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Abstract

This thesis is concerned with the solution of the blind source separation
problem (BSS). The BSS problem occurs frequently in various scientific
and technical applications. In essence, it consists in separating meaning-
ful underlying components out of a mixture of a multitude of superimposed
signals.

In the recent research literature there are two related approaches to
the BSS problem: The first is known as Independent Component Analysis
(ICA), where the goal is to transform the data such that the components
become as independent as possible. The second is based on the notion of
diagonality of certain characteristic matrices derived from the data. Here
the goal is to transform the matrices such that they become as diagonal
as possible. In this thesis we study the latter method of approximate joint
diagonalization (AJD) to achieve a solution of the BSS problem. After
an introduction to the general setting, the thesis provides an overview on
particular choices for the set of target matrices that can be used for BSS by
joint diagonalization.

As the main contribution of the thesis, new algorithms for approximate
joint diagonalization of several matrices with non-orthogonal transforma-
tions are developed.

These newly developed algorithms will be tested on synthetic benchmark
datasets and compared to other previous diagonalization algorithms.

Applications of the BSS methods to biomedical signal processing are dis-
cussed and exemplified with real-life data sets of multi-channel biomagnetic
recordings.
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Zusammenfassung

Diese Arbeit befasst sich mit der Lösung des Problems der blinden Sig-
nalquellentrennung (BSS). Das BSS Problem tritt häufig in vielen wissen-
schaftlichen und technischen Anwendungen auf. Im Kern besteht das Prob-
lem darin, aus einem Gemisch von überlagerten Signalen die zugrundeliegen-
den Quellsignale zu extrahieren.

In wissenschaftlichen Publikationen zu diesem Thema werden hauptsäch-
lich zwei Lösungsansätze verfolgt:

Ein Ansatz ist die sogenannte “Analyse der unabhängigen Komponen-
ten”, die zum Ziel hat, eine lineare Transformation V der Daten X zu
finden, sodass die Komponenten Un der transformierten Daten U = VX (die
sogenannten “independent components”) so unabhängig wie möglich sind.
Ein anderer Ansatz beruht auf einer simultanen Diagonalisierung mehrerer
spezieller Matrizen, die aus den Daten gebildet werden. Diese Möglichkeit
der Lösung des Problems der blinden Signalquellentrennung bildet den Schw-
erpunkt dieser Arbeit.

Als Hauptbeitrag der vorliegenden Arbeit präsentieren wir neue Algo-
rithmen zur simultanen Diagonalisierung mehrerer Matrizen mit Hilfe einer
nicht-orthogonalen Transformation.

Die neu entwickelten Algorithmen werden anhand von numerischen Sim-
ulationen getestet und mit bereits bestehenden Diagonalisierungsalgorith-
men verglichen. Es zeigt sich, dass unser neues Verfahren sehr effizient und
leistungsfähig ist. Schließlich werden Anwendungen der BSS Methoden auf
Probleme der biomedizinischen Signalverarbeitung erläutert und anhand von
realistischen biomagnetischen Messdaten wird die Nützlichkeit in der explo-
rativen Datenanalyse unter Beweis gestellt.
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Chapter 1

Introduction

In this introductory chapter we give an overview of the prob-
lem and dicuss why it is important. Furthermore we outline
the thesis.

Lack of data is hardly the problem these days since with our modern
devices we can read and measure practically everything. But how are we
supposed to cope with the growing amount of signals and data?

In this thesis we follow the approach of multivariate data analysis. In
particular, we consider this question as relating especially to the field of
unsupervised data analysis and blind source separation (BSS).

The BSS problem occurs frequently in various scientific and technical
applications. In essence, it consists in separating meaningful underlying
components out of a mixture of a multitude of superimposed signals. Sig-
nals are mixed since they are transmitted over a shared medium. A popular
example to illustrate this problem is the so called ’cocktail-party’ effect: in
a conversation, which is held in a crowded room with many people speaking
at the same time, we are often remarkably well able to separate a partic-
ular voice from the background babble. In contrast, a computer program,
aimed at automatic speech recognition would fail miserably under these cir-
cumstances, since the speech recognition system can not match the mixed
utterance to a single word or phrase.

As in this example, efficient methods to separate superimposed signals
originating from different sources without knowing about the source char-
acteristics in detail are of great importance and practical relevance in many
scientific and technical applications. Our strongest motivation to study the
blind source separation problem in the first place, originates from the goal of
studying the human brain by measuring the electrical or magnetical signals
as they are detected outside of the body. Here the BSS approach has a great
potential to reveal highly useful information about the electrophysiological
processes inside the brain as discussed in the following section.

1



2 1 INTRODUCTION

1.1 The Biomedical Signal Processing Challenge

Recent advances in biomedical signal processing allow to monitor the active
brain non-invasively at high spatial and temporal resolution. In particular
modern MEG and EEG hardware routinely record signals in the femto-Tesla
range, at hundreds of points all over the head or body, up to 4000 times each
second (Drung, 1995). This high sensitivity is needed to enable physicians
to get precise information about ongoing electro-physiological processes in
the brain. Hence the new measurement techniques provide a valuable tool
for clinical applications and for the longterm research goal to better under-
stand the mechanism of information processing in the brain. However, the
increased sensitivity poses an enormous challenge for signal processing and
data analysis since signals from a multitude of different biological processes
and noise sources obfuscate the signal of interest. Thus it is of utmost im-
portance in this undertaking to improve the signal-to-noise ratio, especially
when the ongoing activity of the brain is to be studied on a single-trial basis.

For example in MEG sophisticated active and passive shielding is used
to reduce unwanted signals, like the omni-present power-line interferences,
which otherwise contaminate the measurements.

In this thesis we are interested in efficient and robust mathematical al-
gorithms to reduce disturbances originating from technical or body-intern
noise sources. Here we make use of the fact that many of these processes
vary in intensity independently of each other.

We focus on the application of a recently developed unsupervised data
analysis technique known as blind source separation to process multi-channel
recordings of biomedical signals. In this setting one has only access to mea-
surements of mixed, i.e. superimposed signals and the question is how to
construct suitable algorithms that allow to demix and thus find the under-
lying (unmixed) signals of interest. Blind source separation techniques aim
exactly to reveal unknown underlying sources of an observed mixture x(t)
using two ingredients (I) a model about the mixing process (typically a lin-
ear superposition as in equation 1.1) and (II) the assumption of statistical
independence. As opposed to other signal processing techniques like beam-
forming or spectral analysis, BSS does not rely on precise information about
the geometry of the sensor array or the knowledge of the frequency content
of the underlying sources. Therefore this source separation method is called
“blind”.

Furthermore, in the context of EEG and MEG data such a “blind” de-
composition approach reveals important information about the analyzed
brain signals in the sense of a spatio-temporal model:

x(t) = As(t), (1.1)

The columns of A represent the coupling of a source with each sensor. This
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information gives rise to a spatial pattern. The sources s(t) describe the
dynamics, i.e. the time courses, of the components. This decoupling of
spatial and temporal information offers a valuable tool for exploratory data
analysis and hence the BSS approach can be used to extract meaningful
features from large-scale multi-channel data.

1.2 Algorithmical Solutions

There are two related approaches to the BSS problem: The most popular is
known as Independent Component Analysis, where the goal is to transform
the data such that the components become as independent as possible. An
alternative approach is based on the notion of diagonality of certain charac-
teristic matrices derived from the data. The solution for the BSS problem
is obtained by estimating the generalized eigenvectors of suitably defined
matrix-valued statistics of the observed data. Thus the BSS problem can be
solved by solving an analogous problem of joint diagonalization (JD). The
goal of joint diagonalization consists in the following problem: Given a set
of K N ×N “target matrices” C1,C2, . . . ,CK , find a N ×N non-singular
matrix V such that the transformed matrices VCkV

T become diagonal (or
as diagonal as possible) for all k.

What makes this problem a difficult one is the fact that it is a non-linear
constrained optimization problem.

In this thesis we present a general strategy how to cope with such con-
strained optimization problems by exploiting the special structure of our
problem.

As the main contribution we will derive new algorithms operating on the
manifold of invertible matrices with unit determinant aimed at optimizing
a joint diagonalization cost function. The key point is that by ensuring
those structural constraints we naturally circumvent the trivial (zero) mini-
mizer and at the same time have the possibility to simplify the optimization
problem.

Thus we are in a position to strongly advocate algebraic methods for
BSS, which estimate a solution for the BSS problem by estimating gener-
alized eigenvectors that simultaneously diagonalize certain, suitably defined
matrix-valued statistics of the observations. This approach allows us to
efficiently use the time-structure of signals as a criterion to separate the
observed mixtures in real-world biomedical applications.



4 1 INTRODUCTION

1.3 Outline of the Thesis

In chaper 2 we introduce the notion of blind source separation and review a
statistical (maximum likelihood) approach for its solution. Furthermore we
find evidence that BSS can be equally well formulated as an approximate
joint diagonalization (AJD) problem, which allows to conveniently use the
time structure of the signals for the separation.

In chapter 3 we present new algorithms for AJD using multiplicative
exponential updates for non-linear constrained optimization. In particu-
lar we derive two novel algorithmical solutions: a gradient method, called
DOMUNG and a Newton-like method, called FFDiag.

In chapter 4 we test and compare the newly developed algorithms by
numerical simulations.

In chapter 5 we come back to our original problem: biomedical signal
processing in real-world environments. We present results towards clinical
applications.

In chapter 6 a discussion is given, a conclusion is drawn and recommen-
dations for future research are made.



Chapter 2

Blind Source Separation

In this chapter we establish a link between two problems:
First we give an introduction to the problem of blind source
separation (BSS). The nature of the problem and typical ap-
proaches to its solution are briefly reviewed. Then we find ev-
idence that many of these approaches can be formulated as a
related problem of approximate joint diagonalization (AJD).
Diagonalization techniques provide a unifying framework to
design efficient numerical algorithms for BSS. Thus we re-
view some of the joint diagonalization criteria available in
the rich BSS literature.

The concepts of Blind Source Separation (BSS) and Independent Compo-
nent Analysis (ICA) are actively researched since the early 1980s. They are
truly interdisciplinary and attracted the attention from researchers in signal
processing, statistics and machine learning mainly in the context of artificial
neural networks. A wealth of novel successful algorithms have emerged and
so BSS has now become a well-established method in unsupervised learn-
ing and statistical signal processing. In the following we introduce only
some of the basic ideas. For a more broad overview we refer to the excel-
lent books of Hyvärinen et al. (2001) or Haykin (2000). Also the proceed-
ings of the regularly held ICA workshops provide a wealth of related ma-
terial (Cardoso et al., 1999; Pajunen and Karhunen, 2000; Lee et al., 2001;
Amari et al., 2003; Puntonet and Prieto, 2004).

2.1 Problem Statement

BSS is an highly relevant problem of great interest in many scientific and
technical applications. It constitutes a classical goal of science to separate
an observed mixture (of signals) into several basic components.

Let us define the BSS problem. In the simplest case we consider a linear

5
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PSfrag replacements
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Figure 2.1: Graphical model of the blind separation setting for three sources s1, s2, s3.

and instantaneous superposition of independent signals. More formally, we
assume we are given some linear mixtures xi(t) of a number of statistically
independent source signals sj(t), where t is a (time-)index, obeying the
equation

xi(t) =

m∑

j=1

Aijsj(t), (i = 1, . . . , N, j = 1, . . . ,M). (2.1)

For convenience, the mixing model of equation (2.1) can also be written in
matrix notation:

X = AS, (2.2)

where the entries of the data matrix X are samples of the xi(t) in equation
2.1 giving rise to column vectors x[t] = [x1[t], ..., xN [t]]T , the N ×M matrix
A has elements Aij and the (source signals) matrix S, analogous to the

construction of X, has column vectors s[t] = [s1[t], ..., sM [t]]T .
The goal of BSS consists of recovering the set of source signals S solely

from the observed (instantaneous and linear) mixtures X, by estimating
either the mixing matrix A or its inverse V = A−1 (silently assuming that
A is invertible).

Restated in the matrix formulation, the BSS problem consists in factor-
ing the observed signals data matrix X into the mixing matrix A and the
source signals matrix S.

Though without further constraints this factorization problem is not
uniquely determined, i.e. many solutions exist that fulfill equation (2.2),
one can think of a variety of constraints utilizing prior knowledge about the
source characteristics or the mixing model (depending on the application)
that will allow to resolve almost all of these the indeterminacies.

In any case, however, since a scalar factor can always be exchanged
between each row of S and the corresponding column of A without chang-
ing the product, the amplitudes and signs of the source signals sj are not
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output

input

PSfrag replacements

U= V XX U

U

∆V = H(U)

Figure 2.2: General architecture of an BSS algorithm. One tries to adapt the unmixing
matrix V such that the output components U fulfill a criterion H(U).

uniquely defined. In the same way the ordering of the sources is ambigu-
ous. For this reason the scale and the order of the source signals (and the
corresponding columns of A) is meaningless and will at best be determined
by a suitable notational convention. Hence, any demixing procedure can
recover the original set of source signals except for two (minor) deviations:
amplitude scaling and permutation, i.e. the estimated signals U = VX will
resemble the sought-after original source signals S up to left-multiplication
by a diagonal matrix D and a permutation matrix P :

U = VX = PDS.

Another interpretation of these indeterminacies, first noticed in (Cardoso,
1998b), is that due to the inherent indeterminacies the blind source sep-
aration problem actually consists in identifying an unordered set of one-
dimensional source signal subspaces. Recovering the sources sj corresponds
to projecting X to one-dimensional subspaces defined by the columns of A.
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2.2 ICA Approach

The key concept that allows for a solution of the BSS problem is the notion
of statistical independence (Jutten and Herault, 1991; Comon, 1994). As
stated above, it is assumed that the source signals sj which form the rows
of S, are statistically independent.

Intuitively, this property is important for blind source separation because
the mixing process introduces dependencies, hence maximizing the indepen-
dence is equivalent to separation. ICA tries to find the most independent
components of the observed data.

Popular methods for ICA are based on maximization of the output en-
tropy (Bell and Sejnowski, 1995) or minimization of mutual information be-
tween the outputs (Amari et al., 1996) which is in fact the minimization of
the Kullback-Leibler divergence between the joint and the product of the
marginal distributions of the outputs.

Since both approaches have been shown to be mathematical equivalent
(Cardoso, 1997) to the statistical principle of maximum-likelihood estima-
tion, we briefly mention the main concepts in the following subsections and
present the maximum-likelihood approach in detail in subsection 2.2.4.

2.2.1 Statistical Independence

Statistical independence is stated mathematically in terms of the probability
density function (pdf):

p(s1, . . . , sM ) =
M∏

j

p(sj) (2.3)

where p(s1, . . . , sM ) denotes the joint pdf and the p(sj) denote the marginal
pdf’s of the sources. In other words, for independent random variables the
joint probability distribution has a very simple form: it is just the product
of the marginal distributions.

2.2.2 Characteristic Function

A related concept to assess the independence of variables is based on the so
called characteristic function. The characteristic function of an n-dimensional
random vector x is defined as

Φx(ω) =

∫

<p

eiωT
xdF (x) = Ex{eiωT

x} (2.4)

where i =
√
−1 and ω is the transformed variable corresponding to x.
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2.2.3 Mutual Information

A well-known measure of independence of random variables is their mutual
information (MI)1. For two random variables X and Y MI is defined as

MI(X,Y ) =

∫ ∫

dXdY log
p(X,Y )

pX(X)pY (Y )
.

This is the relative entropy or Kullback Leibler divergence between the
joint pdf and the product of the marginal distributions pX(X), pY (Y ). MI is
zero if and only if the random variables are independent (Cover and Thomas,
1991). Another name for mutual information is redundancy since the mutual
information MI(X,Y ) can be understood as the reduction in the uncertainty
about X given the knowledge of Y . If there is no more redundancy we
have reached independence and knowing one variable does not provide any
additional information about the other.

2.2.4 Maximum-Likelihood Estimation

Among the approaches to solve the ICA/BSS problem, we briefly restate
the method of maximum-likelihood estimation (Pham and Garrat, 1997;
Cardoso, 1997; Hyvärinen et al., 2001), because it is a fundamental method
of statistical estimation and a unique framework for a variety of algorithms.
Loosely speaking, in maximum-likelihood estimation we answer the ques-
tion: Given a certain probability distribution model, what is the most likely
set of parameters that would have generated the observed data?

In the language of the ICA problem, the ML principle is the following:
Given the observation vector x, maximize the (log-)likelihood function of
the mixing matrix A or, equivalently, the demixing matrix V = A−1. As a
first step we need to derive the likelihood function of the demixing matrix
in the ICA model. The pdf of the observations x is:

px(x) = |detV| ps(s) (2.5)

= |detV|
N∏

i=1

psi
(si)

= |detV|
N∏

i=1

psi
(vix)

where we used the statistical independence of the marginal components
si and the fact that 1

det A
= detA−1 = detV.

We consider a fixed sample set X with T independent samples to obtain
the likelihood function:

1 MI is an important concept of information theory and has many useful properties
(Cover and Thomas, 1991).
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`(V) =

T∏

t=1

|detV|
N∏

i=1

psi
(vix) (2.6)

= (|detV|)T

T∏

t=1

N∏

i=1

psi
(vix), (2.7)

where vi is the i-th row of V.

For practical optimization is preferable to use the normalized minus-log-
likelihood function:

L(V) = − log `(V) = − log |detV|+ 1

T

T∑

t=1

N∑

i=1

− log psi
(vix) (2.8)

Unfortunately, we can not use equation (2.8) immediately, because we do
not know the pdf of the sources. Therefore one resorts to a quasi maximum-
likelihood approach by choosing a specific “contrast” function h which ap-
proximates the negative logarithm of the unknown source densities psi

(si).

Depending on the choice of h(·) one may only yield approximate sta-
tistical independence of the variables but it can be shown that for a broad
class of functions one yields sufficient conditions to solve the BSS problem.
For example, it has been shown by Zibulevsky (2003) that this approach is
highly efficient, if the sources are sparse or sparsely representable. In this
case the absolute value function is a good choice for h(·).

Finally, we have to solve the following nonlinear optimization problem:

min
V

L(V;x, h) (2.9)

Minimizing this function w.r.t. V by a suitable numerical method means
to solve the BSS problem (see Fig. 2.2).

2.3 Joint Diagonalization Approach

As pioneered by the works of Comon (1994); Molgedey and Schuster (1994);
de Lathauwer (1997); Belouchrani et al. (1997); Cardoso (1999), we aim to
make use of the notion of approximate joint diagonalization (AJD) to solve
the BSS problem in a unifying framework. As the leitmotiv we want to
replace the measure of independence by a measure of diagonality of a set
of matrices. This will also provide us a flexible framework for generic BSS
algorithms where the numerical optimization part can be treated efficiently
in a separate step.
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2.3.1 From BSS to AJD

It is straightforward to see that under the assumption of the linear, instan-
taneous BSS model (2.1) there exists a certain set of (unknown) “target
matrices” which, in theory, gives rise to an joint diagonalization problem.
For example, as proposed in Molgedey and Schuster (1994), we may con-
sider (spatial) covariance matrices Cτ (x) of time-lagged mixed signals x(t),

Cτ (x)
def
= E{x(t)x(t + τ)T }

where the expectation is taken over t and τ is a time-shift parameter, we
see that the covariance of x is related to the covariance of s according to

Cτ (x) = E{(As(t))(As(t + τ))T }
= A E{s(t)s(t + τ)T }AT

= ACτ (s)A
T (2.10)

due to the linearity of the expectation operator and the mixing model.

The key observation is that all cross-correlation terms which are the off-
diagonal elements of Cτ (s) are zero for independent signals and thus Cτ (s)
is a diagonal matrix. Hence the mixing matrix A can be identified as the
solution of a matrix diagonalization problem in equation (2.10). If A is
invertible, this can also be written as

VCτ (x)VT = Cτ (s) = Dτ , (2.11)

where the matrix V = A−1 is diagonalizing all Cτ (x) simultaneously. In
practice, the target matrices Cτ (x) have always to be estimated from the
available data with a finite sample size T . Typically the expectation is
computed as a sample average

Ĉτ (x)
def
=

1

T

T−τ∑

t=1

(
x(t)x(t + τ)T

)
. (2.12)

It is clear that this procedure inevitably gives rise to estimation errors, how-
ever, the pragmatic approach is to assume that these errors can be neglected
for sufficiently large T . Thus for large T we conclude analogously to (2.10)
that

Ĉτ (x) = AĈτ (s)A
T .

This means that the BSS problem has been translated into an equivalent
problem of approximate joint diagonalization.
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2.3.2 Symmetrizing

We note that the matrices Cτ (x) are not symmetric by construction, however
it is appropriate to symmetrize them, because under the ICA model the anti-
symmetric part is assumed to be zero and thus the diagonalization problem
can be fully based on the symmetric part of Cτ (x):

(Cτ (x) + Cτ (x)T ) = A (Cτ (s) + Cτ (s)
T )

︸ ︷︷ ︸

↓

AT (2.13)

V (Cτ (x) + Cτ (x)T ) VT = Dτ (2.14)

2.3.3 A Two-Stage Algorithm

From (2.14) we conclude that finding a transformation matrix V which
diagonalizes the estimated, symmetrized target set “as good as possible”
provides us an estimate of the demixing matrix.

A typical algorithm proceeds in two stages, “sphering” and “rotation”
(see Figure 2.3).

0
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Figure 2.3: Decorrelation method using temporal structure of the signals

Sphering (or whitening) is aimed at orthogonalizing the observed signals
in a new coordinate system, i.e. the goal is to transform the data such that
they have unit covariance (Fukunaga, 1990). By transforming the observa-

tion vector with Q =
√

C−1
0 (x) we obtain

z(t) = Qx(t) = QAs(t),

and
C0(z) = (QA)C0(s)(QA)> = I.

Since C0(s) = I, the product (QA) is an orthogonal matrix:

(QA)(QA)> = I.
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It is easily seen that rotating the signals z(t) with any orthogonal matrix
B will not change the covariance matrix:

1

T

T∑

t=1

(Bz(t))(Bz(t))> = B

(

1

T

T∑

t=1

z(t)z(t)>
)

B>

= BIB>

= I.

Thus after applying the sphering transform there remains an ambiguity
of rotation. The correct rotation can be determined by minimizing the
off-diagonal elements of several time-delayed correlation matrices with a
joint-diagonalization algorithm (Belouchrani et al., 1997; Ziehe and Müller,
1998).

2.3.4 Generic Algorithm for BSS

In this thesis we propose to extend this approach and use the joint diagonal-
ization technique as an “engine” of a generic BSS method. We will show in
section 2.3.5 that there are many more possibilities to define target matrices
that have the same property as the covariance matrices above, i.e. matrices
which are diagonal for the source signals and ‘similar to diagonal’ for the
observed mixtures.

In algorithm 1 we outline our generic procedure for BSS based on ap-
proximate joint diagonalization of a set of matrices:

Algorithm 1 The AJD4BSS algorithm

INPUT: x(t)
Ĉk = . . . {Estimate a number of matrices Ck(x)}
V = AJD(Ĉk) {Apply joint diagonalization method}
u(t) = Vx(t) {unmix signals}
OUTPUT: u(t), V

In order to implement this method we need two things:

• an estimation procedure for suitable matrices Ck

• a joint-diagonalization algorithm

In chapter 3 we will present in detail the different strategies to solve the
AJD problem and in the remainder of the next section we review established
choices for Ck available in the rich BSS literature.
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2.3.5 Possible Target Matrices

In this section we catalog different choices for the set of target matrices.
The main purpose is to give a “cookbook- like” overview how particular
properties of the involved signals are used to construct such matrices from
the data and to show the connection to existing BSS algorithms.

Historically, the suitability of joint diagonalization criteria as BSS cost
functions have been realized by several authors. Pioneered in the early
works of Tong et al. (1991); Comon (1994); Molgedey and Schuster (1994);
Matsuoka et al. (1995); Laheld and Cardoso (1996); Belouchrani et al. (1997)
related methods emerged in articles of Wu and Principe (1999); Hori (1999);
Pham and Cardoso (2001); Yeredor (2002). Interestingly, all of the “three
easy routes” to ICA pointed out in Cardoso (2001) have analogous specific
definitions of the set of target matrices {C1,C2, . . . ,CK}. The basic idea is
to exploit certain ‘non–properties’ of the signals. The three most often used
properties of this kind are:

• non-Gaussianity

• non-Stationarity

• spectral non-Flatness

Non-Gaussianity

If we assume that the source processes si(t) are independent identically dis-
tributed, the BSS method has to rely on the non-Gaussianity of the sources.
Non-Gaussianity means that the source density is sufficiently different from
a Gaussian density. The key point is that by mixing the signals become more
and more Gaussian, since the distribution of the sum of many independent
random variables tends to be Gaussian (Hyvärinen et al., 2001).

• Cumulant-based method

Non-Gaussianity can be exploited with higher-order statistics. In order
to obtain suitable target matrices we resort to cumulants. Theoreti-
cally, cumulants are defined as the coefficients of the Taylor expansion
of the logarithm of the joint characteristic function Φ(ω1, . . . , ωN ) at
the origin ω = 0. In practice, however, cumulants are computed from
higher-order moments which are estimated from the data (Comon,
1994; Cardoso, 1999). The fourth-order cumulant tensor is a four-way
array:

cum(xi, xj , xk, xl) = E{xixjxkxl} − E{xixj}E{xkxl} (2.15)

−E{xixk}E{xjxl} − E{xixl}E{xjxk}
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The matrices to be diagonalized can be obtained from ‘parallel slices’
of the fourth-order cumulant tensor:

C(ij)(M) =
∑

kl

M(kl) cum(xi, xj, xk, xl), (2.16)

where M is an arbitrary matrix (see also Hyvärinen et al. (2001)).

The popular JADE2 algorithm (Cardoso and Souloumiac, 1993) be-
longs to this class. After whitening the data, JADE performs an ap-
proximate diagonalization of the set of eigen-matrices of the cumulant
tensor with an orthogonal transformation composed of a sequence of
plane rotations (Cardoso and Souloumiac, 1993; Comon, 1994).

The plane rotation R(θ; i, j) is defined as the identity matrix where
the (i, i) and (j, j) entries are replaced by cos(θ) and the (i, j) entry is
replaced by − sin(θ) and the (j, i) entry is replaced by sin(θ) . Then
for each pair (i, j) one computes the optimal angle θ which mininizes
the cost function.

Due to the high computational load for storing and processing the
fourth-order order cumulants the application of this method often re-
quires a dimension reduction.

• CHESS

An interesting alternative for exploiting non-Gaussianity has been pro-
posed in Yeredor (2000). There he realized that using the coefficients
of an Taylor expansion of the logarithm of the joint characteristic func-
tion Φ(ω1, . . . , ωN ) not at the origin ω = 0 but for some off the origin
processing points ωk gives rise to a set of K target matrices for joint
diagonalization.

In the CHESS3 algorithm these are defined as specially weighted em-
pirical covariances (second-order statistics).

C(x,ω) =
1

∑T
t=1 λt

T∑

t=1

λt[x(t) − x̄][x(t)− x̄]T (2.17)

where λt = eω
T x(t) and where x̄ =

∑
λtx(t)/

∑
λt.

The set of target matrices {C1,C2, . . . ,CK} is constructed by choosing
different processing points ωk ∈ IRN

Ck = C(x,ωk).

2JADE stands for Joint Approximate Diagonalization of Eigen-matrices.
3CHESS stands for CHaracteristic function Enabled Source Separation
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The advantage of this method is that the induced computational load
and the statistical robustness are more favorable than for the above
cumulant method.

Non-Stationarity

The i.i.d.assumption is often too restrictive and it is useful to exploit possible
temporal structure. Then we can even recover Gaussian sources. A very
simple form of temporal structure is related to non-stationarity. Here we
assume that the variance σ2 of the sources is not constant over time, but
varies according to some “amplitude profile” σ(t). Furthermore the variation
is assumed to be relatively slow. Thus we rely on the following properties:

• signals are supposed to be stationary within a short time-scale,

• and signals are intrinsically non-stationary over the long run.

In this case the set of target matrices is constructed from the empirical
covariance matrix in different segments of the data (Matsuoka et al., 1995;
Pham and Garrat, 1997; Parra and Spence, 2000; Pham and Cardoso, 2000,
2001; Choi et al., 2001).

Non-Flatness

The second case of non-i.i.d.sources originates from time dependencies. These
data exhibit broad band power spectra that are not constant over the fre-
quencies (non-flat spectra).

It is interesting to note that most ’natural’ signals, like speech signals
or neurophysiological signals (EEG, MEG, etc.) have a rich dynamical time
structure. Hence we want to directly exploit their diversity in the time-
frequency domain for blind source separation.

Examples for possible target matrices in this class are time-lagged covari-
ances (cf. Tong et al., 1991; Molgedey and Schuster, 1994; Belouchrani et al.,
1997; Ziehe and Müller, 1998), where the respective auto– and cross–correlation
functions φxi,xj

(τ) = E{xi(t)xj(t− τ)} in are arranged in matrix form:

Cτ (x) =








φx1,x1(τ) · · · φx1,xN
(τ)

φx2,x1(τ) · · · φx2,xN
(τ)

...
. . .

...
φxN ,x1(τ) · · · φxn,xN

(τ)








. (2.18)

In (Ziehe et al., 2000b), the Ck are defined as:

Ck(x) =
1

T

T∑

t=1

x(t) (hk ? x(t))T , (2.19)
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where ? denotes convolution and hk are impulse responses of linear filters.
The time-lagged correlation matrices of equation (2.18) are a special

case of (2.19), where one uses the linear filter: hk = δtτk
; i.e. the filter is

parametrized by a single parameter, the time-shift τ .
A further generalization is to use time-frequency distributions (TFD)

to obtain target matrices for joint diagonalization (Belouchrani and Amin,
1998; Pham and Cardoso, 2001; Pham, 2002).

In (Pham, 2002) the following method is proposed. First, one esti-
mates the time-domain covariance function using a sliding window w with
∑

l w
2(l) = 1 and computes:

R̂X(t, τ)
def
=
∑

l

[w(l − t)x(l)][w(l − τ − t)x(l − τ)]T (2.20)

Then, in a second step, the instantaneous spectral density matrix is esti-
mated from the Fourier transform of the (instantaneous) covariance function
R̂X(t, τ), smoothed with a suitable kernel k(τ) (e.g. a Parzen window).

f̂x(t, ω)
def
=

1

2π

∑

τ

k(τ)R̂X (t, τ)eiωτ (2.21)

The matrices Ck are obtained using (2.21) in a quite flexible way by
tiling the time-frequency-plane into (overlapping) blocks and computing one
target matrix per block: Ck = f̂x(tk, ωk)

2.4 Summary and Conclusion

There are very efficient BSS algorithms based on relatively weak assump-
tions, like vanishing spatio-temporal cross-correlations instead of full sta-
tistical independence, and those methods can be implemented in a unified
framework of simultaneous diagonalization of several, appropriately defined
matrices. These algebraic methods, provide both a computationally efficient
and generally applicable framework for BSS.
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Chapter 3

Approximate Joint

Diagonalization of Matrices

In this chapter we address the problem of approximate joint
diagonalization (AJD) of several real-valued, symmetric ma-
trices. In the previous chapter (section 2.3) we have seen that
AJD provides a general framework for handling generic BSS
problems. In the following sections, we introduce the joint
diagonalization concept and derive new, computationally ef-
ficient algorithms implementing these ideas. This chapter is
mainly based on the publications (Ziehe et al., 2003c, 2004)
and (Yeredor, Ziehe and Müller, 2004).

3.1 Introduction

Joint diagonalization of square matrices is an important general problem
of numeric computation. Besides other applications, joint diagonalization
techniques provide a generic algorithmic tool for blind source separation. In
this chapter the joint diagonalization problem is formulated and state-of-
the-art approaches for its solution are reviewed.

The main part of this chapter is devoted to the derivation of new al-
gorithms to efficiently perform a joint diagonalization of several symmetric
matrices. The general structure of these algorithms will be based on a multi-
plicative update with a matrix exponential in order to constrain the solution
to a particular manifold. We will see that the use of such matrix exponential
update enables the development of efficient optimization algorithms.

Before we come to the joint diagonalization problem we recall some basic
facts from linear algebra.

19
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Eigenvalues, Eigenvectors, Diagonalization

A matrix D is diagonal if Dij = 0 whenever i 6= j.
The notion of diagonalizing a matrix M is closely related to solving an

eigenvalue problem. In matrix form the eigenvalue problem is: Given an
N ×N matrix M, find a N ×N matrix E and a diagonal N ×N matrix D,
such that

ME = ED. (3.1)

If M is symmetric and real-valued, then a solution always exists where
E is an orthogonal matrix (i.e. EET = I) consisting of the eigenvectors and
the diagonal elements of D are the eigenvalues of M.

Thus writing M = EDET , where E is orthogonal and D is diagonal,
gives a factorization known as the eigenvalue decomposition (EVD).

Generalized Eigenvalue Problem

Also for two normal matrices, it is well known that exact joint diagonal-
ization is possible and is referred to as the generalized eigenvalue problem:
Given two N × N matrices M1 and M2, find a N × N matrix E and a
diagonal N ×N matrix D, such that

M1E = M2ED. (3.2)

If M2 is non-singular, the problem (3.2) can be reduced to problem
(3.1) by multiplying (3.2) from the left with M−1

2 . Extensive literature
exists on this topic (e.g. Noble and Daniel, 1977; Golub and van Loan, 1989;
Bunse-Gerstner et al., 1993; Vorst and Golub, 1997, and references therein).

Approximate Joint Diagonalization

In general, it is not possible to diagonalize more than two matrices with one
single transformation. However, exact diagonalization of more than two ma-
trices is possible if the matrices possess a certain common structure, as it is
the case for the blind source separation application (see e.g. equation (2.11)
) . If the ideal model of equation (2.11) holds, exact joint diagonalization is
possible, otherwise, one can only speak of approximate joint diagonalization
(AJD). In the remainder of the chapter we will use the terms “approximate
joint diagonalization” and “joint diagonalization” interchangeably for diag-
onalization of more than two matrices with a single transformation. The
approximation is understood in the sense of minimizing a suitable diagonal-
ity criterion.

Many algorithms for joint diagonalization have been previously proposed
(e.g. Flury and Gautschi, 1986; Cardoso and Souloumiac, 1993, 1996; Hori,
1999; Pham, 2001; van der Veen, 2001; Yeredor, 2002; Joho and Rahbar,
2002).
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In order to better understand the challenges of AJD and to explore
possible directions to improve the existing algorithms, we first study some
existing approaches to solve the joint diagonalization problem.

3.2 Solving the Joint Diagonalization Problem

3.2.1 Three Cost Functions

In this section we consider the approximate joint diagonalization of a of real-
valued symmetric matrices of size N×N .1 The goal of a joint diagonalization
algorithm is to find a matrix V that simultaneously transforms C1, . . . ,CK

as good as possible to diagonal form. The notion of closeness to diagonality
and the corresponding formal statement of the joint diagonalization problem
can be defined in different ways:

1. Subspace fitting formulation.

Approximate joint diagonalization consists of the following optimiza-
tion problem (van der Veen, 2001; Yeredor, 2002): Given a set of K
N ×N “target matrices” C1,C2, . . . ,CK , find a N ×N matrix A and
K diagonal matrices D1,D2, . . . ,DK such that the following quantity
is minimized:

J1(A,D1,D2, . . . ,DK) =

K∑

k=1

||Ck −ADkA
T ||2F (3.3)

where || · || denotes the squared Frobenius norm.

2. Frobenius norm formulation.

This formulation of the joint diagonalization problem has been used
most frequently in the literature, e.g. in Bunse-Gerstner et al. (1993);
Cardoso and Souloumiac (1993, 1996); Hori (1999); Joho and Rahbar
(2002); Joho and Mathis (2002). Here, the goal is to find the inverse
V = A−1 of the matrix A, by minimizing the diagonality criterion:

J2(V) =

K∑

k=1

off(VCkV
T ) (3.4)

where the off(·) is the Frobenius norm of the off-diagonal elements,

off(M)
def
= ||M− diag(M)||2F =

∑

i6=j

(Mij)
2. (3.5)

1The formulations and the proposed algorithms will be presented for real-valued, sym-
metric matrices only. We note however, that extensions to the complex-valued case could
be obtained in a similar manner.



22 3 APPROXIMATE JOINT DIAGONALIZATION OF MATRICES

While the diagonality measure (3.5) appears very natural and intuitive,
the cost function (3.4) has the disadvantage that the Frobenius norm
is obviously minimized by the trivial solution V = 0. Therefore an
optimization method with an additional constraint to exclude the zero
solution is required.

3. Positive definite formulation. Often it is reasonable to assume that
in the initial problem all the matrices Ck are positive-definite. This
assumption is motivated by the fact that in many applications matrices
Ck are covariance matrices of some random variables. In this case, as
proposed in Matsuoka et al. (1995); Pham (2001) the criterion

J3(V)
def
= log det(diag(VCkV

T ))− log det(VCkV
T ) (3.6)

can be used instead of the cost function (3.5). Here the operator
diag(M) returns a diagonal matrix containing only the diagonal entries
of M.

This measure can be traced back to information theory as the Kullback-
Leibler distance between a Gaussian process with covariance matrix
C and its diagonal part diag(C). The additional advantage of this
criterion is its scale invariance (Pham and Cardoso, 2001).

However, in certain applications, the matrices are not always guar-
anteed to be positive-definite. For example in blind source sepa-
ration based on time-delayed decorrelation (Belouchrani et al., 1997;
Ziehe and Müller, 1998), correlations can be positive or negative and
in this case the criterion J3 can not be used.

Compared to the approaches 2. and 3., the algorithms based on subspace
fitting have two advantages: they do not require orthogonality, positive-
definiteness or any other normalizing assumptions on the matrices A and
Ck, and they are able to handle non-square mixture matrices. These ad-
vantages, however, come at the price of a high computational cost: the
algorithm of van der Veen (2001) has quadratic convergence in the vicinity
of the minimum, but its running time per iteration is O(KN 6); the AC-
DC algorithm of Yeredor (2002) converges linearly with a running time per
iteration of order O(KN 3).

The algorithms relying on the positive-definiteness assumption are also
efficient thanks to the favorable invariance properties, but they fail for non-
positive-definite matrices. Least-squares subspace fitting algorithms, which
do not require such strong a-priori assumptions, are computationally much
more demanding. Our work is motivated by the question: could we develop
a method that combines all the good features and at the same time avoids
the shortcomings of the previous joint diagonalization algorithms?
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3.2.2 Our Approach

In our approach we want to employ the Frobenius off-diagonal norm for-
mulation and minimize the cost function J2. For this we have to solve
a constrained non-linear optimization problem, i.e. essentially a quadratic
least-squares problem with an constraint that prevents the algorithm from
converging to the trivial solution.

One of the standard algorithms for solving nonlinear least-squares prob-
lems is for example the Levenberg-Marquardt (LM) algorithm (Levenberg,
1944; Marquardt, 1963). However, the LM algorithm cannot be directly
applied to our problem, because the classical LM algorithm does not pro-
vide means for incorporation of additional constraints, such as orthogonality
or invertibility of the diagonalizer V. In what follows we present a differ-
ent strategy how to cope with the constrained optimization problem which
naturally incorporates the additional structure of our problem into the al-
gorithm.

The key point is to make use of matrix exponential updates and to exploit
the fact that our parameter space consists of the group of orthogonal, or
more general, invertible matrices.

3.2.3 General Structure of Our Algorithm

Our goal is to solve the following constrained non-linear optimization prob-
lem:

min
V

K∑

k=1

∑

i6=j

((VCkV
T )ij)

2. (3.7)

Due to the non-linearity of the problem, we can not obtain a solution for
V in closed form. Instead we have to use an iterative scheme to successively
improve an initial solution. The main problem with this approach is however
to avoid the trivial solution V = 0 which poses a constraint to (3.7).

In the traditional approach one would introduce a penalty term which
has a minimum when an additional normalization constraint is satisfied. For
example, Joho and Rahbar (2002) proposed to use:

J4 = ||VVT − I||F (3.8)

J5 = ||diag(V − I)||F (3.9)

In contrast, we prefer to use the group structure of the search space as a
hard constraint preventing convergence of the minimizer of the cost function
in Equation (3.7) to the zero solution.

We propose the following iterative process. We start with a matrix V(0)

that belongs to the group and carry out multiplicative updates:

V(m+1) ← exp(W(m+1))V(m), (3.10)
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where exp(·) denotes the matrix exponential and V(m+1) the estimated di-
agonalizing (demixing) matrix after the (m+1)-th iteration (see Figure 3.1).
The new parameter W(m+1) of the update multiplier is to be determined so
as to minimize the cost function (3.7).

For the update it is also important that the matrix V(m+1) remains
always within the group manifold. This can be ensured by certain conditions
on W(m+1) and will be discussed in subsection 3.2.4.

Pseudo-code summarizing the matrix exponential update method for
performing approximate joint diagonalization is outlined in Algorithm 2.

Algorithm 2 Matrix Exponential Updates for AJD.

INPUT: C
(0)
k { Matrices to be diagonalized}

W(0) ← 0, V(0) ← I, m← 0

repeat

compute W(m+1) from C
(m)
k according to Equation (3.18) or (3.26) or

(3.27)

if ||W(m+1)||F > θ then
W(m+1) ← θ

||W(m+1)||F
W(m+1)

end if

V(m+1) ← exp(W(m+1))V(m)

C
(m+1)
k ← V(m+1) C

(0)
k (V(m+1))T

m← m + 1
until convergence

OUTPUT: V(m+1),C
(m+1)
k

Such an multiplicative update scheme is rarely used in classical optimiza-
tion algorithms; however, it is common for many successful BSS algorithms,
such as relative-gradient (Laheld and Cardoso, 1996; Amari et al., 2000),
relative Newton (Akuzawa and Murata, 2001; Zibulevsky, 2003), as well as
for some previous joint diagonalization methods (Cardoso and Souloumiac,
1996; Pham, 2001). A further important feature of this approach is the use
of the matrix exponential which, to the best of our knowledge, has only been
used in Akuzawa and Murata (2001).
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3.2.4 Structure Preserving Updates

In order to derive algorithms that take the group structure of our parameter
space into account, we consider repeated multiplicative updates (see Figures
3.3 and 3.1). The fundamental concept is the matrix exponential function.

The Exponential Map

The exponential of a real valued square matrix M, denoted by eM or
exp(M), is defined as

eM = exp(M) =

∞∑

k=0

1

k!
Mk (3.11)

= I + M +
M2

2!
+ . . .

The matrix exponential satisfies the following properties:

1. For the N ×N zero matrix O, e0 = I, where I is the N ×N identity
matrix.

2. If M = Q






D1

. . .

DN




Q−1 for an invertible N × N matrix Q,

then eM = Q






eD1

. . .

eDN




Q−1.

3. If M′ is a matrix of the same type as M, and M and M′ commute,
then eM+M

′

= eMeM
′

.

4. The trace of M and the determinant of eM are related by the formula
det eM = etrM. Therefore eM is always invertible and the inverse is
(eM)−1 = e−M.

In applications of approximate joint diagonalization to the BSS problem
we are mainly interested in two special cases where the transformation V is
assumed to be:

• orthogonal, i.e. V ∈ O(N) or

• invertible, i.e. V ∈ GL(N).

The multiplicative matrix exponential update preserves these important
features, because the product of orthogonal (invertible) matrices is an or-
thogonal (invertible) matrix.
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Figure 3.1: Illustration of multiplicative updates using the matrix exponential map: a
local step in the tangent space is mapped to a distinct point on the manifold.

Orthogonal case

The most popular structural assumption is orthogonality of V. In fact,
such an assumption seems natural if the joint diagonalization problem is
seen as an extension of the eigenvalue problem and one asks for the common
orthogonal basis of several matrices.

A further reason for the importance of this special case is the fact that
we can use a sphering step as a pre-processing (see also section 2.3.3). The
sphering can be done as follows: First, we pick one positive-definite sym-
metric matrix C from the setM. Then, the sphering transform Q is defined
by the matrix that is obtained as the inverse square root of C.

This matrix can be computed via the eigenvalue decomposition of C,
C = EDET , which implies:

Q
def
= C− 1

2 = (EDET )−
1
2 = ED− 1

2 ET .

To see that this is indeed a sphering transformation, we apply Q = C− 1
2 to

C = EDET , where E is orthogonal. This yields

QCQT = ED− 1
2 ETEDETED− 1

2 ET = I.

This transformation is illustrated in Fig. 3.2 for a 2× 2 positive-definite
matrix.

In general, the simultaneously diagonalizable matrices Ck can be written
in the form ADkA

T , where A is a non-orthogonal invertible matrix and Dk

are diagonal matrices. Applying the sphering transform to Ck = ADk AT



3.2 SOLVING THE JOINT DIAGONALIZATION PROBLEM 27

PSfrag replacements

x1

x2

z1

√
D11

√
D22

z 2

Figure 3.2: Sphering.

yields

QADk ATQT = (QA)Dk (QA)T .

Since eigenvalue decompositions for symmetric matrices are unique, we know
that the product QA must be an orthogonal matrix. Thus the diagonaliza-
tion problem has been reduced to the orthogonal case.

Joint diagonalization with orthogonal matrices can be performed e.g. with
the extended Jacobi method (Cardoso and Souloumiac, 1996). The Jacobi
method implicitely restricts the solution of the optimization problem to
the group of orthogonal matrices by multiplying a sequence of elementary
(plane) rotations (Jacobi, 1846).

In order to preserve the orthogonality of V in the iterative Algorithm 2,
we use the properties of the matrix exponential. We initialize with an or-
thogonal matrix V(0) and perform the matrix exponential update

V(m+1) ← exp(W(m+1))V(m),

where W(m+1) is constrained to be skew-symmetric, i.e. W = −WT . This
ensures that V(m+1) remains always orthogonal.

To see this, consider the transpose of V = exp(W):

VT = exp(W)T = exp(WT ) = exp(−W) = V−1.

This implies that VVT = I, i.e. V is indeed orthogonal.
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Non-Orthogonal case

The algorithm 2 can also be used in the non-orthogonal case. Here we want
to employ the constraint that V has to be an invertible (non-singular) ma-
trix. Mathematically this condition means detV 6= 0. Due to the properties
of the matrix exponential this is always guaranteed, since det(eW) = etrW

and the exponential function is always non-zero.

Additionally, we may enforce V to be volume-preserving, i.e. det(V) = 1.
Based on the following fact, which is also a consequence of the relation
det(eW) = etrW for the matrix exponential, this can be done by setting the
trace of W to zero:

Theorem (volume preservation). If trW = 0, then det(eW) = 1.

This means that the mutltiplicative update V(m+1) ← exp(W(m+1))V(m),
with trW = 0, preserves the determinant. If we start with a matrix V0,
where detV0 = 1, this ensures det(V(m)) = 1,∀m.

However the exact matrix exponential is relativly expensive to compute
(O(N3)) and thus one may want to use a computationally cheaper first-
order approximation eW ≈ I + W (see Figure 3.3). In order to maintain
invertibility of V when using a such a first-order approximation, it suffices to
ensure invertibility of I+W. For this purpose we can resort to the following
results of matrix analysis (Horn and Johnson, 1985).

Definition. An N ×N matrix M is said to be strictly diagonally dominant
if

|Mii| >
∑

j 6=i

|Mij |, for all i = 1, . . . , N.

Theorem (Levi-Desplanques). If an N×N matrix M is strictly diagonally-
dominant, then it is invertible.

With M = I+W the Levi-Desplanques theorem helps us to control the
invertibility of I + W. We notice that the diagonal entries in I + W are all
equal to 1; therefore, it suffices to ensure that

1 > max
i

∑

j 6=i

|Wij | = ||W||∞.

This can be done by scaling W by its infinity norm ||W||∞ whenever the
latter exceeds some fixed threshold θ < 1. An even stricter condition can be
imposed by using a Frobenius norm ||W||F in the same way:

W← θ

||W||F
W. (3.12)
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Figure 3.3: The (matrix) exponential can be approximated by I + W for small W.

3.2.5 Discussion

In principle, a restriction of V to the group of orthogonal matrices can
be used if at least one matrix of the set of target matrices happens to be
positive-definite. In this case, the pre-sphering step can be applied. We note
however that such a two step method may degrade the overall performance,
because one (arbitrary) matrix of the set is diagonalized exactly at the ex-
pense of a worse diagonalization of the remaining matrices. This can be
especially problematic in the context of blind source separation (Cardoso,
1994; Yeredor, 2002; Akuzawa and Murata, 2001). Thus we want to relax
the orthogonality assumption and consider the case of approximate joint
diagonalization with non-orthogonal matrices. In the non-orthogonal case
however, we additionally need enforce some constraint to prevent trivial
solutions. Here we make use of the invertibility of V which is implicitly
guaranteed when using the multiplicative matrix exponential update. In-
vertibility is a inherent necessity in many applications of diagonalization
algorithms, especially in blind source separation, therefore making use of
such a constraint is very natural and does not limit the usefulness from the
practical point of view.

The cost of computing the matrix exponential are O(N 3), which is rel-
atively high, but since for typical BSS problems the dimensionality of the
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matrices is of the order N ≈ 100 it is by no means computational prohibitive.
A computationally cheaper alternative to the exact matrix exponential up-
date is to use a first-order approximation exp(W) ≈ I + W for sufficiently
small W.

3.3 Computation of the Update Matrix

In this section we are going to derive the update rules for the matrix W(m+1)

such that we actually minimize our joint diagonality criterion. We will con-
sider two approaches: a gradient method, called DOMUNG (Yeredor, Ziehe
and Müller, 2004) and a Newton-like method, called FFDiag (Ziehe et al.,
2003c, 2004).

3.3.1 Relative Gradient Algorithm: DOMUNG

Throughout the following derivations the operation of setting the diagonal
of a matrix to zero is frequently used. Thus we denote this operation by
putting an upper bar above the respective expression. More specifically, for
any square matrix M we define the notation M as

M
def
= M− diag(M) (3.13)

Note that the off(·) operator defined in (3.5) can then be expressed based
on the trace of a matrix:

off(M) = ||M||2F = tr{MT
M} = tr{MT M}. (3.14)

To determine the updates W at each iteration, first-order optimality
constraints for the objective (3.7) are used. We may therefore define, for
each iteration m,

J̃
(m)
2 (W)

def
=

K∑

k=1

off((I + W)C
(m)
k (I + W)T ), (3.15)

as the cost function which we seek to minimize w.r.t. W. To this end, we

now seek the gradient ∂J̃
(m)
2 (W)/∂W, which is a matrix whose (i, j)-th

element is the derivative of J̃
(m)
2 (W) w.r.t. Wij (Wij denoting the (i, j)-th

element of W). To find this gradient matrix, we first compute the gradient
of each summand in (3.15). We do so by expressing the off(·) function in
(3.15) in the vicinity of W = 0 up to first-order terms in W, i.e. we assume
that W is a sufficiently small matrix (for shorthand we omit the indices in
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the following expressions, i.e. we use C instead of C
(m)
k ):

off((I + W)C(I + W)T ) = tr{[(I + W)C(I + W)T ]T (I + W)C(I + W)T

= tr{(I + W)C(I + W)T (I + W)C(I + W)T }
≈ tr{(C + WC + CWT )(C + WC + CWT )}
≈ tr{CC + CWC + CCWT + WCC + CWTC}

˜̃J2(W) = tr{CC + CCW + CCW + CCW + CCW}
= tr{CC}+ 4 tr{CCW}. (3.16)

We used (3.14) in the first line, and the identities tr{M} = tr{MT },
tr{MQ} = tr{QM} and tr{MQ} = tr{MQ} in the transition from the
fourth line to the fifth. The ≈ symbol on the third and fourth lines indicates
the elimination of terms of second or higher order in W in the respective
transitions.

Noting that ∂ tr{MW}/∂W = MT , we obtain that the gradient of the
off(·) function w.r.t. W is 4(CC).

Reactivating the full notation we obtain the gradient of ˜̃J2

(m)
w.r.t. W

at the m-th iteration:

∂ ˜̃J2

(m)
(W)

∂W
= 4

K∑

k=1

C
(m)
k C

(m)
k . (3.17)

Since the goal is to decrease the value of ˜̃J2

(m)
in each iteration, we take

a “steepest descent” step, by setting

W(m+1) = −µ
∂ ˜̃J2

(m)
(W)

∂W
, (3.18)

where µ is some positive constant.

The stepsize is either set heuristically to some small fixed value (e.g. µ =
0.01) or adaptively controlled using a strategy as in Murata et al. (2002).
In Yeredor et al. (2004), it has been shown that even the optimal value for
µ can be found by calculating the roots of a polynomial of degree 3.

3.3.2 Relative Newton-like Algorithm: FFDiag

A further approximation of the objective function can be used to compute
W(m+1) even more efficiently. To this end we now split the target matrices

C
(m)
k in two parts:

the diagonal D
(m)
k

def
= diag(C

(m)
k ) and off-diagonal E

(m)
k

def
= C

(m)
k part.
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We note that in the vicinity of the solution the norm of E
(m)
k is small. In

order to simplify the cost function further we exploit this fact by ignoring
those terms which are a product of two small factors.

˜̃J2

(m)
(W) =

K∑

k=1

off((I + W)(D
(m)
k + E

(m)
k )(I + W)T )

≈
K∑

k=1

off(D
(m)
k + WD

(m)
k + D

(m)
k WT + E

(m)
k ). (3.19)

The first term in (3.19) is already diagonal and thus irrelevant for the mini-
mization. Dropping those irrelevant terms, we obtain the threefold approx-
imated cost function:

˜̃̃
J2

(m)

(W) =

K∑

k=1

off(WD
(m)
k + D

(m)
k WT + E

(m)
k ). (3.20)

The linearity of (3.20) in terms of W simplifies the problem enormously and
will allow us to explicitly compute the optimal update matrix W(m+1) by

minimizing the criterion
˜̃̃
J2(W) with a Newton step.

In contrast to solving a full Newton system (which would involve the in-
version of a large N(N−1)×N(N−1) matrix, the key to the computational
efficiency of the FFDiag algorithm lies in exploiting the sparseness intro-
duced by the approximation (3.20). Due to this sparse structure the inverse
of the (approximated) Hessian matrix can be computed in closed form. In
order to see this favorable special structure of the problem, we restate the
problem in a matrix-vector notation presented next.

Let the N(N − 1) off-diagonal entries of the matrix W be stacked in a
large vector w as

w = [W12,W21, . . . ,Wij ,Wji, . . .]
T . (3.21)

Notice that this is not the usual vectorization operation vec W, as the order
of elements in w reflects the pairwise relationship of the elements in W. In
a similar way the KN(N − 1) off-diagonal entries of the matrices Ek are
arranged as

e = [(E1)12, (E1)21, . . . , (E1)ij , (E1)ji, . . . , (Ek)ij , (Ek)ji, . . .]
T . (3.22)

Finally, a large but very sparse, KN(N − 1)×N(N − 1) matrix J is built,
in the form:

J =






J1
...

JK




 with Jk =









(Bk)12
. . .

(Bk)ij
. . .









,



3.3 COMPUTATION OF THE UPDATE MATRIX 33

where each Jk is block-diagonal, containing N(N − 1)/2 matrices of dimen-
sion 2× 2

(Bk)ij =

(
(Dk)jj (Dk)ii
(Dk)jj (Dk)ii

)

, i, j = 1, . . . , N, i 6= j,

where (Dk)ii is the (i, i)-th entry of a diagonal matrix Dk.
Using this notation the threefold approximated cost function can be re-

written in the familiar form of a linear least-squares problem (Press et al.,
1992).

˜̃̃
J2(W) = (Jw + e)T (Jw + e). (3.23)

The vector w that minimizes (3.23) can be obtained in closed form as:

w = −(JTJ)−1JT e. (3.24)

We can now make use of the sparseness of J to enable the direct computation
of the elements of w in (3.24). Writing out the matrix product JT J yields
a block-diagonal matrix

JTJ =









∑

k((Bk)12)
T (Bk)12

. . .
∑

k(Bk)ij)
T (Bk)ij

. . .









whose blocks are 2× 2 matrices. Thus the system (3.24) actually consists of
decoupled equations

(
Wij

Wji

)

= −
(

zjj zij

zij zii

)−1(
yij

yji

)

, i, j = 1, . . . , N, i 6= j, (3.25)

where
zij =

∑

k

(Dk)ii(Dk)jj

yij =
∑

k

(Dk)jj
(Ek)ij + (Ek)ji

2
=
∑

k

(Dk)jj(Ek)ij .

The matrix inverse in equation (3.25) can be computed in closed form, lead-
ing us to the following expressions for the update of the entries of W:

Wij =
zijyji − ziiyij

zjjzii − z2
ij

,

Wji =
zijyij − zjjyji

zjjzii − z2
ij

.
(3.26)

Here, only the off-diagonal elements (i 6= j) need to be computed and the
diagonal terms of W are set to zero.
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In the orthogonal case, due to the skew-symmetry of W, only one of
each pair of the entries (3.26) needs to be computed since the other entry is
set to Wji = −Wij. This yields the simpler expression for the elements of
W:

Wij =

∑

k(Ek)ij ((Dk)ii − (Dk)jj)
∑

k((Dk)ii − (Dk)jj)2
, i, j = 1, . . . , N, i 6= j, (3.27)

and reduces the computational cost by a factor of two.

Discussion

The simplifying assumptions used in (3.19) require some further discussion.
Our motivation for assuming that W and Ek are small is based on the
observation that in the neighborhood of the solution, the matrices Ck are
almost diagonal and thus the steps W towards the optimum are small.

Hence, in the neighborhood of the optimal solution the algorithm is ex-
pected to behave similarly to Newton’s method and can converge quadrati-
cally.

We note however, that the assumption of small Ek is potentially prob-
lematic, especially in the case where exact diagonalization is impossible. In
this case it is preferable to carried out the gradient descent step in equation
(3.18), where Ek is fully taken into account.

In any case the assumption of W being small is crucial for the conver-
gence of the algorithm and needs to be carefully controlled. The latter is
done by the normalization (3.12).

Some general remarks on convergence properties of the proposed algo-
rithmic scheme are due at this point. Newton-like algorithms are known to
converge only in the neighborhood of the optimal solution; however, when
they converge, the rate of convergence is quadratic (e.g. Kantorovich, 1949).
Since the essential components of our algorithm—the second-order approx-
imation of the objective function and the computation of optimal steps by
solving the linear system arising from first-order optimality conditions—are
inherited from Newton’s method, the same convergence behavior can be
expected.

The Newton direction in FFDiag is computed based on the Hessian of
the threefold approximated cost function.2 Taking advantage of the resulting
special structure, this computation can be carried out very efficiently:

Instead of performing inversion and multiplication of large matrices,
which would have brought us to the same O(KN 6) complexity as in the
algorithm of van der Veen (2001), computation of the optimal W(m+1) leads
to a simple formula (3.26) which has to be evaluated for all N(N−1) entries
of W. Since the computation of zij and yij also involves a loop over K, the
overall complexity of the update step is O(KN 2).

2Furthermore, the Hessian is approximated by the product of the Jacobian matrices.
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3.4 Summary

We proposed new algorithms for simultaneous diagonalization of a set of
symmetric matrices using multiplicative updates based on the matrix expo-
nential as a structural constraint to prevent trivial solutions.

The close relations between the blind source separation problem and
the approximate joint diagonalization problem led us to specially adapted
parameterizations and approximations of a nonlinear least-squares cost func-
tion.

The efficiency of the derived algorithm comes from the special second-
order approximation of the cost function, which yields a block-diagonal Hes-
sian and thus allows for highly efficient computation of a (quasi-) Newton
update step. The main result is a closed form solution for the update of a
pair of matrix elements.

The multiplicative update has the advantage of preserving the group
structure of the problem.

For simplicity of the derivations we considered the case that the target
matrices Ck are all real-valued and symmetric. An extension to the more
general, complex-valued case is possible, but has to be left for future work.
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Chapter 4

Numerical Simulations

In the following, a series of numerical experiments aimed
at comparing the performance of the algorithms on synthetic
approximate joint diagonalization tasks is provided.

4.1 Introduction

The experiments in this chapter are intended to demonstrate the perfor-
mance of the newly developed AJD algorithms in general and in particular
to compare the FFDiag algorithm with other state-of-the-art algorithms
for approximate joint diagonalization of synthetic benchmark data and of
typical target matrices occurring in BSS applications.

To facilitate a comparison, we first introduce suitable measures of per-
formance. Then we present the results of five progressively more complex
experiments. As a starting point we perform a “sanity check” experiment,
i.e. to diagonalize a set of perfectly diagonalizable matrices which is a rela-
tively easy task. This experiment is intended to emphasize that for small-
size diagonalizable matrices the algorithm’s performance matches the ex-
pected quadratic convergence. In the second experiment we compare the
FFDiag algorithm with the extended Jacobi method as used in the JADE
algorithm of Cardoso and Souloumiac (1993) (orthogonal Frobenius norm
formulation), Pham’s algorithm for positive-definite matrices (Pham, 2001)
and Yeredor’s AC-DC algorithm (Yeredor, 2002) (non-orthogonal, subspace
fitting formulation). In the third experiment we investigate the scaling be-
havior of our algorithm as compared to AC-DC. Furthermore, the perfor-
mance of the FFDiag algorithm is tested and compared with the AC-DC
algorithm on noisy, non-diagonalizable matrices. Finally, the application of
our algorithm to BSS is illustrated.

37
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4.2 Performance Measures

Evaluating the algorithms for approximate joint diagonalization requires
definite performance measures. The most straightforward measure of per-
formance is to monitor the evolution of the objective function.

In synthetic experiments with artificial data the distance from the true
solution is a good evaluation criterion. To be meaningful, this distance
has to be invariant w.r.t. the irrelevant scaling and permutation ambigui-
ties. For this reason, we choose a performance index that is commonly used
in the context of ICA/BSS where the same invariances exist (see e.g. in
Amari and Cichocki, 1998; Cardoso, 1999). Following the formulation of
Moreau (2001) a suitable performance index is defined on the normalized

“global” matrix M
def
= VA according to

score(M) =
1

2




∑

i




∑

j

|Mij |2
max

l
|Mil|2

− 1



+
∑

j




∑

i

|Mij |2
max

l
|Mlj |2

− 1







 .(4.1)

The first sum is small when each column of M has exactly one dominating
element. The second sum gets small when each row of M has exactly one
dominating element. The non-negative index (4.1) becomes zero iff M is
a product of an invertible diagonal matrix D and of a permutation matrix
P, i.e., M = DP. Thus, if the algorithm was successful, score(M = VA)
should be close to zero.

4.3 FFDiag in Practice

4.3.1 “Sanity check” Experiment

The test data in this experiment is generated as follows. We use K = 15 di-
agonal matrices Dk of size 5×5 where the elements on the diagonal are drawn
from a uniform distribution in the range [−1, . . . , 1] (cf. Joho and Rahbar,
2002). These matrices are ‘mixed’ by an orthogonal matrix A according to
ADkA

T to generate the set of target matrices {Ck} to be diagonalized.1

The FFDiag algorithm is initialized with the identity matrix V(0) = I, and
the skew-symmetric update rule (3.27) is used.

The convergence behavior of the algorithm in 10 runs is shown in Figure
4.1. The diagonalization error is measured by the off(·) function. One can
see that the algorithm has converged to the correct solution after less than
10 iterations in all trials. A quadratic convergence rate is observed from
early iterations.

1 The orthogonal matrix was obtained from a singular value decomposition of a random
5 × 5 matrix, where the entries are drawn from a standard normal distribution.
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Figure 4.1: Evolution of the diagonalization error of the FFDiag algorithm for a diag-
onalizable problem.

4.3.2 Diagonalizable vs Non-Diagonalizable Case

We now investigate the impact of non-diagonalizability of the set of matri-
ces on the performance of the FFDiag algorithm. Again, two scenarios are
considered: the one of the “sanity check” experiment and the comparative
analysis against the established algorithms. Non-diagonalizability is mod-
eled by adding a random non-diagonal symmetric “noise” matrix to each of
the input matrices:

Ck = ADkA
T + σ2(Rk)(Rk)

T ,

where the elements of Rk are drawn from a standard normal distribution.
The parameter σ allows one to control the impact of the non-diagonalizable
component. Another example, with a more realistic noise model, will be
presented in subsection 4.6.

Figure 4.2 shows the convergence plots of FFDiag for various values of
σ. The experimental setup is the same as in Section 4.3.1, apart from the
additive noise. The impact of the latter can be quantified by computing
the off(·) function on the noise terms only (averaged over all runs), which
is shown by the dotted line in Figure 4.2. One can see that the algorithm
converges quadratically to the level determined by the noise factor.

Similar to the second scenario in Section 4.4, the previously mentioned
algorithms are tested on the problem of approximate joint diagonalization
with non-orthogonal transforms. (Only the extended Jacobi algorithm had
to be excluded from the comparison since it is not designed to work with
non-orthogonal diagonalizers.) However, in contrast to Section 4.4, positive-
definite target matrices were generated in order to facilitate a comparison
with Pham’s method.
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Figure 4.2: Diagonalization errors of the FFDiag algorithm on non-diagonalizable ma-
trices.

4.4 Comparison with other Algorithms

Two scenarios are considered for a comparison of the four selected algo-
rithms: FFDiag, the extended Jacobi method, Pham’s algorithm and AC-
DC. First, we test these algorithms on diagonalizable matrices under the
conditions satisfying the assumptions of all of them. Such conditions are:
positive-definiteness of the target matrices Ck and orthogonality of the true
transformation A used to generate those matrices. These conditions are met
by generating the target matrices Ck = ADkA

T where Dk are diagonal ma-
trices with positive entries on the main diagonal. The data set consists of
100 random matrices of size 10× 10 satisfying the conditions above.

A comparison of the four algorithms on orthogonal positive-definite ma-
trices is shown in Figure 4.3. Two runs of the algorithms are presented, for
the AC-DC algorithm 5 AC steps were interlaced with 1 DC step at each
iteration. Although the algorithms optimize different objective functions,
the off(·) function is still an adequate evaluation criterion provided that the
arbitrary scale is properly normalized.

To achieve this, we evaluate
∑

k off(VCkV
T ) where V is the estimated

diagonalizer. At the true solution the criterion must attain zero. One can see
that the convergence of Pham’s algorithm, the extended Jacobi method and
FFDiag is quadratic, whereas the AC-DC algorithm converges linearly. The
average iteration complexity of the four algorithms is shown in Table 4.1.
It follows from this table that the FFDiag algorithm indeed lives up to its
name: its running time per iteration is superior to both Pham’s algorithm
and AC-DC, and is comparable to the extended Jacobi method algorithm.2

In the second scenario, the comparison of the FFDiag and the AC-DC

2In all experiments, MATLAB implementations of the algorithms were run on a stan-
dard PC with a 750MHz clock.
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Figure 4.3: Comparison of the FFDiag, the extended Jacobi method, Pham’s algorithm
and AC-DC in the orthogonal, positive-definite case: diagonalization error per iteration
measured by the off(·) criterion.

FFDiag ext. Jacobi Pham’s AC-DC

0.025 0.030 0.168 2.430

Table 4.1: Comparison of the FFDiag, ext. Jacobi, Pham’s and AC-DC algorithms in
the orthogonal, positive-definite case: average running time per iteration in seconds.

algorithms is repeated for non-positive-definite matrices obtained from a
non-orthogonal mixing matrix. This case cannot be handled by the other
two algorithms, therefore they are omitted from the comparison. The con-
vergence plots are shown in Figure 4.4; average running time per iteration
is reported in Table 4.2. Convergence behavior of the two algorithms is the
same as in the orthogonal, positive-definite case; the running time per iter-
ation of FFDiag increases due to the use of non-skew-symmetric updates.

FFDiag AC-DC

0.034 2.64

Table 4.2: Comparison of the FFDiag and AC-DC algorithms in the non-orthogonal,
non-positive-definite case: average running time per iteration in seconds.

The results of the comparison of the FFDiag, Pham’s and AC-DC algo-
rithms on a non-orthogonal positive-definite problem (5 matrices of dimen-
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Figure 4.4: Comparison of the FFDiag and AC-DC algorithms in the non-orthogonal,
non-positive-definite case: diagonalization error per iteration measured by the off(·) cri-
terion.

sion 5 × 5) at various noise levels are shown in Figure 4.5 for three typical
runs. The graphs illustrate some interesting aspects of the convergence be-
havior of the algorithms. Both the FFDiag and Pham’s algorithm converge
within a small number of iterations to approximately the same error level.
The AC-DC algorithm converges linearly, and occasionally convergence can
be very slow, as can be seen in each of the plots in Figure 4.5. However,
when AC-DC converges, it exhibits better performance as measured by the
score function; the higher the noise level, the stronger the difference.
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Figure 4.5: Comparison of the FFDiag, Pham’s and AC-DC algorithms in the non-
diagonalizable, non-orthogonal, positive-definite case at various noise levels: performance
index as measured by the score function (4.1).

4.4.1 Gradient vs Newton-like Updates

Here we compare the three algorithms DOMUNG (Yeredor et al., 2004) AC-
DC (Yeredor, 2002) and FFDIAG (Ziehe et al., 2004).

The test data for this experiment is generated as follows. We use K = 10
diagonal matrices Dk of size 3 × 3 where the elements on the diagonal are
drawn from a uniform distribution in the range [−1 . . . 1]. These matrices

are ‘mixed’ using the fixed matrix A =
[

8 1 6
3 5 7
4 9 2

]

according to the model
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ADkA
T to obtain the set of matrices Ck to be diagonalized.

The convergence behavior of the 3 algorithms in 10 runs is shown in
Fig.4.6. The diagonalization error is measured by the off(·) function. The
shaded area denotes the minima and maxima, while the bold line indicates
the median over the 10 runs. In all cases the algorithms converged to the
correct solution within the numerical computing precision. The differences
in the final levels are only due to the use of slightly different stopping criteria.
However, the convergence rates are clearly different. AC-DC and DOMUNG
have a linear convergence rate and need quite many iterations. In contrast,
FFDiag has quadratic convergence rate and needs less then 10 iterations.
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Figure 4.6: Diagonalization errors of the FFDiag, DOMUNG and AC-DC algorithm for
a perfectly diagonalizable problem.

4.5 Computational Efficiency

Computational efficiency is essential for application of an algorithm to real-
life problems. The most important parameter of the simultaneous diagonal-
ization problem affecting the computational efficiency of an algorithm is the
size of the matrices. Figure 4.7 shows the running time per iteration of the
FFDiag and the AC-DC algorithms for problems with increasing matrix
sizes, plotted at logarithmic scale. One can see that both algorithm exhibit
running times of O(N 2); however, in absolute terms the FFDiag algorithm
is almost two orders of magnitude faster.3

3This seemingly controversial result—theoretically expected scaling factor of AC-DC
is O(N3)—is due to high constants hidden in the setup phase of AC-DC. The setup phase
has O(N2) complexity, but because of the constants it outweighs the main part of the
algorithm in our experiment.
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Figure 4.7: Scaling of the FFDiag and AC-DC algorithms with respect to the matrix
size. Two repetitions of the experiment have been performed.

4.6 Blind Source Separation

4.6.1 Blind Separation of Audio Signals

We apply the joint diagonalization algorithms to a blind source separation
task. Here the source signal matrix S contains seven audio signals containing
10000 points recorded at 8kHz and one Gaussian noise source of the same
length (see Fig. 4.9). These signals are mixed by a 8× 8 Hadamard matrix,

A =















1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1















.

This scaled orthogonal matrix produces a complete mixture X = AS (see
Fig. 4.9, middle panel), in the sense that each observation contains a maxi-
mal contribution from each source.

In order to separate these signals, we compute 100 symmetrized, time-
lagged correlation matrices according to Equation (2.12) and then apply the
FFDiag algorithm with V(0) = I. Figure 4.8 shows the evolution of the
normalized diagonalization error. One can see that the algorithm converged
after 6 iterations and that the normalized global system V(m)A converges to
a permutation matrix (as shown in the left and the right panels of Fig. 4.8,
respectively). The good performance can also be seen from Figure 4.9,
where we observe a good match between the separated signals U and the
true source signals S.
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Figure 4.8: Convergence progress of the AJD4BSS algorithm on the BSS task. The right

panel shows the entries of the matrix V(m)A for the final (10th) iteration and indicates
successful separation, since the cross-talk is minimized and V(10)A resembles a scaled and
permuted identity matrix. Here, black and white squares correspond to values 1 and 0,
respectively.

4.6.2 Noisy mixtures

In order to study the behavior of the FFDiag algorithm in a more realistic
noisy scenario the following experiment is conducted.

Input data is generated by mixing three stationary, time-correlated sources

with the fixed matrix A =
(

8 1 6
3 5 7
4 9 2

)

. The sources are generated by feeding

an i.i.d. random noise signal into a randomly chosen, auto-regressive (AR)
model of order 5 whose coefficients are drawn from a standard normal dis-
tribution and are sorted in decreasing order (to ensure stability). The gen-
erated signals have a total length of 50000 samples. To separate the sources
we estimate 10 symmetrized, time-lagged correlation matrices of the mixed
signals according to Equation (2.12) and perform simultaneous diagonal-
ization of these matrices. The number T of samples used to estimate the
correlation matrices determines the quality of the estimates. Thus, by vary-
ing T , we simulate different noise levels corresponding to different variances
of the estimate. This procedure is more realistic than simply corrupting the
target matrices with small additive i.i.d. noise.

The results of the experiment are shown in Figure 4.10. The perfor-
mance of the FFDiag and the AC-DC algorithm, as measured by the score
(4.1), is displayed for four different sample sizes, where small samples sizes
correspond to a higher noise level. 100 repetitions are performed for each
sample size, and the 25%, 50% and 75% quantiles of the log-score are shown
in the plots. Two observations can be made from Figure 4.10: FFDiag

converges much faster than AC-DC, and when converged, FFDiag yields a
better score (on average), with the difference more pronounced for samples
sizes 10000 and 30000 in our experiment.
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Figure 4.9: Waveforms of the original source signals S, mixed signals X and separated
signals U.The separated signals U resemble the original signals S up to a random permu-
tation of the order (e.g. S1 matches U5, S2 matches U3, ect.).

4.7 Summary

We have presented extensive experimental evidence indicating that the pro-
posed algorithms work efficient and reliable. The gradient-based method
DOMUNG has a linear convergence rate and for the quasi-Newton method
FFDiag we observe even quadratic convergence in the neighborhood of the
solution.

A series of comparisons of the FFDiag algorithm with state-of-the-
art diagonalization algorithms showed that our algorithm is competitive
with the best previous algorithms. In particular, FFDiag outperforms the
AC-DC algorithm, which is the only competing algorithm applicable un-
der the same general conditions. The FFDiag algorithm yields excellent
results in cases where the model holds and it also performs reliably on non-
diagonalizable data, for which only an approximate solution is possible. We
demonstrated furthermore that the FFDiag algorithm succeeds in typical
BSS scenarios.
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Figure 4.10: Performance of FFDiag and AC-DC measured by the log of the score
(4.1) for different sample sizes and 100 trials each. 25% (lower edge of the shaded region),
50% (thick line in the middle) and 75% quantiles (upper edge of the shaded region) are
shown.



48 4 NUMERICAL SIMULATIONS



Chapter 5

Applications

This chapter describes applications of blind source separa-
tion methods in biomedical signal processing. We demon-
strate the usefulness of the proposed approach in the analysis
of real-world neuro-physiological signals. The focus lies on
using the joint diagonalization techniques in different sce-
narios where appropriate target matrices derived from the
multi-channel measurements can be approximately diagonal-
ized. The material presented in this chapter is partially based
on the publications Ziehe et al. (2001) and Vigário et al.
(2002); Wübbeler et al. (2000).

In the following we will present applications involving only the linear
instantaneous BSS problem according to Equation (2.1). Even though this
model is rather simple, it is particularly useful for biomedical signal process-
ing as will be shown in the next section.

5.1 Biomedical signal processing

An example of BSS application for real-world biomedical signal processing is
the analysis and pre-processing of electroencephalographic (EEG) and mag-
netoencephalographic (MEG) measurements. Here the routine usage of large
sensor arrays (some of them consist of up to 300 SQUID-magnetometers)
to record neuromagnetic fields in humans, produces data that suits the
BSS approach quite well. Due to the fact that the electromagnetic waves
superimpose linearly and virtually instantaneously (because of the rela-
tively small distance from sources to sensors) the instantaneous linear model
(5.1) is valid (Makeig et al., 1996; Vigário et al., 1998; Vigário et al., 2000;
Wübbeler et al., 2000; Ziehe et al., 2000a).

x(t) = As(t), (5.1)

49
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The columns of A represent the coupling of a source with each sensor.
Since the array geometry is known, this information gives rise to a spatial
field pattern. The the sources s(t) display the time courses of the compo-
nents. It is precisely this decoupling of spatial and temporal information
that makes these decompositions a valuable tool for exploratory data anal-
ysis.

The difficulties in the application those (blind) decompositions —as for
any unsupervised data analysis—lie in the correctness and validation of the
used modeling assumptions. Although our proposed methods are based on
relatively “mild” assumptions they must still be verified for the particular
application. In other words, it should always be checked whether or not the
assumptions are fulfilled. In cases where this is not fully possible, one can
still apply the method but one should be aware that a critical evaluation of
the results —preferably based on medical knowledge— is needed.

Some of the limitations of the presented BSS-based approaches are the
following:

These methods can extract at most as many underlying sources as the
number of sensors. For example, in MEG and EEG analysis, a multitude of
microscopic brain sources is present, which outnumbers by far the number
of sensors used to record the magnetic or electric fields. Nevertheless, it
can be argued that the total number of macroscopically observable sources,
active at a given time-interval, is sufficiently smaller, and thus the use of
ICA/BSS methods can be justified.

The use of separation criteria based on high-order statistics (e.g. in the
JADE algorithm or kurtosis-based FastICA variants) comes at a price: an
increased sensitivity to outliers. These often turn out to be the dominating
factors in the decomposition due to their extreme non-Gaussianity.

Another issue that has to be kept in mind when applying higher-order
statistics methods to large-scale sensor array data is the high computational
load. For example in JADE the effort for storing and processing the 4-th
order cumulants is O(N 4), where N is the number of sensors. Since this may
be prohibitively large, the data has to be projected to a lower dimensional
subspace as a preprocessing step.

For this reason we advocate methods which rely on second-order statis-
tics only and additionally make use of the time-structure of the data. The
diagonalization based procedures if employed on ensembles of suitable cor-
relation matrices are expected to be superior in those respects.

5.1.1 Artifact Reduction by Adaptive Spatial Filtering

In the analysis of EEG and MEG data one often faces the problem that noise
from biological or technical origins (like alpha rhythm activity or interference
from power-lines, respectively) is corrupting the measurements.

In this section we study the capabilities of blind source separation to
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construct an adaptive spatial filter that isolates the power-line signal while
preserving evoked responses. We compare the spatial filtering by BSS to a
classical notch filtering.

These frequency domain filtering techniques can also be applied to sup-
press power-line artifacts, this standard approach is clearly limited to nar-
row band signals. In contrast, BSS based spatial filtering methods are not
relying on known narrow-band spectral characteristics but rather look for
independent or temporally uncorrelated source signals (Vigário et al., 1998;
Ziehe et al., 2000a).

Data

In this case study we analyze the effects of artifact removal in a typical
experimental setting. The specific data set studied is obtained from mea-
surements of somatosensory evoked fields (SEF, N20) and provides an at-
tractive and rather controlled testbed since the signal of interest (N20) is
relatively strong and the origin of the generator in the post-central gyrus is
well-known.

Signals were measured using a low noise 63-channel DC-SQUID system
(white noise level 2.7fT/

√
Hz) operated in a first order axial electronic gra-

diometer mode with 70mm baseline; 7mm diameter SQUID pick up area, 49
sensors in a planar hexagonal configuration for the registration of the verti-
cal field component, 30 mm distance between neighboring SQUID positions
covering an area of 210 mm diameter (Drung, 1995).

The right median nerve was stimulated over 12.000 epochs, while the the
magnetic field above the left somatic sensory cortex was measured using 49
planar gradiometer sensors. A sampling rate of 2 kHz and an inter-stimulus
interval (ISI) of 333 msec were used to avoid steady state effects.

The recordings were carried out by the PTB1 at the biomagnetism lab-
oratory in the Department of Neurology at the campus Benjamin Franklin
of the Charitè2.

Although sophisticated magnetic shielding is used, a contamination of
the measured biosignals by power-line interference can often not be com-
pletely avoided.

Artifact Reduction Procedure

The BSS based artifact reduction procedure consists of the following steps:

• apply a sphering and dimensionality reduction (based on PCA).

• decompose the transformed data into independent components by a
BSS algorithm.

1The Physikalisch-Technische Bundesanstalt of Germany.
2 The Charité - University Medicine Berlin.
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Figure 5.1: SEF averaged data of all 49 channels

• decide which components correspond to artifactual or relevant signals
(e.g. by using prior medical knowledge).

• project the previously selected components of interest back to sensor
space.

Applying this procedure we obtain a set of cleaned measurements.

Another possibility is to remove the artifact fields by making use of their
estimated spatial structure (contained in the columns of the mixing matrix
A) by Signal-Space Projection (SSP) (Uusitalo and Ilmoniemi, 1997). In
case of multiple artifacts the whole space spanned by these artifacts, which
we will refer to as “artifact space”, has to be projected out. The corre-
sponding projector is conveniently written in terms of an orthonormal basis
of the artifact space. The essential requirement for applying SSP is that the
unwanted fields are known up to unknown multiplicative constants which is
exactly the case for the BSS model.

Performance Evaluation

The results of the BSS based procedure are compared to notch filtering (with
a properly tuned notch frequency) as a “gold standard”. A further indication
of the success of the method can be gained by looking at the reduction of
the peak at 150 Hz in the power spectrum Also the “goodness-of-fit” of an
equivalent current dipole (ECD) model may provide a validation criteria, at
least if based on a realistic volume conductor model.
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Results

Predominantly two components with 150 Hz power were identified in the
decomposition (Fig. 5.2) when using BSS.
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Figure 5.2: Identified power-line signals.

Eliminating these artifacts we find that BSS based techniques yield sim-
ilar results as the “gold standard” notch filtering approach in a data-driven
manner, provided that the sample size was larger than 400 samples (see
Fig. 5.3).

The goodness-of-fit of the dipole model was even better when using BSS
methods (cf. Fig. 5.4).
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Figure 5.4: Goodness of fit at N20 for various methods.
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Figure 5.5: Source localization of N20 using the CURRY software with a realistic
volume-conductor model from an MRI scan.
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5.1.2 DC Magnetometry

In this section we report on the application of the joint diagonalization based
BSS methods to data reflecting ’direct current’ (DC-) activity in the human
brain.

Since previously BSS techniques had been successfully applied to reduce
artifacts in multi-channel EEG, MEG and MNG (magnetoneurography)
recordings (Makeig et al., 1996; Vigário et al., 1998; Ziehe et al., 2000a) and
to analyze evoked responses (Makeig et al., 1997) these methods were also
expected to provide interesting decompositions of neuromagnetic data even
in the near-DC range.

The identification of near-DC fields with non-invasive neuromagnetic
recordings has great relevance for medical applications since slowly vary-
ing DC-phenomena have been found e.g. in cerebral anoxia and spreading
depression in (invasive) animal studies. Blind source separation techniques
have a high potential to become a standard clinical procedure for analysing
such data.

Medical Background

Recently, the feasibility of a non-invasive magnetic registration of near-DC
(below 0.1 Hz) magnetic fields from the human cortex using Superconducting
Quantum Interference Devices (SQUIDs) has been shown (Mackert et al.,
1999b). Such near-DC phenomena may have importance for metabolic in-
juries of brain cells in stroke or migraine (Back et al., 1994; Chen et al.,
1992; Gardner-Medwin et al., 1991). Being able to perform a DC-coupled
brain monitoring is of high medical relevance because many pathophysiolog-
ical processes have their main energy in the frequency range below 0.1 Hz.
Therefore, it is of great importance to further improve the signal extraction
from DC-MEG data.

Technical background

The biomagnetic recording technology employed in this application is based
on a unique apparatus that mechanically moves the subjects head, respec-
tively, body relative to the sensor array (Wübbeler et al., 1999).

This transposes the near-DC signals of the head/body to the modulation
frequency with lower 1/f noise. After signal demodulation this approach has
a dynamical sensitivity to detect DC-fields > 30 fT in a 100 sec evaluation
period (Wübbeler et al., 1999). This yields a high sensitivity which is both
chance and challenge since it will not only enable physicians to detect minute
physiological fields (Curio et al., 1993; Mackert et al., 1999a) but also poses
problems for data analysis since the magnetic fields of a multitude of dif-
ferent biological processes and noise superimpose the signal of interest. It
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is a helpful matter of fact that many of these processes vary in intensity
independently of each other.
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Figure 5.6: Modulation principle for DC measurements. Characteristic magnetometer
output for a fixed and a moving source. The sinusodial movement of the source beneath
the magnetometer array leads to an oscillating field signal.

Experimental Setup

In Mackert et al. (1999b) a paradigm of prolonged auditory (music) stim-
ulation for DC-MEG was introduced. It consists of presenting 30 seconds
of music and 30 seconds of silence to the subjects ear. This experimental
setting has the advantages that a physiological DC-source in the brain with
an essentially known field pattern3 can be switch “on” and “off” arbitrarily
by external non-invasive stimulation.

Data Acquisition and Validation

The neuromagnetic field data were recorded in a standard magnetically
shielded room (AK3b), operated at the “Benjamin Franklin” hospital by
the PTB, using 49 low noise first order SQUID gradiometers (70 mm base-
line) covering a planar area of 210 mm diameter (Drung, 1995). The sensor

3The field patterns were expected to be comparable to patterns of evoked activities of
auditory cortices as reported in Pantev et al. (1996).
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was centered tangentially approximately over the left auditory cortex. The
acoustic stimulation was achieved by presenting alternating periods of music
and silence, each of 30 s length, to the subjects right ear during 30 min. of
total recording time. The DC magnetic field values were acquired by using
a mechanical horizontal modulation of the body position with a frequency
of 0.4 Hz and an amplitude of 75 mm. This modulation transposed the
DC magnetic field of the subject to the modulation frequency, which is less
contaminated by magnetic noise (see also Fig. 5.6). The recorded magnetic
field data were processed by digital lock-in techniques in order to extract the
modulation induced frequency components (Wübbeler et al., 1998). Then
the DC-field of the subject was reconstructed from these frequency compo-
nents by using a transformation technique based on a virtual magnetic field
generator (Mackert et al., 1999b). These reconstructed DC magnetic field
values, sampled at the modulation frequency of 0.4 Hz, gave a total number
of 720 sample points per channel for the 30 minutes recording time and were
used as input for the BSS-algorithms.

Figure 5.7: Input data (after DC demodulation) arranged according to sensor positions.

Let us examine the time courses of 30 minutes for all 49 channels (cf. Fig. 5.7).
At the first glance, the signals have an obvious trend behavior (slow drift)
while possible components of interest are covered by other strong signals of
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unknown origin, i.e. the response to the stimulus is completely hidden in the
data.

The above described experimental paradigm of externally controlled
music-related DC-activations of auditory cortices defines a measurement and
analysis scenario with almost complete knowledge about both, the spatial
pattern and the time course of a cerebral DC-source which on the other hand
is fully embedded in the biological and ambient noise background. Hence it
may serve as a testbed for a critical comparison of different BSS approaches
facing the ‘real world’ problems of bad signal-to-noise ratio coming along
with a limited number of data samples and—on top of that—the presence
of outliers.

Matrices to be Diagonalized

First, the originally 49-dimensional sensor data were reduced by PCA and
only the 23 most powerful principal components were used.

When applying TDSEP (Ziehe and Müller, 1998) to the preprocessed
data, we compute time-lagged correlation matrices of the form

Cτ (x) = 〈x(t)xT (t− τ)〉 =








φx1,x1(τ) · · · φx1,xn(τ)
φx2,x1(τ) · · · φx2,xn(τ)

...
. . .

...
φxn,x1(τ) · · · φxn,xn(τ)








where φxi,xj
(τ) = 〈xi(t)xj(t− τ)〉 denote the respective auto– or cross–

correlation functions.
Here 50 time-lagged correlation matrices (τ = 1..50 sample points) were

used for approximate joint diagonalization.

Results

The 10 strongest ICA components are shown in Fig. 5.9. Not surprisingly,
one component (ICA1) mainly captured the slow drift, that was already
visible in the data in Fig. 5.7. While most other components show irregular
time courses reflecting the dynamics of undetermined processes it is note-
worthy that their field maps feature spatially coherent field patterns which
clearly distinguish them from random channel noise patterns.

Remarkably, one component (ICA10) shows a (noisy) rectangular wave-
form. Its time course and frequency (see Fig. 5.8) clearly resembles the 1

30s

“on/off” characteristics of the stimulus. The spatial field distribution of
ICA10 shows a bipolar pattern, located at the expected position of corti-
cal activity (Mackert et al., 1999b). Both findings give direct evidence that
ICA10 represents the response to the acoustical stimulus. Although we
do not expect that the cortical response resembles the stimulus completely,
computing the correlation coefficient between the stimulus and the ICA time
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Figure 5.8: Spatial field pattern, frequency content and time course of ICA10.

courses provides a useful measure to evaluate and compare the performance
of different separation algorithms. Applying the three algorithms JADE
(Cardoso and Souloumiac, 1993), FastICA (Hyvärinen and Oja, 1997) and
TDSEP (Ziehe and Müller, 1998), we find that only the temporal decorre-
lation algorithm TDSEP is able to recover a signal that is highly correlated
to the stimulus, while FastICA and JADE fail for this specific task (for
correlation coefficients see also Fig. 5.10).

Conclusion

Based on a comparison of several approaches, we found out that methods
based on spatio-temporal decorrelation are able to successfully extract a
component related to a sustained DC activation in the auditory cortex which
was induced by presentation of music. The task is especially challenging due
to the limited amount of available data and the occurrence of outliers. Since
such a situation is very typical for biomedical measurements, this dataset
provides also a useful real-world testbed for evaluating the performance and
robustness of different BSS approaches.

It turned out that outliers can strongly decrease the performance of ICA
algorithms, in particular methods that use higher-order statistics explicitly
(e.g. JADE, FastICA with kurtosis) fail for this dataset, while in contrast
spatio-temporal decorrelation methods based on joint-diagonalization of sev-
eral time-delayed correlation matrices proved to be more robust.

From a general physiological point of view it is interesting to note that
when employing these decomposition algorithms it became possible on the
single subject level (i.e. without reverting to group statistics) to derive a
faithful estimate for the time course of the DC-activation level in a par-
ticular area of the brain (i.e. the auditory cortex in the temporal lobe).
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Most importantly, this analysis proceeded fully blind to our a priori exper-
imental background knowledge on both the spatial signature of the music-
related DC-fields (field map characteristic for auditory cortex activations)
and its time course (30 sec. on and 30 sec. off). Both the spatial and the
temporal source aspects were adequately captured in one ICA component
(ICA10) using TDSEP. It is noteworthy that in contrast to earlier paradigms
which identified cortical sources of short-term (2 - 9 sec) “sustained” fields
(Pantev et al., 1996) or potentials (Picton et al., 1978) by averaging at least
dozens of such repeated activations the present DC-MEG plus ICA approach
allows to monitor the time course of cerebral DC-activations without any
need for averaging (Fig. 5.8). In principle this is a first step towards “on-
line” brain monitoring providing a chance for single trial, resp. single event
analysis.

5.2 Summary

In the reported experiments, we have used real-world multi-channel biomag-
netic recordings and demonstrated the merits and pitfalls of different BSS
approaches. Special emphasis was given to the validation of the ICA/BSS
model. The BSS based algorithms were able to isolate artifacts in MEG
which can be used to clean the measurements and improve the results of
biomagnetic source localization.

What makes blind source separation an appealing method for the anal-
ysis of neurobiological data, is that it uses a “weak” model, i.e. statistical
independence or temporal decorrelation respectively. Although no strong
model (such as the ones based on physiological models) is imposed on the
data, the algorithms still extract components, which are neurophysiological
plausible.

Recently we have suggested bootstrap based methods for a statistical
validation of the reliability of ICA/BSS projections (Meinecke et al., 2001,
2002; Müller et al., 2004) and we expect that this approach will complement
the set of tools for data analysis in future clinical applications.
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Figure 5.9: Spatial field patterns, waveforms and frequency contents of the first
ten components obtained by TDSEP sorted according to the L2-norms. For units
and details of ICA10 cf. Fig. 5.8.
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Figure 5.10: A PCA projection to a given number of components is performed
prior to ICA in this subspace. We show the correlation coefficient between stimulus
and the best matching ICA component vs number of components. The correlation
to the best matching PCA component is shown as a baseline.
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Figure 5.11: Correlation coefficient between stimulus and the best matching ICA
component vs number of samples used for TDSEP applied on the full 49-dimensional
sensor space.
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Chapter 6

Conclusions

Here we summarize our main results and point out some pos-
sibilities for future research.

6.1 Summary

In this thesis we addressed the problem of blind source separation (BSS)
using approximate joint diagonalization (AJD) of a set of matrices. We have
shown that an AJD algorithm provides an efficient estimation procedure
for the mixing matrix of the BSS problem. Thus a general AJD method
is of great importance. As our main contribution, we proposed two new
algorithms to solve the AJD problem numerically. The specific structure of
these algorithms implements a numerical optimization procedure on a matrix
group by utilizing matrix exponential updates. As in classical optimization
methods, the updating can be based on a gradient descent step or on a
Newton step. The later is know for a faster convergence rate (quadratic
rather than linear), however the computational burden in the classical case
is often prohibitively high.

The key features of our new algorithm called FFDiag are the use of a
local parameterization of the cost function combined with a further approx-
imation, which results in a block-diagonal Hessian with 2 × 2 blocks which
allows for a closed form inverse and thus yields a highly efficient computation
of the Newton update step.

Additional constraints, such as orthogonality, are not required by our
algorithm, but if available, such constraints can be naturally incorporated
and yield further simplifications of the algorithm.

We have empirically observed that the approximative solution found by
the algorithm is of high quality for practical applications, and in particular
for BSS problems.

65
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A series of comparisons of the FFDiag algorithm with state-of-the-
art diagonalization algorithms was presented under a number of varying
conditions. The main conclusions of this comparative evaluation is that
our algorithm is competitive with the best algorithms (i.e. extended Jacobi
method and Pham’s algorithm) in situations where additional constraints
either on the class of solutions or the type of input data apply. In large-
scale problems of non-orthogonal diagonalization FFDiag exhibits rapid
convergence relative to gradient-based methods such as Yeredor’s AC-DC
algorithm, which is the only AJD method applicable under the same gen-
eral conditions, i.e. without assuming orthogonality of the diagonalizer or
positive-definiteness of the target matrices.

We also noticed that FFDiag may yield suboptimal solutions if the
target matrices deviate extremely from a diagonalizable set. In this large-
residual case it is recommended to modify the set of target matrices. This
is the price that we have to pay to get the low computational complexity
and the power to diagonalize matrices of dimensions in the hundreds of
rows/columns, without imposing overly restrictive, additional assumptions,
in cases where the model holds (small residual case).

Nevertheless, we expect that FFDiag will become a versatile tool for
high-dimensional data analysis by taking advantage of the low computa-
tional cost to achieve good approximate solutions.

6.2 Future Work

6.2.1 Algorithms

Possible directions for future research are to further develop and tune related
optimization algorithms, for example to combine gradient and Newton steps
in a Levenberg-Marquardt or conjugate gradient scheme. In addition, it
would be worth studying the fundamental differences between the various
minimization criteria J1,J2 and J3, seeking for some guidelines for choosing
the most appropriate one.

Since the parameter of interest should be constrained to a particular
matrix group, e.g. the special orthogonal group SO(N) or the special linear
group SL(N), the AJD problem should be treated as a non-linear optimiza-
tion problem on a manifold with a group structure. It turns out that the
terminology of differential geometry and matrix algebra provides the right
concepts for the development of efficient numerical algorithms that preserve
those important features and always stay on the group manifold (Cardoso,
1998a). Thus, studying AJD algorithms as special cases of the isospectral
flow methods in Helmke and Moore (1994); Hori (1999); Plumbley (2004)
appears to be very promising.

Furthermore, it could be of interest to study the matrix exponential
updates in the context of other Lie groups and their corresponding Lie al-
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gebras, which opens up new possibilities of research in the intersection of
optimization, signal processing and machine learning.

6.2.2 Biomedical Applications

From the biomedical applications point of view it would be an interesting
goal for future research to incorporate prior knowledge into BSS models. In
some preliminary studies, it has been observed that, as one departs from
purely statistically based assumptions, one might get even closer to physi-
ologically meaningful decompositions of electromagnetic brain signals. On
the other hand, fitting neural sources in a classical framework, may be hard
if some temporal overlap is present in their activations. Hence, a well bal-
anced use of both, the model and appropriate priors, will yield a powerful
exploratory decomposition technique that is able to extract meaningful in-
formation from high-dimensional biomedical data.

Furthermore it may be possible to apply the approximate joint diago-
nalization techniques to other problems of neurobiological modeling such as
sparse coding in the visual cortex and taking advantage of an underlying
group structure.

6.2.3 Other Applications

BSS methods have also been successfully applied to a variety of problems
which—beyond biomedical signal processing—include diverse fields as tele-
communications, feature extraction for pattern recognition, financial time-
series analysis, data mining or image processing (see e.g. Cardoso et al.
(1999); Hyvärinen et al. (2001)).

For certain applications, including the famous cocktail-party problem in
auditory perception (von der Malsburg and Schneider, 1986), the instanta-
neous model in equation (2.1) is however too simplistic, since time-delays
in the signal propagation are no longer negligible. Extended models to deal
with such convolutive mixtures have been considered (e.g. Parra and Spence,
2000; Lee et al., 1998; Murata et al., 2001) and are promising future appli-
cations.
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Appendix A

Notation

A.1 Abbreviations

AC-DC Alternating Columns Direct Centers (diagonalization algorithm)
AJD Approximate Joint Diagonalization
BSS Blind Source Separation
CHESS CHaracteristic function Enabled Signal Separation
DOMUNG Diagonalization Of Matrices Using Natural Gradient
EEG Electroencephalogram Electroencephalography
EVD Eigen Value Decomposition
FastICA Fast Independent Component Analysis
FFDiag Fast Frobenius Diagonalization
FHG Fraunhofer Gesellschaft
FIRST Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik
ICA Independent Component Analysis
IDA Intelligent Data Analysis
JADE Joint Approximate Diagonalization of Eigen-matrices
MEG Magneto-encephalogram or Magneto-encephalography
MI Mutual Information
ML Maximum Likelihood
MNG Magneto-neurogram or Magneto-neurography
MRI Magnetic Resonance Imaging
OFI Optimal Filtering
PCA Principal Component Analysis
PTB Physikalisch-Technische Bundesanstalt
pdf probability density function
SQUID Superconducting Quantum Interference Device
TDSEP Temporal Decorrelation SEParation
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A.2 Mathematical Notation

Symbols

A, . . . ,Z matrices
a, . . . , z vectors
a, b, . . . , z α, β, . . . , ω scalars
AT matrix transpose
A−1 matrix inverse
A−T the inverse of AT

A(m) matrix A in the m-th iteration
Aij matrix element of A
diag(A) diagonal matrix with same diagonal as A
X random variable
I identity matrix
D diagonal matrix
P permutation matrix
A mixing matrix
V demixing matrix or separating matrix
X data matrix
C covariance-like target matrix

Sets and Spaces

IR set of real numbers
C set of complex numbers

IR(N×N) set of real matrices of dimension N ×N
GL(N) General linear group
SL(N) Special linear group
O(N) Orthogonal group

Functions

EX{X} expected value w.r.t X
φX,Y (τ) cross-correlation function
cum(·, . . . , ·) cumulant tensor
MI(X,Y) mutual information between X and Y
H(X) Shannon entropy of X
H(X—Y) conditional entropy of X given Y
O(N) measure of the complexity of an algorithm
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Appendix B

Some basic group theory

B.1 Matrix Lie Groups

The parameter space of the joint diagonalization problem (just as in the
related ICA case) is not arbitrary, but possess a very favorable structure,
known as a matrix Lie group (Cardoso, 1998a; Hori, 1999; Akuzawa and Murata,
2001; Plumbley, 2004). We have implicitly made use of this fact by intro-
ducing the matrix exponential update.

In the following we briefly restate some theoretical concepts taken from
Grosche et al. (1995).

Definition (group). A set G is a group for the operation • if:

1. ∀A,B ∈ G ⇒ A •B ∈ G: G is closed.

2. ∀A,B,C ∈ G ⇒ (A • B) • C = A • (B •C): G obeys the associative
law.

3. ∃I ∈ G so that ∀A ∈ G A • I = I •A = A: G has a unit element.

4. ∀A ∈ G ∃A−1 ∈ G so that A •A−1 = A−1 •A = I: Each element in
G has an inverse.

The group is called Abelian or commutative if also holds:
5. ∀A,B ∈ G ⇒ A •B = B •A

Definition (Lie group). A group G is said to be a Lie group if its multi-
plication and inversion operation are continuous.

Definition (Matrix group). A subset of nonsingular matrices which are
closed under matrix multiplication and inversion is called a matrix group.

It turns out that every matrix group is in fact a Lie group, since the usual
matrix multiplication and matrix inversion are smooth maps. The reason
that Lie groups are interesting is because this particular entity combines
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both algebraic and geometric structures. The most remarkable feature of a
Lie group is that the structure is the same in the neighborhood of each of
its elements. For this reason Lie group theory can provide powerful tools
for designing and analyzing numerical optimization methods in structured
parameter spaces. For example, it is possible to confine an iterative numer-
ical algorithm to a certain Lie group by imposing conditions on a related
structure, called a Lie algebra.

Definition (Lie algebra). The set of all tangents at identity of a Lie group
G forms a Lie algebra g, that is a linear space closed under commutation:

1. A,B ∈ g⇒ A + B ∈ g;

2. A ∈ g, λ ∈ IR⇒ λA ∈ g;

3. A,B ∈ g⇒ [A,B]
def
= AB−BA ∈ g

The most important relation for Lie groups and Lie algebras involves the
matrix exponential function: If W belongs to a Lie algebra, then eW is a
matrix that belongs to the corresponding Lie group. In other words, there
is an unique mapping from the Lie group to the Lie algebra and vice versa.
For matrix Lie groups, this mapping is the matrix exponential.
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Figure B.1: Concept of a Lie group method: The Lie algebra determines the local

structure of the Lie group via the exponential map.

Another important concept is the tangent space of a Lie group: it can
be shown that at the identity this tangent space has always the structure of
a Lie algebra (Helmke and Moore, 1994).

The important feature that we use in our algorithm is the fact that the
Lie algebra determines the local structure of the Lie group via the exponen-
tial map. Thus we obtain a local parameterization of the group in terms of
elements of the algebra.
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Examples of Lie Groups and Lie Algebras

The classical illustrating example is the unit circle in C. In this case the
exponential function maps from the real line (the tangent space) to the circle
(see Fig. B.2).
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Figure B.2: Mapping from the real line to the circle.

Important examples of matrix Lie groups are:

• the General Linear Group GL(N) As indicated by the name,
GL(N) is the most general matrix Lie group, in the sense that all
other matrix Lie groups are subsets of GL(N). The corresponding Lie
algebra gl(N) is IRN×N .

• the Special Linear Group SL(N) is the group of all matrices with
determinant one. The dimension is N 2 − 1.

• the Orthogonal Group O(N) ) is the group of orthogonal N ×N
matrices.

• the Special Orthogonal Group SO(N) is the subset of O(N) with
determinant one. It has the dimension N(N − 1)/2.
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G. Wübbeler, J. Mackert, F. Armbrust, M. Burghoff, B.-M. Mackert, K.-D.
Wolff, J. Ramsbacher, G. Curio, and L. Trahms. SQUID measurements
of human nerve and muscle near-DC injury-currents using a mechanical
modulation of the source position. Applied Superconductivity, 6(10-12):
559–565, 1998.
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