points of subscription and unsubscription specify the possible milestones
when a process can start and stop listening to an event along process

execution timeline. The buffer policies instruct how to store and consume the
relevant events for each execution. Finally, the semantic interdependencies
among the above concepts are discussed. The work in this chapter has been

partly published in “Events in Business Process Implementation: Early
Subscription and Event Buffering” [81] and “A Flexible Event Handling

Model for Business Process Enactment” [79].

6.1 motivation & overview

The previous chapters establish the definition of events, event process-
ing, how the events influence process execution, and how the process
might react to an event. In this chapter, we focus specifically on the
subscription management for the intermediate catching events received
from the environment. Previously in Chapter 5, we introduced a use-
case from logistics domain. Let us consider an extended version of the
transportation process, shown in Figure 27, that motivates the need for
flexible subscription.

The logistics company here coordinates over 200 trucks each day, and
therefore, needs certain communication to be automated to make the
business more efficient. In essence, the logistics company employs a
process engine to control and monitor the transportations. The truck
driver is contacted via email or text message, as earlier. The internal
processes as well as the message exchanges between the truck driver
and the logistics company are shown using a BPMN collaboration dia-
gram [94]. The collaboration diagrams are used to show how two or
more process participants without a central control interact with each
other through message exchanges. Each participant is captured as a
pool. In Figure 27, the logistics company is represented as the pool
named “Process Engine” and the “Truck Driver” is represented in a
separate pool. Additionally, the process engine gets the external event
information through a CEP Engine. The internal behavior of the CEP
platform is hidden from the logistics company, but the message flow is
visible.

65

66 flexible event handling model

M
otivating Exam

ple - PO
S

Truck Driver

Truck D
river

Pick-up Req
Received

D
rive to Euro Tunnel

Check-in

D
rive to Ferry
Check-in

Cross Strait
of D

over

Register at
Ferry

Transport Plan
Received

D
rive to

PU
 Center

Pick up
G

oods

Confirm
ation

Sent

U
pdated Transport
Plan Received

Process Engine

Process Engine

Prepare
Transport

Plan
Transport
Plan Sent

Significant D
elay

at Euro Tunnel

U
pdate

Transport
Plan

D
istribute

O
rders for

Local D
elivery

Ferry Status
U

pdate
U

pdated
Transport
Plan Sent

Ferry Registration
Received

Arrival
Tim

e

Adapt Local
D

elivery Plan

Confirm
ation

Received
Pick-up

Req Sent

Traffic
U

pdate
Finalize

Transport
Plan

O
rder

Received

Com
plex Event Processing Engine

Figure
2

7:C
ollaboration

diagram
m

otivating
the

need
for

flexible
subscription.

6.1 motivation & overview 67

The transportation in the current example is multi-modal. The truck
needs to ship goods from UK to continental Europe and for that, it
needs to cross the Strait of Dover. Crossing Strait of Dover can be done
using the train through Euro Tunnel, which is the preferred way since it
is much faster. The other option is to use ferry, which is preferred only
if there is a delay at Euro Tunnel due to accident or technical failure.

The whole collaboration starts when the logistics company receives
an order to deliver at Europe. Once the truck driver confirms the pick-
up request, she drives to the pick up center (PU Center) and loads
goods. Meanwhile, the logistic company starts preparing the transport
plan containing the specific Euro Tunnel connection to take. After the
initial plan is done, the traffic update is considered to know the current
situation of the route. Motivating example

capturing
interactions between
process and
environment

Accordingly, the transport plan is finalized and
sent to the driver. Following the plan, now the truck starts driving to
the Euro Tunnel. While still driving, if there is a notification about a
long delay at the Euro Tunnel, the logistic company updates the trans-
port plan with a booking for the ferry and sends it to the driver. The
truck now goes to the ferry instead of Euro Tunnel. Eventually, us-
ing Euro Tunnel or ferry, the truck crosses Strait of Dover. Once the
route changes to ferry, the logistic company listens to the ferry status
to update estimated time of arrival and adapts the local delivery plan
for continental Europe. Finally, based on the ferry registration, the ac-
tual ETA can be calculated and accordingly, orders can be distributed
among the local delivery partners.

The CEP platform here plays the role of environment, influencing
the shipment process. The process engine subscribes to the external
events by registering a subscription query to the CEP platform, which
in turn connects to the event sources such as the GPS sensor of the
truck, public APIs for traffic flow information1, the Euro Tunnel RSS
feed2, and notifications from the ferry operator. Operating on the event
streams from these sources, the CEP platform then notifies the process
engine about current traffic situation in the route, a significant delay at
Euro Tunnel or the schedule of the ferry.

Now, let’s take a closer look at the intermediate message events in the
collaboration diagram, since these are the events used for representing
communication with external world. The start event for the collabora-
tion Order Received is sent by the customer (not shown in diagram).
The exchange of pick-up request happen next which triggers the pro-
cess for the truck driver. After the pick-up request is received, the confir-
mation is passed. In the process engine context, the event Confirmation
Received can not occur before the Pick-up Req Sent event, since they
are causally bound. However, the event Traffic Update can occur any-
time during the preparation of transport plan or even before that. In
reality, the traffic update is published at a regular interval. If the pro-

1 http://webtris.highwaysengland.co.uk

2 http://www.eurotunnelfreight.com/uk/contact-us/travel-information/

http://webtris.highwaysengland.co.uk
http://www.eurotunnelfreight.com/uk/contact-us/travel-information/

68 flexible event handling model

cess misses the last event, then it has to wait for the next occurrence.
Moving on, the transport plan needs to be finalized before it is sent.
But it does not depend on the truck driver’s engagement in driving to
the PU Center or loading goods.Need for flexible

event subscription
We can still assume that the logistic

company is aware of the truck driver’s internal process and commu-
nicates the transport plan in a synchronous way, i.e., when the truck
driver is done with picking up goods. This assumption does not hold
for the next catching event though. Events that inform about delays at
the Euro Tunnel check-in are published by the environment at regular
intervals and do not depend on the process execution status. On the
contrary, the shipment process waits for respective events only after the
transport plan has been sent. Thus, a relevant event that would have
led to route diversion may have been missed. In contrast to the Euro
Tunnel, events on the ferry status are not published at regular intervals,
but solely upon operational changes with respect to the last notification.
Clearly, as per BPMN event handling semantics, a process instance may
miss the relevant event.

Let’s consider a transport on a very busy weekday. A technical fault
occurred in the tunnel earlier that day and the train runs 3 hours be-
hind schedule since then. The last information on the RSS feed was
published at 2:35 pm. After sending the transport plan at 2:38 pm, the
process engine has started to listen to the delay event. Meanwhile, the
driver starts driving towards Euro Tunnel check-in at 2:40 pm as she
receives the plan already. The system publishes updated information
again at 3:15 pm. Operations are still 2:30 h behind schedule, which is
considered to be a significant delay. The message gets received through
the process and updated plan is sent to the truck driver at 3:20 pm. The
driver eventually takes the alternative route to the ferry, but only after
heading to the Eurotunnel for 40 minutes. The late change of plans
causes an unnecessary delay to the shipment.

The presented example illustrates the complexity of using events in
business processes, especially when all possible event occurrence times
are taken into consideration. It raises the need for considering environ-
mental occurrences before the process might be ready to consume it.
Differences have been pointed out as to how exactly the event is placed
in the process, if it waits for a direct response to an earlier request or if
the event occurrence is unrelated to the execution of that very process
instance. Next in Section 6.2, we explore the event handling notions
focusing on the viewpoint of business process execution. However, we
also show how these notions are handled in a CEP platform. BPMN
event constructs with respect to their semantics are discussed, along
with their possible state transitions during runtime. Based on those,
in Section 6.3 we address the above mentioned research questions. We
propose points of subscription and unsubscription along the process
execution timeline to answer the research questions RQ1 and RQ2, re-
spectively (cf. Section 1.1). Event buffering with specific buffer policies

6.2 event handling notions 69

address the questions raised by RQ3. The interdependencies among the
proposed concepts are discussed further to gain insight about how the
bits and pieces fit together. Finally, Section 6.4 concludes the chapter.

The notion event buffering was conceived during Dagstuhl Seminar
2016 on “Integrating Process-Oriented and Event-Based Systems” (see
5.7, page 57, [48]), together with Dr. Jan Sürmeli. AcknowledgementsExtending the idea, the
concepts of early subscription and event buffering are explored further
in [81], published in BPM (Forum) 2017 in collaboration with Prof. Dr.
Matthias Weidlich. The specific points of subscription and corresponding
Petri net mappings (cf. Chapter 7) for the event constructs have been
further conceptualized by the author and published in EDOC 2018 [79].

6.2 event handling notions

BPMN models use a single node to represent a catching event. At ex-
ecution level, the mapping to Petri net also translates this event to a
single transition. However, event handling from a business process per-
spective consists of multiple notions which are abstracted in this single
node or transition. The four notions of event handling considered in
this work are — event subscription, event occurrence, event consump-
tion, and event unsubscription. This section explores the underlying
dependencies among those notions and how they should be handled
by a process engine as well as by an event processing platform.

6.2.1 Business Process View

The notions of event handling and the dependencies among them are
adopted and extended from the causality proposed by Barros et al. [13],
shown on the left side of Figure 28. The extended version that we
propose is portrayed on the right hand side of the figure. Event sub-
scription is technically sending and registering the subscription query
for a specific event. The process starts listening to the event once the
subscription is made. Event occurrence can happen anytime, indepen-
dent of an existing subscription. However, only after subscription, the
occurrence of an event is notified to the subscriber, in our case, the
process engine. Therefore, the relevant occurrence can take place only
after a subscription has been registered.

Event Matching
& Consumption

Event
Subscription

Event
Occurrence

Event
Consumption

Event
Subscription

Relevant
Occurrence

Event
Unsubscriptioncausal ordering

Figure 28: Dependencies among the event handling notions: event
subscription, occurrence, consumption, and unsubscription.

70 flexible event handling model

The process engine can subscribe to an event processing platform or
directly to an event source. If the subscription is directly registered at
the event source, then the process engine is notified about the atomic
events produced by the source. If the event streams are fed to an event
processing platform, then the EPP can perform several operations on
multiple event streams (cf. Section 3.4) to aggregate the raw atomic
events and come up with the higher-level business event required by
the process engine. The authors in [13] combine event matching and
consumption in one step. However, as described in Chapter 5, the logic
and control for matching an existing event subscription with the (ag-
gregated) event occurrences and notifying the subscribers lie in the EPP.
Thus, event handling notions such as event abstraction and matching
are abstracted from the process engine view.

Note that event occurrence and event detection are not differentiated
further, since event occurrence in this context already signifies the de-
tection of the business level, most possibly complex event, by the event
processing platform. The possible delay due to the communication
channel between the event platform and the process engine is definitely
possible [78], however, this is not considered in the scope of this thesis.

In the adopted version, work event consumption signifies the detec-
tion of the event in the process control flow and reacting to it as per
process specification. This essentially means, once there is a subscrip-
tion and a matching event has occurred, the event information can be
used by the process for different purpose, such as performing a task,
taking a decision, aborting an ongoing activity, initiating exception
handling measures, and choosing an execution path to follow. Event
unsubscription is done to stop listening to a particular event by deleting
the subscription for it.Causal dependencies

among event
handling notions

Unsubscription is not mandatory, but recom-
mended, since otherwise the process engine is fed with unnecessary
events which might create overhead for the engine. Usually unsub-
scription is made after an event is consumed. But it can also be done
before consumption, essentially anytime after an existing subscription,
if somehow the event information is not relevant for the process any
more. Next sections in this chapter will elaborate more on the possi-
ble points of (un)-subscription. Formally, the temporal dependencies
can be expressed as Se < Oe < Ce ∧ Se < Ue where Se denotes the
subscription of event e, Oe denotes the occurrence of e relevant for the
consumer process, Ce denotes the consumption of e, and Ue denotes
the unsubscription of e.

event constructs . The categorization of event constructs accord-
ing to their position in the process (start, intermediate, throwing), inter-
action mode (catching, throwing) and semantics (blank, timer, message)
has been discussed in Section 2.2.2. In our work, external events are al-
ways represented as start or intermediate catching message event. We
focus on intermediate events since they have more variances and can ac-

6.2 event handling notions 71

Mandatory event

Exceptional
event Racing

event

Exclusive event

Figure 29: Event construct classification put in example process models.

commodate flexibility in terms of subscription and unsubscription. De-
pending on the necessary differences in event handling, we propose the
design time classification of the intermediate catching message events
as described below. Figure 29 visualizes the event constructs modeled
in process skeletons.

Definition 6.1 (Mandatory Event).
For a process model M with the set of traces =, an event e ∈ EIC is a

mandatory event iff ∀σ = t1, t2, . . . , tn ∈ =, ∃ 1 6 j 6 n,n ∈ N such
that tj = e. Let EM ⊆ EIC be the set of mandatory events in M. �

The mandatory events are those events that have to occur in order to
complete the process execution. Based thereon, a mandatory event is an
event in the main process flow or an event inside a parallel branch that
is in the main process flow. In either way, the control flow will definitely
reach the event construct at some point for all possible executions and
the event will be awaited before the process execution can move further.
Note that a start event is always a mandatory event since a start event
needs to occur for each execution of a process.

Definition 6.2 (Exceptional Event).
An event e ∈ EIC is an exceptional event iff e ∈

⋃
image(B) where

the function B maps the activities to its associated boundary event(s).
Therefore, image(B) is the set of events associated with activities. Let
EB ⊆ EIC be the set of exceptional events in process model M. �

This is exactly the same as interrupting boundary event defined in
BPMN. The BPMN specification says, the boundary event is always
attached to an activity or a subprocess. Once the event occurs, the
associated activity is canceled and an exceptional branch is triggered.
The relevance of the event occurrence timestamp here is very important.

72 flexible event handling model

It has to be during the associated activity being in running state, i.e. the
event must happen after the activity begins and before it terminates in
order to follow the exceptional path. Since the scope of this work is
only sound processes, we do not consider non-interrupting boundary
events.

Definition 6.3 (Racing Event).
The events e1, e2, ..., en ∈ EIC are racing events iff ∀ ei, 1 < i 6 n ∈

N,∃g ∈ GE such that •ei = {g}. Let ER ⊆ EIC be the set of racing
events in process model M. �

BPMN event-based gateway is a special gateway where instead of
data, the decision is taken based on event occurrence. The gateway
is immediately followed by several events and whichever event occurs
first, the process takes the branch led by that event. This is why the
events after an event-based gateway are supposedly in a race with each
other.

Definition 6.4 (Exclusive Event).
An event e ∈ EIC is an exclusive event iff ∃σ1,σ2 such that σ1 =

es . . . ,g1,n1,n2, . . . ,nm,g2, . . . , ee and σ2 = es . . . ,g1,n ′
1,n ′

2, . . . ,n ′
l,g2,

. . . , ee, where the start event es ∈ ES, the end event ee ∈ EE, and
the XOR gateways g1,g2 ∈ GX such that ∃ i ∈ [1,m] : ni = e AND
∀ j ∈ [1, l] : n ′

j��=e. Let EX ⊆ EIC be the set of exclusive events in process
model M. �

According to the above definition, an event e can only be in one of
the paths between the XOR gateways g1 and g2. For a specific process
instance, only one of the paths after an exclusive gateway is followed.
This makes the events on the branches after an XOR split and before
an XOR join exclusive to each other, i.e. when one of the branches is
chosen, the events in other branches are not required any more.

runtime event lifecycle . The above classification of event con-
structs is done based on a static model with its process specification
semantics. We consider the design time classification since we already
specify the event handling configuration as annotations to the events
in the process model. The configurations are followed by the process
engine once the model is deployed. However, during runtime, the req-
uisite of an event can vary depending on the process execution status.
For example, we say the mandatory events are the ones on the regular
control flow or inside a parallel branch. This is true at both design
and runtime. On the contrary, if we consider the runtime situation for
the exclusive events, once a particular branch is chosen after the XOR
gateway, the events on that branch become mandatory for the process
instance to complete execution. Figure 30 shows the state transitions of
event requisite from a process execution perspective.

Once a process model is deployed, the events are deployed to the
engine too. In the course of process execution, the deployed events

6.2 event handling notions 73

Figure 30: Lifecycle of an event w.r.t. requisite for a process execution.

can transit to either of the following three states depending on their
desirability to the process: Required — when the event is absolutely nec-
essary to the instance for a complete execution, Optional — when the
event might occur, but does not have to, Obsolete — when the event is
not necessary for the instance any more. If we try to map the event con-
structs described above to the runtime lifecycle, a mandatory event for
a process model will be required for all instances of that model. All re-
quired events are executed eventually. An exceptional event is optional
from the start of a process instance execution, such that it does not have
to happen, but there is a provision to execute it if it happens. Once the
associated activity is terminated, it goes to obsolete state. Similarly, the
racing events are also optional and can be executed if they occur. But
only one of the racing events is executed for a single instance, the rest
change the state to obsolete. In case of the exclusive events, they are also
optional until the branch they are situated on is chosen for the specific
instance and they become required. If a different branch is chosen, they
become obsolete instead. All the events are either executed or obsolete
by the time the instance completes execution. Eventually, the events are
undeployed along with the process model.

6.2.2 Event Processing View

The execution of event handling notions from an event processing plat-
form’s perspective are shown using a transition system in Figure 31.
A formal definition of transition system is found later in this thesis,
see Definition 8.1 in Section 8.2.1. The basic concepts behind transi-
tion system is that it abstracts from the internal behavior of a system
and only represents the interactions of the system with its environment.
Here, “?” signifies receiving of an event, whereas “!” represents sending
of an event.

Initially, the event stream (ES) is empty and there is no registered
event type (ET), subscription query (SQ), and event match (EM), as
represented in state s0. Once the process is deployed, the event types
(E1,E2) and the subscription queries (q1,q2) are registered to the EPP.
As a result, in state s1, the ET list contains {E1,E2}, and the SQ has
{q1,q2}. However, the ES and EM lists are still empty. Let’s assume
the subscription query q1 listens to the occurrence of E1 where q1 is
satisfied with the two consecutive occurrences of the lower-level event

74 flexible event handling model

e1. On the other hand, q2 is registered to get notification about E2
and needs the pattern e1 followed by e2. The event types and queries
written in Esper EPL are given in Listing 10.

ET: {}
SQ: {}
ES: {}
EM: {}

s0
ET: {E1, E2}
SQ: {q1, q2}

ES: {}
EM: {}

s1
ET: {E1, E2}
SQ: {q1, q2}

ES: {e1}
EM: {}

s2

Reg (E1,E2)
Sub (q1,q2)? e1? e1?

ET: {E1, E2}
SQ: {q1, q2}
ES: {e1,e1}

EM: {(E1,q1)}

s3

Occ (E1)!

ET: {E1, E2}
SQ: {q1, q2}
ES: {e1,e1}

EM: {}

s4

Unsub (q1)?

ET: {E1, E2}
SQ: {q2}

ES: {e1,e1}
EM: {}

s5

ET: {E1, E2}
SQ: {q2}

ES: {e1,e1,e2}
EM: {(E2,q2)}

s6

e2?Occ (E2)!Unsub (q2)?

ET: {E1, E2}
SQ: {q2}

ES: {e1,e1,e2}
EM: {}

s7
ET: {E1, E2}

SQ: {}
ES: {e1,e1,e2}

EM: {}

s8

Figure 31: Interaction from event processing platform’s perspective.

Listing 10: Example of event patterns

CREATE schema e1(id string);

CREATE schema e2(id string);

INSERT INTO E1

SELECT * FROM PATTERN[e1->e1];

INSERT INTO E2

SELECT * FROM PATTERN[e1->e2];

If the EPP receives an e1, it changes the state since the queries are
partially matched now. The ES therefore has the event e1 stored; but
the ET, SQ, and EM lists remain same for s1 and s2. As soon as the
next occurrence of e1 is received, shown as ES: {e1, e1}, the query q1
gets satisfied and the event E1 is generated. This is shown as the tuple
{E1,q1} in EM list. The EPP now notifies the process engine about the
occurrence of E1. Assuming the process engine unsubscribes from an
event query after consumption of the event, q1 is eventually deleted
from the SQ list. At this point, if e2 happens, then q2 gets satisfied,
and the notification is sent accordingly. The event stream now contains
{e1, e1, e2}. Eventually, the process engine wants to stop listening to E2
and therefore unsubscribes from q2. As a result, the event processing
platform ends up in state s8 with no registered query.

6.3 flexible subscription management

Process engines are responsible for performing, monitoring, and con-
trolling business process execution. Either an integrated modeler or

6.3 flexible subscription management 75

Engine
Initiation

Process
Deployment

Process
Instantiation

Process
Termination

Process
Undeployment

Engine
Termination

t

e1

e2

Figure 32: Process execution timeline.

a separate editor can be used to model the processes. At some point
after the engine is initiated, the process model is deployed to the engine.
BPMN processes are instantiated by start event(s). Every time the start
event occurs, the process model has a new running instance. The pro-
cess instances are executed according to the process definition. Differ-
ent instances can have different execution traces based on the decisions
taken or events occurred during process execution. Each instance is
terminated with an end event. No running instance of a process model
exist once the process model is undeployed. Once there is no running
instance from any process model, the engine can be terminated. The
milestones of process execution starting from the engine initiation until
the engine termination is shown in Figure 32.

6.3.1 Points of Subscription

If the occurrence of an event is not dependent on the process execution,
then it can happen anytime along the timeline and even beyond that.
However, we might need certain information to subscribe to an event.
These information can be specific to a process instance, a process model
or across processes. As soon as there is no unresolved data dependency,
the process can start listening to an event it might need in future. The
Points of Subscription (POS) listed below control at which point in time
a certain event can be subscribed to. Since the semantics of subscrip-
tion point might be different for different event constructs, a formal
clarification is given for each POS.

pos1 : at event enablement. A subscription is made only when
the event construct is enabled by the control-flow. This is completely
consistent with BPMN semantics and should be implemented when
subscription for an event can be done only after completing the previ-
ous activity. In the motivating example, subscription should be done at
event enablement for the event Confirmation Received, since it can oc-
cur only after pick-up request is sent. Subscription at event enablement
means the following for the event constructs described before:

• Given e ∈ EIC \ EB and x ∈ NA ∪NE such that x• = {e},
subscribe to e when x terminates.

76 flexible event handling model

• Given e ∈ EB and A ∈ NA such that A→ e,
subscribe to e when A begins (Ab).

pos2 : at process instantiation. A subscription is made as
soon as the process is instantiated, i.e., given e ∈ EIC, subscribe to e
when the start event es ∈ ES occurs.

This is required when the subscription is dependent on instance spe-
cific data, but the event can occur earlier than scheduled to be con-
sumed in the process. For example, the transport plan is specific to
each transport, therefore the truck driver cannot expect that before get-
ting the pick-up request. However, once the truck gets confirmation
and picks up the goods from the pick-up center, the transport plan can
be ready anytime depending on how fast the logistics company works.
The truck driver can listen to the event Transport Plan Received right
after the instantiation of the process. In this case, the driver does that
intuitively, such as being reachable via email or phone all the time and
checking for the transport plan once done with loading goods.

pos3 : at process deployment. According to POS3, given e ∈
EIC, subscribe to e at process deployment (PD).

This is always done for the start events, since they are needed for
instantiating the process. Thus, Order Received will be subscribed at
the time the transport process is deployment. Additionally, the sub-
scription for the intermediate catching event, too, is created as soon as
the process model is deployed if this POS is chosen. This should be
implemented when all instances of a process might need the intermedi-
ate event information. The Traffic Update and Significant Delay at

Euro Tunnel can be subscribed to at process deployment, since all the
trucks following the same route will need to know the updates. These
updates are not published to signify a big change, rather, they are up-
dated in a regular interval. Therefore, the last update might already be
useful for the process instead of waiting for the next one.

pos4 : at engine initiation. A subscription is made at the time
when the engine starts running, i.e., given e ∈ EIC, subscribe to e at
engine initiation (EI).

This is helpful in a situation where the engine already knows which
events might be needed by the processes to be executed and subscribes
to the events beforehand. In such scenarios, an event information is
often shared by several processes. When one process starts executing,
it can then immediately access the event information already stored by
the engine. It is very probable for the logistic company in our example
to have other processes running than the transportation process shown
here. For example, they can own other transport vehicles that are not
crossing the Euro Tunnel, but still driving on the same route. For all of
those transports, they also need to monitor the traffic situation and sug-

6.3 flexible subscription management 77

gest detour in case of a congestion. In this context, subscribing to the
event Traffic Update is preferred to be done at engine initiation and
kept accessible for all the processes that might need the information.

6.3.2 Points of Unsubscription

Similar to the point when a process starts listening to an event, we also
need to decide till which point the process keeps listening to it. In case
the event occurs and the process consumes it, the control flow moves
on to next nodes. There can also be scenarios when an event has not yet
occurred, but becomes irrelevant for the process execution. Depending
on different situations when a process might and should stop listening
to an event, we define the following points of unsubscription.

pou1 : at event consumption. Unsubscription is done after the
event is consumed by the process and the control flow has moved on to
the next node, i.e., given e ∈ EIC and y ∈ NA ∪NE such that e• = {y},
unsubscribe from e when y begins. In the motivating example, once
the confirmation from the truck is received, the logistic company does
not wait for further information from the driver.

pou2 : at semantic resolution. Unsubscription is done as soon
as the event becomes irrelevant for the process. This can happen in the
following three situations:

• When the associated activity for a boundary event terminates, the
boundary event is no longer relevant. This is formally defined as:
given e ∈ EB and A ∈ NA such that A → e, unsubscribe from e

when A terminates (At).
• When a specific branch is chosen after an XOR gateway, the events

in other branches are no longer relevant. For an exclusive event
ei ∈ EX between an XOR split gateway g1 ∈ GX and an XOR
join gateway g2 ∈ GX, where the branches after the XOR gateway
start with the nodes {d1,d2, . . . ,dn}, i.e., g• = {d1,d2, . . . ,dn},
unsubscribe from ei when dj begins, given that i��=j.

• When an event has occurred after an event-based gateway, all
the events following the gateway are no longer relevant. For
a racing event ei ∈ ER after an event-based gateway g ∈ GE,
where the events after the gateway are {e1, e2, . . . , en}, i.e., g• =

{e1, e2, . . . , en}, unsubscribe from {e1, e2, . . . , en} when ei occurs.

pou3 : at process undeployment. Unsubscription is done when
the process is undeployed and there is no running instance for that
process. According to this POU, given e ∈ EIC, unsubscribe from e

at process undeployment (PU). The event Significant Delay at Euro

Tunnel can be unsubscribed for all the instances once the process in
undeployed.

78 flexible event handling model

POS4:
Engine

Initiation

POS3:
Process

Deployment

POS2:
Process

Instantiation

POS1:
Event

Enablement

POU3:
Process

Undeployment

POU4:
Engine

Termination

POU2:
Semantic
Resolution

POU1:
Event

Consumption
e1

e2

t

Figure 33: Points of (Un)-Subscription.

pou4 : at engine termination. Unsubscription is done when
the process engine is terminated and there is no running process any
more. Therefore, given e ∈ EIC, unsubscribe from e at engine termi-
nation (ET). The Traffic Update event can be unsubscribed at engine
termination since all the processes that might need it will be terminated
anyways. Figure 33 combines the points of subscription and unsub-
scription along the process execution timeline.

6.3.3 Event Buffering

As soon as the subscription is issued, the event occurrence is awaited.
Once the matching event has occurred, the process engine gets notifi-
cation about it. However, the process instance might not be ready to
consume it yet, according to the motivating examples. To this end, an
event buffer is proposed that will store the event temporarily. Later
when the process instance is ready to consume the event information,
it checks if a matching event already exists in the buffer. If the event
occurrence has not happened yet, then the process instance waits for
it to occur. If there exists a respective event then the process instance
retrieves it. The event information is then available within the process
instance context, i.e. the event can be consumed then.

However, to retrieve an event from a buffer, the occurrence cardinal-
ity of the events need to be accounted. There can be events that occur
only once, such as receiving a pick-up request. In contrast, there can
be events that occur continuously, forming an event stream. The traffic
update or Euro Tunnel update are examples of such periodical events.
When the process wants to consume an event and finds multiple events
of same event type, it needs to decide which event shall be retrieved
for the specific instance. To address this issue, buffer policies are con-
figured when subscribing to an event source. The policies described
below define how many events are stored in the buffer, which event is
consumed by a process instance, and whether an event information is
reused.

lifespan policy. The lifespan policy specifies the subset of events
received from CEP platform that should be stored in the buffer. Essen-
tially, it defines the size of the buffer. It can also be interpreted as the

6.3 flexible subscription management 79

interval when the buffer is updated. Lifespan policy can be configured
as:

• Specific Length. A specific number of events can be selected to be
stored in the buffer. For example, only last 5 traffic updates are
stored to analyze the current situation in a particular route.

• Specific Time. The subset of events can be selected using a temporal
window. An example can be to consider only those events that
occurred within the last 30 minutes after an accident, since the
earlier events might include longer delay that is not relevant any
more.

• Keep All. This configuration does not impose any restriction on
event lifespan. All events received after a subscription is issued
are thereby stored in the buffer.

retrieval policy. This policy specifies the event to be consumed
by a specific process instance. The configurations include:

• Last-In-First-Out. This is suitable for situations when the latest
event overwrites the required information carried by preceding
events. The GPS data telling the location of a moving vehicle is
an example when this configuration should be chosen.

• First-In-First-Out. On the other hand, there are situations when
the first event is the most important among all. In a bidding
context, the first vendor to bid a price below a certain threshold
can be chosen as the one getting the contract.

• Attribute-based. Unlike the timestamp of the event in above two
cases, the attribute values of the events can also be the determin-
ing factor for retrieval. In the bidding example, the contract might
be assigned to the vendor who quotes the cheapest offer.

consumption policy. Since an event can be interesting for more
than one instance, or even for multiple processes, the information car-
ried by an event can be considered to be reused. Consumption policy
determines whether an event is removed from the buffer after it has
been retrieved by a process instance. Such consumption policies are
well-known to influence the semantics of event processing, see [46]. We
consider the following configurations regarding event consumption for
our buffer model:

• Consume. If the consumption policy is set to this then an event
data is deleted from the buffer as soon as it is retrieved by a pro-
cess instance. For example, a cancellation of order is relevant only
for that specific order handling process instance.

80 flexible event handling model

POU3:
Process

Undeployment

POU4:
Engine

Termination

POS4:
Engine

Initiation

POS3:
Process

Deployment

POS2:
Process

Instantiation

POS1:
Event

Enablement

POU2:
Semantic
Resolution

POU1:
Event

Consumption
Buffer Policy:

Consume

Buffer Policy:
(Bounded)

Reuse

Figure 34: Interdependencies among the aspects of flexible event handling.

• Reuse. On the contrary, choosing this consumption policy ensures
that the event data is reused across instances/processes. A strike
in an airport most likely affect many processes that deal with
flight delays and shuttle services.

• Bounded Reuse. In this case, a restriction is added to specify the
number of times an event can be reused. Going back to the bid-
ding example, offer from a certain vendor might be limited to be
considered for a specific number of contracts, to avoid bias.

6.3.4 Semantic Interdependencies

The above sections describe the spectra of the event handling model.
The aspects are technically independent of each other. However, from
a semantic perspective, there are a few interdependencies that should
be followed while using them together. For example, choosing a point
of subscription for an intermediate event might have the constraint to
select a specific point of unsubscription for that event. Figure 34 visual-
izes these dependencies.

Subscription at event enablement and process instantiation are usually
relevant for a specific process instance. In other words, these event
information are not used after the instance have consumed it. There-
fore, for both of them the unsubscription can be done at event consump-
tion. In case the event information is obsolete even before consump-
tion, then unsubscription can be done at the point of semantic resolution.
The lifespan and retrieval policies are not dependent on the point of
(un)-subscription anyway. But the consumption policy should be set to
consume since no reuse is necessary.

On the other hand, subscription at process deployment is done so that
the event can be accessed by all instances of that process. Even if a spe-
cific process instance does not need to listen to the event anymore after
consumption or semantic resolution, unsubscription to the event will
contradict the idea of reuse here. Therefore, unsubscription at process
undeployment is reccommended for this scenario. For the same reason,

6.4 summary & discussion 81

the consumption policy for the buffer should be set to reuse or bounded
reuse. Similarly, for subscription at engine initiation, the unsubscription
should be done only at engine termination. The consumption policy
should again be either reuse or bounded reuse.

6.4 summary & discussion

Languages such as BPMN, UML Activity diagrams, or WS-BPEL, do
not offer flexible means for event handling. Specifically, the questions
like when to subscribe to an event source, how long to keep the sub-
scription, and how to retrieve an event for a process instance are severely
ignored. Though the existing semantics for event subscription is ade-
quate for a vast range of message exchanges, they fail to capture the
flexibility required for processes communicating with external event
sources in a distributed environment. The BPMN assumption of an
event occurrence only after the event construct is enabled restricts the com-
munication possibilities between event producers and consumers where
the separate entities are not necessarily informed about each others
internal status. This can lead to missing out on an event which has
occurred but still relevant. Besides, waiting for an already occurred
event can cause process delay, even deadlock. The need for advanced
event handling has further been motivated with a shipment scenario
from the domain of logistics.

To address these shortcomings, a flexible event handling model is
proposed with points of subscription and unsubscription along the pro-
cess execution timeline. The contributions presented in this chapter can
be summarized as following:

• Investigating the role and usage of handling external events in
business processes,

• Detecting limitations of common process specification languages
when expressing complex event handling semantics,

• Proposing flexible subscription management system with specific
points of (un)-subscription,

• Designing an event buffer to enable and manage early subscrip-
tion efficiently.

The proposed concepts are formally defined in next chapter.

7
F O R M A L E X E C U T I O N S E M A N T I C S

This chapter turns to the formal grounding of the event handling concepts
discussed in Chapter 6. The generic notions of event subscription, occurrence,

consumption, and unsubscription are detailed using Petri nets. Mapping
steps from BPMN event constructs to Petri nets are given for each point of
(un)-subscription. Further, buffer policies are defined using Coloured Petri

Nets (CPN). The rich formalism provides unambiguous semantics and
detailed guidelines for implementing flexible event handling configurations.

“Events in Business Process Implementation: Early Subscription and Event
Buffering” [81] and “A Flexible Event Handling Model for Business Process

Enactment” [79] contain part of the formalism presented in this chapter.

7.1 motivation & overview

The BPM lifecycle (see Section 2.1) instructs to come up with a fine-
grained process model enriched with technical details to make it ready
for execution. For using the event handling and CEP concepts for any
technical solution, a formal model is recommended to guide correct im-
plementation [93]. This chapter, therefore, gives a strong formal ground-
ing to the concepts of event handling presented earlier, and brings them
closer to implementation level.

We chose Petri nets for our formalism since this is a popular, well-
established notation to model processes, and it gives more technical
yet unambiguous semantics which is required for correct process exe-
cution [73, 122]. Being a formal language, there exist efficient analysis
techniques and tools1 for static semantic verification of Petri nets [137],
which is not the case for BPMN models. Moreover, Petri nets are par-
ticularly suitable for capturing the communication between a process
and its environment, as they support the composition of models, fol-
lowing the principles of loose coupling, and assuming asynchronous
communication between the components.

A process model represented using BPMN or WS-BPEL can be easily
and extensively transformed to a Petri net [37, 72]. Therefore, the transi-
tion of a process model from organizational level to operational level is
not an additional challenge [134]. However, since the standard BPMN
models do not include the flexible event handling notions introduced
in this work, we define additional Petri net transformations necessary
to implement the advanced event handling semantics.

1 LoLA: A Low Level Petri Net Analyzer. http://service-technology.org/lola/

83

http://service-technology.org/lola/

84 formal execution semantics

assumptions . Note that we use Petri net semantics in our work
to capture the behavior of a process engine with respect to executing
processes. We show the milestones such as engine initiation (EI) and
process deployment (PD) (represented in Figure 32) as Petri net transi-
tions. Therefore, the initial marking of the Petri net has one token in the
input place of EI. In other words, we use BPMN process model excerpts
along with the engine execution milestones as our representation level,
and specify the corresponding Petri nets as the implementation level.

We consider only sound processes that get instantiated by a start
event es ∈ ES and terminates with an end event ee ∈ EE. For each
intermediate catching event, the temporal order Se < Oe < Ce ∧ Se <

Ue always holds. Further, we do not consider any loop structure in the
process flow.

For simplicity, we focus on the semantics being discussed for the
specific parts and abstract from the rest of the details. For example,
we do not show the activity life cycle phases as separate transitions
unless they are needed explicitly (e.g., for boundary events). As our
focus is on intermediate catching events, we show only the occurrence
for start and end events. In general, the subscription for start event
has to happen at process deployment, since it is needed for process
instantiation. Since the end event is a throwing event produced by the
process, no subscription is needed for it. Note that we translate only
the intermediate catching events, not the receive tasks.

We consider the interplay of the event handling notions only from
business process view while mapping the points of (un)-subscription.
The event processing aspects of event handling are discussed in the con-
text of event buffering. Additionally, we assume that for all events, the
timestamp when the event source produces the event (occurrence time)
coincides with the timestamp when the event notification is received by
the event processing platform (detection time).

The firing of the mapped Petri nets follow the standard semantics,
i.e., once there are tokens at all the input places of a transition it can
fire immediately, but does not have to. The reason behind deciding
on this firing behavior over immediate firing is that it supports the
activities to have certain duration which are needed to express the se-
mantics of boundary events. Also, it will be impossible to decide on the
branch to follow after an event-based gateway since the race among the
events cannot be expressed using an immediate firing. We could use
Generalized Stochastic Petri Nets (GSPN) [28] that allow to have both
timed and immediate transitions. However, for the timed transitions in a
GSPN, a random, exponentially distributed delay is assigned which is
not desired in our scenario.

To avoid the unwanted delay after a transition is enabled, we assume
that the transitions which can be solely carried out by the engine fires
immediately. Essentially, the assumption is that the engine makes sure
if there is no other dependency to execute a transition, it is executed im-

7.2 petri net mapping 85

mediately upon enablement. The transitions such as issuing a subscrip-
tion or an unsubscription, consuming an event when the control flow
reaches the event construct and there is an existing event to consume,
and cancelling an activity following a boundary event consumption fall
under this category. On the contrary, the transitions where the engine
needs to wait on the environment such as occurrence of an external
event and executing a user task might take time to be fired even if they
are enabled.

7.2 petri net mapping

There are multiple layers of subscription and unsubscription in the com-
plete event handling scenario, such as between the process engine and
the event platform, and between the event platform and the actual event
sources in the environment. They are unfolded step wise in the fol-
lowing. First, the event handling notions are transformed to Petri net
transitions in Section 7.2.1. In Section 7.2.2, each point of subscription
(POS) is mapped to corresponding Petri net modules, depending on
the event construct configured with the POS; followed by the mapping
of each point of unsubscription in Section 7.2.3. Next, we switch to
coloured Petri nets, since formalizing the buffer policies demand ad-
vanced expressiveness. Section 7.2.4 discusses the event buffer along
with the policies expressed by functions used in the arc inscriptions.
Section 7.3 summarizes and concludes the chapter.

7.2.1 Event Handling Notions

The Petri nets representing event handling notions presented in Sec-
tion 6.2 are given in Figure 35. The event source is captured only by its
interface to the process flow. Here, event source can be interpreted as
either an individual event producer or the event processing platform.

We start with the description of the process execution level. The
step of subscribing to an event e is captured by a dedicated transition
Se, which is triggered when the point of subscription is reached (place
P(POS, Se). This transition produces a token in the place sub that passes
the token to the event source. The process execution moves on to the
next node, represented by the place P(Se,a) where a is the node follow-
ing the point of subscription.

As soon as the matching event occurs, the event source sends it to
the process engine, which is represented by having a token in the place
e. Note that this place represents the event notification that is available
only after a subscription has been made. Even if there are event oc-
currences before subscription, they are not yet relevant for the process
execution and therefore, will not produce any token in this place.

The control flow enablement of the BPMN event construct in the pro-
cess execution level is mapped to the consumption of the event, repre-
sented by the transition Ce. The predecessor and successor of Ce are x

86 formal execution semantics

Se ... Ce

Process Execution

Event Source

esub

Ue

unsub

...

P(POS, Se) P(Se,a) P(Ce, y) P(POU, Ue) P(Ue, z) P(x,Ce)

Event Construct

... ...
Point of

Subscription
Point of

Unsubscription

Figure 35: Event handling notions represented by Petri net.

Ce

e

P(Ce, y) P(x,Ce)

Ce

e

P(Ce, y) P(x,Ce)

Scenario 1 Scenario 2

Figure 36: Scenarios considering the separate notions of event occurrence and
event consumption.

and y, respectively. Since the event handling model considers the event
occurrence and consumption with separate transitions independent of
each other, there can be the following two scenarios:

• The control flow reaches the event construct, but there is no match-
ing event that has occurred yet. This situation is mapped to a Petri
net with a token in the place P(x,Ce) and no token in the place e,
as shown by Scenario 1 in Figure 36.

• The matching event has already occurred, but the process control
flow has not reached the event construct yet. This is represented
by Scenario 2 in Figure 36 as the Petri net having a token in the
place e and no token in the place P(x,Ce).

As soon as there are tokens in both the places P(x,Ce) and e, the tran-
sition Ce is fired, producing a token in the place P(Ce,y), thus passing
the control flow to the next node in the process.

Down the control flow, another transition Ue is enabled to unsub-
scribe from the event source. This represents reaching the point of un-
subscription along the process execution. Similar to POS, this transition
produces a token in the place unsub that forwards the unsubscription
request to the event source.

7.2.2 Points of Subscription

In this section, we tailor the event handling notions for each event con-
struct and apply the points of subscription. We map each pair of event

7.2 petri net mapping 87

Subscription at Process Deployment

Subscription at Engine Initiation

es
a x y

e

…

Process
Deployment (PD)

Engine Initiation
(EI)

Mandatory
Event

Subscription at Event Enablement

Ce

Se Oe

P (x, Ce)

P (x, Se)

P (Ce, y)

Subscription at Process Instantiation

PD es Ce

Se Oe

P (x, Ce)P (es, a) P (Ce, y)

EI

es Ce

Se Oe

P (x, Ce)P (es, a) P (Ce, y)P (PD, es)
PD es Ce

Se Oe

P (x, Ce)P (es, a) P (Ce, y)P (EI, PD)

Figure 37: Petri net modules for mandatory event construct.

construct and point of subscription to corresponding Petri net modules.
We take the BPMN to Petri net mapping prescribed by [37] (see Sec-
tion 2.4) as basis and extend it to include subscription, occurrence, and
consumption of the events. As explained by Dijkman et al., x denotes
the predecessor node of event e, y denotes the successor node of e, and
places with dashed borders mean they are not unique to one module. If
additional process nodes are needed to be represented, they are taken
from the set {a,b, z}. The gateways are represented by g. The nodes
on i-th branch following a gateway are numbered as ei, xi,yi, where
i ∈N0. Again, xi and yi denote the predecessor and successor node of
event ei, resp.

mapping mandatory event. Following subscription at event en-
ablement, these are the steps to map a mandatory event construct to the
corresponding Petri net module:

1. Event e is mapped to three separate transitions: Se — subscrip-
tion to e, Oe — relevance occurrence of e detected by the process
engine, and Ce — consumption of e.

2. Se has one input place to link with x, the predecessor node of e.
3. Ce has one input place to link with x.
4. Ce has one output place to link with y, the successor node of e.
5. A flow is added from Se to Oe.
6. A flow is added from Oe to Ce.

88 formal execution semantics

For other points of subscription, Step2 is replaced as indicated in the
following. The part of process structure containing mandatory event
construct and resulting Petri nets are shown in Figure 37.

• Subscription at process instantiation: A flow is added from the tran-
sition for start event es to Se, where es has an output place to link
it with a, the first node after process instantiation.

• Subscription at process deployment: A flow is added from the transi-
tion for process deployment (PD) to Se.

• Subscription at engine initiation: A flow is added from the transition
for engine initiation (EI) to Se.

mapping boundary event. For a boundary interrupting event,
even if the subscription is created earlier, the event occurrence is rele-
vant only during the running phase of the associated activity. There-
fore, for this event construct, subscription is recommended to be regis-
tered only at event enablement. Figure 38 shows the boundary event
construct and the resulting Petri net module. The steps for mapping
boundary event construct with subscription at event enablement are
given below.

x y

e
z

Subscription at Event EnablementBoundary Event

Ab Ce

Se Oe

At

P (x, Ab)

P (At, y)

P (Ce, z)

Ac

Figure 38: Petri net module for boundary event construct.

• The event e is mapped to transitions Se, Oe, and Ce.
• The associated activity A is mapped to three transitions: Ab de-

picting the beginning of A, At depicting the termination of A, and
Ac depicting the cancellation of A.

• Ab has one input place to link with x, the predecessor node of A.
• At has one output place to link with y, the successor node of A

(normal flow).
• Ce has one output place to link with z, the successor node of e

(exception branch).
• Ce has another output place to link it with Ac.
• A flow is added from Ab to Se.
• Another flow is added from Ab to Ce.
• A flow is added from Se to Oe.
• A flow is added from Oe to Ce.
• The input place before Oe is shared with At.

7.2 petri net mapping 89

Here, the subscription is done as soon as the associated activity begins
(Ab). After the subscription is done, a token is put in the place shared
by the transitions At and Oe. If the event occurs before the activity
terminates, i.e., the transition Oe is fired before the transition At, it
consumes the token from the shared place and enables Ce. Having
consumed the event by executing Ce, tokens are produced at the two
output places – to pass on the control flow to the next node in the
exceptional branch (P(Ce, z)) and to abort the ongoing activity (input
place for Ac). Otherwise, the token from the shared place is consumed
by the transition At and passed on to the normal flow of the process
(P(At,y)).

mapping racing event. For racing events, subscription at event
enablement means when the control-flow reaches the gateway, all the
events following the gateway are subscribed. Once one of the events
occur, the process flow takes the branch following that event. Note
that in case of early subscription (POS2,3,4), the process engine needs
to check the timestamps of the events if there are more than one event
available in order to consume the one that happened first and follow
the path leading by it. The event-based gateway g with two racing
events e1 and e2 is transformed to the corresponding Petri net modules
in Figure 39. The methodology for mapping a racing event construct to
Petri net following subscription at event enablement is as following:

• The event ei is mapped to two separate transitions, occurrence of
ei (Oei

), and consumption of ei (Cei
).

• A single transition is introduced to represent the combined sub-
scription to all the racing events e1, e2, . . . , en (Se1,e2,...,en).

• The subscription transition has one input place to link with g, the
event based gateway.

• Each consumption transition Cei
has one output place to link with

yi, the successor node of ei.
• A flow is added from subscription to each occurrence transition
Oei

.
• A flow is added from Oei

to Cei
.

For other points of subscription, each consumption transition Cei
is

connected with an input place P(g,Cei
) to link it to g, the event based

gateway. In contrast, the subscription transition Se1,e2,...,en is not linked
with the gateway anymore, rather Step3 is replaced as indicated in the
following. The racing event constructs following an event-based gate-
way and the resulting Petri nets are shown in Figure 39.

• Subscription at process instantiation: A flow is added from the tran-
sition for start event es to the subscription transition.

• Subscription at process deployment: A flow is added from the transi-
tion for process deployment (PD) to the subscription transition.

90 formal execution semantics

es

y1

y2

e1

e2

a … gx

Subscription at Event Enablement

Subscription at Process DeploymentSubscription at Process Instantiation

Subscription at Engine Initiation

Process
Deployment (PD)

Engine Initiation
(EI)

Racing
Event

Ce1

Ce2

Se1,e2

Oe1

Oe2

P (g, Se1,e2)
P (Ce1, y1)

P (Ce2, y2)

Ce1

Ce2

Se1,e2
Oe1

Oe2

P (Ce1, y1)

P (Ce2, y2)

es

P (es, a) P (g, Ce1)P (g, Ce2)P (PD, es)

Ce1

Ce2

Se1,e2
Oe1

Oe2

P (Ce1, y1)

P (Ce2, y2)

es

P (es, a)

PD

P (g, Ce1)P (g, Ce2)P (EI, PD)

Ce1

Ce2

Se1,e2
Oe1

Oe2

P (Ce1, y1)

P (Ce2, y2)

es

P (es, a)

PDEI

P (g, Ce1)P (g, Ce2)

Figure 39: Petri net modules for racing event construct.

• Subscription at engine initiation: A flow is added from the transition
for engine initiation (EI) to the subscription transition.

mapping exclusive event. As discussed in Section 6.2, an exclu-
sive event is optional when a process is instantiated. However, it be-
comes required once the specific branch, on which the event is situated,
is chosen during execution (see Figure 30). In essence, an exclusive
event behaves like a mandatory event once the associated branch is
enabled by control-flow. Therefore, the Petri net modules mapping ex-
clusive event construct coincides with the Petri net modules for manda-
tory event construct for the same POS (see Figure 37). Nevertheless,
we show the Petri net modules mapping an exclusive ei situated on
the i-th branch after the exclusive gateway g in Figure 40. The steps
for mapping the exclusive event with subscription at event enablement are
given below.

1. Event ei is mapped to transitions Sei
, Oei

, and Cei
.

2. Sei
has one input place to link with xi, the predecessor node of

the event ei.
3. Cei

has one input place to link with xi.
4. Cei

has one output place to link it to yi, the successor node of ei.
5. A flow is added from Sei

to Oei
.

6. A flow is added from Oei
to Cei

.

For the remaining points of subscription, Step2 is replaced as follows.

• Subscription at process instantiation: A flow is added from the tran-
sition for start event es to Sei

.

7.2 petri net mapping 91

es

y1

y2

e1

e2

a … g

x1

x2

…

…

Subscription at Event Enablement

Subscription at Process DeploymentSubscription at Process Instantiation

Subscription at Engine Initiation

Process
Deployment (PD)

Engine Initiation
(EI)

Exclusive
Event

g

es Cei

OeiSei

P (es, a) P (xi, Cei) P (Cei, yi)P (PD, es)

es Cei

OeiSei

P (es, a)

PD

P (EI, PD) P (Cei, yi)P (xi, Cei)

es Cei

OeiSei

P (es, a)

PDEI

P (Cei, yi)P (xi, Cei)

Cei

Sei Oei

P (x, Se)

P (Cei, yi)P (xi, Cei)

Figure 40: Petri net modules for exclusive event construct.

• Subscription at process deployment: A flow is added from the transi-
tion for process deployment (PD) to Sei

.
• Subscription at engine initiation: A flow is added from the transition

for engine initiation (EI) to Sei
.

7.2.3 Points of Unsubscription

This section describes the Petri net mapping for points of unsubscrip-
tion (POU), as described in Section 6.3.2. The unsubscription of event e
is represented as transition Ue. Since unsubscription at event consump-
tion (POU1), at process undeployment (POU3), and at engine termina-
tion (POU4) are independent of the semantics of event construct, we
describe a universal mapping for them. For unsubscription at semantic
resolution (POU2), separate mappings are given for boundary event,
exclusive event, and racing event; since these are the only three event
constructs where it is applicable. Figure 41 summarizes the Petri net
modules for all points of unsubscription.

• Unsubscription at event consumption: The transition Ce, depicting
the consumption of the event e, is connected to the transition Ue

by an outgoing flow.
• Unsubscription at process undeployment: The transition PU, signify-

ing process undeployment, has an outgoing flow to Ue.
• Unsubscription at engine termination: The transition ET, signifying

engine termination, has an outgoing flow to Ue.

92 formal execution semantics

U
nsubscription at

E
vent C

onsum
ption

U
nsubscription at Sem

antic R
esolution

U
nsubscription at

P
rocess U

ndeploym
ent

U
nsubscription at

E
ngine T

erm
ination

C
e

U
e

P (x, C
e)P (O

e , C
e) P (C

e , y)

PU

U
e

P (PC, PU
)

P (PU
, ET)

ET

U
e

P (PU
, ET)

B
oundary E

vent
E
xclusive E

vent
R
acing E

vent

C
e1

C
e2

O
e1

O
e2

U
e1,e2

P (C
e1 , y

1)

P (C
e2 , y

2)

P (g, C
e1)

P (g, C
e2)

P (S
e1,e2 , O

e1,e2)

C
ei

P (x
i , C

ei)
P (C

ei , y
i)

U
ei

P (d
j ,U

ei)
P (O

ei , C
ei)

A
b

C
e

S
e

O
e

U
e

A
t

P (x, A
b)

P (A
t , y)

P (C
e , z)

A
c

Figure
4

1:Petrinet
m

odules
for

points
of

unsubscription.

7.2 petri net mapping 93

Semantic resolution in the context of unsubscription means the point
in time when it is clear that certain event(s) is not required for the
process execution any more. This signifies the event becoming an ob-
solete one (see Section 6.2, Figure 30). Mandatory event constructs are
required for each process instance, hence they are named ‘mandatory’.
But the other event constructs might become obsolete at specific points
depending on their semantics, as described next.

semantic resolution : boundary event. According to BPMN
semantics, the boundary event is only relevant if it occurs in between
the begin and termination of the associated activity. Thus, once the asso-
ciated activity terminates, the boundary event becomes obsolete. There-
fore, the unsubscription of a boundary event should be done either
after consuming the event, or when the associated activity terminates.
The Petri net mapping for unsubscription of boundary event therefore
contains two incoming flows to the place before the Ue; one from Ce,
and the other one from At.

semantic resolution : exclusive event. If an exclusive event
is subscribed at event enablement, then it is done after the particular
branch is already chosen. However, if subscription is done earlier, then
all the events situated in different optional branches can occur before
the control flow reaches the XOR gateway. In this case, as soon as the
decision is taken at the gateway and one branch is selected, the events in
other branches become obsolete. This is shown in the Petri net module
with the place P(dj,Uei

), where i, j ∈ N0, depicting the i-th and j-th
branch after the XOR gateway, and i��=j.

semantic resolution : racing event. Immediately after one of
the events following an event-based gateway occurs, the process takes
the path led by that event, and the other events become obsolete. This
makes not only the event occurrence, but also the order of event occur-
rence significant for racing events. If subscription is done earlier, the
temporal order of the event occurrences should be checked to make
sure that the process consumes the event that occurred first. In Fig-
ure 41, an outgoing flow is added from each event occurrence to the
transition representing combined unsubscription for all racing events
(Ue1,e2,...,en). This ensures the correct order of event consumption, since
the occurrence of an event passes the token to the input place for event
consumption and at the same time, it also enables the unsubscription
of all other events that were in race.

7.2.4 Event Buffering

This part of the chapter formalizes the concepts of event handling from
an event processing platform’s perspective. This includes registering
the subscription query, detecting a matching event, putting that in the

94 formal execution semantics

xSe ...

reg

Ce

rem

Process Execution

Event
Processing

Int

Int

id

id

id

id

id

Int x Int x Int

id

(t,id,p)

fretr(l)

ereqepp
sub Int Int x Int x Int

id

id

put getbuffer

List(Int x Int x Int x Int)

l

<(t,id,0,p),
l(0), …,l(|l|)>

l

l flife(l)

fcons(l)

src
sub

Oe

[glife(l)]

[not glife(l)]
(<>)

Ue

del

id

id

id

epp
unsub

src
unsub

...

id

P(POS, Se) P(Se,a) P(Ce, y) P(POU, Ue) P(Ue, z) P(b, x)

Event Source

P(x, Ce)

cep

events

Figure 42: Petri net showing event matching, correlation, and buffering.

buffer until the process execution claims it, and deleting the event query
when an unsubscription is issued. The semantics of our event model is
defined using the CPN, as shown in Figure 42. The net is parameterized
by functions used in the arc inscriptions to support the buffer policies
that will be explained later in this section. In essence, the net illustrates
the interplay of three levels: The business process execution, the event
processing platform (EPP) including the buffer functionality, and the
event source(s) in the environment. Similar to Figure 35 presented in
the beginning of this chapter, the event source is captured only by its
interface. However, now it communicates with the event processing
layer instead of the process execution. The interaction points to the
event source are given by three places: One capturing subscriptions
forwarded by EPP, one modelling the events detected from the envi-
ronment, and one passing the unsubscription from EPP to the event
sources.

The process execution layer sends the subscription to the event pro-
cessing layer, shown as the place epp sub. The subscription query is
abstracted from the model. Eventually the EPP forwards the token to
the actual event source in the environment, shown as the place src sub.
The EPP also keeps the token internally to correlate with the tokens
representing event notification. These tokens have a product colourset,
which represents the event’s timestamp, identifier, and payload (t,id,p).
We model all of them as integers (Int× Int× Int).

Once the events are received in EPP via the interface events, the com-
plex event processing techniques are applied, represented as the transi-
tion cep. The events that match with a registered subscription query are
accepted as occurrence of relevant events, represented by the place Oe.

7.2 petri net mapping 95

This conforms with the causality that a subscription should exist before
an event occurrence becomes relevant for the process execution.

Next, transition put stores the matching events in the buffer. Events
are kept in place buffer, which has a list colourset over the colourset
of stored events, initially marked with a token carrying an empty list
(denoted by (<>)). The buffer is extended with an additional integer
signifying a consumption counter. Once fired, transition put adds the
data of the token consumed from place Oe to this list.

Coming back to the process execution layer, at some point the control-
flow reaches the event node and the process is now ready to consume
the event stored in the buffer. This is done in a two fold manner. First,
the process instance requests an event from the buffer, as shown by the
token in the place req. This is done when the previous node of the event
(x) is terminated. Then, the process actually receives the event, repre-
sented by a token in the place e. Whereas inside the event processing
layer, transition get extracts the event from the buffer when requested.
This ensures that consumption of an event is possible only when there
is a subscription as well as the event has actually occurred.

When the process execution reaches the point of unsubscription, epp
unsub is passed to the EPP along with the id. The transition del fires
upon receiving the unsubscription request, and consumes the token
produced by reg for the same id, so that the event query is removed.
Also, the unsubscription request is forwarded to the event source, as
shown by the place src unsub. This satisfies the interdependency be-
tween subscription and unsubscription.

The transition rem in the buffer model controls which events shall be
kept in the buffer. This transition may fire if the transition guard glife

evaluates to true. Upon being fired, it applies function flife to the list of
the token in place buffer. This models the lifespan policy of the buffer.
The transition get is enabled as long as the transition to implement the
lifespan policy is disabled. The arc inscriptions fcons and fretr model the
consumption policy and the retrieval policy, respectively. The buffer
policies implemented by instantiating the respective guards and func-
tions are described in detail below.

lifespan policy. This policy is realized via the guard condition
glife, and function flife. The configurations can be defined as follows:

• Specific Length: Assuming that at most k events shall be kept in
the buffer, the guard condition for the transition to remove events
checks for the length of the respective list, i.e., glife is defined as
|l| > k. Then, function flife selects only the k most recent events,
i.e., flife(l) 7→ 〈l(n− k+ 1), . . . , l(|l|)〉.

• Specific Time: Assuming that there is a global variable g in the
CPN model that indicates the current time and a time window
of k time units, the guard glife checks whether some event fell

96 formal execution semantics

out of the window, l(i) = (t, id,n,p) with t < g − k for some
0 6 i 6 |l|. The respective events are removed, i.e., flife(l) 7→ l ′

where l ′(j) = l(i) = (t, id,n,p) if t > g− k and for i− j events
l(m) = (t ′, id ′,n ′,p ′), m < i it holds that t ′ < g− k.

• Keep All: In this case, the guard glife is simply set to false, so that
the function flife does not have to be defined.

retrieval policy. The retrieval policy is connected to the function
fretr. The different configurations can be achieved as follows:

• Last-In-First-Out: The last event of the list is retrieved in this case,
defined as fretr(l) 7→ l(|l|).

• First-In-First-Out: Here, the head of the list of events is retrieved,
considering the function fretr(l) 7→ l(0).

• Attribute-based: With π as a selection predicate evaluated over the
payload of events, the first of events that satisfies the predicate is
retrieved, i.e., fretr(l) 7→ (t, id,n,p), with l(i) = (t, id,n,p), such
that π(p) holds true and for all l(j) = (t ′, id ′,n ′,p ′), j < i, π(p ′)

is not satisfied.

consumption policy. Function fcons is used to implement the con-
sumption policy. This can be defined as:

• Consume: The event retrieved from the buffer, assuming its po-
sition in the list of events l is i, is consumed, i.e., not written
back to the buffer. This is captured by the following definition
of the function implementing the consumption policy: fcons(l) 7→
〈l(1),l(i− 1), l(i+ 1), . . . , l(|l|)〉.

• Reuse: The event is not removed from the buffer, i.e., fcons(l) 7→ l.

• Bounded Reuse: Assuming that an event can be consumed k-times
and with l(i) = (t, id,n,p) being the retrieved events, the function
to implement the consumption policy is defined as: fcons(l) 7→
〈l(1), . . . , l(i− 1), l(i+ 1), . . . , l(|l|)〉, if n > k, and fcons(l) 7→ 〈l(1),
. . . , l(i− 1), (t, id,n+ 1,p), l(i+ 1), . . . , l(|l|)〉, otherwise.

7.3 summary & discussion

The thorough formalization presented above reveals the internal behav-
iors of process execution and event processing when it comes to com-
municating via events. The Petri net mappings assign strong formal
grounding and clear execution semantics to the conceptual framework
introduced in Chapter 6. The Petri net modules for event constructs,
points of subscription, and points of unsubscription provide a complete

7.3 summary & discussion 97

understanding of the event handling notions. Defining each buffer pol-
icy individually makes the event buffering efficient enough to suit a
vast range of operations.

Both Petri nets and CPNs are intensely used for analyzing business
processes [37, 137]. Also, there exist standard ways to transform CPNs
to normal Petri nets [62]. The processes enhanced with event handling
configurations are, therefore, ready and well-suited for formal analysis.

The formalization opens several possibilities to explore the signifi-
cance of flexible event handling. Two such applications along with the
impact of event handling configurations are described in the next part
of the thesis (Chapter 8).

Part III

E VA L U AT I O N & C O N C L U S I O N S

8
A P P L I C AT I O N O F C O N C E P T S

The core concepts of this thesis have been introduced and elaborated in Part II.
In this part, the concepts are evaluated. This chapter highlights two

applications of the flexible event handling model introduced in Chapter 6 to
show the relevance of event handling configurations in process verification.

The applications are based on the formal semantics defined in Chapter 7. On
one hand, execution trace analysis shows how the interdependencies among

event handling notions play a role in correct process execution. Reachability
analysis, on the other hand, shows the range of allowed behaviors for a

communication model consisting of a process and its environment.

8.1 execution trace analysis

Process execution traces are used widely for conformance and correct-
ness checking of business processes [26, 76, 139]. This part of the
chapter discusses the correct process execution behavior considering
the newly introduced event handling semantics. Section 8.1.1 speci-
fies the constraints for each event construct varying with precise event
handling configurations which are needed to be true for correct execu-
tion of a process. The impact of choosing different configurations is
explored in Section 8.1.2. An initial version of the trace analysis con-
straints has been published in “A Flexible Event Handling Model for
Business Process Enactment” [79].

8.1.1 Correctness Constraints

The correctness constraints are temporal constraints based on the for-
mal semantics of event constructs, points of subscription, points of un-
subscription, and the interdependencies among them. All of the traces
conform to the basic temporal order Se < Oe < Ce ∧ Se < Ue for sub-
scription, occurrence, consumption, and unsubscription. In addition,
the constraints according to the chosen subscription configurations are
specified. The variation in the traces are highlighted whereas the paths
that remain same are shown in gray. The Petri net modules sketched
previously satisfy the constraints. For each event construct, a subset of
the allowed behaviors defined by the corresponding Petri nets are given
below.

traces for mandatory event. The temporal constraints com-
plying with correct execution behavior for a process containing a manda-
tory event e are given for each POS. Unsubscription is chosen to be done
at event consumption (POU1). The combined Petri net for mandatory

101

102 application of concepts

es Ce

Se Oe Ue

P (x, Ce)P (es, a) P (Ce, y)P (PD, es)

Figure 43: Petri net showing a mandatory event construct with subscription at
process instantiation and unsubscription at event consumption.

events with subscription at process instantiation and unsubscription at
event consumption is given in Figure 43. For the rest of the Petri net
modules, refer to Figure 37 and Figure 41.

Subscription at event enablement:
Subscription to event e should be done only after the previous transi-
tion x is executed, i.e., x < Se must hold.
EI,PD, es,a, . . . , x,Se,Oe,Ce,Ue,y, . . . , ee

Subscription at process instantiation:
Subscription should be done immediately after the start event has oc-
curred; the event is consumed after x is executed, i.e., es < Se < x < Ce

must hold.
EI,PD, es,Se,a, . . . , x,Oe,Ce,Ue,y, . . . , ee
EI,PD, es,Se,a, . . . ,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,PD, es,Se,a,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,PD, es,Se,Oe,a, . . . , x,Ce,Ue,y, . . . , ee

Subscription at process deployment:
Here, the subscription is done after process deployment but before pro-
cess instantiation. Thus, PD < Se < es < x < Ce must hold.
EI,PD,Se,es,a, . . . , x,Oe,Ce,Ue,y, . . . , ee
EI,PD,Se,es,a, . . . ,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,PD,Se,es,a,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,PD,Se,es,Oe,a, . . . , x,Ce,Ue,y, . . . , ee
EI,PD,Se,Oe, es,a, . . . , x,Ce,Ue,y, . . . , ee

Subscription at engine initiation:
Subscription is done after engine initiation, before process deployment,
i.e., EI < Se < PD < es < x < Ce must hold.
EI,Se,PD, es,a, . . . , x,Oe,Ce,Ue,y, . . . , ee
EI,Se,PD, es,a, . . . ,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,Se,PD, es,a,Oe, . . . , x,Ce,Ue,y, . . . , ee
EI,Se,PD, es,Oe,a, . . . , x,Ce,Ue,y, . . . , ee
EI,Se,PD,Oe, es,a, . . . , x,Ce,Ue,y, . . . , ee
EI,Se,Oe,PD, es,a, . . . , x,Ce,Ue,y, . . . , ee

8.1 execution trace analysis 103

c
o

n
f

i
g

u
r

a
t

i
o

n
m

a
n

d
a

t
o

r
y

e
v

e
n

t
b

o
u

n
d

a
r

y
e

v
e

n
t

r
a

c
i
n

g
e

v
e

n
t

e
x

c
l

u
s

i
v

e
e

v
e

n
t

Su
b

at
ev

en
te

na
bl

em
en

t
x
<
S
e

x
<
A

b
<
S
e
∧
O

e
<
A

c
g
<
S
e
1

,e
2

,.
..

,e
n

g
<
S
e
j

Su
b

at
pr

oc
es

s
in

st
an

tia
tio

n
e
s
<
S
e
<
x
<
C
e

–
e
s
<
S
e
1

,e
2

,.
..

,e
n
<
g
<
C
e
i

e
s
<
S
e
j
<
g
<
C
e
j

Su
b

at
pr

oc
es

s
de

pl
oy

m
en

t
P
D
<
S
e
<
e
s

–
P
D
<
S
e
1

,e
2

,.
..

,e
n

P
D
<
S
e
j

<
x
<
C
e

<
e
s
<
g
<
C
e
i

<
e
s
<
g
<
C
e
j

Su
b

at
en

gi
ne

in
iti

at
io

n
E
I
<
S
e
<
P
D

–
E
I
<
S
e
1

,e
2

,.
..

,e
n
<
P
D

E
I
<
S
e
j
<
P
D
<
e
s

<
e
s
<
x
<
C
e

<
e
s
<
g
<
C
e
i

<
g
<
C
e
j

U
ns

ub
at

ev
en

tc
on

su
m

pt
io

n
C
e
<
U

e
C
e
<
U

e
C
e
i
<
U

e
1

,e
2

,.
..

,e
n

C
e
j
<
U

e
j

U
ns

ub
at

se
m

an
tic

re
so

lu
tio

n
–

A
t
<
U

e
C
e
i
<
U

e
1

,e
2

,.
..

,e
n

d
i
<
U

e
j

U
ns

ub
at

pr
oc

es
s

un
de

pl
oy

m
en

t
P
U
<
U

e
P
U
<
U

e
P
U
<
U

e
1

,e
2

,.
..

,e
n

P
U
<
U

e
j

U
ns

ub
at

en
gi

ne
te

rm
in

at
io

n
E
T
<
U

e
E
T
<
U

e
E
T
<
U

e
1

,e
2

,.
..

,e
n

E
T
<
U

e
j

Ta
bl

e
1

:C
or

re
ct

ne
ss

co
ns

tr
ai

nt
s

fo
r

ev
en

t
ha

nd
lin

g
co

nfi
gu

ra
ti

on
s

104 application of concepts

traces for boundary event. For a process containing a bound-
ary event e associated with an activity A, the following should hold
for a correct execution with subscription at event enablement and unsub-
scription at event consumption: x < Ab < Se ∧ Oe < Ac. If unsub-
scription at semantic resolution is chosen, the constraint will rather be:
x < Ab < Se ∧Oe < Ac ∧At < Ue. Traces below show the possible be-
haviors, conformant to the Petri net for the boundary event in Figure 41:

EI,PD, es,a, . . . , x,Ab,Se,At,Ue,y, . . . , ee
EI,PD, es,a, . . . , x,Ab,Se,Oe,Ce,Ac,Ue, z, . . . , ee

traces for racing event. Some example traces showing the pos-
sible behavior of a net containing two racing events e1 and e2 are given
below. The POU is chosen as unsubscription at semantic resolution, as
shown in Figure 41. Note that unsubscription at event consumption results
in the same set of traces in this case, since a common unsubscription is
issued for all racing events as soon as one of them occurs. Therefore,
for POU1 and POU2, Ce < Ue1,e2,...,en also holds.

Subscription at event enablement:
The traces should comply with g < Se1,e2,...,en .
EI,PD, es,a, . . . ,g,Se1,e2

,Oe1
,Ue1,e2

,Ce1
,y1, . . . , ee

EI,PD, es,a, . . . ,g,Se1,e2
,Oe2

,Ue1,e2
,Ce2

,y2, . . . , ee

Subscription at process instantiation:
Here, es < Se1,e2,...,en < g < Ce must hold.
EI,PD, es,Se1,e2

,a, . . . ,g,Oe1
,Ue1,e2

,Ce1
,y1, . . . , ee

EI,PD, es,Se1,e2
,a, . . . ,g,Oe2

,Ue1,e2
,Ce2

,y2, . . . , ee
EI,PD, es,Se1,e2

,a, . . . ,Oe1
,Ue1,e2

,g,Ce1
,y1, . . . , ee

EI,PD, es,Se1,e2
,a, . . . ,Oe2

,Ue1,e2
,g,Ce2

,y2, . . . , ee
EI,PD, es,Se1,e2

,Oe1
,Ue1,e2

,a, . . . ,g,Ce1
,y1, . . . , ee

EI,PD, es,Se1,e2
,a, . . . ,Oe2

,Ue1,e2
, . . . ,g,Ce2

,y2, . . . , ee

Similar to mandatory events, PD < Se1,e2,...,en < es < g < Ce must
hold for subscription at process deployment and EI < Se1,e2,...,en < PD <

es < g < Ce must hold for subscription at engine initiation.

traces for exclusive event. The following traces show a subset
of allowed behaviors of the exclusive event construct e1 and e2 shown
in Figure 40. The temporal constraints for each POS are specified as
well. For unsubscription at event consumption, the usual condition Cei

<

Uei
holds. In case unsubscription at semantic resolution is chosen, dj <

Uei
should be true, where dj signifies the first node on j-th branch

given that i��=j.

8.1 execution trace analysis 105

Subscription at event enablement:
The traces for this POS should comply with g < Sei

.
EI,PD, es,a, . . . ,g,d1, . . . , x1,Se1

,Oe1
,Ce1

,Ue1
,y1, . . . , ee

EI,PD, es,a, . . . ,g,d2, . . . , x2,Se2
,Oe2

,Ce2
,Ue2

,y2, . . . , ee

Subscription at process instantiation:
The constraint for this POS is es < Sej

< g < Cej
. In addition, we

select unsubscription at semantic resolution. This means, once branch 1
is chosen, e2 is unsubscribed following semantic resolution, as shown
in Figure 41. However, e1 is only unsubscribed once it has occurred,
i.e., at consumption. Therefore, es < Sej

< g < Cej
∧ di < Uej

must be
true here.
EI,PD, es,Se1,e2

,a, . . . ,g,d1,Ue2
, . . . , x1,Oe1

,Ce1
,Ue1

,y1, . . . , ee
EI,PD, es,Se1,e2

,a, . . . ,g,d2,Ue1
, . . . , x2,Oe2

,Ce2
,Ue2

,y2, . . . , ee
EI,PD, es,Se1,e2

,a,Oe1
, . . . ,g,d1,Ue2

, . . . , x1,Ce1
,Ue1

,y1, . . . , ee
EI,PD, es,Se1,e2

,Oe1
,a, . . . ,g,d2,Ue1

,Oe2
, . . . , x2,Ce2

,Ue2
,y2, . . . , ee

For subscription at process deployment and subscription at engine initiation,
PD < Sej

< es < g < Cej
and EI < Sej

< PD < es < g < Cej
must hold,

respectively.

Table 1 summarizes the correctness constraints for each point of (un)-
subscription, categorized by the event constructs. The event construct is
detected at design time following the definitions provided in Section 6.2.
Depending on the usecase need and data dependency for subscription,
the event handling configurations are chosen. The complete clause for
correctness constraints is derived combining the constraints for POS
and POU with a logical AND operator. To this end, the trace analysis
is done to evaluate the process execution traces.

8.1.2 Impact of Event Handling

This section turns to apply the correctness constraints defined above to
the motivating example illustrated in the motivating example presented
in Figure 27 in Chapter 6. We consider only the logistics company’s
process, i.e., the process executed by “Process Engine”. We identify the
intermediate catching events “Confirmation Received”, and “Traffic
Update” as mandatory event constructs and the other events as racing
event constructs. We limit the analysis to the point until the event
“Traffic Update” is received, as shown in Figure 44.

Now, we select the event handling configurations to be subscription
at event enablement and unsubscription at event consumption for both the
mandatory events. The resulting Petri net including transitions for en-
gine initiation and process deployment is given in Figure 45 (the labels
of the process nodes are abbreviated).

106 application of concepts

Motivating Example - Traces

Tr
uc

k
D

ri
ve

r

Truck Driver

Pick-up Req
Received

Drive to Euro Tunnel
Check-in

Drive to Ferry
Check-in

Cross Strait
of Dover

Register at
Ferry

Transport Plan
Received

Drive to
PU Center

Pick up
Goods

Confirmation
Sent

Updated Transport
Plan Received

Pr
oc

es
s

En
gi

ne

Process Engine

Prepare
Transport

Plan
Transport
Plan Sent

Significant Delay
at Euro Tunnel

Update
Transport

Plan

Distribute
Orders for

Local Delivery

Updated
Transport
Plan Sent

Ferry Registration
Received

Arrival
Time

Confirmation
Received

Pick-up
Req Sent

Traffic
Update

Finalize
Transport

Plan

Order
Received

Complex Event Processing Engine

Ferry Status
Update

Adapt Local
Delivery Plan

Figure 44: Excerpt from motivating example presented in Figure 27 in Chap-
ter 6.

The correct trace with these configurations is:
EI,PD,OR,PRS,SCR,OCR,CCR,UCR,PTP,STU,OTU,CTU,UTU, FTP

Next, we change the point of subscription to subscription at process in-
stantiation. The point of unsubscription remains the same. The Petri net
with the changed event handling configurations is shown in Figure 46.

The set of correct traces is:
EI,PD,OR,SCR,TU,PRS,OCR,CCR,UCR,PTP,OTU,CTU,UTU, FTP
EI,PD,OR,SCR,TU,PRS,OCR,CCR,UCR,OTU,PTP,CTU,UTU, FTP
EI,PD,OR,SCR,TU,PRS,OCR,CCR,OTU,UCR,PTP,CTU,UTU, FTP
EI,PD,OR,SCR,TU,PRS,OCR,OTU,CCR,UCR,PTP,CTU,UTU, FTP
EI,PD,OR,SCR,TU,PRS,OTU,OCR,CCR,UCR,PTP,CTU,UTU, FTP
EI,PD,OR,SCR,TU,OTU,PRS,OCR,CCR,UCR,PTP,CTU,UTU, FTP

OR

OCRSCR

PDEI

PRS PTP CTUCCR

UCR OTUSTU UTU

P (CTU, FTP)

Figure 45: Petri net with subscription at event enablement and unsubscription at
event consumption.

8.1.3 Discussion

From the traces presented above, it is evident that for the intermedi-
ate event construct “Confirmation Received”, even if the subscription

8.2 reachability analysis 107

OR

OCRSCR,TU

PDEI

PRS PTP CTUCCR

UCR OTU UTU

P (CTU, FTP)

Figure 46: Petri net with subscription at process instantiation and unsubscription
at event consumption.

is done at different points, the event CR will always take place after
the previous node PRS is executed. The reason is the process causality
explained in Section 6.1 which restricts the temporal ordering of an
event occurrence based on the completion of predecessor tasks. Exist-
ing BPMN semantics are perfectly applicable for these scenarios.

However, for the intermediate event construct “Traffic Update”, the
traces show more variety with different event handling configurations.
Depending on the time of subscription, the event integration gets more
accommodating here. If the traffic update is published only when there
is a significant change in the traffic situation, and that happens earlier
than the process engine is ready to consume it, the information car-
ried by the event can still be used. In case the traffic update events
are published periodically and there are several update events by the
time the logistics company actually needs the information to finalize
the transport plan, they can either refresh the buffer to store just the
latest event, or consume the last event stored in the buffer using the
buffer policies. In this case, the use of a flexible event handling model
decreases the probability of the process execution getting delayed or
stuck forever due to the lag between event occurrence and the process
being ready for consumption.

8.2 reachability analysis

Since process models are at the heart of business process management
(see Section 2.1), techniques for workflow verification are extensively
used for model checking [3, 123]. Especially soundness has been estab-
lished as a general correctness criterion for process models, requiring
the option to reach a final state, a proper characterization of the final
state, and the absence of dead activities that cannot contribute to pro-
cess execution. Most of the formal verification techniques, however,
focus on control flow structure. There are some works that combine
data values with control flow for soundness analysis or decision con-
formance in workflow [15, 115]. Nevertheless, none of these works

108 application of concepts

consider event handling information, although events have significant
influence on process execution.

The verification problem we focus on is to analyze reachability for a
certain state in a process, under a certain event handling configuration.

Acknowledgements This part of process verification is an ongoing work in collaboration
with Prof. Dr. Matthias Weidlich.

To address the reachability problem, we choose a path in the process
model M leading to an intermediate event execution, where the event
is equipped with specific event handling configurations. As a next step,
we try to find a set of paths in the environment that will ensure the
process reaches a desired state, referred to as corresponding path(s).

The event handling concepts described in Chapter 6 constitute several
configurations that can be used for an event subscription. For instance,
subscription and unsubscription can be done at different points, events
can be buffered or not, and a single event can be consumed once or
multiple times. We scope the current verification with the following
two configurations of event handling:

• Subscription configuration: by setting the point of subscription
to subscription at event enablement (without buffering) or early sub-
scription (with buffering).

• Consumption configuration: by selecting the consumption policy
for the buffer as consume or reuse.

In Section 8.2.1, we introduce the formal communication model rep-
resenting the interaction behavior of a process and the environment.
Later, in Section 8.2.2, we discuss how event handling configurations
might extend the possible behavior of the environment to complement
the process model interaction.

8.2.1 Communication Model

The communication model is built with a process model and its corre-
sponding environment model. The process listens to the environment
by receiving events, and reacts on the environmental occurrences fol-
lowing the process specification for further activities, decisions, and
the events generated during process execution, i.e., the sending events.
The internal behavior of the environment is usually unknown to the
process and vice versa. Since the current process verification considers
only the interactions between process and environment, and is inde-
pendent of the internal behaviors, a transition system represents the
communication model efficiently.

Definition 8.1 (Transition System).

A Transition System is a tuple TS = (S, T , s0) with
• a set of states S,

8.2 reachability analysis 109

• a set of transitions T , and
• an initial state s0 ∈ S.
• Let the set of events E = {a, ..., z}, where {a, ..., z} are the labels of

events.
• Let the set of interactions IE = {?, !}× E ∪ {τ}, where ! is the inter-

action mode for sending an event, ? is the interaction mode for
receiving an event, and τ is the time interval.

• The set of transitions T ⊆ S× IE× S.
�

A motivating example for reachability analysis including event han-
dling is given in Figure 47. Using the transition diagram notation, only
the interaction points are shown and internal activities are abstracted.
We model both the process and the environment with separate transi-
tion systems. The filled circles represent states and the arrows repre-
sent the transitions responsible for the state changes. Syntax of transition

system
The initial state

is marked with an additional arrow that has no previous state. The
question mark (?) signifies receiving an event, whereas the exclamation
mark (!) depicts sending of an event. The transitions are labeled with
the events along with the interaction mode. The transition showing the
10 min interval in the process model is an example of τ.

The process model interaction shows that after sending two messages
x and y, the process waits for z. After receiving z, the process sends
w. If z does not occur within those 10 min, the system goes to an error
state, represented by the event e. From the model alone, we cannot tell
how probable it is to reach the error state.

!x !y

?z

10m

!w

!e

s0 s1 s2

s3 s4

s5 s6

:

?x !z?y

?x !z ?y

s0 s1 s2 s3

s0 s1 s2 s3

:

:

Figure 47: Transition diagram for a process model (M) and corresponding en-
vironment models (E, E ′).

If we mirror the interactions of M, we get E, where upon receiving
x followed by y, z is produced. Considering E as the environment
model, we see that z will definitely be published after y is received.
If we assume that the transitions do not take time, i.e., z is published
right after receiving y, the system will never reach the error state and
the process remains always sound. However, the environment model
does not necessarily map to process interaction order. For instance, E ′

suggests another environment model where z is produced after receiv-
ing x, and only after that the environment expects y and z. Since z is
already produced, the process misses it, leading to the error state for

110 application of concepts

sure. This situation can be avoided by issuing an early subscription [81].
For example, if subscription to z is made before or immediately after
sending x, the process will not miss out on the event occurrence.

An early subscription in this context can be whenever the process has
enough information to subscribe to the specific event source. This can
be immediately after process instantiation or anytime afterwards until
the event node is reached. According to the transition system, the point
of subscription means a state in between initial state and the state that

!x !y

?z

10m

!w

!e

s0 s1 s2

s3 s4

s5 s6

sub. at
enablement

early
subscription

:

Figure 48: Different subscription configu-
rations for receiving event z.

signifies the consumption of
the event. In Figure 48, if we
consider the subscription for
event z in the process model
M, subscription at event enable-
ment will be represented by the
state s2. On the other hand,
early subscription will mean any
of the states s0 or s1. Since the

same event can be received more than once in a process, the state rep-
resenting point of subscription for a specific event has to be on all the
paths that lead to a transition carrying the same label as the event.

8.2.2 Impact of Event Handling

Let us consider the process model M visualized in Figure 49 where the

!x ?y
M:

?z
s0 s1

s2

s3 s4?z

Figure 49: Process Model M communi-
cating with environment.

process is instantiated at s0.
Sending the event x takes the
process into its next state s1.
Now, two things can happen.
The process might receive y and
go to state s2. Otherwise, z is
received twice in a row and the
process goes to s4, via the inter-
mediate state s3. The rest of the section describes how the set of cor-
responding paths differ for the states in M, depending on the different
event handling configuration chosen for the events to be received by M.

subscription configuration. The reachability of the state s3
is of concern for the first verification assignment. The path to satisfy
F(s3) in M would be the sending of x followed by the receiving of z.
We select the subscription configuration as subscription at enablement,
(i.e., subscription is done at s1) and the consumption configuration as
consume to begin with. For this event handling configuration, we can
simply mirror the path in M and find the corresponding path in E. The
corresponding path in this case would be ?x followed by !z, as shown
in Figure 50. The environment can not emit z before receiving x for this
scenario.

8.2 reachability analysis 111

Corresponding paths in E:

?x !z

sub. at
enablement

?x!z

?x !z

early
subscription

!x ?z
Path in M:

s0 s1 s3

Figure 50: A chosen path in process and the set of corresponding paths in
environment with varying subscription configuration.

Next, we change the subscription configuration to early subscription.
The mirrored path still belongs to the set of corresponding paths. How-
ever, say we consider the early point of subscription as s0, and start
buffering the events. With the current configuration, even if the envi-
ronment emits z before it receives x, we can get the notification and
store z in buffer for later consumption. This shows how moving the
subscription to an earlier point adds more behavior of the environment
as corresponding path, resulting in more flexibility for the process com-
munication.

consumption configuration. The verification assignment now
turns to the impact of consumption policy of the buffer. Here, the reach-
ability of state s4 is verified, i.e., F(s4). The path in M for this is sending
of x, followed by receiving z two times consecutively. We set the sub-
scription configuration to be early subscription to store the events in a
buffer. Selecting the consumption configuration as consume will result
in deleting the event from the buffer as soon as it is used in the process.
Therefore, the environment needs to produce two events of type z to
satisfy the corresponding path requirement. The set of corresponding
paths for different consumption policies are shown in Figure 51.

Corresponding paths in :

?x !z

consume

!z

?x !z

reuse
?x !z !z

!x ?z
Path in M:

?z
s0 s1 s3 s4

Figure 51: A chosen path in process and the set of corresponding paths in
environment with varying consumption configuration.

112 application of concepts

To compare the impact, we now change the consumption configu-
ration to reuse. The subscription remains the same as before. Since
event information can be used more than once, it is sufficient if the en-
vironment produces z only once. This leads to the set of corresponding
paths containing two options rather than one. Again, setting the event
handling configuration differently extends the allowed environmental
behavior for the same process path.

8.2.3 Discussion

The last section shows how different event subscription and consump-
tion configurations in a process result in different sets of correspond-
ing paths in the environment. Having shown the influence of event
handling configurations on workflow reachability, this section turns to
exploit further applications of the concepts. Later, the exceptions and
further restrictions in applicability are discussed.

further application ideas . The workflow verification with ad-
ditional event handling concepts leads to further application areas such
as synthesis. If process model and event handling configuration are
known, assumptions on the environment can be synthesized. First, the
controllability can be evaluated by checking if there exists at least one
environment model that complements the process model. From the
above discussion, it can be answered as below:

∀ paths of M, ∃ corresponding set of paths P.
If ∃ p ∈ P in E, then E completes the composed process model.

This further leads to adapter synthesis to generate an environment that
supports correct composition of a communication model. Another area
of application can be to extend the formal properties that can be eas-
ily verified once the reachability analysis has been done for a process
model. For example, it can be concluded that “any corresponding path
for subscription at event enablement is also a corresponding path for early
subscription of the same event”.

limitations of the approach . Though the event handling no-
tions make workflow verification more precise and powerful, there are
certain scenarios where a more careful application of the concepts is
required. So far we have considered the event handling configurations
only for subscription and consumption. In Figure 52, a slightly differ-
ent version of M is shown where instead of two z in a row, it needs
z followed by w. For reachability of F(s4) with early subscription and
reuse for both z and w, the set of corresponding paths are listed in the
figure. Additionally, if we include the retrieval policy, then not only the
event occurrences, but also the order of their occurrences will matter.

Let’s say we select the retrieval configuration as FIFO. According to
the process semantics, when x is sent, M will wait for z. The cor-

8.2 reachability analysis 113

!x ?y
M:

?z
s0 s1

s2

s3 s4?w

Corresponding paths in E:

!x ?z ?w
s0 s1 s3 s4

Path in M:

?x !z !w ?x !w !z

!w ?x !z

!w !z ?x

!z ?x !w

!z !w ?x

Figure 52: A chosen path in the process and the set of corresponding paths in
environment with early subscription for z and w.

responding paths listed on the left will fit the need as whenever the
process is done sending x, it can consume first z and then w from the
buffer. Note that among the list of corresponding paths, there are three
parts (listed on the right) where w occurs before z. In these cases, even
if z is there in the buffer, it will be blocked by w. The process will thus
get stuck due to using the wrong event handling configuration. On the
contrary, selecting the retrieval configuration as LIFO should exclude
the corresponding paths on the left side from correct process behavior.

In addition, depending on the modeling notation used to describe the
workflow, there might be further restrictions on verification. Figure 53

shows a process modeled with BPMN [94]. After the sending task A,
the control flow enables the subprocess consisting of tasks B and C.
Once C is completed, the process executes E and reaches the end state.
However, while the subprocess is running, the occurrence of the event
e will abort the ongoing task and trigger the exceptional path leading
to D. The corresponding transition diagram is visualized such that the
occurrence of e after s1 or s2 will change the state to s5 instead of s3.

!A !B
s0 s1 s2

s5 s6

s3
s4

!C !E

?e ?e
!D

Figure 53: BPMN process model with boundary event and the corresponding
transition system.

114 application of concepts

According to BPMN semantics for attached boundary events, the
subscription is issued once the associated subprocess (or activity) is
activated. Thus, the state representing subscription at enablement is s1.
Using the flexible event handling configuration, the process can start
listening to e earlier, for example already at s0. But this will violate the
semantics of BPMN boundary event since the occurrence of the events
is only valid during the running phase of the subprocess. Therefore,
using event buffering in this case will add incorrect behavior to process
execution.

8.3 summary

This chapter revisited two interesting and popular applications in pro-
cess verification, namely, execution trace analysis to verify correctness,
and reachability analysis to verify soundness. The applications are
based on formal semantics of the event handling configurations intro-
duced as the core concepts of the thesis. Both the applications discuss
the impacts of event handling concepts with the help of example pro-
cesses. Correctness criteria are given for each subscription and unsub-
scription point that ensure correct event handling semantics during ex-
ecution of a process instance. Trace analysis based on those correctness
criteria shows that choosing an early point of subscription increases
the time window to get notifications about an event occurrence, and
decreases the chance of a process missing out on a published event that
is still relevant for process execution. The verification of process reach-
ability is done by expressing a process as a transition system, choosing
a specific path with specific event handling configurations, and finding
the set of corresponding paths in the environment the process is in-
teracting to. This enhanced reachability analysis shows that early sub-
scription and reuse of event information allows for more behaviors of
the environment to complement process execution. In essence, both the
applications strengthen the claim that considering the event handling
concepts explicitly adds flexibility to event-process communication.

9
P R O O F - O F - C O N C E P T I M P L E M E N TAT I O N

After discussing the significance of flexible event handling in process
execution, this chapter now evaluates the feasibility of event handling

concepts. First, we present the implementation details of the integration
framework discussed in Chapter 5. This includes individual descriptions of

the components Gryphon (process modeler), Chimera (process engine),
Unicorn (event processing platform); and the communication steps between
them which realize the event-process integration. Later, we extend the basic
framework with flexible event handling notions presented in Chapter 6. For

this part of the implementation we use the Camunda process engine to
strengthen the generic applicability of our approach. Along with the papers

publishing the concepts, the implementation work has been discussed in detail
in the Master thesis “Flexible Event Subscription in Business

Processes” [136]. Also, part of the work has been showcased in the demo
papers “Unicorn meets Chimera: Integrating External Events into Case

Management” [20], and “Testing Event-driven Applications with
Automatically Generated Events” [126].

9.1 basic event interaction

We presented the system architecture in Section 5.3 (refer to Figure 25).
The generic architecture is realized with specific components and in-
terfaces as shown in Figure 54. Also, the sequence of integration is
visualized with five steps. In the following we first discuss each of the
components in detail. Further, we outline the steps of integration in a
sequential manner.

Unicorn Chimera

GryphonModel
Repository

Cl Web
Browser

Client

Cl Web
Browser

Client

HTTP

HTTP

R

R

REST

SOAP /
REST

SOAP/
REST

ACTIVE MQ / REST

(1) Publish Process Model

(2) Register Event Types
and Event Queries

(3) Send Events
(Raw Event)

(4) Notify
(5) React to Events

Event
Source

Event
Source

Event
Source

Figure 54: Detailed system architecture showing specific components and the
sequence of integrating events into processes.

115

116 proof-of-concept implementation

User
Interface

Persistence Layer

Core Importer

Query
Processor

Event
 Types

Events

Queries

Correlation
Keys

R

R R

R

R

UNICORN Event Processing PlatformDatabase

Web
Service

R

External
Data

Query Processing
Engine

 (ESPER)

Event
Gateway

R

R

R

Figure 55: Architecture of event processing platform Unicorn.

9.1.1 Unicorn Event Processing Platform

Unicorn is a complex event processing platform built at the chair of
Business Process Technology1 at Hasso Plattner Institute, University of
Potsdam. The first version of Unicorn was developed in the context
of the Green European Transport (GET) Service project2 [18], funded by
European Union (October 2012 – September 2015). Since then, it has
been extended to add more features needed for several research and
student projects. The complete Unicorn project is open-source software,
the current version is available under the GNU General Public License
2.0 on GitHub3.

Unicorn is a web-based platform, written in Java, using Wicket4 as a
front-end framework. The event types, event queries, and notifications
can be managed both via a web-based UI and a REST API5. The options
available to receive notifications are via email, through the Java Message
Service (JMS)6, by calling back registered REST endpoints, or by view-
ing them in the UI. For event processing, Unicorn is connected to the
Esper engine7. Esper is a complex event processing engine, developed
and marketed by EsperTech, and uses the expressive query language
Esper EPL8.

1 https://bpt.hpi.uni-potsdam.de/Public/

2 http://getservice-project.eu/

3 https://github.com/bptlab/Unicorn

4 https://wicket.apache.org/

5 https://restfulapi.net/

6 https://docs.spring.io/spring-integration/docs/2.0.0.M2/

spring-integration-reference/html/ch19s06.html

7 http://www.espertech.com/products/esper.php

8 http://esper.espertech.com/release-7.1.0/esper-reference/html/index.html

https://bpt.hpi.uni-potsdam.de/Public/
http://getservice-project.eu/
https://github.com/bptlab/Unicorn
https://wicket.apache.org/
https://restfulapi.net/
https://docs.spring.io/spring-integration/docs/2.0.0.M2/spring-integration-reference/html/ch19s06.html
https://docs.spring.io/spring-integration/docs/2.0.0.M2/spring-integration-reference/html/ch19s06.html
http://www.espertech.com/products/esper.php
http://esper.espertech.com/release-7.1.0/esper-reference/html/index.html

9.1 basic event interaction 117

The internal architecture of Unicorn is modeled in Figure 55. As
seen in the Fundamental Modeling Concepts (FMC) Diagram9, there are
several ways Unicorn can connect to event sources. Event sources can
send events using Unicorn’s REST API or publish them to a specific
JMS channel which Unicorn listens to. This is feasible if the code of
the event source can be changed or an intermediary gateway is used
which collects events, for example from sensors, and forwards them to
Unicorn. Historic events represented as comma-separated values (csv)
or spreadsheets (xls) can also be parsed and imported as event streams
using the Unicorn UI10.

Another way of getting events in Unicorn is active pulling. This is
done by calling the web services or consuming RSS feeds in a periodical
manner. For active pulling, adapters have to be configured separately
for each event source. Unicorn provides a framework to extend the ex-
isting adapters with low amount of effort, which is found in the module
importer. For testing event-driven applications, Unicorn offers a built-
in event generator that uses value ranges and distributions to generate
realistic events. More details about the event generator can be found
in [126].

The core of Unicorn is responsible for triggering and managing oper-
ations such as event aggregation and composition based on the Esper
rules. The query processor connects the core to the Esper query processing
engine. Additionally, Unicorn maintains a database for storing event
types, queries, correlation keys and more, which can be fetched by the
core component through a persistence layer. The internal communica-
tion of Unicorn is discussed more while describing the steps of event
integration, found later in this section.

9.1.2 Gryphon Case Modeler

Gryphon is a web-based modeler that builds on a Node11 stack and uses
bpmn.io12. bpmn.js is an open-source BPMN modeler implemented in
Javascript by Camunda13, while the other components are developed
by BPT chair at HPI. Camunda modeler is suitable for modeling the
core elements of BPMN, such as different kinds of tasks, sub-processes,
split and join gateways, pools and lanes, and data objects. Start and
end events, catching and throwing intermediate events like message,
timer, signal, link, escalation, conditional, and compensation can also
be modeled. Gryphon extends bpmn.io so as to create a data model,
i.e., the specification of data classes and attributes used in a process
model. The data classes are defined along with the states and valid state
transitions for their instances, i.e., data objects at runtime, called object

9 http://www.fmc-modeling.org/

10 https://bpt-lab.org/unicorn-dev/

11 https://nodejs.org/

12 http://bpmn.io/toolkit/bpmn-js/

13 https://camunda.com/

http://www.fmc-modeling.org/
https://bpt-lab.org/unicorn-dev/
https://nodejs.org/
http://bpmn.io/toolkit/bpmn-js/
https://camunda.com/

118 proof-of-concept implementation

Figure 56: Modeling of subscription queries with extended field (in right) for
event annotation in Gryphon.

life cycle. To realize the event integration, we enhanced Gryphon with
the functionality to annotate process elements with event annotations
and model event types.

The data model editor in Gryphon provides the option to distinguish
between data classes and event types. Essentially, both of them are
named sets of typed attributes. However, if they are specified as an
event type then they are registered in Unicorn at the time of deploy-
ment of the process model. We decided to reuse the symbol for catch-
ing message events to model external events, since event notifications
can be considered as messages. The catching message events can be
annotated in Gryphon with event subscription queries which are regis-
tered in Unicorn. As Unicorn builds around Esper, the event queries
are required to be written in EPL (SELECT * FROM LongDelay). These
event annotations are used as event binding points, as described in
Section 5.3.3. Figure 56 is a screenshot taken of Gryphon that shows an
example of modeling event queries, represented as an event annotation.
The detailed description of the features can be found here14 while the
source code is published here in GitHub15.

In addition, for saving the event information carried by the events,
we annotate the data object in the modeler. Technically, this mapping
is achieved by representing event notifications in the JSON notation16

and giving a path expression for each attribute of the target data object.
Writing data object values from event notifications is depicted in the
screenshot of Gryphon in Figure 57 which shows the boundary event
and the property editor for the data object. Here, the LongDelay event
will be stored in the data object Delay in the state created and will
consist of three attributes — reason, duration, and location.

14 https://bpt.hpi.uni-potsdam.de/Gryphon/GettingStarted

15 https://github.com/bptlab/Gryphon

16 http://goessner.net/articles/JsonPath/

https://bpt.hpi.uni-potsdam.de/Gryphon/GettingStarted
https://github.com/bptlab/Gryphon
http://goessner.net/articles/JsonPath/

9.1 basic event interaction 119

Figure 57: Event data from LongDelay is written into a newly created data
object Delay using a JSON path expression.

9.1.3 Chimera Process Engine

The development of the Chimera process engine was initiated at the
BPT chair at HPI during a project with Bosch Software Innovations
GmbH (2014-2018) [55], focusing on fragment-based case management
(fCM) [57]. Since then, it has been extended and adapted vastly for
specific applications by students as well as by researchers. Since fCM is
a conservative extension to BPMN, processes modeled using BPMN can
be executed using Chimera as with any other standard process engine.
The current version of Chimera source code can be found on GitHub17.
The documentation and user guide can be accessed here18. The archi-
tecture of the Chimera process engine is presented in Figure 58.

Chimera has a frontend built in AngularJS19 that displays the de-
ployed process models. The dashboard lets the user start a new instance
or work on an existing instance. For an ongoing instance, the enabled
activities are shown, which users can start and terminate. When termi-
nating an activity, the user can add the values of data object attributes
and change the state of a data object according to the data output set
specified in the model. The Activity Log, Data object Log, and Attribute
Log visualize the history of state changes for activities, data objects, and
data attribute values, respectively. The frontend communicates with the
engine using a REST endpoint.

The backend of the engine has several components. The comparser
fetches the models from the process editor, deserializes the BPMN ele-
ments, and stores them in the database. The execution of the process
models is controlled by the core component following BPMN semantics
(and the fCM specification, in case it is a case model). Termination of
each activity makes the core recompute the next set of enabled activities.
If the next activity is a web service, it is automatically executed by the
engine.

17 https://github.com/bptlab/chimera

18 https://bpt.hpi.uni-potsdam.de/Chimera/WebHome

19 https://angularjs.org/

https://github.com/bptlab/chimera
https://bpt.hpi.uni-potsdam.de/Chimera/WebHome
https://angularjs.org/

120 proof-of-concept implementation

REST

Parser

AnalyticsCore

Chimera
Process Engine

Chimera Frontend

Gryphon
Process
Modeler

R

Database History
R R

Engine
Database

R R

R

R

R

Figure 58: Architecture of the Chimera process engine .

The History module is responsible for storing the state changes of
the activities and data objects, along with the values of the data object
attributes. This produces the event log that can be used for process
monitoring during the execution and process mining applications later.
The analysis algorithms and methods can be accessed using the REST
interface from the analytics module. Nevertheless, the history of a pro-
cess execution can also directly be accessed from the History module
and analyzed separately. The database is the access layer to the reposi-
tory, which is MySQL20 in our case.

9.1.4 Event Integration Sequence

After having introduced the components building the system architec-
ture, this section turns to the interplay of them that realizes the inte-
gration in five steps. The steps are visualized with the architecture
in Figure 54. Further, the sequence of communication is recorded in the
sequence diagram shown in Figure 59.

(1) publish process model . The process is modeled in Gryphon
using BPMN syntax and semantics. The catching events are annotated
with subscription queries. Corresponding data object lifecycles (OLC)
are modeled such that the state changes modeled in the process are
consistent with the state changes defined in the OLC. Once the model
is completed, it is deployed in Chimera using the REST API, sent as a
JSON file.

20 https://www.mysql.com/

https://www.mysql.com/

9.1 basic event interaction 121

Gryphon
Process Modeler

Chimera
Process Engine

Unicorn
Event Platform

Process Model

loop Event Type

loop Event Query

Start
Instance

Event Query

Generate
 Event

Delete Query

Event Notification

Consume
Event

Figure 59: The sequence of communication between Gryphon, Chimera, and
Unicorn for the integration of events into processes.

(2) register event types and event queries . At deployment,
the event types modeled in the process are registered in Unicorn, along
with the REST callback path of Chimera. For the start event, the event
query is also registered at this point. The start event remains registered
until the process is deleted. A process instance can be started either
by receiving an event from Unicorn or manually in Chimera. For the
intermediate catching events, the queries are registered when the con-
trol flow reaches the event node during execution. These queries are
unregistered from Unicorn when the event is consumed or skipped. If
the abstraction rules for events are not already defined by the event
engineer, this is done at this point. For each registered query, Unicorn
sends back a unique ID to Chimera for further correlation.

(3) send events . Unicorn starts listening to the event sources and
transforms the raw events according to the abstraction rules. The event
sources might stream the events to the REST endpoint or JMS channel
of Unicorn, or Unicorn can proactively pull the information from a

122 proof-of-concept implementation

Web API periodically. Unicorn keeps evaluating abstraction rules upon
receiving each event to check whether any of the rules has been satisfied
completely or partially.

(4) notify. Once all the information necessary for one higher level
event is available, Unicorn generates the business event. The event is
then sent to the REST callback path provided by Chimera.

(5) react to events . Upon receiving a start event, an instance of
the corresponding process is started. For an intermediate event, the
associated BPMN semantics are followed, e.g., to consume the event, to
abort an ongoing activity, or to decide on the further execution branch.
If the event attributes are mapped to a JSON path expression during
modeling, the attribute values are stored in a data object. Once con-
sumed, a DELETE request is sent to Unicorn that unsubscribes Chimera
from further notification of the event. In case of boundary events that
did not occur, the DELETE request is sent once the associated activ-
ity terminates. For start events, the unsubscription is done at process
undeployment.

9.2 flexible event subscription with buffering

Having illustrated the basic integration architecture for event-process
communication, this section extends the implementation framework
presented above to enable flexible event handling. The implementa-
tion follows the concepts presented in Chapter 6 and demonstrates the
proof-of-concept of flexible subscription. Unicorn is again used as the
event processing platform. Instead of Chimera, the open-source pro-
cess engine Camunda21 has been used to show that an off-the-shelf
process engine that follows BPMN semantics, can be extended with
flexible event handling configurations with only minor changes. First,
the necessary extensions made to BPMN are elaborated in Section 9.2.1.
Next, the adjustments made in Unicorn (Section 9.2.2) and Camunda
(Section 9.2.3) are described.

This part of the implementation has been majorly done by Dennis
Wolf in context of his Master thesis [136], written at the chair of Business
Process Technology, supervised by the author. In the Master thesis, an
extended version of the BPMN+X model published in [81] has been
presented. Further, the following five event occurrence scenarios (EOS)
have been identified:Acknowledgements

1. EOS1: The event occurs while the catch element is enabled
2. EOS2: The event does not occur at all
3. EOS3: The event occurs between process instantiation and the

enabling of the BPMN event

21 https://camunda.com/products/bpmn-engine/

https://camunda.com/products/bpmn-engine/

9.2 flexible event subscription with buffering 123

4. EOS4: The event occurs between process deployment and process
instantiation

5. EOS5: The event occurs before the deployment of the process in
the process engine

To accommodate all of the above scenarios Camunda has been extended
with a Process Engine Plugin and the source code of Unicorn has been
adapted (cf. Figure 62). The downloadable code for the extended archi-
tecture can be found on GitHub22.

9.2.1 BPMN Extension

BPMN 2.0 offers an extension mechanism to add new features while
still being compliant to the standard (see BPMN 2.0, Section 8.2.3 [94]).
We formalize the extension as a BPMN+X model, a UML profile [95] de-
fined for using the BPMN extensibility concepts ExtensionDefinition and
ExtensionAttributeDefinition. The extension is developed around the ad-
dition of subscription-related attributes to the BPMN Message type, as
shown in Figure 60 using green color. Based on the additional informa-
tion, subscription and unsubscription for message events are handled
by the associated process engine. Extending the Message reflects the
adaptations to intermediate catching message events as well as the re-
ceive tasks. If a single message is used multiple times in a process, the
subscription information has to be provided only once.

As per the specification, the Message element contains an attribute
name — the name of the message, and itemRef — the reference to a
BPMN ItemDefinition specifying the Message structure. Additionally,
it inherits all attributes from the BPMN RootElement (see [94], Section
8.2.5). All subscription information is incorporated in a model element
SubscriptionDefinition, which is added to the extensionDefinitions of the
Message element. The added attributes of SubscriptionDefinition are
described in the following.

The subscription information for an event contains the event query,
the platform address, and (optionally) authorization information of the
CEP platform. This extension assumes that only one event engine is
in use, with the result that access information can be configured in a
central configuration store for the current process execution environ-
ment and not redundantly for each message. The event query, on the
other hand, needs to be specified for every message and is added to the
model as an extension attribute eventQuery of type String, which should
contain the subscription query as interpretable by the CEP platform
(see Figure 56). Only eventQuery is a mandatory parameter, all others
will fall back to default values if not provided. Using the BPMN+X
model and conforming to BPMN’s ExtensionDefinition and ExtensionAt-
tributeDefinition, the following formal XSD-Schema is generated.

Attribute subscriptionTime defines the points of subscription, i.e., when
the subscription should be registered. It can take one of the following

22 https://github.com/dennis-wolf/camunda-explicit-early-subscription

https://github.com/dennis-wolf/camunda-explicit-early-subscription

124 proof-of-concept implementation

<<BPMNElement>>
ReceiveTask

<<ExtensionElement>>
SubscriptionDefinition

eventQuery: String
subscriptionTime: tSubscriptionTime
bufferPolicy: Element

<<ExtensionElement>>
BufferPolicy

lifespanPolicy: tLifespanPolicy
retrievalPolicy: tRetrievalPolicy
consumptionPolicy: tConsumptionPolicy

<<BPMNElement>>
Message

1

0..1

<<enumeration, ExtensionEnum>>

RetrievalPolicy

‐attribute‐based
‐LIFO
‐FIFO

<<enumeration, ExtensionEnum>>

LifespanPolicy

‐specific‐length

‐specific‐time
‐keep‐all

<<enumeration, ExtensionEnum>>

ConsumptionPolicy

‐consume
‐bounded‐reuse
‐reuse

<<ExtensionRelationship>>

<<BPMNElement>>
RootElement

<<BPMNElement>>
MessageEventDefinition

<<enumeration, ExtensionEnum>>

SubscriptionTime

‐engine‐initiation
‐process‐deployment
‐process‐instantiation
‐event‐enablement

0..1 *0..1*

Figure 60: BPMN+X model showing extension of BPMN Message element.

values: engine-initiation, process-deployment, process-instantiation, or
event-enablement. The last option is the default option, representing
the standard BPMN semantics in case no other point of subscription is
specified. The required time of subscription necessary for the events
are defined at design time according to the use case. The subscription
is then executed automatically by the process engine based on the infor-
mation given in the BPMN model. Further information on the detailed
execution flow is provided in Section 9.2.3. SubscriptionDefinition is
composed of another element (complex type) bufferPolicy, which influ-
ences the behavior of the related event buffers. The XML representation
of the BPMN+X model is given in Listing 11.

Listing 11: XML interpretation of BPMN+X model

<xsd:element name="SubscriptionDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element type="xsd:string" name="eventQuery"

minOccurs="1" maxOccurs="1" />

<xsd:element type="tSubscriptionTime" name="subscriptionTime"

minOccurs="0" maxOccurs="1" default="event-enablement"/>

<xsd:element name="bufferPolicy"

minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

9.2 flexible event subscription with buffering 125

<xsd:element type="tLifespanPolicy" name="

lifespanPolicy"

minOccurs="0" maxOccurs="1" default="keep-all"/>

<xsd:element type="tRetrievalPolicy" name="

retrievalPolicy"

minOccurs="0" maxOccurs="1" default="FIFO"/>

<xsd:element type="tConsumptionPolicy" name="

consumptionPolicy"

minOccurs="0" maxOccurs="1" default="reuse"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="tSubscriptionTime">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="engine-initiation"/>

<xsd:enumeration value="process-deployment"/>

<xsd:enumeration value="process-instantiation"/>

<xsd:enumeration value="event-enablement"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="tLifespanPolicy">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="specific-length(n)"/>

<xsd:enumeration value="specific-time(ISO time-span format)"/>

<xsd:enumeration value="keep-all"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="tRetrievalPolicy">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="attribute-based(filter criteria)"/>

<xsd:enumeration value="LIFO"/>

<xsd:enumeration value="FIFO"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="tConsumptionPolicy">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="consume"/>

<xsd:enumeration value="bounded-reuse(n)"/>

<xsd:enumeration value="reuse"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

An example process is shown in Figure 61 where activity Do Something

is followed by an intermediate catching event TestEvent. We write

126 proof-of-concept implementation

the eventQuery as "select * from TestEvent" and choose the subscrip-
tionTime as "process-instantiation". The XML interpretation of the
SubscriptionDefinition is given in Listing 12.

Figure 61: An example process with embedded subscription definition for the
intermediate catching message event.

Listing 12: Excerpt from the XML interpretation of the BPMN process mod-
eled in Fig. 59 showing process structure and extended elements
enabling flexible subscription

...

<bpmn:process id=" flexsub .camunda. demoprojects . simple .
SubscribeOnInstantiation" name="SubscribeOnInstantiation"
isExecutable=" true">

% ******** process structure definition ******** %

<bpmn:startEvent id="StartEvent_1">
<bpmn:outgoing>SequenceFlow_0wjap3k</bpmn:outgoing>

</bpmn:startEvent>

<bpmn:sequenceFlow id="SequenceFlow_0wjap3k"
sourceRef="StartEvent_1" targetRef="Task_1um2wc3" />

<bpmn:intermediateCatchEvent

id="IntermediateThrowEvent_16k343v" name="TestEvent">
<bpmn:incoming>SequenceFlow_1ndzgus</bpmn:incoming>

<bpmn:outgoing>SequenceFlow_15imq89</bpmn:outgoing>

<bpmn:messageEventDefinition messageRef="Message_1gdrcmt" />

</bpmn:intermediateCatchEvent>

<bpmn:endEvent id="EndEvent_1n7dnmz">
<bpmn:incoming>SequenceFlow_15imq89</bpmn:incoming>

</bpmn:endEvent>

<bpmn:sequenceFlow id="SequenceFlow_15imq89"
sourceRef="IntermediateThrowEvent_16k343v"
targetRef="EndEvent_1n7dnmz" />

<bpmn:sequenceFlow id="SequenceFlow_1ndzgus"
sourceRef="Task_1um2wc3"
targetRef="IntermediateThrowEvent_16k343v" />

<bpmn:userTask id="Task_1um2wc3" name="Do something">
<bpmn:incoming>SequenceFlow_0wjap3k</bpmn:incoming>

<bpmn:outgoing>SequenceFlow_1ndzgus</bpmn:outgoing>

</bpmn:userTask>

9.2 flexible event subscription with buffering 127

</bpmn:process>

% ******** flexible subscription extension ******** %

<bpmn:message id="Message_1gdrcmt" name="Message_OnInstantiation">
<bpmn:extensionElements>

<flexsub:subscriptionDefinition>

<flexsub:eventQuery>select * from TestEvent

</flexsub:eventQuery>

<flexsub:subscriptionTime>process-instantiation

</flexsub:subscriptionTime>

</flexsub:subscriptionDefinition>

</bpmn:extensionElements>

</bpmn:message>

...

After presenting the BPMN extension, the next sections describe the
extensions of the CEP platform and the process engine needed for exe-
cuting the information passed through the BPMN Message elements.

9.2.2 Unicorn Extension

The applied architecture with extensions in both Camunda and Unicorn
is visualized in Figure 62. The modules colored in green are the added
components, whereas orange depicts modification.

BPMN
Parser

Execution
Engine

Camunda
Process Engine

Camunda
Process
Modeler

R

BPMN
Models

Process
Repository

Event
Correlation

Service

BPMN
ParseListener

Execution
Listener

R

R

Process Engine Plugin

Query
Processor

Buffered
Query

Listener

Core

Query
Processing

Engine
(Esper)

REST
API

Importer

R

R

R

R

R

R

R

Unicorn Event
Processing Platform

Figure 62: Extended architecture for flexible event handling.

For Unicorn, the major extension is adding the buffering functionality
to allow delayed delivery of events to the process engine. The design
decision to integrate the event buffer into the CEP platform has the
following reasons:

• The CEP platform registers the subscriptions and notifies about
the occurrences. The only modification needed was to handle the
time of subscription and notification more flexibly. This is con-
trolled by the process engine according to the extended process

128 proof-of-concept implementation

specification. Thus, adding the buffer to Unicorn does not change
the responsibilities of the CEP platform and the process engine.
This helps the extended architecture to stay consistent with the
requirement separation of concerns.

• The CEP platform anyway receives and stores the events. By im-
plementing the event buffering module isolated from the process
engine, we reuse the storage of the CEP platform and ensure that
the performance of the process engine is not influenced.

• Having the event buffer in the CEP platform makes it accessible
for both Chimera and Camunda process engines, as well as other
possible event consumers.

The buffering technicalities are managed by the newly added module
Buffered Query Listener. Esper offers the UpdateListener interface to en-
able the callback function for a new query. Unicorn implements this
as LiveQueryListener to react on new event occurrences and registers
the event query to Esper. Whenever an event matches that query, Live-
QueryListener is notified. Originally, the query listener would notify all
subscribers for that query and then drop the event. For implementing
event buffering, a new class BufferedLiveQueryListener is created which
extends the behavior of the standard query listener.

The module is built around the class EventBuffer. Objects of the class
are managed by the BufferManager and represent a single buffer entity,
containing events of one query. The query output from Esper is stored
in a list in EventBuffer. The buffer behaves according to the value of
its policies, which influence the items to store based on time window
or count, the order in which items are retrieved from the list, and how
many times an item is used. The lifespan policy, which requires that
events are deleted from the buffer after a certain time, is ensured by a
maintenance thread that runs from the BufferManager class and iterates
over all EventBuffer objects in a specified time interval.

Besides the architectural modifications, the REST API of Unicorn is
also extended to make use of the buffering module.REST API extension So far, the Unicorn
REST API is comprised of the basic functionality such as query regis-
tration, query deletion and obtaining query strings by the subscription
identifier, as described in Section 9.1. The additional methods intro-
duced to the Unicorn Webservice for flexible event handling are de-
scribed below. The methods use the path <platform>/BufferedEventQuery/
REST to reach Unicorn.

register query. This is used by the BufferManager to create a new
EventBuffer object. The payload for the API call is a JSON object that
requires an event query and optionally buffer policies. A unique iden-
tifier to detect the query and associated buffer is returned.

9.2 flexible event subscription with buffering 129

% *** Register Query *** %

POST to /BufferedEventQuery

returns queryId

Payload: JSON (eventQuery[, bufferPolicies])

subscribe . This method adds a new recipient to the selected query,
i.e., a new subscription is created using the queryId returned from the
register query method. As a result, a notification is issued based on the
current buffer content and whenever an event matches the query. The
notification path contains the message name that supports Camunda’s
event correlation service to match the issued notification to the right
message.

% *** Subscribe *** %

POST to /BufferedEventQuery/{queryId}

returns subscriptionId

Payload: JSON (notificationPath) with

notificationPath: (notificationAddress, messageName)

unsubscribe . Using this method removes the specified subscrip-
tion from the list of subscriptions of the selected query. The specific
recipient therefore does not receive any further notification. Note that
the buffer and query instance remain intact, so that other recipients can
still subscribe.

% *** Unsubscribe *** %

DELETE to /BufferedEventQuery/{queryId}/{subscriptionId}

remove query. Finally, this method deletes the query and the asso-
ciated buffer altogether.

% *** Remove Query *** %

DELETE to /BufferedEventQuery/{queryId}

9.2.3 Camunda Extension

As seen in the FMC diagram, Camunda has a similar architecture as
Chimera. The BPMN process models are created using Camunda mod-
eler and deployed to the process engine. The Execution Engine controls
process instance execution, whereas the Event Correlation Service23 man-
ages receiving of events and correlating them with the correct process
instance. Camunda offers the concept of Process Engine Plugin (PEP)24

to intercept significant engine operations and introduce custom code.
This is a separate software module activated by adding a plugin en-
try in the process engine configuration that implements the ProcessEn-
ginePlugin interface of Camunda. The PEPs enable adding Execution

23 https://docs.camunda.org/manual/7.9/reference/bpmn20/events/message-events/

#using-the-runtime-service-s-correlation-methods

24 https://docs.camunda.org/manual/7.7/user-guide/process-engine/

process-engine-plugins/

https://docs.camunda.org/manual/7.9/reference/bpmn20/events/message-events/##using-the-runtime-service-s-correlation-methods
https://docs.camunda.org/manual/7.9/reference/bpmn20/events/message-events/##using-the-runtime-service-s-correlation-methods
https://docs.camunda.org/manual/7.7/user-guide/process-engine/process-engine-plugins/
https://docs.camunda.org/manual/7.7/user-guide/process-engine/process-engine-plugins/

130 proof-of-concept implementation

Listeners25 programmatically. These execution listeners trigger the ex-
ecution of custom code during a process execution. To customize the
semantics of the process specification, we implement a BPMNParseLis-
tener that is executed after a BPMN element is parsed, as explained in
the GitHub project26. The BPMNParseListener interface allows to react
to the parsing of single elements based on their type by applying a
separate method for every BPMN element available.

In essence, the subscriptions are managed automatically by the pro-
cess engine triggering the execution listeners according to the subscrip-
tion configuration provided in the extended message element extracted
by the BPMN parse listener. An alternative way of extending Camunda
could be to directly adapt the source code to integrate additional be-
havior to the process elements. However, implementing a PEP allows a
clearer, more understandable approach to adapt the extension behavior
and facilitates maintainabilty and reusability of the extended code. Fig-
ure 63 shows the class diagram of the PEP, elaborated in the following.

FlexibleEventSubscriptionPEP

+ preInint(ProcessEngineConfigurationImpl)

FlexibleSubscriptionParseListener

+ parseRootElement(Element,
List<ProcessDefinitionEntity>)

SubscriptionEngine

‐ SubscriptionRepository:
ArrayList<SubscriptionEntity>
+ registerQuery(SubscriptionDefinition, String)
+ subscribe(String)
+ unsubscribe(String)
+ removeQuery(String)

Activity ExecutionListener

RegisterQueryListener

+ notify(APICall)

RemoveQueryListener

+ notify(APICall)

SubscribeListener

+ notify(APICall)

UnsubscribeListener

+ notify(APICall)

0..* 0..*

<extends>

Figure 63: UML Class diagram of Camunda process engine plugin.

flexible event subscription pep. The Process Engine Plugin
enables executing custom Java code at predefined points during engine
execution. An entry point to the modification of the execution behavior
is provided through the implementation of the ProcessEnginePlugin in-
terface. It allows to intercept at three different points during the engine
bootstrapping: preInit, postInit, and postProcessEngineBuild. We chose to
provide the custom implementation for the preInit method.

25 https://docs.camunda.org/manual/7.7/reference/bpmn20/custom-extensions/

extension-elements/

26 https://github.com/camunda/camunda-bpm-examples/tree/master/

process-engine-plugin/bpmn-parse-listener

https://docs.camunda.org/manual/7.7/reference/bpmn20/custom-extensions/extension-elements/
https://docs.camunda.org/manual/7.7/reference/bpmn20/custom-extensions/extension-elements/
https://github.com/camunda/camunda-bpm-examples/tree/master/process-engine-plugin/bpmn-parse-listener
https://github.com/camunda/camunda-bpm-examples/tree/master/process-engine-plugin/bpmn-parse-listener

9.2 flexible event subscription with buffering 131

subscription engine . A new class SubscriptionEngine has been in-
troduced that encapsulates the functionality needed to communicate
with the API of the event engine, i.e., the methods for API-calls: regis-
terQuery, subscribe, unsubscribe, and removeQuery. The class has another
important functionality, namely, the SubscriptionRepository that handles
the correlation from the engine side. This contains a list of all avail-
able query and subscription identifiers and a mapping to the related
process definitions or instances. As described above, active queries
and subscriptions can only be deleted using their unique identifiers.
Upon issuing a subscription or registering a query, these identifiers are
stored in the repository until the removal call is executed. Based on the
repository information, the SubscriptionEngine matches the subscrip-
tion identifiers and execute the remove and unsubscribe operations on
the event engine.

execution listeners . In total, four execution listeners are added,
one for each API-call, which are attached to the process nodes (Activity)
through the BPMN parse listener. Execution listeners are triggered by
the internal transition events of Camunda, such as terminate or begin of
an activity. Each of the listeners is a separate class implementing the
ExecutionListener interface. There is only one method notify included
in the listeners, which is called by the engine when the corresponding
transition event fires. Using the method, each listener class issues an
API-call, as defined by the SubscriptionManager.

flexible subscription parse listener . The BPMNParseListen-
er extracts all relevant xml elements from the deployed model, based on
the element names. This results in a list of intermediate and boundary
message catch events and receive-tasks, along with the messages they
reference. Depending on the specified subscription time, ExecutionLis-
teners are added at the transitional events during process execution.
These transitional events are determined according to the points of sub-
scription specification, as defined in Section 7.2.2. For example, if the
specified subscription time is at process deployment (POS3), the pro-
vided query is registered immediately using the SubscriptionManager.
On the other hand, if the subscription is set at process instantiation
(POS2), the following is executed:

• An instance of RegisterQueryListener is added to the start event of
the process. The subscriptionDefinition is provided to that listener.

• The SubscribeListener is attached to the start event of the xml node
representation of the intermediate message event.

• To the same node, UnsubscribeListener and RemoveQueryListener
are attached to be triggered by the termination of the node.

132 proof-of-concept implementation

9.3 summary

The proof-of-concept implementation shows the feasibility of both the
basic concepts of event integration into business processes and the ad-
vanced event handling possibilities required for flexible subscription.
The architecture consists of a BPMN modeler, an event processing plat-
form, and a process engine. The design decisions and implementa-
tion techniques are mostly independent of a particular choice of engine,
component, or platform. This is shown by using two different process
engines, one built for academic purposes and the other one being used
in real-world BPM solutions. Nevertheless, system specific adaptations
might be required in case different components are used.

The basic architecture supports separation of concerns by enabling
the CEP platform to handle the event processing logic and giving the
process execution control to the process engine. The flexible subscrip-
tion follows separation of logic by splitting the buffer maintenance and
subscription handling between the CEP platform and the process en-
gine, respectively. Throughout, intermediate catching message events
are used to represent communication received from the environment.
The BPMN extension of a Message element provides additional sub-
scription definitions needed to switch between points of subscription
and buffer policies. This enables implementing flexible subscription
model while being grounded in BPMN semantics.

Altogether, the enhanced CEP platform and business process engine
enable the automatic handling of information provided through the
BPMN extension for flexible event subscription. The event engine ex-
poses functionality for buffered event handling which is accessed through
execution listeners during the process execution in Camunda. Given
these extended features, process designers can conveniently incorporate
subscription information for external message events in their executable
BPMN models.

10
C O N C L U S I O N S

“In literature and in life we ultimately pursue, not conclusions, but
beginnings.” – the wise words said by Sam Tanenhaus in his book Literature
Unbound1 are applicable to research too. With this chapter, this thesis is now

coming to an end, which opens the beginning for several other research
directions. The first part of the chapter, Section 10.1, summarizes the results

of the thesis. Later in Section 10.2 the limitations and future research
possibilities are discussed.

10.1 summary of thesis

The work in this thesis started with the notion of integrating the rele-
vant contextual information into business processes to make the process
execution aware of environmental occurrences and enable the process
to react to a situation in a timely manner. To this end, the concepts from
complex event processing area seemed to be beneficial for event abstrac-
tion hierarchy that was needed to extract the right level of granularity
of the information to be consumed by the processes. Therefore, the sys-
tem architecture was set up to integrate CEP and BPM with the means
of communication between a process modeler, a process engine, and
an event platform. While applying the basic interaction framework on
different real life usecases, the research gap of having a clear and flex-
ible subscription management model was evident. The research thus
investigated the issues related to event subscription from a business
process execution perspective and eventually a formal event handling
model was developed. In the following, the detailed results of the thesis
are listed:

• Requirements for integrating real-world events into business processes.
Based on literature review, examples of real-world usecases and
extensive disucussion sessions with domain experts from both
academia and industry, a list of requirements for integrating exter-
nal events into business process execution is presented in Chap-
ter 5. These requirements cover conceptual as well as technical
aspects of the integration. Further, the requirement for having
flexible points of subscription and unsubscription are supported
using motivation examples from the logistics domain.

• Integrated framework enabling event-process communication. The inte-
grated framework satisfied the requirements and enabled a smooth

1 https://www.goodreads.com/book/show/1070640

133

https://www.goodreads.com/book/show/1070640

134 conclusions

communication between the process engine and the event plat-
form (ch. Chapter 5). Assigning the responsibility for control-
ling the business logic to the process engine and event processing
techniques to the CEP platform establishes separation of concern
and facilitates reuse of events. The event hierarchies are hidden
from the process view and are dealt with by the event abstraction
rules. The higher-level event is then mapped to the business event
needed for the execution. The process engine subscribes to the
start events at deployment and to the intermediate events at event
enablement. The CEP platform connects to the event sources, op-
erates on the event streams according to the event query, and no-
tifies the process engine when a matching event is detected. The
process engine then follows the process specification to react to
the event.

• Subscription management facilitating flexible event handling. The sub-
scription management is further detailed in the flexible event han-
dling model presented in Chapter 6. Along the process execu-
tion timeline, execution states are specified when a subscription
and an unsubscription can be issued. While unsubscription is
optional, subscription is mandatory to receive notification about
an event occurrence. Depending on the use of event structure
in a process, specific semantics are assigned to these points of
(un)-subscription. For instance, boundary events should only be
subscribed once the associated activity has started. An event in
the normal flow, on the contrary, can be subscribed to at enable-
ment, at process instantiation, at process deployment, or at engine
initiation; depending on the availability of information needed for
subscription. An unsubscription can be done at event consump-
tion, at semantic resolution, at process undeployment, or at en-
gine termination. Semantic resolution in this context means com-
ing to the point during process execution when the event becomes
obsolete for that particular instance. The definition of semantic
resolution differs for boundary event, exclusive event, and rac-
ing events. The proof-of-concept implementation provides basic
technicalities to enable flexible subscription by extending BPMN
notation, Unicorn event platform, and Camunda process engine.

• Event buffer complementing early subscription. Early subscription
of events demand a temporary storage for the events to make it
available till the process is ready to consume. The concept of an
event buffer is proposed in Chapter 6 to address this. The buffer
comes with a set of buffer policies that offer alternative config-
urations for the time and quantity based lifespan of the events,
the most suitable event to consume in case several occurrences of
the same event type are available, and the reusability of an event
information. In the prototype implementation discussed in Chap-

10.2 limitations and future research 135

ter 9, the buffering functionalities are added to the event platform,
whereas the control of flexible subscription remains with the pro-
cess engine.

• Formal translation of the event handling model. Finally, the formal
model assigns clear semantics to the event handling concepts in
Chapter 7. The points of subscription and points of unsubscrip-
tion are mapped to Petri net modules according to the event con-
structs. The buffer policies are expressed formally as coloured
Petri nets. This formal translation makes formal process verifi-
cation methods applicable to the process execution enriched with
event handling configurations. Trace analysis to verify correct pro-
cess execution and reachability analysis to find allowed environ-
mental behaviors are presented as examples of such applications.

10.2 limitations and future research

We claim our work to be a significant contribution in the current context
of IoT and distributed business process execution. Nevertheless, the
work presented in the thesis has certain limitations that need to be
addressed in future research related to this topic, as discussed below.

• Roles of process designer & event engineer. First of all, the whole
concept of the thesis is based on the assumption that the process
execution is aware of the event sources and event abstraction rules
behind the business events relevant for the processes. This is pos-
sible only when there is clear distribution of responsibilities in an
organization, such that there are dedicated process designers and
event engineers who will decide on the configurations for event
subscription from a business process perspective and an event
processing perspective, respectively. In practice, this is often not
the case. Also, the thesis does not focus on the specification about
who is responsible for which design decision(s). In those situa-
tions, it might be difficult to exploit the flexibility offered by the
event handling model to the fullest. However, the event handling
model gives clear semantics for the points of (un)-subscription
and the buffer policies. Assuming the process participants have
enough domain knowledge, these notions are easy to grasp and
apply to a certain usecase.

• Advanced event types. The integration architecture with Gryphon,
Chimera, and Unicorn implements the basic use of events as pro-
cess artifacts such as message and timer events, boundary events,
and event-based gateways. More advanced event constructs like
signal, compensation, parallel event types are not implemented
since that has been considered out of scope for this thesis. The
external events are always represented as catching intermediate

136 conclusions

events (and start events). We argue that most of the business sce-
narios can be captured using message events in a normal flow, in
an exceptional flow (boundary event), and after a decision point
(event-based gateway) [88]. Yet, event types such as error, esca-
lation, and signal events offer specific event handling semantics
that are most appropriate to capture an event occurrence in cer-
tain situations. In future, the subscription configurations should
be extended for all event types and their usage in a process.

• Complex process structures. So far, processes with loops are not
considered in our work. The loops make event correlation highly
complicated, as described in the following example. For on online
payment procedure, the customer is given the option to update
the card details if the payment is not successful at the first place.
This is done with a simple process taking the customer details as
a receiving message event. If the buffer policy is set to LIFO and
reuse for the event, the first execution of the loop can consume the
latest card information residing in the buffer. However, the next
execution of the loop happens only when the payment is failed.
Having an event in buffer here leads to the consumption of the
same information, though an updated card details is intended.
Situations like that need to be investigated further and the event
handling configurations might be extended to accommodate ver-
satile scenarios.

• Smart Buffer Manager. Let us think of a scenario where we know
that an event is published in regular interval of 30 min. The pro-
cess reaches the point of consuming the event when the 30 min
window is towards the end, e.g., the last event has been published
28 min before and the next event occurrence is expected in 2 min.
In this case, waiting for 2 more minutes for the updated informa-
tion might make more sense than having the last event available in
the buffer. A smart buffer manager reflects on the idea of having
those context information available to the buffer and thus sug-
gesting the process participant the alternative options to consume
events.

• Further applications. In Chapter 8, we documented two applica-
tions based on the formal notations of the event handling model.
Some possible extensions of those applications are also hinted in
the discussion sections at the end of the chapter. However, the ap-
plication concepts are not tested with real data yet. For instance,
building up a concrete adapter based on the corresponding paths
is an interesting future work. Using a set of processes to imple-
ment the application ideas for the adapter synthesis and trace
analysis is in our agenda for extending the work.

10.2 limitations and future research 137

• User-friendly visualization. Lastly, the current implementation for
flexible event subscription is developed to run in the background
and does not provide any visual cockpit yet. Though the sub-
scription configurations are part of the XML description of the
processes, they are not offered to the process designers in a user-
friendly way. An idea to address this could be to design con-
figuration panels for intermediate events where drop-down lists
for point of subscription, point of unsubscription, and buffer poli-
cies are added. This approach will also be helpful to enforce the
semantic interdependencies between the event handling notions
discussed in Section 6.3.4.

B I B L I O G R A P H Y

[1] Wil M. P. Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes, volume 136. 01 2011. ISBN 978-3-642-19344-6. doi:
10.1007/978-3-642-19345-3. (Cited on pages 14, 27, and 49.)

[2] Activiti. Activiti BPM Platform. https://www.activiti.org/. (Cited on
page 47.)

[3] Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling
and analysis of workflows using petri nets. Journal of Intelligent Informa-
tion Systems, 10(2):131–158, Mar 1998. ISSN 1573-7675. doi: 10.1023/
A:1008656726700. URL https://doi.org/10.1023/A:1008656726700.
(Cited on page 107.)

[4] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra. Matching events in a content-based subscrip-
tion system. In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’99, pages 53–61, New York,
NY, USA, 1999. ACM. ISBN 1-58113-099-6. doi: 10.1145/301308.301326.
URL http://doi.acm.org/10.1145/301308.301326. (Cited on page 48.)

[5] A. Akbar, F. Carrez, K. Moessner, and A. Zoha. Predicting complex
events for pro-active iot applications. In 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), pages 327–332, Dec 2015. doi: 10.1109/
WF-IoT.2015.7389075. (Cited on pages 47 and 53.)

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. Internet of things: A survey on enabling technologies, pro-
tocols, and applications. IEEE Communications Surveys Tutorials, 17(4):
2347–2376, Fourthquarter 2015. ISSN 1553-877X. doi: 10.1109/COMST.
2015.2444095. (Cited on pages 42 and 49.)

[7] Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, and Alejandro
Buchmann. Event Stream Processing Units in Business Processes. In
BPM, pages 187–202. Springer, Berlin, Heidelberg, 2013. doi: 10.1007/
978-3-642-40176-3_15. (Cited on pages 44, 46, and 49.)

[8] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql con-
tinuous query language: Semantic foundations and query execu-
tion. The VLDB Journal, 15(2):121–142, June 2006. ISSN 1066-8888.
doi: 10.1007/s00778-004-0147-z. URL http://dx.doi.org/10.1007/

s00778-004-0147-z. (Cited on page 49.)

[9] Kevin Ashton. That ‘internet of things’ thing. 2009. URL http://www.

rfidjournal.com/articles/view?4986. (Cited on page 3.)

[10] Michael Backmann, Anne Baumgrass, Nico Herzberg, Andreas Meyer,
and Mathias Weske. Model-Driven Event Query Generation for Busi-
ness Process Monitoring. In Service-Oriented Computing – ICSOC 2013
Workshops, pages 406–418. Springer, Cham, December 2013. doi: 10.
1007/978-3-319-06859-6_36. (Cited on pages 15, 44, and 49.)

139

https://www.activiti.org/
https://doi.org/10.1023/A:1008656726700
http://doi.acm.org/10.1145/301308.301326
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986

140 bibliography

[11] Thomas Baier, Claudio Di Ciccio, Jan Mendling, and Mathias Weske.
Matching events and activities by integrating behavioral aspects and
label analysis. Software & Systems Modeling, 17(2):573–598, May 2018.
ISSN 1619-1374. doi: 10.1007/s10270-017-0603-z. URL https://doi.

org/10.1007/s10270-017-0603-z. (Cited on page 32.)

[12] Roberto Baldoni, Leonardo Querzoni, and Antonino Virgillito. Dis-
tributed event routing in publish/subscribe communication systems: a
survey. Technical report, 2005. (Cited on page 48.)

[13] A. Barros, G. Decker, and A. Grosskopf. Complex events in business
processes. In BIS. Springer, 2007. (Cited on pages 44, 45, 47, 49, 56, 69,
and 70.)

[14] Rémi Bastide, Ousmane Sy, David Navarre, and Philippe Palanque. A
formal specification of the corba event service. In Scott F. Smith and Car-
olyn L. Talcott, editors, Formal Methods for Open Object-Based Distributed
Systems IV, pages 371–395, Boston, MA, 2000. Springer US. ISBN 978-0-
387-35520-7. (Cited on page 48.)

[15] Kimon Batoulis, Stephan Haarmann, and Mathias Weske. Various no-
tions of soundness forÂ decision-aware business processes. In Hein-
rich C. Mayr, Giancarlo Guizzardi, Hui Ma, and Oscar Pastor, editors,
Conceptual Modeling, pages 403–418, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-69904-2. (Cited on page 107.)

[16] A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske. BPMN Extension
for Business Process Monitoring. In EMISA, Lecture Notes in Informat-
ics. Gesellschaft fuer Informatik (GI), 2014. (Cited on pages 32 and 61.)

[17] Anne Baumgraß, Mirela Botezatu, Claudio Di Ciccio, Remco M. Dijk-
man, Paul Grefen, Marcin Hewelt, Jan Mendling, Andreas Meyer, Shaya
Pourmirza, and Hagen Völzer. Towards a methodology for the engi-
neering of event-driven process applications. In Business Process Man-
agement Workshops - BPM 2015, 13th International Workshops, Innsbruck,
Austria, August 31 - September 3, 2015, Revised Papers, pages 501–514,
2015. doi: 10.1007/978-3-319-42887-1_40. URL https://doi.org/10.

1007/978-3-319-42887-1_40. (Cited on pages 46, 47, and 49.)

[18] Anne Baumgrass, Claudio Di Ciccio, Remco M. Dijkman, Marcin
Hewelt, Jan Mendling, Andreas Meyer, Shaya Pourmirza, Mathias
Weske, and Tsun Yin Wong. GET controller and UNICORN: event-
driven process execution and monitoring in logistics. In Proceedings of the
BPM Demo Session 2015 Co-located with the 13th International Conference on
Business Process Management (BPM 2015), Innsbruck, Austria, September 2,
2015., pages 75–79, 2015. URL http://ceur-ws.org/Vol-1418/paper16.

pdf. (Cited on pages 46, 54, and 116.)

[19] Izak Benbasat and Robert W. Zmud. Empirical research in information
systems: The practice of relevance. MIS Q., 23(1):3–16, March 1999. ISSN
0276-7783. doi: 10.2307/249403. URL http://dx.doi.org/10.2307/

249403. (Cited on pages xiii and 8.)

[20] Jonas Beyer, Patrick Kuhn, Marcin Hewelt, Sankalita Mandal, and Math-
ias Weske. Unicorn meets chimera: Integrating external events into case

https://doi.org/10.1007/s10270-017-0603-z
https://doi.org/10.1007/s10270-017-0603-z
https://doi.org/10.1007/978-3-319-42887-1_40
https://doi.org/10.1007/978-3-319-42887-1_40
http://ceur-ws.org/Vol-1418/paper16.pdf
http://ceur-ws.org/Vol-1418/paper16.pdf
http://dx.doi.org/10.2307/249403
http://dx.doi.org/10.2307/249403

bibliography 141

management. In Proceedings of the BPM Demo Track 2016 Co-located with
the 14th International Conference on Business Process Management (BPM,
volume 1789 of CEUR Workshop Proceedings, pages 67–72. CEUR-WS.org,
2016. URL http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.

pdf. (Cited on pages 54 and 115.)

[21] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riede-
wald, M. Thatte, and W. White. Cayuga: a high-performance event
processing engine. In SIGMODConf2007, pages 1100–1102. ACM, 2007.
(Cited on page 48.)

[22] Jan vom Brocke and Jan Mendling. Frameworks for Business Process Man-
agement: A Taxonomy for Business Process Management Cases, pages 1–17.
01 2018. ISBN 978-3-319-58306-8. doi: 10.1007/978-3-319-58307-5_1.
(Cited on page 13.)

[23] Cristina Cabanillas, Claudio Di Ciccio, Jan Mendling, and Anne Baum-
grass. Predictive Task Monitoring for Business Processes. In Shazia
Sadiq, Pnina Soffer, and Hagen Völzer, editors, BPM, number 8659,
pages 424–432. Springer International Publishing, September 2014. ISBN
978-3-319-10171-2 978-3-319-10172-9. doi: 10.1007/978-3-319-10172-9_31.
(Cited on pages 45 and 49.)

[24] Camunda. camunda BPM Platform. https://www.camunda.org/. (Cited
on pages 5 and 47.)

[25] Filip Caron, Jan Vanthienen, and Bart Baesens. Comprehensive rule-
based compliance checking and risk management with process min-
ing. Decision Support Systems, 54(3):1357 – 1369, 2013. ISSN 0167-
9236. doi: https://doi.org/10.1016/j.dss.2012.12.012. URL http://www.

sciencedirect.com/science/article/pii/S0167923612003788. (Cited
on page 14.)

[26] Federico Chesani, Paola Mello, Marco Montali, Fabrizio Riguzzi, Maur-
izio Sebastianis, and Sergio Storari. Checking compliance of execution
traces to business rules. In Danilo Ardagna, Massimo Mecella, and Jian
Yang, editors, Business Process Management Workshops, pages 134–145,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-
00328-8. (Cited on page 101.)

[27] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to the
standard. Computer Standards Interfaces, 34(1):124 – 134, 2012. ISSN 0920-
5489. doi: https://doi.org/10.1016/j.csi.2011.06.002. URL http://www.

sciencedirect.com/science/article/pii/S0920548911000766. (Cited
on page 4.)

[28] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte. Generalized
stochastic petri nets: a definition at the net level and its implications.
IEEE Transactions on Software Engineering, 19(2):89–107, Feb 1993. doi:
10.1109/32.214828. (Cited on page 84.)

[29] Mariano Cilia, Alejandro Buchmann, and Tu-Darmstadt K Moody. An
active functionality service for open distributed heterogeneous environ-
ments. 04 2019. (Cited on page 48.)

http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper13.pdf
https://www.camunda.org/
http://www.sciencedirect.com/science/article/pii/S0167923612003788
http://www.sciencedirect.com/science/article/pii/S0167923612003788
http://www.sciencedirect.com/science/article/pii/S0920548911000766
http://www.sciencedirect.com/science/article/pii/S0920548911000766

142 bibliography

[30] Carlo Combi, Barbara Oliboni, and Francesca Zerbato. Modeling and
handling duration constraints in BPMN 2.0. In Proceedings of the Sym-
posium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-
7, 2017, pages 727–734, 2017. doi: 10.1145/3019612.3019618. URL
https://doi.org/10.1145/3019612.3019618. (Cited on page 50.)

[31] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings of
the 20th International Conference on Software Engineering, pages 261–270,
April 1998. doi: 10.1109/ICSE.1998.671135. (Cited on page 48.)

[32] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined
event specification language. In Proceedings of the Fourth ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS 2010, Cam-
bridge, United Kingdom, July 12-15, 2010, pages 50–61, 2010. doi: 10.1145/
1827418.1827427. URL https://doi.org/10.1145/1827418.1827427.
(Cited on page 49.)

[33] Michael Daum, Manuel Götz, and Jörg Domaschka. Integrating cep and
bpm: How cep realizes functional requirements of bpm applications (in-
dustry article). In DEBS, pages 157–166. ACM, 2012. (Cited on page 47.)

[34] Alexandre de Castro Alves. New event-processing design patterns us-
ing cep. In Stefanie Rinderle-Ma, Shazia Sadiq, and Frank Leymann,
editors, Business Process Management Workshops, pages 359–368, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-12186-9.
(Cited on page 38.)

[35] H de Man. Case Management: A Review of Modeling Approaches.
BPTrends, pages 1–17, January 2009. (Cited on page 50.)

[36] Gero Decker and Jan Mendling. Process instantiation. Data Knowledge
Engineering, 68(9):777–792, 2009. doi: 10.1016/j.datak.2009.02.013. (Cited
on page 48.)

[37] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics
and analysis of business process models in BPMN. Information and
Software Technology, 50(12):1281 – 1294, 2008. ISSN 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2008.02.006. (Cited on pages 10, 22, 24,
83, 87, and 97.)

[38] Remco M. Dijkman, B. Sprenkels, T. Peeters, and A. Janssen. Business
models for the internet of things. Int J. Information Management, 35(6):
672–678, 2015. doi: 10.1016/j.ijinfomgt.2015.07.008. URL https://doi.

org/10.1016/j.ijinfomgt.2015.07.008. (Cited on pages 42 and 49.)

[39] Remco M. Dijkman, Geoffrey van IJzendoorn, Oktay Türetken, and
Meint de Vries. Exceptions in business processes in relation to opera-
tional performance. CoRR, abs/1706.08255, 2017. URL http://arxiv.

org/abs/1706.08255. (Cited on page 43.)

[40] Marlon Dumas and Matthias Weidlich. Business Process Analytics, pages
1–8. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
63962-8. doi: 10.1007/978-3-319-63962-8_85-1. URL https://doi.org/

10.1007/978-3-319-63962-8_85-1. (Cited on pages 42 and 49.)

https://doi.org/10.1145/3019612.3019618
https://doi.org/10.1145/1827418.1827427
https://doi.org/10.1016/j.ijinfomgt.2015.07.008
https://doi.org/10.1016/j.ijinfomgt.2015.07.008
http://arxiv.org/abs/1706.08255
http://arxiv.org/abs/1706.08255
https://doi.org/10.1007/978-3-319-63962-8_85-1
https://doi.org/10.1007/978-3-319-63962-8_85-1

bibliography 143

[41] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Pro-
cess Aware Information Systems: Bridging People and Software Through Pro-
cess Technology. Wiley-Interscience, New York, NY, USA, 2005. ISBN
0471663069. (Cited on page 14.)

[42] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management. Springer, 2013. ISBN 978-3-
642-33142-8. doi: 10.1007/978-3-642-33143-5. URL http://dx.doi.org/

10.1007/978-3-642-33143-5. (Cited on page 13.)

[43] Marius Eichenberg. Event-Based Monitoring of Time Constraint Violations.
Master thesis, Hasso Plattner Institute, 2016. (Cited on page 15.)

[44] EsperTech. Esper Event Processing Language EPL. http://www.

espertech.com/esper/release-5.4.0/esper-reference/html/. (Cited
on pages 49 and 60.)

[45] Antonio Estruch and José Antonio Heredia Álvaro. Event-Driven
Manufacturing Process Management Approach. In BPM, pages 120–
133. Springer, Berlin, Heidelberg, September 2012. doi: 10.1007/
978-3-642-32885-5_9. (Cited on pages 44, 45, and 49.)

[46] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications, 2010. ISBN 9781935182214. (Cited on pages 3, 27, 29, 31,
53, and 79.)

[47] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, June 2003. ISSN 0360-0300. doi: 10.1145/857076.857078.
URL http://doi.acm.org/10.1145/857076.857078. (Cited on page 48.)

[48] David Eyers, Avigdor Gal, Hans-Arno Jacobsen, and Matthias Wei-
dlich. Integrating Process-Oriented and Event-Based Systems (Dagstuhl
Seminar 16341). Dagstuhl Reports, 6(8):21–64, 2017. ISSN 2192-5283.
doi: 10.4230/DagRep.6.8.21. URL http://drops.dagstuhl.de/opus/

volltexte/2017/6910. (Cited on page 69.)

[49] Dirk Fahland and Christian Gierds. Analyzing and completing middle-
ware designs for enterprise integration using coloured petri nets. In
Advanced Information Systems Engineering - 25th International Conference,
CAiSE 2013, Valencia, Spain, June 17-21, 2013. Proceedings, pages 400–416,
2013. doi: 10.1007/978-3-642-38709-8_26. URL http://dx.doi.org/10.

1007/978-3-642-38709-8_26. (Cited on page 48.)

[50] Mohammad Ali Fardbastani, Farshad Allahdadi, and Mohsen Sharifi.
Business process monitoring via decentralized complex event process-
ing. Enterprise Information Systems, 12:1–28, 09 2018. doi: 10.1080/
17517575.2018.1522453. (Cited on pages 47 and 49.)

[51] J. Friedenstab, C. Janiesch, M. Matzner, and O. Muller. Extending
bpmn for business activity monitoring. In 2012 45th Hawaii Interna-
tional Conference on System Sciences, pages 4158–4167, Jan 2012. doi:
10.1109/HICSS.2012.276. (Cited on pages 14 and 15.)

[52] A. Gal, A. Senderovich, and M. Weidlich. Online temporal analysis of
complex systems using iot data sensing. In 2018 IEEE 34th International

http://dx.doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.1007/978-3-642-33143-5
http://www.espertech.com/esper/release-5.4.0/esper-reference/html/
http://www.espertech.com/esper/release-5.4.0/esper-reference/html/
http://doi.acm.org/10.1145/857076.857078
http://drops.dagstuhl.de/opus/volltexte/2017/6910
http://drops.dagstuhl.de/opus/volltexte/2017/6910
http://dx.doi.org/10.1007/978-3-642-38709-8_26
http://dx.doi.org/10.1007/978-3-642-38709-8_26

144 bibliography

Conference on Data Engineering (ICDE), pages 1727–1730, April 2018. doi:
10.1109/ICDE.2018.00224. (Cited on page 15.)

[53] Samuel Greengard. The internet of things. MIT Press, 2015. (Cited on
pages 42 and 49.)

[54] Christian W. Günther and Wil M. P. van der Aalst. Mining activity clus-
ters from low-level event logs. 2006. (Cited on page 32.)

[55] Stephan Haarmann, Nikolai Podlesny, Marcin Hewelt, Andreas Meyer,
and Mathias Weske. Production case management: A prototypical pro-
cess engine to execute flexible business processes. In Proceedings of the
BPM Demo Session 2015 Co-located with the 13th International Conference
on Business Process Management (BPM 2015), Innsbruck, Austria, Septem-
ber 2, 2015., pages 110–114, 2015. URL http://ceur-ws.org/Vol-1418/

paper23.pdf. (Cited on pages 54 and 119.)

[56] N. Herzberg, A. Meyer, and M. Weske. An event processing platform for
business process management. In EDOC. IEEE, 2013. (Cited on pages 3,
45, 49, and 58.)

[57] Marcin Hewelt and Mathias Weske. A hybrid approach for flexible case
modeling and execution. In BPM, 2016. (Cited on pages 50 and 119.)

[58] Annika Hinze and Alejandro P. Buchmann. Principles and applications of
distributed event-based systems. Hershey, PA : Information Science Refer-
ence, 2010. (Cited on pages 31 and 47.)

[59] Richard Hull, Vishal S. Batra, Yi-Min Chen, Alin Deutsch, Fenno F. Terry
Heath III, and Victor Vianu. Towards a shared ledger business collabo-
ration language based on data-aware processes. In Quan Z. Sheng, Eleni
Stroulia, Samir Tata, and Sami Bhiri, editors, Service-Oriented Computing,
pages 18–36, Cham, 2016. Springer International Publishing. ISBN 978-
3-319-46295-0. (Cited on page 15.)

[60] Hans-Arno Jacobsen, Vinod Muthusamy, and Guoli Li. The PADRES
Event Processing Network: Uniform Querying of Past and Future
Events. it - Information Technology, 51(5):250–260, May 2009. (Cited on
pages 48 and 49.)

[61] Christian Janiesch, Agnes Koschmider, Massimo Mecella, Barbara We-
ber, Andrea Burattin, Claudio Di Ciccio, Avigdor Gal, Udo Kan-
nengiesser, Felix Mannhardt, Jan Mendling, Andreas Oberweis, Man-
fred Reichert, Stefanie Rinderle-Ma, WenZhan Song, Jianwen Su, Victo-
ria Torres, Matthias Weidlich, Mathias Weske, and Liang Zhang. The
internet-of-things meets business process management: Mutual benefits
and challenges. 09 2017. (Cited on pages 43 and 50.)

[62] Kurt Jensen and Lars Kristensen. Coloured Petri Nets: Modelling and Val-
idation of Concurrent Systems. 01 2009. ISBN 978-3-642-00283-0. doi:
10.1007/b95112. (Cited on page 97.)

[63] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Mod-
elling and Validation of Concurrent Systems. Springer, 2009. ISBN 978-3-
642-00283-0. doi: 10.1007/b95112. URL http://dx.doi.org/10.1007/

b95112. (Cited on pages 21 and 22.)

http://ceur-ws.org/Vol-1418/paper23.pdf
http://ceur-ws.org/Vol-1418/paper23.pdf
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1007/b95112

bibliography 145

[64] John Jeston and Johan Nelis. Business process management: Practical
guidelines to successful implementations. 01 2008. (Cited on page 13.)

[65] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. Big data: Issues and
challenges moving forward. In 2013 46th Hawaii International Conference
on System Sciences, pages 995–1004, Jan 2013. doi: 10.1109/HICSS.2013.
645. (Cited on page 3.)

[66] Kathrin Kirchner, Nico Herzberg, Andreas Rogge-Solti, and Mathias
Weske. Embedding Conformance Checking in a Process Intelligence
System in Hospital Environments. In ProHealth/KR4HC, LNCS, pages
126–139. Springer, 2012. (Cited on page 14.)

[67] Julian Krumeich, Benjamin L Weis, Dirk Werth, and Peter Loos. Event-
driven business process management: where are we now?: A compre-
hensive synthesis and analysis of literature. Business Proc. Manag. Journal,
20:615–633, 2014. (Cited on pages 32 and 44.)

[68] Steffen Kunz, Tobias Fickinger, Johannes Prescher, and Klaus Spengler.
Managing complex event processes with business process modeling no-
tation. In Jan Mendling, Matthias Weidlich, and Mathias Weske, editors,
Business Process Modeling Notation, pages 78–90, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-16298-5. (Cited on pages 44

and 49.)

[69] Matthias Kunze and Mathias Weske. Behavioural Models - From Modelling
Finite Automata to Analysing Business Processes. Springer, 2016. ISBN
978-3-319-44958-6. doi: 10.1007/978-3-319-44960-9. (Cited on pages 13

and 20.)

[70] Andreas Lanz, Manfred Reichert, and Peter Dadam. Robust and flex-
ible error handling in the aristaflow bpm suite. In CAiSE Forum 2010,
volume 72 of LNBIP, pages 174–189. Springer, 2011. (Cited on page 50.)

[71] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed
service-oriented architecture for business process execution. ACM Trans-
actions on the Web (TWEB), 4(1):2, 2010. (Cited on page 47.)

[72] Niels Lohmann. A feature-complete petri net semantics for WS-BPEL
2.0. In Web Services and Formal Methods, 4th International Workshop, WS-
FM 2007, Brisbane, Australia, September 28-29, 2007. Proceedings, pages
77–91, 2007. doi: 10.1007/978-3-540-79230-7_6. URL http://dx.doi.

org/10.1007/978-3-540-79230-7_6. (Cited on pages 4 and 83.)

[73] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Trans-
formations for Business Processes – A Survey, pages 46–63. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00899-
3. doi: 10.1007/978-3-642-00899-3_3. URL https://doi.org/10.1007/

978-3-642-00899-3_3. (Cited on page 83.)

[74] David Luckham. Event Processing for Business: Organizing the Real-Time
Enterprise. 01 2012. (Cited on pages 3 and 32.)

[75] David C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2010. ISBN
0201727897. (Cited on pages 18 and 56.)

http://dx.doi.org/10.1007/978-3-540-79230-7_6
http://dx.doi.org/10.1007/978-3-540-79230-7_6
https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1007/978-3-642-00899-3_3

146 bibliography

[76] Linh Thao Ly, Stefanie Rinderle, and Peter Dadam. Semantic correct-
ness in adaptive process management systems. In Schahram Dustdar,
José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Manage-
ment, pages 193–208, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg. ISBN 978-3-540-38903-3. (Cited on page 101.)

[77] Alexander Lübbe. Tangible Business Process Modeling. Dissertation, Uni-
versität Potsdam, 2011. (Cited on page 13.)

[78] Sankalita Mandal. Events in BPMN: the racing events dilemma. In Pro-
ceedings of the 9th Central European Workshop on Services and their Compo-
sition (ZEUS), volume 1826 of CEUR Workshop Proceedings, pages 23–30.
CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-1826/paper5.pdf.
(Cited on pages 7, 50, and 70.)

[79] Sankalita Mandal and Mathias Weske. A flexible event handling model
for business process enactment. In 22nd IEEE International Enterprise
Distributed Object Computing Conference, EDOC, pages 68–74. IEEE Com-
puter Society, 2018. doi: 10.1109/EDOC.2018.00019. URL https://doi.

org/10.1109/EDOC.2018.00019. (Cited on pages 62, 65, 69, 83, and 101.)

[80] Sankalita Mandal, Marcin Hewelt, and Mathias Weske. A framework
for integrating real-world events and business processes in an iot en-
vironment. In On the Move to Meaningful Internet Systems. OTM 2017
Conferences - Confederated International Conferences: CoopIS, C&TC, and
ODBASE, Proceedings, Part I, volume 10573 of Lecture Notes in Computer
Science, pages 194–212. Springer, 2017. doi: 10.1007/978-3-319-69462-7\
_13. URL https://doi.org/10.1007/978-3-319-69462-7_13. (Cited on
pages 7, 53, and 54.)

[81] Sankalita Mandal, Matthias Weidlich, and Mathias Weske. Events in
business process implementation: Early subscription and event buffer-
ing. In Business Process Management Forum - BPM Forum, volume 297

of Lecture Notes in Business Information Processing, pages 141–159. Sprin-
ger, 2017. doi: 10.1007/978-3-319-65015-9_9. URL https://doi.org/

10.1007/978-3-319-65015-9_9. (Cited on pages 50, 65, 69, 83, 110,
and 122.)

[82] Sankalita Mandal, Marcin Hewelt, Maarten Oestreich, and Mathias
Weske. A classification framework for iot scenarios. In Business Pro-
cess Management Workshops - BPM 2018 International Workshops, vol-
ume 342 of Lecture Notes in Business Information Processing, pages 458–
469. Springer, 2018. doi: 10.1007/978-3-030-11641-5_36. URL https:

//doi.org/10.1007/978-3-030-11641-5_36. (Cited on pages 7, 42, 49,
and 53.)

[83] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, Wil M. P.
van der Aalst, and Pieter J. Toussaint. Guided process discovery - a
pattern-based approach. Inf. Syst., 76:1–18, 2018. (Cited on page 32.)

[84] R. Meier and V. Cahill. Steam: event-based middleware for wireless ad
hoc networks. In Proceedings 22nd International Conference on Distributed
Computing Systems Workshops, pages 639–644, July 2002. doi: 10.1109/
ICDCSW.2002.1030841. (Cited on page 48.)

http://ceur-ws.org/Vol-1826/paper5.pdf
https://doi.org/10.1109/EDOC.2018.00019
https://doi.org/10.1109/EDOC.2018.00019
https://doi.org/10.1007/978-3-319-69462-7_13
https://doi.org/10.1007/978-3-319-65015-9_9
https://doi.org/10.1007/978-3-319-65015-9_9
https://doi.org/10.1007/978-3-030-11641-5_36
https://doi.org/10.1007/978-3-030-11641-5_36

bibliography 147

[85] Giovanni Meroni. Artifact-driven Business Process Monitoring. PhD thesis,
06 2018. (Cited on pages 46 and 49.)

[86] A. Metzger, P. Leitner, D. Ivanović, E. Schmieders, R. Franklin, M. Carro,
S. Dustdar, and K. Pohl. Comparing and combining predictive business
process monitoring techniques. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(2):276–290, Feb 2015. ISSN 2168-2216. doi: 10.
1109/TSMC.2014.2347265. (Cited on page 15.)

[87] A Meyer, A Polyvyanyy, and M Weske. Weak Conformance of Process
Models with respect to Data Objects. In Services and their Composition
(ZEUS), 2012. (Cited on page 14.)

[88] M Muehlen and J Recker. How Much Language is Enough? Theoret-
ical and Practical Use of the Business Process Modeling Notation. In
Advanced Information Systems Engineering, pages 465–479. Springer, 2008.
(Cited on page 136.)

[89] Max Muhlhauser and Iryna Gurevych. Ubiquitous Computing Technology
for Real Time Enterprises. Information Science Reference - Imprint of: IGI
Publishing, Hershey, PA, 2007. ISBN 1599048353, 9781599048352. (Cited
on pages 30 and 31.)

[90] Jorge Munoz-Gama. Conformance checking and diagnosis in process
mining. In Lecture Notes in Business Information Processing, 2016. (Cited
on page 14.)

[91] S. Nechifor, A. Petrescu, D. Damian, D. Puiu, and B. Târnaucă. Predic-
tive analytics based on cep for logistic of sensitive goods. In 2014 Inter-
national Conference on Optimization of Electrical and Electronic Equipment
(OPTIM), pages 817–822, May 2014. doi: 10.1109/OPTIM.2014.6850965.
(Cited on pages 47 and 53.)

[92] OASIS. Web Services Business Process Execution Language, Version 2.0,
April 2007. (Cited on page 4.)

[93] Michael Offel, Han van der Aa, and Matthias Weidlich. Towards
net-based formal methods for complex event processing. In Proceed-
ings of the Conference "Lernen, Wissen, Daten, Analysen", LWDA 2018,
Mannheim, Germany, August 22-24, 2018., pages 281–284, 2018. URL
http://ceur-ws.org/Vol-2191/paper32.pdf. (Cited on page 83.)

[94] OMG. Business Process Model and Notation (BPMN), Version 2.0, Jan-
uary 2011. (Cited on pages 3, 5, 18, 54, 65, 113, and 123.)

[95] OMG. Unified Modeling Language (UML), Version 2.5, 2012. (Cited on
pages 5 and 123.)

[96] OMG. Decision Model and Notation (DMN), Version 1.1, June 2016.
(Cited on page 16.)

[97] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible
business processes management. In Johann Eder and Schahram Dustdar,
editors, Business Process Management Workshops, pages 169–180, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-38445-8.
(Cited on page 15.)

http://ceur-ws.org/Vol-2191/paper32.pdf

148 bibliography

[98] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan
Mendling, and Hajo A. Reijers. Imperative versus declarative process
modeling languages: An empirical investigation. In Florian Daniel,
Kamel Barkaoui, and Schahram Dustdar, editors, Business Process Man-
agement Workshops, pages 383–394, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-28108-2. (Cited on page 15.)

[99] P. R. Pietzuch and J. M. Bacon. Hermes: a distributed event-based
middleware architecture. In Proceedings 22nd International Conference
on Distributed Computing Systems Workshops, pages 611–618, 2002. doi:
10.1109/ICDCSW.2002.1030837. (Cited on page 48.)

[100] Louchka Popova-Zeugmann. Time and Petri Nets. 11 2013. ISBN 978-3-
642-41114-4. doi: 10.1007/978-3-642-41115-1. (Cited on page 21.)

[101] Luise Pufahl, Sankalita Mandal, Kimon Batoulis, and Mathias Weske.
Re-evaluation of decisions based on events. In Enterprise, Business-
Process and Information Systems Modeling - 18th International Conference,
BPMDS, volume 287 of Lecture Notes in Business Information Processing,
pages 68–84. Springer, 2017. doi: 10.1007/978-3-319-59466-8_5. URL
https://doi.org/10.1007/978-3-319-59466-8_5. (Cited on pages 7

and 46.)

[102] Vivek Ranadive and Kevin Maney. The Two-Second Advantage: How We
Succeed by Anticipating the Future–Just Enough. Crown Business, 2011.
ISBN 0307887650. (Cited on page 3.)

[103] Manfred Reichert, Stefanie Rinderle-Ma, and Peter Dadam. Flexibility in
process-aware information systems. ToPNoC, 5460:115–135, 2009. (Cited
on page 50.)

[104] Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013. (Cited on page 21.)

[105] Leonard Richardson and Sam Ruby. Restful Web Services. O’Reilly, first
edition, 2007. ISBN 9780596529260. (Cited on page 5.)

[106] Pedro H. Piccoli Richetti, Fernanda Araujo Baião, and Flávia Maria San-
toro. Declarative process mining: Reducing discovered models complex-
ity by pre-processing event logs. In Shazia Sadiq, Pnina Soffer, and Ha-
gen Völzer, editors, Business Process Management, pages 400–407, Cham,
2014. Springer International Publishing. ISBN 978-3-319-10172-9. (Cited
on page 32.)

[107] A Rogge-Solti, N Herzberg, and L Pufahl. Selecting Event Monitoring
Points for Optimal Prediction Quality. In EMISA, pages 39–52, 2012.
(Cited on page 15.)

[108] Sherif Sakr, Zakaria Maamar, Ahmed Awad, Boualem Benatallah, and
Wil M. P. Van Der Aalst. Business process analytics and big data systems:
A roadmap to bridge the gap. IEEE Access, PP:1–1, 11 2018. doi: 10.1109/
ACCESS.2018.2881759. (Cited on pages 43 and 49.)

[109] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-
Christoph Freytag. Streams and tables: Two sides of the same coin. In
Proceedings of the International Workshop on Real-Time Business Intelligence

https://doi.org/10.1007/978-3-319-59466-8_5

bibliography 149

and Analytics, BIRTE 2018, Rio de Janeiro, Brazil, August 27, 2018, pages
1:1–1:10, 2018. doi: 10.1145/3242153.3242155. URL https://doi.org/

10.1145/3242153.3242155. (Cited on page 49.)

[110] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and
Wil van der Aalst. Process flexibility: A survey of contemporary ap-
proaches. In Jan L. G. Dietz, Antonia Albani, and Joseph Barjis, ed-
itors, Advances in Enterprise Engineering I, pages 16–30, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-68644-6. (Cited
on page 50.)

[111] Stefan Schönig, Lars Ackermann, Stefan Jablonski, and Andreas Ermer.
An integrated architecture for iot-aware business process execution. In
Jens Gulden, Iris Reinhartz-Berger, Rainer Schmidt, Sérgio Guerreiro,
Wided Guédria, and Palash Bera, editors, Enterprise, Business-Process and
Information Systems Modeling, pages 19–34, Cham, 2018. Springer Inter-
national Publishing. ISBN 978-3-319-91704-7. (Cited on page 42.)

[112] Stefan Schönig, Ana Paula Aires, Andreas Ermer, and Stefan Jablonski.
Workflow Support in Wearable Production Information Systems, pages 235–
243. 06 2018. ISBN 978-3-319-92900-2. doi: 10.1007/978-3-319-92901-9_
20. (Cited on pages 42 and 49.)

[113] Ronny Seiger, Christine Keller, Florian Niebling, and Thomas Schlegel.
Modelling complex and flexible processes for smart cyber-physical envi-
ronments. Journal of Computational Science, 10:137 – 148, 2015. ISSN 1877-
7503. doi: https://doi.org/10.1016/j.jocs.2014.07.001. URL http://www.

sciencedirect.com/science/article/pii/S1877750314000970. (Cited
on page 47.)

[114] Arik Senderovich, Andreas Rogge-Solti, Avigdor Gal, Jan Mendling,
and Avishai Mandelbaum. The road from sensor data to process in-
stances via interaction mining. In Selmin Nurcan, Pnina Soffer, Marko
Bajec, and Johann Eder, editors, Advanced Information Systems Engineer-
ing, pages 257–273, Cham, 2016. Springer International Publishing. ISBN
978-3-319-39696-5. (Cited on page 32.)

[115] Natalia Sidorova, Christian Stahl, and Nikola Trčka. Workflow sound-
ness revisited: Checking correctness in the presence of data while stay-
ing conceptual. In Barbara Pernici, editor, Advanced Information Systems
Engineering, pages 530–544, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-13094-6. (Cited on page 107.)

[116] H Smith and P Fingar. Business Process Management: The Third Wave. 01

2006. (Cited on page 13.)

[117] Pnina Soffer, Annika Hinze, Agnes Koschmider, Holger Ziekow, Clau-
dio Di Ciccio, Boris Koldehofe, Oliver Kopp, Arno Jacobsen, Jan Sürmeli,
and Wei Song. From event streams to process models and back: Chal-
lenges and opportunities. Information Systems, 01 2018. (Cited on
pages 44 and 50.)

[118] Kunal Suri. Modeling the Internet of Things in Configurable Process Models.
PhD thesis, 02 2019. (Cited on page 45.)

https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/3242153.3242155
http://www.sciencedirect.com/science/article/pii/S1877750314000970
http://www.sciencedirect.com/science/article/pii/S1877750314000970

150 bibliography

[119] Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M. P. van der
Aalst. Event abstraction for process mining using supervised learning
techniques. CoRR, abs/1606.07283, 2016. (Cited on page 32.)

[120] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Pre-
dictive business process monitoring with lstm neural networks. In Eric
Dubois and Klaus Pohl, editors, Advanced Information Systems Engineer-
ing, pages 477–492, Cham, 2017. Springer International Publishing. ISBN
978-3-319-59536-8. (Cited on page 14.)

[121] UNICORN. Complex Event Processing Platform. https://bpt.hpi.

uni-potsdam.de/UNICORN/WebHome. (Cited on page 58.)

[122] W. M. P. van der Aalst. Verification of workflow nets. In Pierre Azéma
and Gianfranco Balbo, editors, Application and Theory of Petri Nets 1997,
pages 407–426, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.
ISBN 978-3-540-69187-7. (Cited on page 83.)

[123] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede,
N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn.
Soundness of workflow nets: classification, decidability, and analy-
sis. Formal Aspects of Computing, 23(3):333–363, May 2011. ISSN 1433-
299X. doi: 10.1007/s00165-010-0161-4. URL https://doi.org/10.1007/

s00165-010-0161-4. (Cited on page 107.)

[124] Wil van der Aalst. Process Mining: Data Science in Action. Springer Pub-
lishing Company, Incorporated, 2nd edition, 2016. ISBN 3662498502,
9783662498507. (Cited on pages 3, 13, and 15.)

[125] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Chris-
tian Stahl, and Karsten Wolf. Multiparty contracts: Agreeing and
implementing interorganizational processes. Comput. J., 53(1):90–106,
2010. doi: 10.1093/comjnl/bxn064. URL http://dx.doi.org/10.1093/

comjnl/bxn064. (Cited on page 47.)

[126] Maximilian Völker, Sankalita Mandal, and Marcin Hewelt. Testing event-
driven applications with automatically generated events. In Proceedings
of the BPM Demo Track and BPM Dissertation Award co-located with 15th In-
ternational Conference on Business Process Modeling, volume 1920 of CEUR
Workshop Proceedings. CEUR-WS.org, 2017. URL http://ceur-ws.org/

Vol-1920/BPM_2017_paper_182.pdf. (Cited on pages 115 and 117.)

[127] Rainer von Ammon, C. Silberbauer, and C. Wolff. Domain specific refer-
ence models for event patterns - for faster developing of business activity
monitoring applications. 2007. (Cited on pages 38, 45, and 49.)

[128] Rainer von Ammon, Christoph Emmersberger, Torsten Greiner, Flo-
rian Springer, and Christian Wolff. Event-driven business process
management. In Fast Abstract, Second International Conference on Dis-
tributed Event-Based Systems, DEBS 2008, Rom, Juli 2008, 2008. URL
https://epub.uni-regensburg.de/6829/. (Cited on page 44.)

[129] Barbara Weber, Jakob Pinggera, Stefan Zugal, and Werner Wild. Han-
dling events during business process execution: An empirical test. In
ER-POIS@CAiSE, 2010. (Cited on page 43.)

https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
http://dx.doi.org/10.1093/comjnl/bxn064
http://dx.doi.org/10.1093/comjnl/bxn064
http://ceur-ws.org/Vol-1920/BPM_2017_paper_182.pdf
http://ceur-ws.org/Vol-1920/BPM_2017_paper_182.pdf
https://epub.uni-regensburg.de/6829/

bibliography 151

[130] M Weidlich, G Decker, A Groß kopf, and M Weske. BPEL to BPMN:
The Myth of a Straight-Forward Mapping. In On the Move to Meaningful
Internet Systems, pages 265–282. Springer, 2008. (Cited on page 4.)

[131] Matthias Weidlich. Behavioural profiles: a relational approach to behaviour
consistency. PhD thesis, University of Potsdam, 2011. (Cited on pages 20

and 47.)

[132] Matthias Weidlich, Holger Ziekow, Jan Mendling, Oliver Günther, Math-
ias Weske, and Nirmit Desai. Event-based monitoring of process exe-
cution violations. In BPM, pages 182–198. Springer, 2011. (Cited on
pages 14, 44, and 49.)

[133] Matthias Weidlich, Holger Ziekow, Avigdor Gal, Jan Mendling, and
Mathias Weske. Optimizing event pattern matching using business
process models. IEEE Trans. Knowl. Data Eng., 26(11):2759–2773, 2014.
doi: 10.1109/TKDE.2014.2302306. URL https://doi.org/10.1109/TKDE.

2014.2302306. (Cited on pages 47 and 49.)

[134] Mathias Weske. Business Process Management - Concepts, Languages, Ar-
chitectures, 2nd Edition. Springer, 2012. ISBN 978-3-642-28615-5. doi:
10.1007/978-3-642-28616-2. (Cited on pages 3, 13, 15, 62, and 83.)

[135] Mathias Weske. Business Process Management - Concepts, Languages,
Architectures, Third Edition. Springer, 2019. ISBN 978-3-662-59431-
5. doi: 10.1007/978-3-662-59432-2. URL https://doi.org/10.1007/

978-3-662-59432-2. (Cited on page 21.)

[136] Dennis Wolf. Flexible event subscription in business processes. Dissertation,
Universität Potsdam, 2017. (Cited on pages 115 and 122.)

[137] Karsten Wolf. Petri net model checking with lola 2. In Victor Khomenko
and Olivier H. Roux, editors, Application and Theory of Petri Nets and Con-
currency, pages 351–362, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-91268-4. (Cited on pages 83 and 97.)

[138] Honguk Woo, Aloysius K. Mok, and Deji Chen. Realizing the poten-
tial of monitoring uncertain event streams in real-time embedded appli-
cations. IEEE Real-Time and Embedded Technology and Applications, 2007.
(Cited on page 47.)

[139] R. Worzberger, T. Kurpick, and T. Heer. Checking correctness and com-
pliance of integrated process models. In 2008 10th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing, pages
576–583, Sep. 2008. doi: 10.1109/SYNASC.2008.10. (Cited on page 101.)

[140] C. Zang and Y. Fan. Complex event processing in enterprise informa-
tion systems based on rfid. Enterprise Information Systems, 1(1):3–23,
2007. doi: 10.1080/17517570601092127. URL https://doi.org/10.1080/

17517570601092127. (Cited on page 47.)

All links were last followed on 20.09.2019.

https://doi.org/10.1109/TKDE.2014.2302306
https://doi.org/10.1109/TKDE.2014.2302306
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1080/17517570601092127
https://doi.org/10.1080/17517570601092127

D E C L A R AT I O N

I hereby confirm that I have authored this thesis independently and
without use of others than the indicated sources. All passages which are
literally or in general matter taken out of publications or other sources
are marked as such. I am aware of the examination regulations and this
thesis has not been previously submitted elsewhere.

Potsdam, Germany
December 2019

Sankalita Mandal

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	Listings
	Acronyms
	Introduction & Foundations
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Contributions
	1.4 Structure of Thesis

	2 Business Process Management
	2.1 BPM Life Cycle
	2.2 Business Process Model and Notation
	2.2.1 Core Elements
	2.2.2 Events in Business Processes

	2.3 Petri Nets
	2.4 BPMN to Petri Net Mapping

	3 Complex Event Processing
	3.1 Basic Concepts
	3.2 Event Distribution
	3.3 Event Abstraction
	3.4 Event Processing Techniques

	4 Related Work
	4.1 Overview
	4.2 External Events in BPM
	4.3 Integrated Applications
	4.4 Flexible Event Subscription & Buffering
	4.5 Summary

	Conceptual Framework
	5 Integrating Real-World Events into Business Process Execution
	5.1 Motivation & Overview
	5.2 Requirements Analysis
	5.2.1 R1: Separation of Concerns
	5.2.2 R2: Representation of Event Hierarchies
	5.2.3 R3: Implementation of Integration

	5.3 System Architecture
	5.3.1 Distribution of Logic
	5.3.2 Use of Event Abstraction
	5.3.3 Implementation Concepts

	5.4 Summary & Discussion

	6 Flexible Event Handling Model
	6.1 Motivation & Overview
	6.2 Event Handling Notions
	6.2.1 Business Process View
	6.2.2 Event Processing View

	6.3 Flexible Subscription Management
	6.3.1 Points of Subscription
	6.3.2 Points of Unsubscription
	6.3.3 Event Buffering
	6.3.4 Semantic Interdependencies

	6.4 Summary & Discussion

	7 Formal Execution Semantics
	7.1 Motivation & Overview
	7.2 Petri Net Mapping
	7.2.1 Event Handling Notions
	7.2.2 Points of Subscription
	7.2.3 Points of Unsubscription
	7.2.4 Event Buffering

	7.3 Summary & Discussion

	Evaluation & Conclusions
	8 Application of Concepts
	8.1 Execution Trace Analysis
	8.1.1 Correctness Constraints
	8.1.2 Impact of Event Handling
	8.1.3 Discussion

	8.2 Reachability Analysis
	8.2.1 Communication Model
	8.2.2 Impact of Event Handling
	8.2.3 Discussion

	8.3 Summary

	9 Proof-of-Concept Implementation
	9.1 Basic Event Interaction
	9.1.1 Unicorn Event Processing Platform
	9.1.2 Gryphon Case Modeler
	9.1.3 Chimera Process Engine
	9.1.4 Event Integration Sequence

	9.2 Flexible Event Subscription with Buffering
	9.2.1 BPMN Extension
	9.2.2 Unicorn Extension
	9.2.3 Camunda Extension

	9.3 Summary

	10 Conclusions
	10.1 Summary of Thesis
	10.2 Limitations and Future Research

	Bibliography
	Declaration

