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0Abstract
Residential segregation is a widespread phenomenon that can be observed in
almost every major city. In these urban areas, residents with different ethnical or
socioeconomic backgrounds tend to form homogeneous clusters. In Schelling’s
classical segregation model two types of agents are placed on a grid. An agent is
content with its location if the fraction of its neighbors, which have the same
type as the agent, is at least 𝜏 , for some 0 < 𝜏 ≤ 1. Discontent agents simply
swap their location with a randomly chosen other discontent agent or jump
to a random empty location. The model gives a coherent explanation of how
clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed
neighborhoods. For segregation to occur, all it needs is a slight bias towards
agents preferring similar neighbors.
Although the model is well studied, previous research focused on a random

process point of view. However, it is more realistic to assume instead that the
agents strategically choose where to live. We close this gap by introducing and
analyzing game-theoretic models of Schelling segregation, where rational agents
strategically choose their locations.

As the first step, we introduce and analyze a generalized game-theoretic model
that allows more than two agent types and more general underlying graphs
modeling the residential area. We introduce different versions of Swap and
Jump Schelling Games. Swap Schelling Games assume that every vertex of the
underlying graph serving as a residential area is occupied by an agent and pairs
of discontent agents can swap their locations, i.e., their occupied vertices, to
increase their utility. In contrast, for the Jump Schelling Game, we assume that
there exist empty vertices in the graph and agents can jump to these vacant
vertices if this increases their utility. We show that the number of agent types
as well as the structure of underlying graph heavily influence the dynamic
properties and the tractability of finding an optimal strategy profile.
As a second step, we significantly deepen these investigations for the swap

version with 𝜏 = 1 by studying the influence of the underlying topologymodeling
the residential area on the existence of equilibria, the Price of Anarchy, and the
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dynamic properties. Moreover, we restrict the movement of agents locally. As a
main takeaway, we find that both aspects influence the existence and the quality
of stable states.
Furthermore, also for the swap model, we follow sociological surveys and

study, asking the same core game-theoretic questions, non-monotone single-
peaked utility functions instead of monotone ones, i.e., utility functions that are
not monotone in the fraction of same-type neighbors. Our results clearly show
that moving from monotone to non-monotone utilities yields novel structural
properties and different results in terms of existence and quality of stable states.

In the last part, we introduce an agent-based saturated open-city variant, the
Flip Schelling Process, in which agents, based on the predominant type in their
neighborhood, decide whether to change their types. We provide a general
framework for analyzing the influence of the underlying topology on residential
segregation and investigate the probability that an edge is monochrome, i.e., that
both incident vertices have the same type, on random geometric and Erdős–Rényi
graphs. For random geometric graphs, we prove the existence of a constant 𝑐 > 0
such that the expected fraction of monochrome edges after the Flip Schelling
Process is at least 1/2+𝑐 . For Erdős–Rényi graphs, we show the expected fraction
of monochrome edges after the Flip Schelling Process is at most 1/2 + o(1).
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0Zusammenfassung

Die Segregation von Wohngebieten ist ein weit verbreitetes Phänomen, das in
fast jeder größeren Stadt zu beobachten ist. In diesen städtischen Gebieten neigen
Bewohner mit unterschiedlichem ethnischen oder sozioökonomischen Hinter-
grund dazu, homogene Nachbarschaften zu bilden. In Schellings klassischem
Segregationsmodell werden zwei Arten von Agenten auf einem Gitter platziert.
Ein Agent ist mit seinem Standort zufrieden, wenn der Anteil seiner Nachbarn,
die denselben Typ wie er haben, mindestens 𝜏 beträgt, für 0 < 𝜏 ≤ 1. Unzufrie-
dene Agenten tauschen einfach ihren Standort mit einem zufällig ausgewählten
anderen unzufriedenen Agenten oder springen auf einen zufälligen leeren Platz.
Das Modell liefert eine kohärente Erklärung dafür, wie sich Cluster bilden kön-
nen, selbst wenn alle Agenten tolerant sind, d.h. wenn sie damit einverstanden
sind, in gemischten Nachbarschaften zu leben. Damit es zu Segregation kommt,
genügt eine leichte Tendenz, dass die Agenten ähnliche Nachbarn bevorzugen.
Obwohl das Modell gut untersucht ist, lag der Schwerpunkt der bisherigen

Forschung eher auf dem Zufallsprozess. Es ist jedoch realistischer, davon auszu-
gehen, dass Agenten strategisch ihren Wohnort aussuchen. Wir schließen diese
Lücke, indem wir spieltheoretische Modelle der Schelling-Segregation einführen
und analysieren, in welchen rationale Akteure ihre Standorte strategisch wählen.
In einem ersten Schritt führen wir ein verallgemeinertes spieltheoretisches

Modell ein, das mehr als zwei Agententypen und allgemeinere zugrundeliegende
Graphen zur Modellierung des Wohngebiets zulässt und analysieren es. Zu
diesem Zweck untersuchen wir verschiedene Versionen von Tausch- und Sprung-
Schelling-Spielen. Bei den Tausch-Schelling-Spielen gehen wir davon aus, dass
jeder Knoten des zugrunde liegenden Graphen, der als Wohngebiet dient, von
einem Agenten besetzt ist und dass Paare von unzufriedenen Agenten ihre
Standorte, d.h. ihre besetzten Knoten, tauschen können, um ihren Nutzen zu
erhöhen. Im Gegensatz dazu gehen wir beim Sprung-Schelling-Spiel davon aus,
dass es leere Knoten im Graphen gibt und die Agenten zu diesen unbesetzten
Knoten springen können, wenn dies ihren Nutzen erhöht. Wir zeigen, dass die
Anzahl der Agententypen sowie die zugrundeliegende Struktur des Graphen,
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die dynamischen Eigenschaften und die Komplexität der Berechenbarkeit eines
optimalen Strategieprofils stark beeinflussen.

In einem zweiten Schritt vertiefen wir diese Untersuchungen für die Tausch-
variante mit 𝜏 = 1 erheblich, indem wir den Einfluss der zugrunde liegenden
Topologie, die das Wohngebiet modelliert, auf die Existenz von Gleichgewichten,
den Preis der Anarchie und die dynamischen Eigenschaften hin untersuchen.
Darüber hinaus schränken wir die Bewegung der Agenten lokal ein. Die wichtigs-
te Erkenntnis ist, dass beide Aspekte die Existenz als auch die Qualität stabiler
Zustände beeinflussen.
Desweiteren folgen wir, auch für das Tauschmodell, soziologischen Unter-

suchungen und untersuchen für dieselben zentralen spieltheoretischen Fragen
nicht-monotone einspitzige Nutzenfunktionen anstelle von monotonen, d.h.
Nutzenfunktionen, die nicht monoton bezüglich des Anteils der gleichartigen
Nachbarn sind. Unsere Ergebnisse zeigen deutlich, dass der Übergang von mo-
notonen zu nicht-monotonen Nutzenfunktionen zu neuen strukturellen Eigen-
schaften und anderen Ergebnissen in Bezug auf die Existenz und Qualität stabiler
Zustände führt.

Im letzten Teil führenwir eine agentenbasierte gesättigte Offene-Stadt-Variante
ein, den Flip-Schelling-Prozess, bei dem Agenten auf der Grundlage des vorherr-
schenden Typs in ihrer Nachbarschaft entscheiden, ob sie ihren Typ wechseln.
Wir stellen einen allgemeinen Rahmen für die Analyse des Einflusses der zugrun-
deliegenden Topologie auf die Wohnsegregation zur Verfügung und untersuchen
die Wahrscheinlichkeit, dass eine Kante einfarbig auf zufälligen geometrischen
und Erdős–Rényi-Graphen ist, d.h. dass beide inzidenten Knoten denselben Typ
haben. Für zufällige geometrische Graphen beweisen wir die Existenz einer
Konstante 𝑐 > 0, so dass der erwartete Anteil einfarbiger Kanten nach dem
Flip-Schelling-Prozess mindestens 1/2 + 𝑐 beträgt. Für Erdős–Rényi-Graphen
zeigen wir, dass der erwartete Anteil einfarbiger Kanten nach dem Flip-Schelling-
Prozess höchstens 1/2 + o(1) ist.
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1 Introduction

Today’s metropolitan areas are populated by a diverse set of residential groups,
which differ along racial, socioeconomic, and other traits. A common finding is
that social groups within cities are not well-mixed, i.e., the different groups of in-
habitants tend to separate themselves into largely homogeneous neighborhoods.
This remarkable phenomenon is well-known as residential segregation [MD88;
Whi86]. The causes of residential segregation are complex and range from dis-
criminatory laws to individual action. Neighborhood segregation and ghetto
formation are serious social and political issues. In particular, segregation has
many negative consequences for the inhabitants of a city, for example, it nega-
tively impacts their health [AL03], their mortality [Jac+00], and, in general, their
socioeconomic conditions [MD93].

The phenomenon of residential segregation has been widely studied by social
scientists, mathematicians, and, recently, also by computer scientists. In these
studies local and myopic location choices by many individuals with preferences
over their direct residential neighborhood yield cityscapes that are severely
segregated along racial and ethnic lines, see Figure 1.1 (a). Hence, local strategic
choices on the micro level lead to an emergent phenomenon on the macro level.
This paradigm of “micro motives” versus “macrobehavior” [Sch78] was first
investigated and modeled by Thomas Schelling in the 1970s, who proposed a very
simple stylized agent-based model for analyzing residential segregation [Sch69;
Sch71]. His work specifies a spatial setting where individual agents with a
bias toward favoring similar agents care only about the composition of their
respective local neighborhoods. This model gives a coherent explanation for
the widespread phenomenon of residential segregation since it shows that local
choices by the agents yield globally segregated states [Cla86].

With the use of two types of coins as two types of individual agents placed on a
line or a checkerboard that models some residential area, Schelling demonstrated
the emergence of segregated neighborhoods under the simple assumption of the
following threshold behavior: agents are content with their current location if
the fraction of agents of their own type in their neighborhood is at least 𝜏 , where
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Chapter 1 Introduction

(a) Residential segrega-
tion in New York City,
color-coded by ethnic-
ity.

(b) Initial random strat-
egy profile on a grid in
Schelling’s model.

(c) Equilibrium found
for the instance in (b)
with 𝜏 = 1

2 via improv-
ing response dynamics.

Figure 1.1: Residential segregation in New York City and Schelling’s segregation model.
Residential segregation along racial lines in many urban areas in the US is the most
famous example of this phenomenon. Shown in (a) is a snippet from the Racial Dot
Map [Cab13] based on data from the 2010 US Census where every dot corresponds to a
citizen.

0 < 𝜏 ≤ 1 is a global parameter which applies to all agents. Otherwise, they
are discontent. Content agents do not move, but discontent agents will swap
their location with some other random discontent agent or perform a random
jump to an unoccupied place.1 While the jumps model moves from one house
to another empty house in residential areas, i.e., only one agent is affected, the
swaps model housing swaps without empty houses, i.e., two agents are involved.
Using this basic model, Schelling demonstrated experimentally that starting

from a uniformly random distribution of the agents, see Figure 1.1 (b), the induced
random process yields a residential pattern that shows strong segregation, see
Figure 1.1 (c). While this is to be expected for intolerant agents, i.e., 𝜏 > 1

2 ,
the astonishing finding of Schelling was that this also happens for tolerant
agents, i.e., 𝜏 ≤ 1

2 . This counter-intuitive observation explains why even in a
very tolerant population residential segregation along racial/ethnical, religious,
or socio-economical lines can emerge, and is one of the main reasons why
Schelling’s elegant model became one of the landmarks and acclaimed models
in sociology and economics. The emergence of residential segregation seems
to be intriguing. Only a slight bias towards favoring similar neighbors at the
local level leads to the emergence of residential segregation at the global level,

1 A playful interactive demonstration can be found in [HC16].

2
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Introduction Chapter 1

although no individual agent strictly prefers this. Moreover, the model is very
simple but still manages to carve out the unintended consequences resulting
from the interaction between individuals.
Against this background, Schelling’s model spurred a significant number of

research articles that studied and motivated variants of the model, the works
by Clark [Cla86], Alba & Logan [AL93], Benard & Willer [BW07], Henry et
al. [HPZ11] and Bruch [Bru14], to name only a few. Interestingly, also a physical
analog of Schelling’s model was found by Vinković & Kirman [VK06], but it
was argued by Clark & Fosset [CF08] that such models do not enhance the
understanding of the underlying social dynamics. In contrast, they promote
simulation studies via agent-based models where the agents’ utility function
is inspired by real-world behavior. Since Schelling’s model as an agent-based
system can be easily simulated on a computer, many such empirical simulation
studies were conducted to investigate the influence of various parameters on
the obtained segregation, e.g., see the works by Fossett [Fos06], Epstein &
Axtell [EA96], Gaylord & d’Andria [Gd98], Singh et al. [SVW09], Benenson et
al. [BHO09], Roger & McKane [RM11], Carver & Turrini [CT18], and Chapter 4
in Easley & Kleinberg [EK10]. All these empirical studies consider essentially
an induced random process, i.e., discontent agents are activated at random and
active agents then swap or jump to other randomly selected positions. Note, that
Schelling proposed his model as a random process as well. However, it is more
realistic to assume instead that the agents are strategic. In some frameworks, like
SimSeg [Fos98] or the model by Pancs & Vriend [PV07], agents only change their
location if this yields an improvement according to some utility function. This
assumption of having rational agents who act strategically matches the behavior
of real-world agents, who would only move if this improves their situation and
maximizes their utility.

To address this selfish behavior, we depart in this thesis from the assumption
of a random process by introducing and analyzing game-theoretic versions of
Schelling’s model. The residential area is thereby modeled as a multi-agent
system consisting of selfish agents who occupy vertices of an underlying graph
and try to maximize their utility, which depends on the agents’ types in their
immediate neighborhood, by strategically selecting locations.
We initiate the study of different variants of an agent-based model. To this

end, we distinguish between saturated and non-saturated, and open and closed
city models, respectively. Except for Chapter 6, we focus on closed city models,

3



Chapter 1 Introduction

which require a fixed population, while open cities allow residents to move away
and new residents to arrive. In the saturated city model, vertices are not allowed
to be unoccupied, hence, a new agent enters as soon as one agent vacates a
vertex. In non-saturated city models, vertices are allowed to be unoccupied.
In closed city models, the saturated version corresponds to swap games, i.e.,
discontent agents swap their locations, while for the non-saturated version we
consider jump games, i.e., a discontent agent performs a jump to an unoccupied
place to improve.

1.1 Outline

Chapter 2 is concerned with the background, i.e., notation and basic concepts,
for the following chapters. We briefly introduce the necessary game-theoretic
notation and provide a detailed definition of the models we study in the rest of
this thesis. Moreover, we give an overview of the latest results for Schelling’s
model.

In Chapter 3, we introduce and analyze a generalized game-theoretic model of
Schelling segregation that allows more than two agent types and more general
underlying graphs modeling the residential area. We show that both aspects
heavily influence the dynamic properties and the tractability of finding an optimal
strategy profile. In particular, we introduce different versions of Swap and Jump
Schelling Games. We map the boundary when improving response dynamics, i.e.,
the natural approach for finding equilibrium states, are guaranteed to converge.
To this end, we prove several sharp threshold results where guaranteed improving
response dynamics convergence suddenly turns into the most robust possible
non-convergence result: a violation of weak acyclicity. In particular, we show
such threshold results also for Schelling’s original model, which is in contrast
to the standard assumption in many empirical papers where it is generally
assumed that convergence is guaranteed. Furthermore, we show that in the case
of convergence, improving response dynamics find an equilibrium in O(𝑚) steps,
where𝑚 is the number of edges in the underlying graph. Moreover, we provide
empirical results that indicate that geometry is essential for strong segregation.
Finally, as a new interesting direction, we generalize Schelling’s model such that
agents have preferences over the different locations. We provide first preliminary
results for this extended version and show that convergence is guaranteed on

4



Outline Section 1.1

regular graphs if 𝜏 is high, i.e., 𝜏 ≥ 1
2 or if all agents have common favorite vertex

preferences.
In Chapter 4, we significantly deepen the investigations of Chapter 3 for the

Swap Schelling Game with high 𝜏 , i.e., 𝜏 = 1, of the resulting strategic multi-
agent system, by studying the influence of the underlying topology modeling the
residential area on the existence of equilibria, the dynamic properties and on the
Price of Anarchy, a concept that measures how the efficiency of a system degrades
due to selfish behavior of its agents. Moreover, as a new conceptual contribution,
we consider the influence of locality, i.e., the location swaps are restricted to
swaps of neighboring agents. We give improved, almost tight bounds on the
Price of Anarchy for arbitrary underlying graphs, and we present (almost) tight
bounds for regular graphs, paths, and cycles. Moreover, we give almost tight
bounds for grids, which are commonly used in empirical studies. For grids, we
also show that locality has a severe impact on the game dynamics. Finally, we
provide some results on the Price of Stability, a concept that measures the ratio
between the best objective function value of one of its stable outcomes and that
of an optimal outcome.
In Chapter 5, we refrain from our assumption in Chapter 3 and Chapter 4

that agents are equipped with a monotone utility function that ensures higher
utility if an agent has more same-type neighbors. Sociological polls [Smi+19]
suggest that real-world agents are actually favoring mixed-type neighborhoods,
and hence should be modeled via non-monotone utility functions. To address
this, we study Swap Schelling Games with two types of agents with single-
peaked utility functions. Our main finding is that tolerance, i.e., agents favoring
fifty-fifty neighborhoods or being in the minority, is necessary for the existence
of equilibria on almost regular or bipartite graphs. Regarding the quality of
equilibria, we derive (almost) tight bounds on the Price of Anarchy and the Price
of Stability. In particular, we show that the latter is constant on bipartite and
almost regular graphs.
In Chapter 6, we stick with the assumption that an agent, placed on a graph,

has one out of two types, and we introduce an agent-based saturated open-city
variant, the Flip Schelling Process, in which agents, based on the predominant
type in their neighborhood, decide whether to change their types; similar to a
new agent arriving as soon as another agent leaves the vertex. We investigate the
probability that an edge {𝑢, 𝑣} is monochrome, i.e., that both vertices𝑢 and 𝑣 have
the same type in the Flip Schelling Process, and we provide a general framework
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for analyzing the influence of the underlying graph topology on residential
segregation. In particular, for two adjacent vertices, we show that a highly
decisive common neighborhood, i.e., a common neighborhoodwhere the absolute
value of the difference between the number of adjacent vertices with different
types is high, supports segregation and that large common neighborhoods are
more decisive.

As an application, we study the expected behavior of the Flip Schelling Process
on two standard random-graph models with and without geometry: (1) For
random geometric graphs, we show that the existence of an edge {𝑢, 𝑣} makes a
highly decisive common neighborhood for 𝑢 and 𝑣 more likely. Based on this,
we prove the existence of a constant 𝑐 > 0 such that the expected fraction of
monochrome edges after the Flip Schelling Process is at least 1/2 + 𝑐 . (2) For
Erdős–Rényi graphs, we show that large common neighborhoods are unlikely
and that the expected fraction of monochrome edges after the Flip Schelling
Process is at most 1/2 + o(1). Our results indicate that the underlying graph’s
cluster structure significantly impacts the obtained segregation strength.

We conclude this thesis with Chapter 7, where we emphasize the most impor-
tant findings. Moreover, we outline the most promising ideas for future research
directions and point to the most pressing open questions.
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2 Preliminaries

Game theory studies mathematical models of strategic interaction among rational
agents. It has various applications in many fields, whereas algorithmic game
theory specifies the area at the intersection of game theory and computer science.

We assume that the reader is familiar with basic concepts of game and graph
theory, respectively, and we only provide details for topics we consider more
advanced. However, we recap certain key notations. For a more detailed intro-
duction, we refer for game theory to the books by Myerson [Mye91], Osborne &
Rubinstein [OR94], Nisan et al. [Nis+07], and Shoham & Leyton-Brown [SL08].
The work by von Neumann and Morgenstern [NM44] introduces Utility Theory
which maps a state of the world to a real number and allows modeling the
behavior of selfish agents. For omitted definitions concerning graph theory, we
refer to the book by West [Wes17].
In this chapter, we first introduce the notation that we use throughout this

thesis, cf. Section 2.1, and provide a very brief introduction about the key
concepts in non-cooperative game theory that we need and use in this thesis,
cf. Section 2.2. Next, we define the Schelling Game and its variants together
with all terms and notations necessary to understand the thesis, cf. Section 2.3.
We give a brief overview of how we measure the quality of strategy profiles in
Section 2.4, and how we investigate dynamic properties in Section 2.5. We close
this chapter by providing an overview of the related work on Schelling Games,
cf. Section 2.6.

2.1 Notation

We use N to denote the set of all natural numbers including 0, N+ to denote the
set of all natural numbers without 0, and R to denote the set of all real numbers.
For 𝑥,𝑦 ∈ N, we define [𝑥 ..𝑦] = [𝑥,𝑦] ∩N and for 𝑥 ∈ N+, we define [𝑥] = [1..𝑥].
We write 𝑋 ∼ Bin(𝑛, 𝑝) to denote that 𝑋 follows the binomial distribution
with 𝑛 ∈ N+ independent Bernoulli trials and success probability 𝑝 ∈ [0, 1] for
each of these 𝑛 trials.
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Chapter 2 Preliminaries

We use standard graph-theoretic notation. Let 𝐺 = (𝑉 , 𝐸) be an unweighted,
undirected and connected graph, with vertex set 𝑉 and edge set 𝐸. We denote
the cardinalities of 𝑉 and 𝐸 with 𝑛 and𝑚, respectively. The distance dist𝐺 (𝑢, 𝑣)
between two vertices𝑢, 𝑣 ∈ 𝑉 is the number of edges on a shortest path between𝑢
and 𝑣. The diameter of 𝐺 is the length of a longest shortest path between any
pair of vertices and is denoted by 𝐷 (𝐺). For any vertex 𝑣 ∈ 𝑉 , we denote the
(open) neighborhood of 𝑣 in 𝐺 as

𝑁 (𝑣) = {𝑢 ∈ 𝑉 : {𝑣,𝑢} ∈ 𝐸},

and deg𝑣 = |𝑁 (𝑣) | denotes the degree of 𝑣 in 𝐺 , i.e., the number of its neighbors.
We call a vertex of degree one a leaf. Let 𝛥 = max𝑣∈𝑉 deg𝑣 and 𝛿 = min𝑣∈𝑉 deg𝑣
be the maximum and minimum degree of vertices in 𝐺 , respectively. We denote
with 𝛼 the independence number of 𝐺 , i.e., the cardinality of a maximum inde-
pendent set in 𝐺 . For any vertex 𝑣 ∈ 𝑉 , let the closed neighborhood of 𝑣 in 𝐺
be

𝑁 [𝑣] = {𝑣} ∪ 𝑁 (𝑣) .

Note that the neighborhood as well as the independence number depend on the
graph 𝐺 . However, since the graph will be clear from the context, we remove it
from the notation for the sake of simplicity.
A clique is a graph such that every two distinct vertices are adjacent. A path

is represented as a non-empty, finite sequence of edges which joins a sequence
of distinct vertices. A cycle or ring is a non-empty, finite sequence of distinct
edges in which, in contrast to a path, only the first and last vertices are equal.
A tree is a connected acyclic graph. A star is a tree that contains one central
vertex connected to 𝑛 − 1 leaf vertices. We call a graph 𝐺 𝛽-almost regular if
𝛥 − 𝛿 = 𝛽 and we call 𝛽-almost regular graphs regular if 𝛽 = 0 and almost
regular when 𝛽 = 1. If the vertex degree is of importance, we call a regular
graph 𝛥-regular graph, i.e., every vertex has the same degree 𝛥. Grid graphs will
play a prominent role. We consider grid graphs with 4-neighbors (4-grids) which
are formed by a two-dimensional lattice with 𝑙 rows and ℎ columns and every
vertex is connected to the vertex on its left, top, right, and bottom, respectively,
if they exist. In grid graphs with 8-neighbors (8-grids), vertices are additionally
also connected to their top-left, top-right, bottom-left, and bottom-right vertices,
respectively, if they exist.
In Chapter 6, we consider random geometric graphs and Erdős–Rényi graphs
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with a total of𝑛 ∈ N+ vertices and an expected average degree deg > 0. For a given
𝑟 ∈ R+, a random geometric graph 𝐺 ∼ G(𝑛, 𝑟 ) is obtained by distributing 𝑛
vertices uniformly at random in some geometric ground space and connecting
vertices 𝑢 and 𝑣 if and only if dist(𝑢, 𝑣) ≤ 𝑟 . Note that we here, in contrast to
dist𝐺 (𝑢, 𝑣) which is defined on a graph, consider the Euclidean distance in the
Euclidean space. For a given 𝑝 ∈ [0, 1], let G(𝑛, 𝑝) denote an Erdős–Rényi graph.
Each edge {𝑢, 𝑣} is included with probability 𝑝 , independently from every other
edge. It holds that deg = (𝑛 − 1)𝑝 .

2.2 Non-Cooperative Game-Theory

Non-cooperative game theory studies rational and selfish agents acting under
different settings and choosing strategies to maximize their payoff. A game
consists of a set of 𝑛′ ∈ N+ numbered agents. In finite strategic games for each
𝑖 ∈ [𝑛′], an agent 𝑖 has a finite set of possible actions 𝐴𝑖 . We call a vector
𝑎 = (𝑎𝑖)𝑖∈[𝑛′ ] ∈ 𝐴1 ×𝐴2 × · · · ×𝐴𝑛′ an action profile. Thus, the set of all action
profiles is A = 𝐴1 × 𝐴2 × · · · × 𝐴𝑛′ . An agent’s strategy is any of the options
which they choose in a setting where the outcome depends not only on their own
actions but on the actions of others. In this thesis, we focus on pure strategies,
where agents choose a single action from their action profile and are not allowed
to randomize between different actions. Let 𝑆𝑖 be the set of all strategies of
agent 𝑖 . The strategy space S = 𝑆1 × 𝑆2 × . . . 𝑆𝑛′ is the Cartesian product of the
strategies of all agents. A strategy profile 𝑠 ∈ S is an 𝑛′-dimensional vector of
strategies where the 𝑖-th entry 𝑠𝑖 specifies the strategy chosen by agent 𝑖 . Each
player assigns a utility value to each action profile. We denote the function
U𝑖 = A → R as the utility function of agent 𝑖 . Thus, an agent evaluates its utility
based on its own action and the actions of all other agents.
Agents can change their strategies if it is profitable. Let 𝑠 ∈ S be a strategy

profile and let 𝑠′ ∈ S be the strategy profile obtained from 𝑠 after agent 𝑖 changed
its strategy from 𝑠𝑖 ∈ 𝑆𝑖 to some other strategy 𝑠′𝑖 ∈ 𝑆𝑖 . We say that this is an
improving response if U𝑖 (𝑠′) > U𝑖 (𝑠), i.e., if agent 𝑖 strictly increases its utility.
If ∀𝑠∗ ∈ 𝑆𝑖 : U𝑖 (𝑠′) ≥ U𝑖 (𝑠∗), we denote the strategy 𝑠′𝑖 as the best response of
agent 𝑖 . A strategy profile 𝑠 is stable or in a pure Nash Equilibrium [Nas50] if no
agent can strictly increase its utility by unilaterally changing its strategy, i.e.,
for any agent 𝑖 ∈ [𝑛′] any strategy profile 𝑠′ U𝑖 (𝑠) ≥ U𝑖 (𝑠′). Moreover, we also
investigate 2-coalitional pure Nash Equilibria. Let 𝑠 ∈ S be a strategy profile
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and let 𝑠′′ ∈ S be the strategy profile obtained from 𝑠 after agent 𝑖 changed
its strategy from 𝑠𝑖 ∈ 𝑆𝑖 to some other strategy 𝑠′𝑖 ∈ 𝑆𝑖 and agent 𝑗 changed
its strategy from 𝑠 𝑗 ∈ 𝑆 𝑗 to some other strategy 𝑠′𝑗 ∈ 𝑆 𝑗 . This is beneficial for
both agents if for all agents 𝑖, 𝑗 ∈ [𝑛′] U𝑖 (𝑠′′) > U𝑖 (𝑠) and U𝑗 (𝑠′′) > U𝑗 (𝑠). A
2-coalitional pure Nash Equilibrium is a Nash Equilibrium where no coalition
of 2 agents can cooperatively deviate in a way that benefits all members of the
coalition.

2.3 The Schelling Game

Given a graph𝐺 = (𝑉 , 𝐸), let T𝑘 (𝐺) denote the set of 𝑘-tuples of positive integers
summing up to 𝑛′ ≤ |𝑉 |. An instance (𝐺, 𝒕) of a Schelling Game with 𝑘 types
(𝑘-SG) is defined by a graph 𝐺 = (𝑉 , 𝐸) and a 𝑘-tuple 𝒕 = (𝑡1, . . . , 𝑡𝑘 ) ∈ T𝑘 (𝐺).
The graph 𝐺 serves as the underlying topology modeling the residential area
in which the agents select a location. There are 𝑛′ strategic agents that need to
choose vertices in 𝑉 . Every agent belongs to exactly one of the 𝑘 types, which
model racial/ethnic, religious, or socio-economic groups, and there are 𝑡𝑖 agents
of type 𝑖 , for every 𝑖 ∈ [𝑘]. When |𝑡𝑖 | = |𝑡 𝑗 | for each 𝑖, 𝑗 ∈ [𝑘], we say that the
game is balanced. For convenience and in all of our illustrations, we associate
each agent type 𝑖 ∈ [𝑘] with a color. For 𝑘 = 2 this corresponds to Schelling’s
original model [Sch69; Sch71] with two different types of agents. In this case,
we use the colors blue and orange and denote by 𝑏 and 𝑜 = 𝑛′ − 𝑏 the number of
blue and orange agents, respectively. Additionally, in the case of a game with
𝑘 = 2, we assume that 𝑜 ≤ 𝑏, i.e., orange is the color of the minority type. For
any graph 𝐺 and any 𝑘-dimensional type vector 𝒕 ∈ T𝑘 (𝐺), let 𝑐 : [𝑛′] → [𝑘]
denote the function that maps any agent 𝑖 ∈ [𝑛′] to its color 𝑐 (𝑖) ∈ [𝑘].

The strategy of an agent is its location on the graph, i.e., a vertex of𝐺 . A feasible
strategy profile 𝝈 is an 𝑛′-dimensional vector whose 𝑖-th entry corresponds to the
strategy of the 𝑖-th agent and where all strategies are pairwise disjoint. Let 𝝈−1

be its inverse function, mapping a vertex 𝑣 ∈ 𝑉 to the agent 𝑖 choosing 𝑣 as its
strategy. We denote by ⊖ if a vertex is empty. Hence, 𝝈−1 is equal ⊖ if 𝑣 is empty,
i.e., no agents choose 𝑣 as its strategy. Thus, any feasible strategy profile 𝝈
corresponds to a coloring of 𝐺 such that for each 𝑖 ∈ [𝑘] exactly 𝑡𝑖 vertices of 𝐺
are colored with the 𝑖-th color and all vertices which are not selected as the
strategy of an agent remain uncolored. We say that agent 𝑖 occupies vertex 𝑣 in 𝝈
if the 𝑖-th entry of 𝝈 , denoted as 𝝈 (𝑖), is 𝑣 and, equivalently, if 𝝈−1(𝑣) = 𝑖 . It will
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become important to distinguish if two agents 𝑖, 𝑗 occupy neighboring vertices
under 𝝈 . For this, we use the notation 1𝑖 𝑗 (𝝈) with 1𝑖 𝑗 (𝝈) = 1 if the agents 𝑖
and 𝑗 occupy neighboring vertices, i.e., if agent 𝑖 and 𝑗 are adjacent, under 𝝈 ,
and 1𝑖 𝑗 (𝝈) = 0 otherwise.
For an agent 𝑖 and any feasible strategy profile 𝝈 , we denote by

𝐶𝑖 (𝝈) = {𝑣 ∈ 𝑉 | 𝑐 (𝝈−1(𝑣)) = 𝑐 (𝑖)}

the set of vertices of 𝐺 which are occupied by agents having the same color as
agent 𝑖 . We call agent 𝑖 and 𝑗 a colored pair if 1𝑖 𝑗 (𝝈) = 1 and 𝑐 (𝑖) = 𝑐 ( 𝑗). Agents
care about the fraction of colored pairs in their surrounding area. In this thesis,
we consider different approaches concerning the surrounding area, in particular
the (closed) neighborhood, but also only parts of the neighborhood. Let 𝑓𝑖 (𝜎)
denote this fraction. We define the different variants we are considering later.
The utility of an agent 𝑖 in 𝝈 is defined as

U𝑖 (𝝈) = 𝑝 (𝑓𝑖 (𝝈)),

where 𝑝 is a function with domain [0, 1]. Each agent aims at maximizing its
utility. Again, we define the different variants defining 𝑝 later.

An agent can change its strategy either via swapping with another agent who
agrees or via jumping to another unoccupied vertex in the graph. This yields
the Swap Schelling Game and the Jump Schelling Game.

Swap Schelling Games In an instance (𝐺, 𝒕) of a Swap Schelling Game with 𝑘
types (𝑘-SSG), there are 𝑛′ = 𝑛 strategic agents that need to choose vertices in 𝑉
in such a way that every vertex is occupied by exactly one agent, i.e., 𝝈 is a per-
mutation of 𝑉 , and we treat 𝝈 as a bijective function mapping agents to vertices.
Agents can change their strategies only by swapping vertex occupation with
another agent. Consider two strategic agents 𝑖 and 𝑗 which occupy vertices 𝝈 (𝑖)
and 𝝈 ( 𝑗), respectively. After performing a swap both agents exchange their oc-
cupied vertex which yields a new feasible strategy profile 𝝈 𝑖 𝑗 , which is identical
to 𝝈 except that the 𝑖-th and the 𝑗-th entries are exchanged. Thus, in the induced
coloring of 𝐺 , the coloring corresponding to 𝝈 𝑖 𝑗 is identical to the coloring cor-
responding to 𝝈 except that the colors of vertices 𝝈 (𝑖) and 𝝈 ( 𝑗) are exchanged.
We say that a swap is local if the swapping agents occupy neighboring vertices,
i.e., if 1𝑖 𝑗 (𝝈) = 1.
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As agents are strategic and want to maximize their utility, we only consider
profitable swaps by agents, i.e., swaps that strictly increase the utility of both
agents involved in the swap. It follows that profitable swaps can only occur
between agents of different colors. We call a feasible strategy profile 𝝈 a swap
equilibrium, or simply equilibrium, if 𝝈 does not admit profitable swaps, that is,
if for each pair of agents 𝑖, 𝑗 , we have

U𝑖 (𝝈) ≥ U𝑖 (𝝈 𝑖 𝑗 ) or U𝑗 (𝝈) ≥ U𝑗 (𝝈 𝑖 𝑗 ) .

Hence, stable placements correspond to 2-coalitional pure Nash equilibria.
If agents are restricted to performing only local swaps, then we call the

corresponding strategic game Local Swap Schelling Game with 𝑘 types (local
𝑘-SSG). We call 𝝈 a local swap equilibrium if no profitable local swap exists
under 𝝈 . Clearly, any swap equilibrium 𝝈 is also a local swap equilibrium but
the converse is not true. Thus, the set of local swap equilibria is a superset of
the set of swap equilibria. See Example 4.1 in Chapter 4 for an illustration of the
(local) 𝑘-SSG.

Jump Schelling Games In an instance (𝐺, 𝒕) of a Jump Schelling Game with 𝑘
types (𝑘-JSG), there are 𝑛′ < 𝑛 strategic agents that need to choose vertices in 𝑉
in such a way that every vertex is occupied by at most one agent. Hence, 𝝈 is an
injective function mapping agents to distinct vertices. In the JSG, we assume
the existence of empty vertices in the underlying graph, i.e., vertices which are
not occupied by an agent, and an agent can change its strategy to any currently
empty vertex, which we refer to as a jump to that vertex. Consider the strategic
agent 𝑖 , which occupies vertex 𝝈 (𝑖). After performing a jump to an empty vertex
𝑣 ∈ 𝑉 , this yields a new feasible strategy profile 𝝈 𝑖 , which is identical to 𝝈 except
that the 𝑖-th entry changed. Thus, in the induced coloring of 𝐺 , the coloring
corresponding to 𝝈 𝑖 is identical to the coloring corresponding to 𝝈 except that
the colors of the vertex 𝝈 (𝑖) and 𝑣 are exchanged, i.e., 𝝈 (𝑖) is now uncolored
while 𝑣 is occupied by an agent.

An agent only jumps to another empty vertex if this strictly increases its
utility. We call a feasible strategy profile 𝝈 jump equilibrium if 𝝈 does not admit
profitable jumps, that is, if for each agent 𝑖 , we have

U𝑖 (𝝈) ≥ U𝑖 (𝝈 𝑖) .
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Here, a jump equilibrium corresponds to a pure Nash Equilibrium.
If the game is clear from the context, we will simply say that a feasible strategy

profile 𝝈 is stable or an equilibrium.

Different Variants There are several ways how we can define the utility of
an agent 𝑖 in 𝝈 . Throughout this thesis, we will investigate different variants.
In Chapter 3, we consider two different calculation methods of the fraction

𝑓𝑖 (𝜎), called the one-versus-all and one-versus-one versions. In the one-versus-
all version, an agent wants a certain fraction of agents of its own type in its
neighborhood, regardless of the specific types of adjacent agents with other types.
To this end, let 𝜏 ∈ (0, 1) be the intolerance parameter. Similar to Schelling’s
model we say that an agent 𝑖 is content with a feasible strategy profile 𝝈 if at
least a 𝜏-fraction of same-type agents is in agent 𝑖’s neighborhood. Otherwise 𝑖 is
discontent. An agent aims to find a vertex in the given graph where it is content
or, if this is not possible, where it has the highest possible utility.

▶ Definition 2.1. For an instance (𝐺, 𝒕, 𝜏) of the one-versus-all Swap Schelling
Game (1-𝑘-SSG), we define

𝑓𝑖 (𝜎) =
|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) |

deg𝝈 (𝑖 )
.

The utility of an agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = min
{
1, 𝑓𝑖 (𝜎 )

𝜏

}
. ◀

Turning our focus to the JSG, we only consider vertices that are occupied by
agents. To this end, we denote the set of empty vertices in a feasible strategy
profile as 𝐸 (𝜎) = {𝑣 ∈ 𝑉 | 𝝈−1(𝑣) = ⊖}. If an agent 𝑖 has no neighboring agents,
i.e., 𝑁 (𝝈 (𝑖)) \ 𝐸 (𝝈) = ∅, we say that 𝑖 is isolated, otherwise 𝑖 is un-isolated. We
assume that isolated agents are always discontent.

▶ Definition 2.2. For an instance (𝐺, 𝒕, 𝜏) of the one-versus-all Jump Schelling
Game (1-𝑘-JSG), we define

𝑓𝑖 (𝜎) =
|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) |
|𝑁 (𝝈 (𝑖)) \ 𝐸 (𝝈) |

if agent 𝑖 is un-isolated and 𝑓𝑖 (𝜎) = 0 if agent 𝑖 is isolated. The utility of an
agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = min

{
1, 𝑓𝑖 (𝜎 )

𝜏

}
. ◀
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In contrast to this, in the one-versus-one version, an agent only compares
the number of own-type agents to the number of agents in the largest group of
agents with different type in its neighborhood. Thus, we only consider a part of
the neighborhood of agent 𝑖 . Let

𝐶𝑑 (𝝈) = {𝑣 ∈ 𝑉 | 𝑐 (𝝈−1(𝑣)) = 𝑑}

be the set of vertices for 𝐺 which are occupied by agents having color 𝑑 ∈ [𝑘].
Let |𝐶max

𝑖 (𝝈) | be the number of neighboring agents of the type 𝑑 ′ ≠ 𝑐 (𝑖) that
make up the largest proportion among all neighbors, i.e.,

|𝐶max
𝑖 (𝝈) | = max

𝑑 ′≠𝑐 (𝑖 )
|𝑁 (𝝈 (𝑖)) ∩𝐶𝑑 ′ (𝝈) |.

Note that we only consider colored vertices, i.e., vertices which are occupied by
an agent. Hence, in the case that agent 𝑖 is isolated, we have |𝐶max

𝑖 (𝝈) | = 0.

▶ Definition 2.3. For an instance (𝐺, 𝒕, 𝜏) of the one-versus-one Swap Schelling
Game (1-1-SSG) and the one-versus-one Jump Schelling Game (1-1-JSG), we define

𝑓𝑖 (𝜎) =
|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) |

|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) | + |𝐶max
𝑖

(𝝈) |

if agent 𝑖 is un-isolated and 𝑓𝑖 (𝜎) = 0 if agent 𝑖 is isolated. The utility of an
agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = min

{
1, 𝑓𝑖 (𝜎 )

𝜏

}
. ◀

Notice, that the one-versus-all and one-versus-one versions coincide for 𝑘 = 2,
thus both versions generalize the two-type case. Hence, in the two-type case,
we only talk about Swap and Jump Schelling Games.

In Chapter 4, we assume that every vertex of the underlying graph serving
as a residential area is occupied by an agent, and pairs of discontent agents can
swap their locations, i.e., their occupied vertices, to maximize the fraction of
own-type neighbors. Hence, we set 𝜏 = 1 in the one-versus-all Swap Schelling
version. Thus, the utility of agent 𝑖 in 𝝈 is defined as

U𝑖 (𝝈) =
|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) |

deg𝝈 (𝑖 )
,

i.e., as the ratio of the number of agents with the same type which occupies
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neighboring vertices and the total number of neighboring vertices, and each
agent aims at maximizing its utility.

In Chapter 5, we turn our focus to the closed neighborhood, i.e., we consider
for agent 𝑖 the fraction of agents of its own color in 𝑖’s neighborhood including
itself. Thus, agents are aware of their own contribution to the diversity of
their neighborhood. We investigate a variant of the 2-SSG with single-peaked
utility functions, called the Single-Peaked Swap Schelling Game (SP-2-SSG). In an
instance of the SP-2-SSG (𝐺,𝑜, 𝛬) there are 𝑜 orange agents and a peak position 𝛬.
Remember that orange is the number of the minority type, i.e., 𝑜 ≤ 𝑛/2.

▶ Definition 2.4. For an instance (𝐺, 𝒕, 𝛬) of the Single-Peaked Swap Schelling
Game (SP-2-SSG), we define

𝑓𝑖 (𝝈) =
|𝑁 [𝝈 (𝑖)] ∩𝐶𝑖 (𝝈) |

|𝑁 [𝝈 (𝑖)] | .

The function 𝑝 to compute the utility U𝑖 (𝝈) of an agent 𝑖 is a single-peaked
function with domain [0, 1] and peak at 𝛬 ∈ (0, 1) that satisfies the following
two properties:

(i) 𝑝 is a strictly monotonically increasing function in the interval [0, 𝛬] with
𝑝 (0) = 0;

(ii) for each 𝑥 ∈ [𝛬, 1], 𝑝 (𝑥) = 𝑝
(
𝛬 (1−𝑥 )
1−𝛬

)
and 𝑝 (𝛬) = 1.

The utility of an agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = 𝑝
(
|𝑁 [𝝈 (𝑖 ) ]∩𝐶𝑖 (𝝈 ) |

|𝑁 [𝝈 (𝑖 ) ] |

)
. ◀

In Chapter 6, we investigate a model, called the Flip Schelling Process (FSP),
which differs from the models introduced so far. In the FSP, agents have binary
types, i.e., 𝑘 = 2. An agent is content if the fraction of agents in its neighborhood
with the same type is larger than 1

2 . Otherwise, if the fraction is smaller than 1
2 , an

agent is discontent and is willing to flip its type to become content. If the fraction
of the same type of agents in its neighborhood is exactly 1

2 , an agent flips its type
with probability 1

2 . Hence, the FSP is defined as follows: an agent 𝑖 whose type
is aligned with the type of more than deg𝝈 (𝑖 )/2 of its neighbors keeps its type.
If more than deg𝝈 (𝑖 )/2 neighbors have a different type, then agent 𝑖 changes its
type. In case of a tie, i.e., if exactly deg𝝈 (𝑖 )/2 neighbors have a different type,
then 𝑖 changes its type with probability 1

2 . FSP is a simultaneous-move, one-shot
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process, i.e., all agents make their decision at the same time and, moreover, only
once.

2.4 Game Efficiency

In Chapter 4, we measure the quality of a feasible strategy profile 𝝈 by its social
welfare U(𝝈), which is the sum over the utilities of all agents, i.e.,

U(𝝈) =
𝑛′∑︁
𝑖=1

U𝑖 (𝝈) .

For any game (𝐺, 𝒕), let 𝝈∗(𝐺, 𝒕) denote a feasible strategy profile that maximizes
the social welfare, and let SE(𝐺, 𝒕) and LSE(𝐺, 𝒕) denote the set of swap equilibria
and local swap equilibria for (𝐺, 𝒕), respectively. Note that the set of equilibria
depends also on the choice of 𝜏 . Since we fix in Chapter 4 𝜏 = 1, we remove
it from the notation for the sake of simplicity. We will study the impact of
the agents’ selfishness on the obtained social welfare for games played on a
given class of underlying graphs G with 𝑘 agent types by analyzing the Price of
Anarchy (PoA) [KP09], which is defined as

PoA(G, 𝑘) = max
𝐺∈G

max
𝒕∈T𝑘 (𝐺 )

U(𝝈∗(𝐺, 𝒕))
min𝝈 ∈SE(𝐺,𝒕 ) U(𝝈)

.

Analogously, we define the Local Price of Anarchy (LPoA) as the same ratio but
concerning local swap equilibria. It follows that, for any 𝑘 ≥ 2 and class of
graphs G, we have PoA(G, 𝑘) ≤ LPoA(G, 𝑘).

The Price of Stability (PoS) [Ans+08] for games with 𝑘 types played on a family
of graphs G is defined as

PoS(G, 𝑘) = max
𝐺∈G

max
𝒕∈T𝑘 (𝐺 )

U(𝝈∗(𝐺, 𝒕))
max𝝈 ∈𝑆𝐸 (𝐺,𝒕 ) U(𝝈)

and is thus the best-case equivalent of the Price of Anarchy. We define the
Local Price of Stability (LPoS) similar to the LPoA by replacing the set of swap
equilibria with that of local swap equilibria. In this case, as the set of local swap
equilibria of a game is a superset of that of its swap equilibria, it follows that
LPoS(G, 𝑘) ≤ PoS(G, 𝑘) for any class of graphs G and integer 𝑘 ≥ 2.
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Analogously, we define the Price of Anarchy and the Price of Stability consid-
ering jump equilibria.

Another variant to measure the quality of a strategy profile 𝝈 is via the Degree
of Integration (DoI) [Aga+21], defined by the number of non-segregated agents.
We use it for analyzing the Single-Peaked Swap Schelling Game in Chapter 5
and prefer it to the standard utilitarian welfare since it measures segregation
independently of the value of 𝛬. In the context of Swap Schelling Games, we
define the DoI as follows2,

DoI = |{𝑖 ∈ [𝑛′] | 𝑓𝑖 (𝝈) < 1}|.

The DoI is a simple segregation measure that captures how many agents have
contact with other-type agents. For any fixed game (𝐺,𝑏, 𝛬), let 𝝈∗ denote a
feasible strategy profile maximizing the DoI and let SE(𝐺,𝑏, 𝛬) denote the set of
swap equilibria for (𝐺,𝑏, 𝛬). We study the impact of the agents’ selfishness by
analyzing the Price of Anarchy concerning the DoI (PoADoI), which is defined as

PoADoI(𝐺,𝑏, 𝛬) =
DoI(𝝈∗)

min𝝈 ∈SE(𝐺,𝑏,𝛬) DoI(𝝈)

and the Price of Stability concerning the DoI (PoSDoI), which is defined as

PoSDoI(𝐺,𝑏, 𝛬) =
DoI(𝝈∗)

max𝝈 ∈SE(𝐺,𝑏,𝛬) DoI(𝝈)
.

2.5 Game Dynamics

We also investigate the dynamic properties of our game variants, i.e., we analyze
if a game has the finite improvement property (FIP) [MS96]. So far, we focused on
stable states themselves. However, we study the process as well and how the
process evolves if we start with a non-stable feasible strategy profile and let the
agents perform profitable moves. In particular, our main question is whether
any sequence of improving swaps or jumps is finite. Such games often have
many attractive properties, like the guaranteed existence of pure equilibria, and
often a fast convergence to such a stable state.

2 Note that in the context of Jump Schelling Games, we have to factor out isolated agents from
the number.
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To this end, we analyze whether improving response dynamics (IRD), i.e., the
natural approach for finding equilibrium states where agents sequentially try to
change towards better strategies until no agent can further improve, converge.
For showing this, we employ generalized ordinal potential functions. Such a
function 𝛷 maps placements to real numbers such that if an agent (or a pair
of agents) in a feasible strategy profile 𝝈 can improve by a jump (or a swap)
which results in a feasible strategy profile 𝝈 ′, then𝛷 (𝝈 ′) > 𝛷 (𝝈) holds. That
is, any improving strategy change also increases the potential function value.
The existence of a generalized ordinal potential function shows that a game
is a potential game [MS96], which guarantees the existence of pure equilibria
and that IRD must terminate in an equilibrium. In contrast, the FIP can be
disproved by showing the existence of an improving response cycle (IRC), which
is a sequence of improving strategy changes that visits the same state of the game
twice. Hence, there exists a sequence of feasible strategy profiles 𝝈0,𝝈1, . . . ,𝝈 ℓ ,
with 𝝈 ℓ = 𝝈0, where 𝝈𝑞+1 is obtained by a profitable jump (or a swap) by one
(or by two) agents in 𝝈𝑞 , for 𝑞 ∈ [0..ℓ − 1].

The existence of an IRC directly implies that a potential function cannot exist
and, thus, that IRD may not terminate. However, even with existing IRCs, it is
still possible that from any state of the game, there exists a finite sequence of
improving strategy changes that leads to an equilibrium. In this case, the game
is weakly acyclic [You93]. Thus, the strongest possible non-convergence result
is a proof that a game is not weakly acyclic.

For investigating the FIP, the following function𝛷 mapping feasible strategy
profiles to natural numbers is important:

𝛷 (𝝈) =
��{{𝑢, 𝑣} ∈ 𝐸 | 𝑐 (𝝈−1(𝑢)) = 𝑐 (𝝈−1(𝑣))

}��.
Hence, 𝛷 (𝝈) is the number of edges of 𝐺 whose endpoints are occupied by
agents of the same color under the feasible strategy profile 𝝈 . We denote such
edges as monochrome edges and𝛷 (𝝈) as the potential of 𝝈 .

2.6 Related Work

There is a huge body of work on Schelling’s model and variations thereof, see e.g.
[BW07; BHO09; Cla86; Sch69; Sch78; VK06; Whi86]. Most related work is purely
empirical and provides simulation results. We focus here on the amount of
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related work, which rigorously proves properties of (variants of) the Schelling’s
model.

On the theoretical side, the underlying stochastic process leading to segre-
gation was rigorously studied [Ger+08; OF18a; OF18b; ZR22]. Young [You98]
was the first to analyze a variant of the one-dimensional segregation model. He
considered the specific dynamics where a pair of agents are chosen at random
and they swap places with a suitably chosen probability. He analyzed the induced
Markov chain and proved that under certain conditions total segregation is with
a high probability a stochastically stable state. The first rigorous analysis of the
original Schelling model was achieved by Brandt et al. [Bra+12] for the case
where agents with tolerance parameter 𝜏 = 1

2 are located on a ring and agents
can only swap positions. They proved that the process converges with high
probability to a state where the average size of monochromatic neighborhoods
is polynomial in 𝑤, where 𝑤 is the window size for determining the neighbor-
hood. Interestingly, Barmpalias et al. [BEL14] have proven a drastically different
behavior for 0.3531 < 𝜏 < 1

2 where the size of monochromatic neighborhoods
is exponential in 𝑤. Later, Barmpalias et al. [BEL16] analyzed a 2-dimensional
variant, where both agent types have different tolerance parameters and agents
may change their type if they are discontent. Finally, Immorlica et al. [Imm+17]
considered the random Schelling dynamics on a 2-dimensional toroidal grid with
𝜏 = 1

2 − 𝜀, for some small 𝜖 > 0. Their main result is a proof that the average size
of monochromatic neighborhoods is exponential in 𝑤.

The focus of the above-mentioned works is on investigating the expected size
of the obtained homogeneous regions, but it is also shown that the stochastic
processes starting from a uniform random agent placement converge with high
probability to a stable placement. The convergence time was considered by
Mobius & Rosenblat [MR00], who observed that the Markov chain analyzed
in [You98] has a very high mixing time. Bhakta et al. [BMR14] showed in the
two-dimensional grid case a dichotomy in mixing times for high 𝜏 and very
low 𝜏 values.

All these models of segregation are essentially random processes where dis-
content agents choose their new location at random. However, in reality, agents
would not move randomly, instead, they move to a location that maximizes
their utility. Pancs & Vriend [PV07] used different types of utility functions
for their agents in extensive simulation experiments. Furthermore, Schelling’s
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model recently gained traction within the algorithmic game theory, artificial
intelligence, and multi-agent systems.

Zhang [Zha04; Zha11] proved similar results to [You98] in 2-dimensional mod-
els. Moreover, he was the first who introduced an (evolutionary) game-theoretic
model related to Schelling’s original model. In particular, Zhang analyzed a
model where the agents are endowed with a noisy single-peaked utility func-
tion that depends on the ratio of the numbers of the two agent types in any
local neighborhood and is a departure from the threshold behavior proposed by
Schelling. The highest utility is attained in perfectly balanced neighborhoods
and agents slightly prefer being in the majority over being in the minority. In
contrast to our models, Zhang’s model [Zha04] assumes transferable utilities
and it can happen that after a randomly chosen swap one or both agents are
worse off. Grauwin et al. [GGJ12] generalized the results.

Agarwal et al. [Aga+21] studied a variant of our model in Chapter 3 and Chap-
ter 4 with 𝑘 types, where the agents are partitioned into stubborn and strategic
agents. The former agents do not move and the latter agents try to maximize
the fraction of same-type agents in their neighborhood by jumping to a suit-
able empty location. This corresponds to a variant of the Schelling Game with
𝜏 = 1. They showed that equilibria are not guaranteed to exist, in particular,
that equilibria are not guaranteed to exist on underlying trees, and that deciding
equilibrium existence or the existence of an agent strategy profile with certain
social welfare is NP-hard. Moreover, the authors studied the Price of Anarchy in
terms of utilitarian social welfare and in terms of the newly introduced Degree of
Integration, which counts the number of non-segregated agents and is inspired
by the work of [LC82]. For the former, i.e., utilitarian social welfare, they showed
that the Price of Anarchy and the Price of Stability can be unbounded for 𝑘 ≥ 2
for jump games and 𝑘 ≥ 3 for the swap version, even in balanced games. They
also established that the Price of Anarchy is in Θ(𝑛) on underlying star graphs
if there are at least two agents of each type. For two types in the swap version,
they showed that the Price of Anarchy is between 2.058 and 4 for balanced
games on any graph. For the Price of Stability, they give a constant lower bound
under certain conditions and showed that it equals 1 on regular graphs. For
the latter, i.e., the Degree of Integration, they give a tight bound of 𝑛

2 on the
Price of Anarchy and the Price of Stability that is achieved on a tree. In contrast,
they derived a constant Price of Stability on paths. The complexity results were
extended by Kreisel et al. [Kre+22]. Kanellopulos et al. [KKV22] considered a
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generalized variant, where an ordering of the agent types exists and agents are
more tolerant towards agents of types that are closer according to the ordering.
Chan et al. [CIT20] studied a variant of the Jump Schelling Game with 𝜏 = 1

where the agents’ utility is a function of the composition of their neighborhood
and of the social influence by agents that select the same location. In their work,
the social influence is defined by an auxiliary directed graph that models the
social network. This idea of additional social influence was earlier proposed by
Agarwal et al. [Aga+21] using an undirected social network. Another novel vari-
ant of the Jump Schelling Gamewas investigated by Kanellopoulos et al. [KKV21].
There the main new aspect is that an agent is included when counting its neigh-
borhood size. This subtle change leads to agents preferring locations with more
own-type neighbors. Also very recently, Bullinger et al. [BSV21] studied welfare
guarantees in Schelling Games. They showed results on computing assignments
with high social welfare as well as on other optimality notions, such as Pareto op-
timality and two newly introduced measures. In particular, they considered the
number of agents with non-zero utility as social welfare function. They proved
hardness results for computing the social optimal state and they discussed other
stability notations. Deligkas et al. [DEG22] dealt with the same questions albeit
under the prism of parameterized complexity. Strategic segregation was also
considered in social network formation [ACT19], where agents are grouped
into types and can choose to create or sever links whilst maximizing their own
private interests.

We note that hedonic games [BJ02; DG80], where selfish agents form coalitions,
are also related to Schelling’s model, but the utility of an agent only depends
on its chosen coalition. In Schelling’s model, the neighborhood of an agent
could be considered as its coalition, but then not all agents in a coalition derive
the same utility from it. Nevertheless, Schelling games are similar to fractional
hedonic games [Azi+19; Bil+18; CMM19; MMV19; MMV20], hedonic diversity
games [BE20; BEI19], and FEN-hedonic games [FKR19; Iga+19; Ker+20; KR19].
In these games, the utility of an agent only depends on the coalition containing
that agent. In FEN-hedonic games, every agent partitions the set of agents into
friends, enemies, and neutral agents, and the value of a coalition for an agent then
depends on the distribution of these types within the coalition. This is similar
to Schelling games, where the neighborhood of an agent can be considered as
its coalition and the utility of an agent depends on the type distribution within
its neighborhood. Even closer to Schelling games are fractional hedonic games
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and hedonic diversity games. Fractional hedonic games are additively separable
hedonic games in which the total value of a coalition is divided by the cardinality
of the coalition. Thus, if the value that agent 𝑖 ascribes to another agent 𝑗 is 1 if 𝑖
and 𝑗 are of the same type and 0 otherwise, then fractional hedonic games and
Schelling games share the same utility function. However, they heavily differ on
the feasibility of coalition structures: in fractional hedonic games, coalitions are
unrestricted and pairwise disjoint, whereas in Schelling games they overlap and
are superimposed by the topology of the underlying graph. Hedonic diversity
games account for a mixture of both homophilic and heterophilic agents. More
precisely, there are two different types of agents and the utility of an agent
for being in a coalition depends on the distribution of same-type agents in a
coalition and its cardinality.

Close to hedonic games are the very recently introduced topological distance
games [BS22], where agents are assigned to vertices of an underlying graph and
the utility of an agent depends on both the agent’s inherent utilities for other
agents as well as its distance from these agents on the graph.

Cooperative games with overlapping coalitions, called OCF-games, from the
cooperative game theory literature are related. There, agents can be contained in
many coalitions and coalitions may overlap, as in Schelling games. OCF-games
are introduced in Chalkiadakis et al. [Cha+10] and different variants of the
core are defined and analyzed. In [Zic+19; ZME14], other stability concepts
are considered and the tractability of the involved computational problems is
studied.
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3 Convergence and Hardness of
Strategic Schelling Segregation

This chapter is based on joint work with Ankit Chauhan, Hagen Echzell, Tobias
Friedrich, Pascal Lenzner, Marcus Pappik, Friedrich Schöne, Fabian Sommer, and
David Stangl [CLM18; Ech+19].

Real-world agents move if this is beneficial. Hence, we analyze a game-
theoretic version of Schelling’s model of real-world agents who would only
move if this improves their situation. To this end, we introduce a model which
is close to Schelling’s formulation, but, we extend the model to more than two
agent types. That is, in our model, there are 𝑘 types of agents and the utility of
an agent depends on the type ratio in its neighborhood. An agent is content if
the fraction of own-type neighbors is above 𝜏 ∈ (0, 1). To improve their utility,
agents can either swap with another agent who is willing to swap, that is the
Swap Schelling Game, or jump to an unoccupied vertex, which is the Jump
Schelling Game. Empirically, our model yields outcomes that are very similar to
Schelling’s original model - see Figure 3.1 for an example.
This chapter sets out to explore the properties of the strategic dynamic pro-

cesses and the tractability of the induced optimization problems. Our main

Figure 3.1: An instance of a Swap Schelling Game with two different types, with
𝑜 = 𝑏 = 5 000 and 𝜏 = 1

2 . Left: An initial feasible strategy profile of the agents. The
agents are distributed uniformly at random. Middle: A sample swap equilibrium of
the 2-SSG showing significant segregation. Right: For comparison, a simulation of the
Schelling Process with 𝜏 = 1

2 [Hay13] where on each turn, every discontent agent moves
to a randomly chosen vacant site.
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Table 3.1: Results regarding IRD. “reg.” stands for regular graphs, “arb” for arbitrary
graphs, which model the residential area. “ow” is an abbreviation for otherwise. “✓”
denotes that IRD converge to an equilibrium, “o” denotes the existence of an IRC. “×”
denotes that the version is not weakly acyclic. If 𝜏 is omitted, the result holds for any
0 < 𝜏 < 1. Let 𝛥 be the degree of the vertices in a regular graph.

1-𝑘-SSG 1-1-SSG 1-𝑘-JSG 1-1-JSG

reg. ✓(Thm. 3.4) ✓(Thm. 3.5) 𝜏 ≤ 1
𝛥

✓(Thm. 3.8) 𝜏 ≤ 2
𝛥

✓(Thm. 3.11) 𝜏 ≤ 1
𝛥

o (Thm. 3.6) 𝜏 ≥ 5
𝛥−1 o (Thm. 3.9) 𝜏 > 2

𝛥
o (Thm. 3.12) 𝜏 > 2

𝛥

arb. ✓(Thm. 3.1) 𝑘 = 2, 𝜏 ≤ 1
2 × (Thm. 3.7) × (Thm. 3.10) × (Thm. 3.13)

× (Thm. 3.2, 3.3) ow

contribution is thereby an investigation of the convergence behavior of many
variants of Schelling’s model. This corresponds to analyzing improving response
dynamics. Previous work, including Schelling’s original papers and all the men-
tioned empirical simulation studies, assume that IRD always converge to an
equilibrium or converge with high probability [BEL16; BEL14; Bra+12; Imm+17].
We challenge the assumption of guaranteed convergence by precisely mapping
the boundary of when IRD are assured to find an equilibrium. We show that IRD
behave radically differently in the swap version, cf. Section 3.2, compared to the
jump version, cf. Section 3.3. Moreover, we show that contrasting behavior can
even be found within these two variants. We demonstrate the extreme cases of
guaranteed IRD convergence, i.e., the existence of a generalized ordinal potential
function, and the strongest possible non-convergence result, i.e., that even weak
acyclicity is violated. For this, we provide sharp threshold results where for some
𝜏∗ IRD are guaranteed to converge for 𝜏 ≤ 𝜏∗ and we have non-weak-acyclicity
for 𝜏 > 𝜏∗, depending on the underlying graph. See Table 3.1 for an overview
of our results. One of our main results, cf. Theorem 3.1, is a proof that IRD in
the Swap Schelling Game converge if there are two types of agents and agents
are tolerant, that is, 𝑘 = 2 and 𝜏 ≤ 1

2 , for any underlying connected graph as a
residential area. This is in sharp contrast to the convergence results for large 𝜏 ,
i.e., 𝜏 > 1

2 or more agent types, i.e., 𝑘 ≥ 3, cf. Theorem 3.2 and Theorem 3.3. If the
underlying graph is regular then IRD convergence is guaranteed for arbitrary 𝑘
and 𝜏 in O(|𝐸 |) moves. For the Jump Schelling Game, we exactly characterize
when IRD convergence is ensured. In the case of IRD convergence, we show
that this happens after O(|𝐸 |) many jumps on an underlying graph 𝐺 = (𝑉 , 𝐸).
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As a further conceptual contribution, we start a discussion about segregation
models with more than two agent types. Besides the simple generalization
of differentiating only between own type and other types, i.e., the 1-𝑘-SSG,
cf. Section 3.2.1, and 1-𝑘-JSG, cf. Section 3.3.1, we propose a more natural
alternative, called the 1-1-SSG, cf. Section 3.2.2, and the 1-1-JSG, cf. Section 3.3.2,
where agents compare the type ratios only with the largest subgroup in their
neighborhood. The idea here is that a minority group mainly cares about if there
is a dominant other group within the neighborhood.
Moreover, we investigate the influence of the underlying graph on the hard-

ness of computing an optimal feasible strategy profile, cf. Section 3.4. We show
that computing this is NP-hard for arbitrary underlying graphs if 𝜏 = 1

2 , cf.
Theorem 3.14 or if 𝜏 is close to the maximum degree in the graph, cf. Theo-
rem 3.15. In contrast to this, we provide an efficient algorithm for computing
the optimum feasible strategy profile on a 2-regular graph with two agent types,
cf. Theorem 3.16. The number of agent types also has an influence: we establish
NP-hardness even on 2-regular graphs if there are sufficiently many agent types,
cf. Theorem 3.18.

Regarding the influence on the obtained segregation, we present experimental
results which measure the obtained segregation on grids with 8-neighborhood,
on random unit-disc graphs with an expected vertex degree of 8, and on random
8-regular graphs, cf. Section 3.5. Our experiments reveal that geometry seems
to have a significant influence on the segregation strength since the process on
random 8-regular graphs yields significantly less segregation than the process
on grids or unit-disc graphs. In Chapter 6 we investigate the influence of the
underlying topology in more detail for a related process.
Last, we introduce a variant of Schelling’s model which takes into account

the critical aspect of individual location differentiation which has a significant
influence on residential decisions in real life, cf. Section 3.6. Agents want to
stay close to their working place or close to their current residence. Hence, we
assume that agents have preferences regarding their exact position in the graph.
As before, the most important goal of an agent is to live in a neighborhood such
that its neighborhood type preference is satisfied. However, the vertices that
satisfy this property are no longer all equally good. For example, it may find
agents that prefer a central vertex in the graph, while others prefer to live on
the edge. We provide first results for IRD convergence for the Swap Schelling
Game with two types of agents and show that if the underlying graph is regular
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and if all agents have a common favorite vertex, cf. Theorem 3.20, or if 𝜏 ≥ 1
2 , cf.

Theorem 3.21, then convergence is guaranteed.

3.1 Model

We consider Schelling Games with 𝑘 types and intolerance parameter 𝜏 ∈ (0, 1).
In particular, we investigate the Swap Schelling Game and the Jump Schelling
Game in the one-versus-all and one-versus-one versions. In the swap setting
agents change their strategy via swapping with another agent while in the jump
setting an agent changes its strategy via jumping to an empty vertex. Remember
that in the one-versus-all version an agent wants a certain fraction of agents of
its own type in its neighborhood, regardless of the specific other types, while
in the one-versus-one version an agent is only aware of the largest group of
agents with a different type. Note that both versions coincide for 𝑘 = 2. The
utility of an agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = min

{
1, 𝑓𝑖 (𝜎 )

𝜏

}
. For the definition

of 𝑓𝑖 (𝜎), we refer to Definition 2.1, Definition 2.2 and Definition 2.3. An agent 𝑖
is content if U𝑖 (𝝈) = 1. For investigating the dynamic properties, we mainly use
the potential function𝛷 (𝝈) =

��{{𝑢, 𝑣} ∈ 𝐸 | 𝑐 (𝝈−1(𝑢)) = 𝑐 (𝝈−1(𝑣))
}��.

3.2 Schelling Dynamics for the Swap Schelling Game

We analyze the convergence behavior of the Swap Schelling Game. Our main
goal is to investigate under which conditions a generalized ordinal potential
function exists. To this end, we prove for various special cases of the SSG that
they are actually generalized ordinal potential games. For this, we analyze the
change in the potential function value for a suitably chosen potential function
for an arbitrary location swap of two agents 𝑖 and 𝑗 . Such a swap changes the
current feasible strategy profile 𝝈 only in the locations of agents 𝑖 and 𝑗 and
yields a new feasible strategy profile 𝝈 𝑖 𝑗 . We start with investigating two types
of agents which is similar to the original formulation of Schelling’s model. We
prove initial results, in particular that the 2-SSG converges for 𝜏 ≤ 1

2 on arbitrary
graphs. Moreover, we present a matching non-convergence bound for 𝜏 > 1

2 .

▶ Theorem 3.1. For 𝜏 ≤ 1
2 , any 2-SSG played on an arbitrary graph possesses

the FIP. ◀
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Proof. We prove the statement by showing that𝛷 (𝝈) is a generalized ordinal
potential function. Remember that 𝛷 (𝝈) is the number of edges of 𝐺 whose
endpoints are occupied by agents of the same color under 𝝈 . First, note that two
agents 𝑖 and 𝑗 only swap if both agents are discontent and of different types since
a swap between agents of the same type cannot be an improvement for at least
one of the involved agents. Assume, without loss of generality, that 𝑖 is orange
and 𝑗 is blue. Let 𝑜𝑖 and 𝑏𝑖 be the number of orange and blue neighbors of 𝝈 (𝑖)
and 𝑜 𝑗 and 𝑏 𝑗 be the number of orange and blue neighbors of 𝝈 ( 𝑗), respectively.
It holds that

U𝑖 (𝝈) =
𝑜𝑖

deg𝝈 (𝑖 )
< 𝜏, U𝑗 (𝝈) =

𝑏 𝑗

deg𝝈 ( 𝑗 )
< 𝜏 .

Since 𝜏 ≤ 1
2 and deg𝝈 (𝑖 ) = 𝑜𝑖 + 𝑏𝑖 it follows that 𝑜𝑖 < 𝑏𝑖 . Analogously, we get for

agent 𝑗 that 𝑏 𝑗 < 𝑜 𝑗 . Thus, 𝑜𝑖 + 𝑏 𝑗 < 𝑏𝑖 + 𝑜 𝑗 . If the swap is not local, i.e., agents 𝑖
and 𝑗 are not adjacent, this implies for the change in the potential function value
that𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 𝑏𝑖 +𝑜 𝑗 −

(
𝑜𝑖 + 𝑏 𝑗

)
> 0. Hence, the number of monochrome

edges increases. If the swap is local, it holds that

U𝑖 (𝝈 𝑖 𝑗 ) =
𝑜 𝑗 − 1𝑖 𝑗 (𝝈)
deg𝝈 ( 𝑗 )

, U𝑗 (𝝈 𝑖 𝑗 ) =
𝑏𝑖 − 1𝑖 𝑗 (𝝈)
deg𝝈 (𝑖 )

< 𝜏,

with 1𝑖 𝑗 (𝝈) = 1. Thus, this implies for the change in the potential function
value that𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 𝑏𝑖 + 𝑜 𝑗 −

(
𝑜𝑖 + 𝑏 𝑗

)
− 2. If 𝑏𝑖 − 𝑜𝑖 > 1 or 𝑜 𝑗 − 𝑏 𝑗 > 1

𝛷 (𝝈 𝑖 𝑗 )−𝛷 (𝝈) > 0. Hence, we are left with the case that𝑏𝑖−𝑜𝑖 = 1 and 𝑜 𝑗−𝑏 𝑗 = 1.
Since we consider a profitable swap for agent 𝑖 and 𝑗 and we assume 1𝑖 𝑗 (𝝈) = 1,
it holds that

U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) =
𝑜 𝑗 − 1
deg𝝈 ( 𝑗 )

=
𝑏 𝑗

deg𝝈 ( 𝑗 )
= U𝑗 (𝝈).

The same is true for agent 𝑗

U𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ) =
𝑏𝑖 − 1
deg𝝈 (𝑖 )

=
𝑜𝑖

deg𝝈 (𝑖 )
= U𝑖 (𝝈).

U𝑖 (𝝈) < U𝑗 (𝝈) < U𝑖 (𝝈) is clearly a contradiction. Hence, the number of
monochrome edges increases with every profitable swap. ■
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Figure 3.2: An IRC for the 2-SSG with 𝑥 = max
(
⌈ 1
𝜏−0.5 ⌉,

⌈
1

2−2𝜏

⌉)
for 𝜏 ∈

( 1
2 , 1

)
. See the

proof of Theorem 3.2 for more details. Multiple vertices in series represent a clique of
vertices of the stated size. Edges between cliques or between a clique and single vertices
represent that all involved vertices are completely interconnected.

We now show that this bound is tight, i.e., that for 𝜏 > 1
2 IRDmay not converge.

▶ Theorem 3.2. For 𝜏 ∈
( 1
2 , 1

)
, IRD are not guaranteed to converge in the 2-SSG

on arbitrary graphs. Moreover, weak acyclicity is violated. ◀

Proof. We prove the statement by providing an improving response cycle where
in every step exactly one improving swap is possible. The construction is shown
in Figure 3.2 and we assume that 𝑥 is sufficiently large, that is,

𝑥 = max
(⌈ 1
𝜏 − 0.5

⌉
,

⌈ 1
2 − 2𝜏

⌉)
.

With 𝑧 ∈ [4], the orange agents occupying the set of vertices of 𝑢𝑧 , which
consist of 1, 2𝑥 , 𝑥 − 2, and 𝑥 + 1 vertices, respectively, and the blue agents
occupying the set of vertices of 𝑣𝑧 , which consist of 1, 2𝑥 − 2, 𝑥 and 𝑥 − 2 vertices,
respectively, are interconnected and form a clique. During the entire cycle the
agents occupying 𝑢𝑧 and 𝑣𝑧 , respectively, are content. To this end, note that
⌈ 1
𝜏−0.5⌉ ≥ ⌈ 1

2−2𝜏 ⌉ for 0.5 < 𝜏 ≤ 0.83. An orange agent 𝑖 ∈ 𝑢𝑧 has 4𝑥 neighbors
and at most one neighbor is blue. Hence, for any feasible strategy profile 𝝈
depicted in Figure 3.2 𝑓𝑖 (𝜎) = 4𝑥−1

4𝑥 which yields U𝑖 (𝝈) = 1 by our choice of 𝑥
since 4𝑥−1

4𝑥 is larger or equal than 𝜏 with the corresponding selected 𝑥 . The
same applies to a blue agent 𝑗 ∈ 𝑣𝑧 who has 4𝑥 − 3 neighbors in total and at
most one neighbor is orange. It holds that 4𝑥−4

4𝑥−3 is larger or equal than 𝜏 with
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the corresponding selected 𝑥 . Therefore, an agent 𝑖 ∈ 𝑢𝑧 and an agent 𝑗 ∈ 𝑣𝑧 ,
respectively, never have the incentive to swap their position with any other
agent, since they are content.

In the initial strategy profile, cf. Figure 3.2 (a), both agents 𝑎 and 𝑑 are discon-
tent. By swapping their vertices, agent 𝑎 can increase its utility from 1

3𝜏 to 𝑥−1
2𝑥𝜏

and agent 𝑑 increases its utility from 𝑥+1
2𝑥𝜏 to min

(
1, 2

3𝜏
)
. This is the only possible

swap since neither 𝑏 nor 𝑐 have the opportunity to improve their utility via
swapping with 𝑐 , 𝑑 , and 𝑎, 𝑏, respectively. After the first swap, cf. Figure 3.2 (b),
agent 𝑎 is still not content. A swap with agent 𝑐 increases agent 𝑎’s utility to 2𝑥−1

4𝑥𝜏 ,
and agent 𝑐 can increase its utility from 2𝑥+1

4𝑥𝜏 to 𝑥+1
2𝑥𝜏 . Again, no other swap is

possible since agent 𝑏 decreases its utility by swapping with agent 𝑐 or 𝑑 . After
this, cf. Figure 3.2 (c), agent 𝑏 and 𝑑 have the opportunity to swap and increase
their utility from 𝑥+1

2𝑥𝜏 to min
(
1, 2

3𝜏
)
and 1

3𝜏 to 𝑥−1
2𝑥𝜏 , respectively. Once more there

is no other profitable swap. Agent 𝑎 does not want to swap with agent 𝑑 and
agent 𝑏 not with agent 𝑐 . Finally, cf. Figure 3.2 (d), agent 𝑎 and 𝑑 swap and
both agents increase their utility to 1

2𝜏 . Neither does agent 𝑏 want to swap with
agent 𝑐 nor can agent 𝑐 improve its utility by swapping with agent 𝑎. After
the fourth step, the obtained strategy profile is equivalent to the initial feasible
strategy profile, cf. Figure 3.2 (a), only the blue agents 𝑎 and 𝑏, and the orange
agents 𝑐 and 𝑑 , respectively, have exchanged positions. Since all the executed
swaps were the only possible strategy changes, this proves that the 2-SSG is
not weakly acyclic, since, starting with the given initial feasible strategy profile,
there is no possibility to reach a swap equilibrium via profitable swaps. ■

3.2.1 IRD Convergence for the One-versus-All Version

The 1-𝑘-variant seems to be a straightforward generalization of the two types
case. An agent simply compares the number of neighbors of its own type with
the total number of neighbors. Interestingly, our IRD convergence results for
the 1-𝑘-SSG with 𝑘 > 2 for arbitrary graphs for 𝜏 ≤ 1

2 are in sharp contrast to
the results for 𝑘 = 2: On arbitrary graphs with tolerant agents, i.e., with 𝜏 ≤ 1

2 ,
and 𝑘 > 2 types IRD convergence is no longer guaranteed. This emphasizes the
influence of the number of agent types on the convergence behavior of the IRD.

▶ Theorem 3.3. IRD are not guaranteed to converge in the 1-𝑘-SSG with 𝑘 > 2
for 𝜏 ∈ (0, 1) on arbitrary graphs. Moreover, weak acyclicity is violated. ◀

Proof. We give an example of an improving response cycle, where in every step
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Figure 3.3: An IRC for the 1-𝑘-SSG with 𝑥 > 3
4𝜏 − 1 for any 𝜏 ∈ (0, 0.5]. Please refer to

Theorem 3.3 for more details. Multiple vertices in series represent a clique of vertices of
the stated size. Edges between cliques or between a clique and single vertices represent
that all involved vertices are completely interconnected.

exactly one improving swap exists, for any 𝜏 ≤ 0.5. Together with the improving
response cycle given in Theorem 3.2 for 𝜏 > 0.5, this yields the statement.

Consider the instance in Figure 3.3 with a sufficiently high 𝑥 , that is, 𝑥 > 3
4𝜏 −1

and let 𝜏 ≤ 0.5. We have 𝑘 = 3 types (orange, blue, gray). With 𝑦 ∈ [4] and
𝑧 ∈ [2], the agents occupying the set of vertices of 𝑢𝑦 , which consist of 8𝑥 , 4, 4𝑥
and 3 vertices, and the set of vertices of 𝑣𝑧 , consisting of two times 2 vertices,
respectively, are interconnected and each form a clique. During the entire cycle
the agents occupying 𝑢𝑦 and 𝑣𝑧 , respectively, are content. An agent occupying
a vertex of 𝑢𝑦 ∪ 𝑣𝑧 has at most two neighboring agents of different types and
at least two agents of its own type. Since 𝜏 ≤ 0.5, these agents are content.
Therefore, they have no incentive to swap.

In the initial strategy profile, cf. Figure 3.3 (a), agents 𝑎 and 𝑑 are discontent
and want to swap. Agent 𝑎 increases its utility from 0 to 1

4(𝑥+1)𝜏 while agent 𝑑 is
content after the swap, i.e, U𝑗 (𝝈 𝑖 𝑗 ) = 1. This is the only possible swap. Agent 𝑐
does not want to swap with agent 𝑎 or 𝑏 since such a swap decreases its utility,
as well as agent 𝑏 cannot improve its utility by swapping with 𝑐 or 𝑑 . After
the first swap, cf. Figure 3.3 (b), agent 𝑎 can further increase its utility via a
profitable swap with agent 𝑐 . Such a swap increases the utility of agent 𝑎 to

3
8(𝑥+1)𝜏 , while agent 𝑐 can improve from 5

8(𝑥+1)𝜏 to 3
4(𝑥+1)𝜏 . Again, this is the only

possible swap, since agent 𝑑 is content and 𝑐 still cannot perform a profitable
swap with agent 𝑏. After this, cf. Figure 3.3 (c), agent 𝑑 has no neighbor of its
own type, so it swaps with agent 𝑏 who becomes content. Agent 𝑑 increases its
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utility from 0 to 1
4(𝑥+1)𝜏 . Agent 𝑎 cannot perform a profitable swap with agent 𝑑

and agent 𝑏 not with agent 𝑐 since both, 𝑏 and 𝑐 , would have no agent of their
own type in their neighborhood. Finally, cf. Figure 3.3 (d), agents 𝑎 and 𝑑 can
swap. Agent 𝑑 increases its utility to 1

2(𝑥+1)𝜏 and agent 𝑎 increases its utility
from 3

8(𝑥+1)𝜏 to 1
2(𝑥+1)𝜏 . No other two agents have any incentive to swap their

position, since neither agent 𝑐 nor 𝑑 can perform a profitable swap with agent 𝑏
since they would not have a neighboring agent of their own type. For the same
reason agent 𝑎 is not interested in swapping with agent 𝑐 . The resulting feasible
strategy profile is equivalent to the initial one, only the blue agents 𝑎 and 𝑏 and
the orange agents 𝑐 and 𝑑 exchanged positions.
Since all swaps are the only ones possible, this shows that the 1-𝑘-SSG is

not weakly acyclic as there is no possibility to reach a stable feasible strategy
profile. ■

On the positive side, we can show that convergence is guaranteed for the
1-𝑘-SSG for any 𝑘 ≥ 2 on regular graphs.

▶ Theorem 3.4. IRD are guaranteed to converge in O(|𝐸 |) moves for the 1-𝑘-
SSG with 𝜏 ∈ (0, 1) on any regular graph. ◀

Proof. We prove the statement by showing that𝛷 (𝝈) is a generalized ordinal
potential function. Note, that a content agent never has the incentive to swap.
Moreover, profitable swaps can only occur between agents of different colors.
Since we consider a regular graph 𝐺 = (𝑉 , 𝐸), it holds for all 𝑣,𝑤 ∈ 𝑉 deg𝑣 =
deg𝑤 = 𝛥.

Consider a swap performed by agents 𝑖 and 𝑗 . Assume, without loss of gener-
ality, that 𝑖 is orange and 𝑗 is blue. Let 𝑜𝑖 and 𝑏𝑖 be the number of orange and blue
neighbors of 𝝈 (𝑖) and 𝑜 𝑗 and 𝑏 𝑗 be the number of orange and blue neighbors
of 𝝈 ( 𝑗), respectively. Since we consider a profitable swap for agent 𝑖 and 𝑗 , it
holds that

𝑜𝑖

𝛥
<
𝑜 𝑗 − 1𝑖 𝑗 (𝝈)

𝛥
and

𝑏 𝑗

𝛥
<
𝑏𝑖 − 1𝑖 𝑗 (𝝈)

𝛥
.

This implies for the change in the potential function value

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 𝑏𝑖 + 𝑜 𝑗 − (𝑜𝑖 + 𝑏 𝑗 ) − 2 · 1𝑖 𝑗 (𝝈) > 0.

Hence, the number of monochrome edges increases. Since𝛷 (𝝈) ≤ |𝐸 | and𝛷 (𝝈)
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increases after every swap by at least 1 the IRD ends in a swap equilibrium
in O(|𝐸 |) steps. ■

3.2.2 IRD Convergence for the One-versus-One Version

For the 1-1-variant an agent compares the number of neighboring agents of
its type with the size of the largest group of agents with a different type in its
neighborhood. This captures the realistic setting where agents simply try to
avoid being in a neighborhood where another group of agents dominates. We
show that even on regular graphs an improving response cycle exists for the
1-1-SSG for sufficiently high 𝜏 . We start with a simple positive result.

▶ Theorem 3.5. IRD are guaranteed to converge in O(𝑛) moves for the 1-1-SSG
with 𝜏 ≤ 1

𝛥
on any 𝛥-regular graph. ◀

Proof. Any agent 𝑖 of type 𝑡𝑖 who has a neighbor 𝑗 with the same type 𝑡𝑖 is
already content, since 𝜏 ≤ 1

𝛥
. Hence, neither agent 𝑖 nor agent 𝑗 will be involved

in a profitable swap. Moreover, it follows that any discontent agent 𝑖 cannot have
a same-type neighbor, that is, U𝑖 (𝝈) = 0. Agent 𝑖 only swaps vertex occupation
with another agent 𝑗 if it is adjacent to at least one other same-type agent. It
follows that U𝑖 (𝝈 𝑖 𝑗 ) = 1. Thus, each agent participates in at most one swap, and
the game converges after at most 𝑛 swaps. ■

If 𝜏 is high enough, then the 1-1-SSG is no longer a potential game on regular
graphs.

▶ Theorem 3.6. IRD are not guaranteed to converge for the 1-1-SSG with
𝜏 ≥ 5

𝛥−1 on any 𝛥-regular graph. ◀

Proof. Consider the instance in Figure 3.4 with 𝑥 >
5(1−𝜏 )

6𝜏 . We omit the edges
between the cliques 𝑢1, 𝑢2, and 𝑢3, of gray agents. Now, the highest degree in the
graph is 6(𝑥 + 1), cf. in Figure 3.4 (a) the vertex which is occupied by the blue
agent 𝑏. To make the graph regular, we insert new vertices filled with agents
such that each new agent is the only agent of its type and connect these new
vertices with existing vertices and each other as needed.

In the initial feasible strategy profile, cf. Figure 3.4 (a), agents 𝑎 and 𝑑 are
discontent and want to swap. Agent 𝑎 increases its utility from 0 to 1

(3𝑥+1)𝜏 while
agent 𝑑 increases its utility from 2

(3𝑥+2)𝜏 to either 1 if 𝜏 > 1
2 and agent 𝑑 is thus
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Figure 3.4: Multiple vertices in a series represent a clique of vertices of the stated size.
Edges between cliques or between a clique and single vertices represent that all involved
vertices are completely interconnected. For the proof of Theorem 3.6, we omit the edges
between the cliques 𝑢1, 𝑢2 and 𝑢3, of gray agents such that the highest degree in the
graph is 6(𝑥 + 1). To make the graph regular, we insert new vertices filled with agents
such that each new agent is the only agent of its type and connect these new vertices
with existing vertices and each other as needed. For the proof of Theorem 3.7, the
figure shows an IRC with exactly one improving swap per step for the 1-1-SSG with
𝑥 > max

(
5(1−𝜏 )

6𝜏 , 𝜏
1−𝜏

)
for any 𝜏 ∈ (0, 1).

content after the swap or to a utility of 1
2𝜏 . After the first swap, cf. Figure 3.4 (b),

agent 𝑎 currently only has one same-type neighbor and 3𝑥 adjacent gray agents,
and, thus, is still discontent since 1

3𝑥+1 < 5
6𝑥+5 ≤ 𝜏 for 𝜏 ∈ (0, 1). A swap with

agent 𝑐 increases agent 𝑎’s utility to 2
(4𝑥+2)𝜏 while agent 𝑐 can improve from

2
(4𝑥+2)𝜏 to 2

(3𝑥+2)𝜏 . In the next step, cf. Figure 3.4 (c), agent 𝑑 has no adjacent
agent of its own type. Therefore, it swaps with agent 𝑏 who becomes content,
if 𝜏 ≤ 1

2 , after the swap or has a utility equals 1
2𝜏 . Agent 𝑑 increases its utility

from 0 to 1
(6𝑥+1)𝜏 . Finally, cf. Figure 3.4 (d), agent 𝑎 and agent 𝑑 can perform a

profitable swap. Agent 𝑑 has the possibility to increase its utility to 1
(4𝑥+1)𝜏 and

agent 𝑎 can increase its own utility from 3
(4𝑥+3)𝜏 to 5

(6𝑥+5)𝜏 .
From 𝑥 >

5(1−𝜏 )
6𝜏 and 𝛥 = 6(𝑥 + 1), we obtain 𝜏 ≥ 5

𝛥−1 , where equality is
reached if 𝑥 is chosen as low as possible. ■

The situation is even worse on arbitrary graphs as the following theorem
shows.

▶ Theorem3.7. IRD are not guaranteed to converge in the 1-1-SSG for 𝜏 ∈ (0, 1)
on arbitrary graphs. Moreover, weak acyclicity is violated. ◀
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Proof. We show the statement by giving an example of an improving response
cycle where in every step exactly one improving swap exists. Consider the
instance in Figure 3.4 with 𝑥 > max

(
5(1−𝜏 )

6𝜏 , 𝜏
1−𝜏

)
. We have three types of agents,

orange, blue and gray. With 𝑧 ∈ [5], the agents occupying the vertices the set
of vertices of 𝑢𝑧 , which consists of 4𝑥 , 6𝑥 , 3𝑥 , 2 and 3𝑥 vertices, and the agents
occupying the set of vertices of 𝑣𝑧 , which consist of 2, 1, 5, 1 and 𝑥 vertices,
respectively, are interconnected and each form a clique. During the entire cycle
the agents occupying 𝑢𝑧 and 𝑣𝑧 , respectively, are content. The orange agent
occupying vertex 𝑣2 has at most 2 neighbors of any type other than orange and
at least 3𝑥 neighbors of its own orange type. All the other agents occupying
vertex 𝑣 ∈ 𝑢𝑧 ∪ 𝑣𝑧 have at most one neighbor of a different type and at least 𝑥
adjacent agents of their own type. Therefore, an agent 𝑖 with 𝝈 (𝑖) ∈ 𝑢𝑧 ∪ 𝑣𝑧 has
no incentive to swap since U𝑖 (𝝈) = 1 by our choice of 𝑥 .

In the initial feasible strategy profile, cf. Figure 3.4 (a), agent 𝑎 and 𝑑 are
discontent and want to swap. Agent 𝑎 increases its utility from 0 to 1

(3𝑥+1)𝜏 while
agent 𝑑 is content after the swap. This is the only possible swap. Agent 𝑐 cannot
perform a profitable swap with agent 𝑎 or 𝑏 and agent 𝑏 cannot improve by
swapping with 𝑑 . After the first swap, cf. Figure 3.4 (b), agent 𝑎 is still discontent.
A swap with agent 𝑐 increases its utility to 2

(4𝑥+2)𝜏 , and agent 𝑐 can improve
its utility from 2

(4𝑥+2)𝜏 to 2
(3𝑥+2)𝜏 . Again, this is the only possible swap, since

agent 𝑑 is content and agent 𝑐 decreases its utility by swapping with agent 𝑏.
After this, cf. Figure 3.4 (c), agent 𝑑 has no adjacent agent of its own type.
Therefore, 𝑑 swaps with agent 𝑏 who becomes content while agent 𝑑 increases
its utility from 0 to 1

(6𝑥+1)𝜏 . Agent 𝑎 won’t perform a swap with agent 𝑑 since
U𝑎 (𝝈𝑎𝑑 ) = 0 and agent 𝑏 cannot perform a profitable swap with agent 𝑐 since
this wouldn’t be an improvement for 𝑏. Finally, cf. Figure 3.4 (d), agent 𝑎 and
agent 𝑑 swap. Agent 𝑑 increases its utility to 1

(4𝑥+1)𝜏 and agent 𝑎 increases its
utility from 3

(4𝑥+3)𝜏 to 5
(6𝑥+5)𝜏 . No other two agents have the incentive to swap

their vertices. We end up in a feasible strategy profile that is equivalent to the
initial one, with only the blue agents 𝑎 and 𝑏 and the orange agents 𝑐 and 𝑑
exchanged positions. Since all swaps were the only ones possible, this proves
that the 1-1-SSG is not weakly acyclic as there is no possibility to reach a swap
equilibrium via profitable swaps. ■
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3.3 Schelling Dynamics for the Jump Schelling Game

We now analyze the convergence behavior of IRD for the strategic segregation
process via jumps. We show that convergence is not guaranteed on arbitrary
graphs and prove that the threshold for convergence on 𝛥-regular graphs is at
𝜏 = 2

𝛥
.

We first turn our focus to the 1-𝑘-JSG, where an agent only distinguishes
between its own and other types. Hence, an agent simply compares the number
of neighbors of its own type with the total number of neighbors.

3.3.1 IRD Convergence for the One-versus-All Version

In the following, we prove a sharp threshold result, with the threshold being
at 𝜏 = 2

𝛥
, for the convergence of IRD for the 1-𝑘-JSG on 𝛥-regular graphs, for

any 𝛥 ≥ 2. Moreover, we show that the game is not weakly acyclic on arbitrary
graphs.

▶ Theorem 3.8. IRD are guaranteed to converge in O(|𝐸 |) steps for the 1-𝑘-JSG
with 𝜏 ≤ 2

𝛥
on any 𝛥-regular graph. ◀

Proof. For any 𝛥-regular graph 𝐺 = (𝑉 , 𝐸) with 1
2 −

1
2𝛥 < 𝑐 < 1

2 , we define the
weight 𝑤𝝈 (𝑒) of any edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 as:

𝑤𝝈 (𝑒) =


1, if 𝑐 (𝝈−1(𝑢)) ≠ 𝑐 (𝝈−1(𝑣)),
𝑐, if 𝑐 (𝝈−1(𝑢)) = ⊖ and 𝑐 (𝝈−1(𝑣)) = 𝑖 with 𝑖 ∈ [𝑘] or

𝑐 (𝝈−1(𝑢)) = 𝑖 with 𝑖 ∈ [𝑘] and 𝑐 (𝝈−1(𝑣)) = ⊖,
0, otherwise.

We prove that𝛹 (𝝈) = ∑
𝑒∈𝐸 𝑤𝝈 (𝑒) is a generalized ordinal potential function.

Note that 𝜏 is sufficiently small, such that an agent is content if it has at least two
neighbors of its own type. Therefore, an agent who is willing to jump to another
vertex has at most one neighbor of the same type. Without loss of generality, we
assume the existence of a discontent agent 𝑖 under a feasible strategy profile 𝝈 .
Let 𝑎𝝈 be the number of adjacent agents to 𝑖 with the same type like agent 𝑖
under 𝝈 and let 𝑏𝝈 be the number of adjacent agents to 𝑖 with a different type
from agent 𝑖 under 𝝈 . Moreover, let 𝜀𝝈 be the number of empty vertices in the
neighborhood of 𝝈 (𝑖). Let 𝑎𝝈𝑖

and 𝑏𝝈𝑖
be the number of agents of the same type
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and different type, respectively, under 𝝈 𝑖 and let 𝜀𝝈𝑖
be the number of empty

vertices in the neighborhood of 𝝈 𝑖 (𝑖). We show that if an agent jumps,𝛹 changes
such it holds that

𝛹 (𝝈) −𝛹 (𝝈 𝑖) =
(
0𝑎𝝈 + 1𝑏𝝈 + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖

+ 𝑐𝑏𝝈𝑖
+ 0𝜀𝝈𝑖

)
−

(
𝑐 (𝑎𝝈 + 𝑏𝝈 ) + 0𝜀𝝈 + 0𝑎𝝈𝑖

+ 1𝑏𝝈𝑖
+ 𝑐𝜀𝝈𝑖

)
= − 𝑐𝑎𝝈 + (1 − 𝑐)𝑏𝝈 + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖

+ (𝑐 − 1)𝑏𝝈𝑖
− 𝑐𝜀𝝈𝑖

> 0,

and therefore𝛹 decreases with every improving jump of an agent as we prove
below.
First, note that there is no incentive for agent 𝑖 to decrease the number of

same-type neighbors since decreasing it would mean that either 𝑎𝝈 ≥ 2, i.e.,
agent 𝑖 is content and has no incentive to jump, or 𝑎𝝈 = 1 and thus 𝑎𝝈𝑖

= 0
which cannot be an improvement since in this case U𝑖 (𝝈 𝑖) = 0. Hence, we have
to distinguish between two cases:
If 𝑎𝝈 < 𝑎𝝈𝑖

, then agent 𝑖 increases the number of neighbors of its own type.
Since we consider a 𝛥-regular graph, we have 𝑎𝝈 +𝑏𝝈 + 𝜀𝝈 = 𝑎𝝈𝑖

+𝑏𝝈𝑖
+ 𝜀𝝈𝑖

= 𝛥

and therefore 𝑏𝝈 = 𝛥 − 𝑎𝝈 − 𝜀𝝈 and 𝑏𝝈𝑖
= 𝛥 − 𝑎𝝈𝑖

− 𝜀𝝈𝑖
. Hence,

− 𝑐𝑎𝝈 + (1 − 𝑐)𝑏𝝈 + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖
+ (𝑐 − 1)𝑏𝝈𝑖

− 𝑐𝜀𝝈𝑖

= − 𝑐𝑎𝝈 + (1 − 𝑐) (𝛥 − 𝑎𝝈 − 𝜀𝝈 ) + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖
+ (𝑐 − 1) (𝛥 − 𝑎𝝈𝑖

− 𝜀𝝈𝑖
) − 𝑐𝜀𝝈𝑖

= − 𝑐𝑎𝝈 + (1 − 𝑐) (−𝑎𝝈 − 𝜀𝝈 ) + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖
+ (𝑐 − 1) (−𝑎𝝈𝑖

− 𝜀𝝈𝑖
) − 𝑐𝜀𝝈𝑖

= − 𝑐𝑎𝝈 − 𝑎𝝈 − 𝜀𝝈 + 𝑐𝑎𝝈 + 𝑐𝜀𝝈 + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖
− 𝑐𝑎𝝈𝑖

− 𝑐𝜀𝝈𝑖
+ 𝑎𝝈𝑖

+ 𝜀𝝈𝑖
− 𝑐𝜀𝝈𝑖

= (2𝑐 − 1)𝜀𝝈 + (1 − 2𝑐)𝜀𝝈𝑖
− 𝑎𝝈 + 𝑎𝝈𝑖

≥ (2𝑐 − 1)𝜀𝝈 − 𝑎𝝈 + 𝑎𝝈𝑖
,

since 1 − 2𝑐 > 0 and 𝜀𝝈𝑖
≥ 0. If 𝜀𝝈 = 0, we obtain (2𝑐 − 1)𝜀𝝈 − 𝑎𝝈 + 𝑎𝝈𝑖

=

−𝑎𝝈 + 𝑎𝝈𝑖
> 0. If 𝜀𝝈 > 0, we have

(2𝑐 − 1)𝜀𝝈 − 𝑎𝝈 + 𝑎𝝈𝑖
>

(
2
(
1
2 − 1

2𝛥

)
− 1

)
𝜀𝝈 − 𝑎𝝈 + 𝑎𝝈𝑖

=
−𝜀𝝈
𝛥

− 𝑎𝝈 + 𝑎𝝈𝑖
≥ 0,

since 𝜀𝝈
𝛥

≤ 1 ≤ 𝑎𝝈𝑖
− 𝑎𝝈 .

If 𝑎𝝈 = 𝑎𝝈𝑖
, then the number of same type neighbors of agent 𝑖 stays the same.

Since 𝑖 improves its utility the number of neighbors of 𝑖 with a different type
has to decrease and therefore 𝑏𝝈𝑖

< 𝑏𝝈 . We denote the difference as 𝛽 with

36



Schelling Dynamics for the Jump Schelling Game Section 3.3

𝑏𝝈 = 𝑏𝝈𝑖
+ 𝛽 . With 𝛽 > 0 and since we consider a 𝛥-regular graph, it follows

that 𝜀𝝈𝑖
= 𝜀𝝈 + 𝛽 . Hence,

− 𝑐𝑎𝝈 + (1 − 𝑐)𝑏𝝈 + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖
+ (𝑐 − 1)𝑏𝝈𝑖

− 𝑐𝜀𝝈𝑖

= − 𝑐𝑎𝝈 + (1 − 𝑐) (𝑏𝝈𝑖
+ 𝛽) + 𝑐𝜀𝝈 + 𝑐𝑎𝝈𝑖

+ (𝑐 − 1)𝑏𝝈𝑖
− 𝑐 (𝜀𝝈 + 𝛽)

= − 𝑐𝑎𝝈 + (1 − 𝑐)𝛽 + 𝑐𝑎𝝈𝑖
− 𝑐𝛽

= (1 − 𝑐)𝛽 − 𝑐𝛽
= (1 − 2𝑐)𝛽 > 0,

where the second to last equality holds since 𝑎𝝈 = 𝑎𝝈𝑖
.

Since𝛹 (𝝈) ≤ |𝐸 | and𝛹 (𝝈) decreases after every jump by at least (1− 2𝑐) the
IRD find an equilibrium in O(|𝐸 |). ■

Actually, Theorem 3.8 is tight and convergence is not guaranteed if 𝜏 > 2
𝛥
.

▶ Theorem 3.9. IRD are not guaranteed to converge in the 1-𝑘-JSG for 𝜏 > 2
𝛥

on 𝛥-regular graphs. ◀

Proof. We prove the statement by providing an improving response cycle. See
Figure 3.5. If we have more than two types of different agents, all agents of types
dissimilar from orange and blue can be placed outside of the neighborhood of
the agents 𝑎, 𝑏 and 𝑐 who are involved in the IRC.
Let 𝜏 > 2

𝛥
. In the initial feasible strategy profile, cf. Figure 3.5 (a), agent 𝑎 is

discontent and has a utility of 2
𝛥𝜏

. By jumping next to agent 𝑐 it becomes content.
Because of this jump, agent 𝑏 is now isolated, cf. Figure 3.5 (b). Jumping next to
the agents 𝑑 and 𝑦 increases its utility from 0 to 1

(𝛥−1)𝜏 . After the second step,
the obtained feasible strategy profile is equivalent to the initial feasible strategy
profile, cf. Figure 3.5 (c). Hence, the next two jumps from agents 𝑐 and 𝑎 are
similar to the first two: First, agent 𝑐 jumps next to agent 𝑏 such that 𝑐 is content,
then agent 𝑎 jumps next to agents 𝑐 and 𝑧 to avoid an isolated position. We end
up with a feasible strategy profile equivalent to the initial one. ■

If the underlying graph is an arbitrary graph the situation is even worse.

▶ Theorem 3.10. IRD are not guaranteed to converge in the 1-𝑘-JSG for 𝜏 ∈
(0, 1) on arbitrary graphs. Moreover, weak acyclicity is violated. ◀

Proof. We show the statement by giving an example of an improving response
cycle where in every step exactly one agent has exactly one improving jump.
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Figure 3.5: An IRC for the JSG for 𝜏 > 2
𝛥
on a 𝛥-regular graph. See the proof of

Theorem 3.9 for more details. Empty vertices are white. Multiple vertices in series
represent a clique of 𝛥−2 vertices. An edge between a clique and a single vertex denotes
that each clique vertex is connected to that single vertex. An edge between two cliques
represents that each clique vertex has exactly one neighbor in the other clique. With
this, the graph is indeed 𝛥-regular: Each vertex is connected to all vertices of exactly
one group of size 𝛥 − 2 and to two other vertices.

Consider the instance in Figure 3.6. We assume that 𝑥 is sufficiently high, e.g.,
𝑥 > max

( 2
𝜏
, 1
1−𝜏

)
. If we have more than two different types of agents, all agents

of types dissimilar to orange and blue can be placed in cliques outside of the
neighborhood of all the agents involved in the IRC. If these cliques are placed
inside graph components that are neither connected to the IRC vertices, nor
to each other, the agents of these types never become discontent. Hence, the
jumps of the given IRC are the only ones possible. In our construction we have
four orange agents, 𝑎, 𝑏, 𝑐 , 𝑑 , and 2𝑥 + 1 blue agents which occupy the vertices
in the vertex sets 𝑢 and 𝑣 and vertex 𝑓 . Moreover, we have one empty vertex.
All vertices which are occupied by the blue agents are interconnected and each
forms a clique.

During the entire cycle, all blue agents are content. A blue agent 𝑖 has 2𝑥 + 1
and 2𝑥 + 2 neighbors, respectively, of whom at least 2𝑥 are of the same blue type.
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Figure 3.6: An IRC with exactly one improving jump per step for the JSG for 𝑥 >

max
( 2
𝜏
, 1
1−𝜏

)
for any 𝜏 ∈ (0, 1). See the proof of Theorem 3.10 for more details. The

empty vertex is white. Multiple vertices in a series represent a clique of vertices of the
stated size. Edges between cliques or between a clique and single vertices represent that
all involved vertices are completely interconnected.

Hence, for any feasible strategy profile 𝝈 depicted in Figure 3.6 U𝑖 (𝝈) = 1 and
thus 𝑖 has no incentive to jump to another currently empty vertex. Also, the
orange agent 𝑑 remains content during the entire cycle since it is never isolated
and has never an adjacent agent of a different type.
In the initial feasible strategy profile, cf. Figure 3.6 (a), the orange agent 𝑎

is discontent, since its only adjacent agent 𝑓 is blue. Therefore, 𝑎 jumps to the
empty vertex. Agent 𝑏 and, depending on the value of 𝜏 , agent 𝑐 is discontent.
However, jumping to the empty vertex next to agent 𝑑 is not an improvement
for them. After the first jump, cf. Figure 3.6 (b), agent 𝑏 is discontent, since 𝑥
is chosen sufficiently high such that U𝑏 (𝝈𝑎) < 1. Hence, jumping to the empty
vertex next to agent 𝑎 improves the utility of 𝑏 from 2

(𝑥+2)𝜏 to min
(
1, 1

2𝜏
)
. Again,

this is the only valid jump, since agent 𝑐 would still have exactly one blue agent
and one orange agent in its neighborhood by jumping next to agent 𝑎. After two
further jumps, cf. Figure 3.6 (c) and Figure 3.6 (d), by the agents 𝑐 and 𝑎, which
are equivalent to those shown in Figure 3.6 (a) and Figure 3.6 (b), we obtain a
feasible strategy profile which is equivalent to the initial one. Since all executed
jumps were the only ones possible, this shows that the JSG is not weakly acyclic
as there is no possibility to reach an equilibrium via improving jumps. ■

3.3.2 IRD Convergence for the One-versus-One Version

Nowwe turn our focus to the 1-1-JSG. By using the same proof as in Theorem 3.5
with jumps instead of swaps, we get the following positive result.
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▶ Theorem 3.11. IRD are guaranteed to converge in O(𝑛′) moves for the
1-1-JSG with 𝜏 ≤ 1

𝛥
on any 𝛥-regular graph. ◀

The same IRC which proves Theorem 3.9 for the 1-𝑘-JSG yields the next result.

▶ Theorem 3.12. IRD are not guaranteed to converge in the 1-1-JSG for 𝜏 > 2
𝛥

on 𝛥-regular graphs. ◀

Finally, the proof of Theorem 3.10 works for the following result as well.

▶ Theorem 3.13. IRD are not guaranteed to converge in the 1-1-JSG for 𝜏 ∈
(0, 1) on arbitrary graphs. Moreover, weak acyclicity is violated. ◀

3.4 Computational Complexity

We now investigate the computational hardness of computing an optimal feasible
strategy profile with respect to the number of content agents, i.e., a feasible
strategy profile where as many agents as possible are content.

3.4.1 Hardness Properties for Two Types of Agents

We start with two types of agents and show that finding an optimal feasible
strategy profile for the 2-SSG in an arbitrary graph 𝐺 is NP-hard by giving a
reduction from the Balanced Satisfactory Problem (BSP), which was intro-
duced in [GK98; GK00] and proven to be NP-hard in [BTV06]. This result directly
implies that finding an optimal feasible strategy profile for the balanced 2-JSG
with no empty vertices is NP-hard as well.

▶ Theorem 3.14. Finding a feasible strategy profile which maximizes the
number of content agents for the balanced 2-SSG on an arbitrary graph 𝐺 is
NP-hard for 𝜏 = 1

2 . ◀

Proof. We prove the statement by giving a reduction from the BSP. Given a
graph 𝐺 = (𝑉 , 𝐸) with an even number of vertices. Let 𝑣 ∈ 𝑉 and 𝑉 ′ ⊆ 𝑉 .
We denote by deg𝑉 ′ (𝑣) the number of vertices in 𝑉 ′ which are adjacent to 𝑣.
A balanced satisfactory partition exists if there is a non-trivial partition 𝑉1,𝑉2
of the vertices 𝑉 with 𝑉1 ∪ 𝑉2 = 𝑉 , 𝑉1 ∩ 𝑉2 = ∅ and |𝑉1 | = |𝑉2 | such that each
vertex 𝑣 ∈ 𝑉𝑖 with 𝑖 ∈ {1, 2} has at least deg𝑉𝑖 (𝑣) ≥ deg𝑣

2 , i.e., each vertex has
at least as many neighbors in its own part as in the other. Let 𝝈∗ be a feasible
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strategy profile that maximizes the number of content agents. If such a partition
exists, we can find it by computing 𝝈∗ in the graph 𝐺 for two different types of
agents of size |𝑉 |

2 and 𝜏 = 1
2 .

Obviously, a feasible strategy profile 𝝈 without discontent agents is maximal
concerning the number of content agents. For a content agent 𝑖 we have

|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) |
deg𝝈 (𝑖 )

≥ 1
2 = 𝜏,

and thus, since there are not empty vertices,

|𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) | ≥
deg𝝈 (𝑖 )

2 .

If we have a feasible strategy profile where all agents are content we can gather
all vertices which are occupied by orange agents to the subset 𝑉1 and all agents
which are occupied by blue agents to the subset 𝑉2. It holds for every agent 𝑖
that

deg𝑉𝑖 (𝝈
∗(𝑖)) = |𝑁 (𝝈 (𝑖)) ∩𝐶𝑖 (𝝈) | ≥

deg𝝈 (𝑖 )
2 .

Hence, calculating an optimal feasible strategy profile must be NP-hard. ■

The above proof relies on the fact that there are no empty vertices. The com-
putational hardness of the JSG changes if many empty vertices exist. Obviously,
it is easy to find an optimal feasible strategy profile if there are enough empty
vertices to separate both types of agents and a suitable separator is known. Map-
ping the boundary for the transition from NP-hardness to efficient computation
is a challenging question for future work.
Next, we show that finding an optimal feasible strategy profile is hard for

high 𝜏 via a reduction from Minimum Cut Into Eqal Size (MCIES), which was
proven to be NP-hard in [GJS76].

▶ Theorem 3.15. Finding a feasible strategy profile which maximizes the
number of content agents in the balanced 2-SSG on an arbitrary graph 𝐺 is
NP-hard for 𝜏 > 3𝛥

3𝛥+1 . ◀

Proof. We prove the statement by giving a reduction from MCIES. Given a graph
𝐺 = (𝑉 , 𝐸) and an integer𝑊 ∈ N. MCIES is the decision whether there is a
non-trivial partition𝑉1,𝑉2 with𝑉1 ∪𝑉2 = 𝑉 ,𝑉1 ∩𝑉2 = ∅ and |𝑉1 | = |𝑉2 | such that
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|{{𝑣1, 𝑣2} ∈ 𝑉 | 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2}| ≤𝑊 , i.e., there are at most𝑊 edges between
the two parts.
We create a graph 𝐺 ′ = (𝑉 ′, 𝐸′) in which every vertex 𝑣 ∈ 𝑉 is replaced by a

clique𝐶𝑣 in𝐺 ′ of size 3𝛥 + 1. We replace each edge {𝑢, 𝑣} ∈ 𝐸 by an edge {𝑢′, 𝑣′}
between two vertices 𝑢′ ∈ 𝐶𝑢 and 𝑣′ ∈ 𝐶𝑣 such that each vertex in 𝐺 ′ has at
most one neighbor outside its clique. Therefore, the degree of vertices in 𝐺 ′ is
either 3𝛥 or 3𝛥 + 1, and thus, the maximum vertex degree 𝛥𝐺 ′ in 𝐺 ′ is 3𝛥 + 1.
We have two different agent types, each consisting of |𝑉 ′ |/2 agents. Let

𝜏 >
𝛥𝐺 ′ − 1
𝛥𝐺 ′

=
3𝛥

3𝛥 + 1 .

Hence, an agent is content in 𝐺 ′ if it has no neighbors of a different type. For a
feasible strategy profile 𝝈∗ in 𝐺 ′ to maximize the number of content agents, all
cliques 𝐶 have to be uniform, i.e., assign agents of the same type to each vertex
in𝐶 . Otherwise, another non-uniform clique𝐶′ has to exist and we can re-assign
the agents in both cliques in a feasible strategy profile 𝝈 to make 𝐶 uniform.
In 𝝈∗ all agents of both cliques are discontent, while under 𝝈 at least 2𝛥 + 1
agents in 𝐶 that have no neighbors outside 𝐶 are content. Since each clique is
only connected to at most 𝛥 other vertices, at most 2𝛥 agents are discontent
under 𝝈 that were content in 𝝈∗. Therefore, 𝝈∗ cannot be optimal.
If we have a feasible strategy profile that maximizes the number of content

agents with 2𝑊 ′ discontent agents, we can gather all 𝑣 ∈ 𝑉 where𝐶𝑣 is occupied
by orange agents into𝑉1, and similarly into𝑉2 for blue agents. We then have𝑊 ′

edges between the two sets𝑉1 and𝑉2. Hence, a feasible strategy profile with 2𝑊 ′

discontent agents correspond to an MCIES with𝑊 = 𝑊 ′ edges between the
partitions and vice versa. ■

For the above theorems, we use a welfare function that counts the number of
discontent agents. However, we remark that even if we use the social welfare,
the above hardness results still hold. This relates to the hardness results from
Agarwal et al. [Aga+21], which hold for the JSG with 𝜏 = 1 in the presence of
stubborn agents who are unwilling to move.

We contrast the above results by providing an efficient algorithm for comput-
ing an optimal feasible strategy profile for the 2-SSG and the 2-JSG on a 2-regular
graph by employing a well-known dynamic programming algorithm for Subset
Sum [Cor+09; GJ79].
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▶ Theorem 3.16. Finding a feasible strategy profile which maximizes the
number of content agents in the 2-SSG on a 2-regular graph 𝐺 can be done in
O(𝑛2) for 𝜏 > 1

2 . ◀

Proof. Let 𝐺 = (𝑉 , 𝐸) be a 2-regular graph, consisting of 𝑟 rings. Ring 𝑖 has 𝑟𝑖
vertices. Let 𝑜 be the number of orange agents and 𝑏 be the number of blue
agents.
For finding a feasible strategy profile that maximizes the number of content

agents, we take the multiset 𝑟1, . . . , 𝑟𝑚 as elements and 𝑜 as target sum as an
instance of Subset Sum. We can solve this in O(𝑛2) since 𝑜 ≤ 𝑛. In case of
a Yes-instance, we can place the orange agents on the rings indicated by the
selected elements. Thus no agents of different types are on the same ring. If the
instance is a No-instance, then in the optimal feasible strategy profile there is
exactly one ring with agents of a different type. This implies that at least 3 and
at most 4 agents are discontent. To check if an optimal feasible strategy profile
with 3 discontent agents is possible, we solve the Subset Sum instance with
target sum 𝑜 + 1. If this is possible, then we place the 𝑜 orange agents on the
respective rings such that exactly one vertex is empty. Then all empty vertices
are filled with blue agents. If the instance with target sum 𝑜 + 1 is a No-instance,
we greedily fill the rings with consecutive orange agents such that we get one
ring with empty vertices. Then, we fill all the empty vertices with blue agents to
obtain exactly 4, discontent agents. ■

Optimal feasible strategy profiles for the JSG can be found with an analogous
algorithm. Note that we can pack the empty vertices as a barrier between blue
and orange agents to reduce the number of discontent agents.

▶ Theorem 3.17. Finding a feasible strategy profile which maximizes the
number of content agents in the 2-JSG on a 2-regular graph 𝐺 can be done in
O(𝑛2) for 𝜏 > 1

2 . ◀

3.4.2 Hardness Properties for More Types of Agents

Compared to the previous subsection, we now show that also the number of
different agent types influences the computational hardness of finding an optimal
feasible strategy profile concerning the number of content agents. We establish
NP-hardness even on 2-regular graphs if there are sufficiently many agent types,
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by giving a reduction from 3-Partition, which was proven to be NP-hard
in [GJ79].

▶ Theorem 3.18. Finding a feasible strategy profile that maximizes the number
of content agents in the balanced 1-1-SSG and balanced 1-𝑘-SSG on a 2-regular
graph with 𝜏 > 1

2 is NP-hard. ◀

Proof. We prove the statement by giving a polynomial time reduction from 3-
Partition. Given a multiset 𝑆 of 3𝑘 positive integers. 3-Partition concerns
whether 𝑆 can be partitioned into 𝑘 disjoint sets 𝑆𝑖 with 𝑖 ∈ {1, . . . , 𝑘} of size
three, such that the sum of the numbers in each subset is equal, i.e.,∑︁

𝑠𝑖 ∈𝑆1
𝑠𝑖 =

∑︁
𝑠𝑖 ∈𝑆2

𝑠𝑖 = · · · =
∑︁
𝑠𝑖 ∈𝑆𝑘

𝑠𝑖 .

As these sets are disjoint, we already know that each of them sums up to
∑

𝑠𝑖 ∈𝑆 𝑠𝑖
𝑘

.
3-Partition keeps its NP-hardness if the integers in 𝑆 are encoded unary. More-
over, it remains NP-hard if we assume for all 𝑠𝑖 ∈ 𝑆∑

𝑠𝑖 ∈𝑆 𝑠𝑖

4𝑘 < 𝑠𝑖 <

∑
𝑠𝑖 ∈𝑆 𝑠𝑖

2𝑘 .

Based on a 3-Partition instance, we generate a 2-regular graph, containing a
ring for each 𝑠𝑖 ∈ 𝑆 with 𝑠𝑖 vertices. Thus our graph has 𝑛 =

∑
𝑠𝑖 ∈𝑆 𝑠𝑖 vertices in

total. We can assume 𝑠𝑖 ≥ 3 for all 𝑠𝑖 ∈ 𝑆 , since adding a constant to all elements
does not change the existence of a solution.

Note that each type consists of 𝑛
𝑘
agents. Let 𝝈∗ be a feasible strategy profile

without discontent agents for 𝜏 > 1
2 . Hence, no ring contains agents of different

types, since an agent is discontent if it has an adjacent agent of a different type.
Thus, we have a disjoint partitioning of the rings, such that the number of
vertices in each partition adds up to

𝑛

𝑘
=

∑
𝑠𝑖 ∈𝑆 𝑠𝑖

𝑘
.

Furthermore, we assumed that 𝑛
4𝑘 < 𝑠𝑖 <

𝑛
2𝑘 , thus all agents of a type 𝑡𝑖 have to be

placed on exactly three rings. This directly implies a solution for the 3-Partition
instance. If the corresponding 3-Partition instance has a solution 𝑆1, . . . , 𝑆𝑘 ,
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this produces a partitioning of the rings, such that each partition contains∑
𝑠𝑖 ∈𝑆 𝑠𝑖

𝑘
=
𝑛

𝑘

vertices. Placing the agent types according to this partitioning won’t produce
any ring with agents of different types on it. Such a feasible strategy profile does
not contain any discontent agent and has to be optimal. Since our reduction can
be done in polynomial time for unary encoded instances of 3-partition, this
proves the NP-hardness of finding an optimal feasible strategy profile. ■

Kreisel et al. [Kre+22] showed that deciding the existence of a feasible strategy
profile with certain minimum social welfare is NP-hard. This is in line with
our hardness results for computing socially optimal states that maximize the
number of content agents. To conclude the section on computational hardness,
we want to emphasize that solving the question of whether finding a feasible
strategy profile that maximizes the number of content agents is easy or hard
does not allow us to make equivalent statements for computing stable feasible
strategy profiles. The following example illustrates the rather counter-intuitive
fact that a feasible strategy profile that maximizes the number of content agents
is not necessarily stable. However, Kreisel et al. [Kre+22] prove that deciding the
existence of a swap equilibrium and a jump equilibrium for two types of agents
is NP-hard as well. In the case of equilibrium existence, it remains open how
hard finding an integrated one is.

▶ Theorem 3.19. For the 2-SSG there is a graph 𝐺 where no feasible strategy
profile which maximizes the number of content agents is stable. ◀

Proof. We prove the statement by giving an example. Consider Figure 3.7. The
pictured graph has two cliques 𝑢𝑖 and 𝑣𝑖 with 𝑖 ∈ [3] of size 10. Let 𝜏 > 0.9. The
feasible strategy profile 𝝈 depicted in Figure 3.7 (a) has 7 discontent agents, and
the feasible strategy profile 𝝈𝑎𝑏 in Figure 3.7 (b) has 8 discontent agents. The
former is optimal since every feasible strategy profile 𝝈 ′ other than the given
two has to place agents of different types in at least one of the cliques. This
would cause all agents in the clique to become discontent and thus yield more
than 10 discontent agents. However, the agents 𝑎 and 𝑏 want to swap under the
feasible strategy profile 𝝈 . Hence, the unique feasible strategy profile which
maximizes the number of content agents 𝝈 is not stable. ■
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(a) feasible strategy profile
which maximizes the number
of content agents 𝝈

a

b v3

u3 v2

7︷︸︸︷2︷︸︸︷
︸︷︷︸
3

u2

5︷︸︸︷ 2︷︸︸︷
u1 v1

(b) feasible strategy profile 𝝈𝑎𝑏 after
the swap

Figure 3.7: A graph where the feasible strategy profile which maximizes the number
of content agents 𝝈 is not stable for 𝜏 > 0.9. See the proof of Theorem 3.19 for more
details. Multiple vertices in a series represent a clique of vertices of the stated size.
Edges between cliques or between a clique and single vertices represent that all involved
vertices are completely interconnected.

3.5 Empirical Study of the Segregation Strength

Most of the literature focuses on the segregation strength of the stable states.
Thus quantifying the segregation of stable feasible strategy profiles via a suitable
segregation measure is important. Many such measures have been proposed,
see e.g. the survey by Massey & Denton [MD88], but most of them are restricted
to grids or are not compatible with more than two agent types.

To evaluate the magnitude of segregation in our experiments, we calculate
the Freeman Segregation Index (FSI) [Fre78]. It is defined as 𝐸 [𝑋 ]−𝑋

𝐸 [𝑋 ] , with

𝑋 =
∑︁

𝑖∈[𝑛′ ]
|𝑁 (𝝈 (𝑖)) \𝐶𝑖 (𝝈) |

being a random variable, representing twice the number of edges between agents
of different types and 𝐸 [𝑋 ] being the expected value of 𝑋 for a random feasible
strategy profile. By definition, the FSI is upper bounded by 1 for high segregation
and is expected to be 0 for a random feasible strategy profile. We use the FSI since
it can be applied to general graphs, it is easy to interpret, and can be extended
to multiple types of agents straightforwardly. We adjust the calculation of 𝐸 [𝑋 ]
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for an arbitrary set of 𝑘 types as

𝐸 [𝑋 ] =
∑︁

𝑖∈[𝑛′ ]
𝐸 [|𝑁 (𝝈 (𝑖)) \𝐶𝑖 (𝝈) |]

=
∑︁

𝑖∈[𝑛′ ]

∑︁
𝑡 𝑗 ∈t

𝐸 [|𝑁 (𝝈 (𝑖)) \𝐶𝑖 (𝝈) | | 𝑖 ∈ 𝑡 𝑗 ] · Pr
[
𝑖 ∈ 𝑡 𝑗

]
=

∑︁
𝑖∈[𝑛′ ]

∑︁
𝑡 𝑗 ∈t

|𝑁 (𝝈 (𝑖)) |
𝑛′ − |𝑡 𝑗 |
𝑛′ − 1 · |𝑡𝑖 |

𝑛′

=
∑︁

𝑖∈[𝑛′ ]
|𝑁 (𝝈 (𝑖)) |

∑︁
𝑡 𝑗 ∈t

|𝑡 𝑗 | (𝑛′ − |𝑡 𝑗 |)
𝑛′(𝑛′ − 1) .

Note that the inner sum is a constant, independent of the agent 𝑖 . Thus, even
in the jumping game it only has to be computed once.

We find that geometry seems to have a significant influence on the segregation
strength while the specific choice of the model seems to have little influence,
although in the one-versus-one version agents tend to be happier. In the fol-
lowing, we explain our experimental setup and then go into detail about our
observations.

Experimental Setup For our simulations, we consider three different graph
topologies: toroidal grids with the Moore neighborhood, i.e., the vertices have
diagonal edges and all inner vertices have degree 8, random 8-regular graphs
and random unit-disc graphs with expected degree 8.
We generate grids with 100 × 100 up to 300 × 300 vertices where the grid

sides increase in steps of 20. To have comparable random 8-regular graphs we
generate them with the same number of vertices. For each configuration, we
run the IRD starting from 100 random initial feasible strategy profiles to derive
the results.

To get the initial feasible strategy profiles, the agents are placed uniformly at
random on the vertices of the graph and we assume equal proportions of each
agent type, i.e., that the game is balanced. For the jump game, we use 1% empty
vertices. In each round the discontent agents are activated in random order and
each activated agent iterates randomly over all possible locations for a swap or
a jump and chooses the vertex which maximizes its utility (“best”), the first one
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Figure 3.8: Segregation of 1-𝑘-SSG for different response strategies on several graphs
with several number of types for 𝜏 = 0.5. Please refer to Section 3.5.1 for more details.

which yields an improvement (“random-first”) or the improving vertex which is
closest to the current vertex (“closest”).

From our perspective all three variants of how agents find a new location have
a good motivation. Clearly, finding the best vertex, so ideally a vertex where
the agent becomes content, is the highest goal for an agent. However, also the
two other variants are plausible. People are lazy and do not want to or maybe
need more time or opportunity to check all possible vertices and then decide
which one is the best. Therefore moving to the first vertex which improves the
agent’s situation is a realistic scenario. Schelling [Sch71] mentioned a limit on
travel distance. He motivated this by the idea that agents may become unable
to move to where their demands are satisfied. We think that this is a nice idea
since people have restrictions in their everyday life like the place of their work,
schools, family, and friends. Hence, they cannot or do not want to move far
away from their current position. In contrast to Schelling, where an agent does
not move at all if there is no improvement possible in a defined radius, an agent
in our implementation moves even if the new vertex is far away, but only if
there is no closer vertex which would yield an improvement. In Chapter 4 we
investigate the influence of such a restriction, that is, agents are restricted to
local movements.
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Figure 3.9: Segregation for different 𝜏 and different numbers of types in 1-𝑘-SSG and
1-1-SSG. Please refer to Section 3.5.1 for more details.

3.5.1 Segregation

We only depict two main results. Figure 3.8 shows that without geometry, i.e.,
on a random 8-regular graph, the stable states are much less segregated. This is
consistent with our findings in Chapter 6 for a related process where our results
indicate that the underlying graph’s cluster structure significantly impacts the
obtained segregation strength.
Consider Figure 3.9, which shows a comparison of multiple simulations con-

cerning the FSI. Note that if we consider two agent types, the 1-𝑘-SSG and the
1-1-SSG are identical and are the 2-SSG. The results confirm the visual impres-
sion. It is not surprising that the level of segregation increases with higher 𝜏
whereas the number of types just has a small impact. However, we cannot see
any differences among the different variants besides the small observation that
for 𝑡 = 0.3 in the 1-1-SSG the FSI decreases with a greater number of types. This
similarity of 1-𝑘-SSG and 1-1-SSG is very interesting and counter-intuitive. In
1-1-SSG agents are satisfied in neighborhoods where they would be discontent
in the 1-𝑘-SSG since they don’t necessarily compare themselves with their whole
neighborhood. For 1-𝑘-JSG and 1-1-JSG, the results look very similar.

3.5.2 Number of Discontent Agents

Furthermore, we investigate the number of discontent agents in the final feasible
strategy profile. Wemeasure the final proportion of discontent agents. Figure 3.10
shows a comparison of the proportion of discontent agents in 1-𝑘-SSG and 1-
1-SSG. As expected, this proportion increases in both cases with 𝜏 , especially
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Figure 3.10: Proportion of discontent agents for different 𝜏 and different numbers of
types in 1-𝑘-SSG and 1-1-SSG. Please refer to Section 3.5.2 for more details.

for a high number of types. However, in contrast to the FSI, the social welfare
behave differently for 1-𝑘-SSG and 1-1-SSG. As we increase 𝜏 and the number of
types, the proportion of discontent agents grows faster for 1-𝑘-SSG. This fits our
intuition since, in the 1-1-SSG, agents only compare with the largest subgroup
in their neighborhood. Therefore, generally, they are satisfied with a lower
absolute number of neighbors of their own type and thus they are more likely to
be content, even with a higher number of types and higher 𝜏 . For 1-𝑘-JSG and
1-1-JSG, the results look very similar.

3.6 Agents with Location Preferences

An interesting direction is to generalize Schelling’s model such that agents have
preferences over the different locations in the residential area, i.e., agents strive
for being close to their favorite vertex, additionally to their preferences over
their neighborhood. Let 𝜋𝑖 be the preferred vertex of agent 𝑖 . Thus, the utility
function of our agents is based on two main assumptions:

(1) An agent’s high-priority goal is to find a location where it is
content in terms of the neighborhood type ratio.

(2) An agent’s low-priority goal is to find a location that is as close
as possible to its favorite vertex.
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Hence, a content agent 𝑖 strives for locations where it is content, but as close as
possible to 𝜋𝑖 . This introduces the critical aspect of individual location differ-
entiation which has a significant influence on residential decisions in real life.
People have preferences about where they live, depending on, for example, their
job, important amenities, and personal preferences. Agarwal et al. [Aga+21]
incorporate as well the idea that agents may have preferences over locations.
However, instead of assuming that optimizing the distance to the preferred
location is the secondary goal, the authors introduce stubborn agents which stay
at their chosen vertex irrespective of their surrounding agents.
We incorporate our assumptions as follows in our utility function for the

2-SSG and 2-JSG, respectively,

U𝑖 (𝝈) =
(
min

{
1, 𝑓𝑖 (𝜎)

𝜏

}
, 𝐷 (𝐺) − dist𝐺 (𝝈 (𝑖), 𝜋𝑖)

)
.

Note that the utility function is now a vector instead of a single value. We choose
the lexicographic order ≤𝑙𝑒𝑥

3 for comparing utility vectors. Agents want to
maximize their utility vector lexicographically, i.e., it is more important for an
agent to be content than to be close to its favorite vertex.4
Note, that location preferences have a severe impact on the properties of

the 2-SSG and 2-JSG, respectively. See Figure 3.11 which gives an example
that our potential function 𝛷 (𝝈), used, e.g., in the proof of Theorem 3.1 to
show convergence for the 2-SSG for 𝜏 ≤ 1

2 on arbitrary graphs, breaks. Clearly,
any feasible strategy profile 𝝈 which is stable under the 2-SSG and 2-JSG with
vertex preferences is also stable for the 2-SSG and 2-JSG itself, respectively. The
converse is not true. In the following, we provide first insights on the properties
of the 2-SSG with vertex preferences.

If all agents have the same favorite vertex, i.e., 𝜋𝑖 = 𝜋 𝑗 for 𝑖, 𝑗 ∈ [𝑛], the 2-SSG
behaves nicely on regular graphs.

▶ Theorem 3.20. The 2-SSG with common favorite vertex preferences, i.e.,
𝜋𝑖 = 𝜋 𝑗 for 𝑖, 𝑗 ∈ [𝑛], with 𝜏 ∈ (0, 1), is a potential game on any regular
graph. ◀

3 (𝛼, 𝛽) <𝑙𝑒𝑥 (𝛾, 𝛿), if 𝛼 < 𝛾 or 𝛼 = 𝛾 and 𝛽 < 𝛿 . (𝛼, 𝛽) =𝑙𝑒𝑥 (𝛾, 𝛿), if 𝛼 = 𝛾 and 𝛽 = 𝛿 .
(𝛼, 𝛽) >𝑙𝑒𝑥 (𝛾, 𝛿), if 𝛼 > 𝛾 or 𝛼 = 𝛾 and 𝛽 > 𝛿 .

4 We add the diameter𝐷 (𝐺) into the utility vector to enforce that an agent strives for maximizing
both entries, instead of maximizing its utility while minimizing the distance.
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i j

Figure 3.11: Consider the two agents 𝑖 and 𝑗 for 𝜏 ∈ (0, 1). Let the current vertex 𝝈 ( 𝑗)
of 𝑗 be the favorite vertex 𝜋𝑖 = 𝜋 𝑗 = 𝝈 ( 𝑗) of agent 𝑖 and agent 𝑗 , respectively. A
swap is an improving move for both agents, since agent 𝑖 increases its utility from(
min

{
1, 6

8𝜏

}
, 1

)
to (1, 4) and agent 𝑗 increases its utility from (0, 4) to

(
min

{
1, 2

8𝜏

}
, 1

)
.

However, the change in potential function value𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 2+ 2− 6− 0 = −2 < 0,
i.e., the number of monochrome edges decreases. Please refer to Section 3.6 for more
details.

Proof. Let 𝛥 be the degree of the vertices in the regular graph 𝐺 . We prove
the statement by showing that𝛷 (𝝈) is a generalized ordinal potential function.
Consider a swap performed by agents 𝑖 and 𝑗 . If 𝑖 and 𝑗 are both discontent
we already showed in the proof of Theorem 3.4 that the value of the potential
function increases. Note, moreover, that if 𝑖 and 𝑗 are both content no profitable
swap is possible since it wouldn’t be profitable for one of the involved agents
concerning its distance to its favorite vertex. Hence, without loss of generality,
we are left with the case that the orange agent 𝑖 is content while the blue agent 𝑗
is discontent. Let 𝑜𝑖 and 𝑏𝑖 be the number of orange and blue neighbors of 𝝈 (𝑖)
and 𝑜 𝑗 and 𝑏 𝑗 be the number of orange and blue neighbors of 𝝈 ( 𝑗), respectively.
Since agent 𝑖 is content, 𝑖 only swaps if a swap reduces its distance to its favorite
vertex 𝜋𝑖 . Thus, agent 𝑗 increases the distance to 𝜋 𝑗 = 𝜋𝑖 and it holds that
𝑏 𝑗

𝛥
<

𝑏𝑖−1𝑖 𝑗 (𝝈 )
𝛥

. Since 𝛥 = 𝑜𝑖 + 𝑏𝑖 = 𝑜 𝑗 + 𝑏 𝑗 it follows that 𝑜𝑖 < 𝑜 𝑗 − 1𝑖 𝑗 (𝝈) . This
implies

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 𝑏𝑖 + 𝑜 𝑗 − (𝑜𝑖 + 𝑏 𝑗 ) − 2 · 1𝑖 𝑗 (𝝈) > 0.

Hence, the number of monochrome edges increases. ■

If we do not make any assumptions on the choice of the favorite vertices, we
can show for large 𝜏 that the 2-SSG is guaranteed to converge on regular graphs.

▶ Theorem 3.21. The 2-SSG with vertex preferences and 𝜏 ≥ 1
2 is a potential

game on any regular graph. ◀
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Proof. We prove the theorem by showing that

𝛹 (𝝈) = ©­«𝛷 (𝝈),
∑︁
𝑖∈[𝑛]

𝐷 (𝐺) − dist𝐺 (𝝈 (𝑖), 𝜋𝑖)
ª®¬

is a generalized ordinal potential function. We show that if the agents 𝑖 and
𝑗 swap, the value of the potential function𝛹 increases lexicographically. Let
𝛥 be the degree of the vertices in the regular graph 𝐺 . From the proof of
Theorem 3.20 we already know that whenever a swapping agent increases
the first entry of its utility vector𝛷 (𝝈), and therefore𝛹 (𝝈), increases as well.
Hence, we are left with the case that the agents 𝑖 and 𝑗 solely swap to get closer
to their favorite vertices 𝜋𝑖 and 𝜋 𝑗 , i.e., dist𝐺 (𝝈 (𝑖), 𝜋𝑖) > dist𝐺 (𝝈 𝑖 𝑗 (𝑖), 𝜋𝑖) and
dist𝐺 (𝝈 ( 𝑗), 𝜋 𝑗 ) > dist𝐺 (𝝈 𝑖 𝑗 ( 𝑗), 𝜋 𝑗 ), respectively. In this case, it holds for the
change in the value of the potential function that𝛹 (𝝈 𝑖 𝑗 ) −𝛹 (𝝈)

= ( • , 2𝐷 (𝐺) − dist𝐺 (𝝈 𝑖 𝑗 (𝑖), 𝜋𝑖) − dist𝐺 (𝝈 𝑖 𝑗 ( 𝑗), 𝜋 𝑗 ) −(
2𝐷 (𝐺) − dist𝐺 (𝝈 (𝑖), 𝜋𝑖) − dist𝐺 (𝝈 ( 𝑗), 𝜋 𝑗 )

)
)

=
(
• , dist𝐺 (𝝈 (𝑖), 𝜋𝑖) − dist𝐺 (𝝈 𝑖 𝑗 (𝑖), 𝜋𝑖) + dist𝐺 (𝝈 ( 𝑗), 𝜋 𝑗 ) − dist𝐺 (𝝈 𝑖 𝑗 ( 𝑗), 𝜋 𝑗 )

)
> ( • , 0)

To show that𝛹 increases lexicographically, we have to show that in this case
𝛷 (𝝈) = 𝛷 (𝝈 𝑖 𝑗 ). If both agents 𝑖 and 𝑗 are of the same type, a swap doesn’t change
the number of monochrome edges, thus,𝛷 (𝝈) = 𝛷 (𝝈 𝑖 𝑗 ). Assume, without loss
of generality, agent 𝑖 is orange and agent 𝑗 blue. If both agents are content and
𝜏 > 1

2 , the swap between both agents cannot be profitable since the two agents
involved would become discontent. In the case of 𝜏 = 1

2 , if both agents are
content and, moreover, can perform a profitable swap, a swap doesn’t change the
number of monochrome edges since both neighborhoods must look the same,
thus,𝛷 (𝝈) = 𝛷 (𝝈 𝑖 𝑗 ). Hence, assume, without loss of generality, that the orange
agent 𝑖 is discontent. Agent 𝑖 solely swaps to get closer to 𝜋𝑖 if the fraction
of adjacent same-type agents in its neighborhood does not decrease. Since we
consider regular graphs this is equivalent to that the number of adjacent same-
type agents does not decrease for both involved agents which implies that the
number of monochrome edges does not decrease, i.e.,𝛷 (𝝈) ≤ 𝛷 (𝝈 𝑖 𝑗 ). ■

For tolerant agents, we can show convergence for the 2-SSG on rings.
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▶ Theorem 3.22. The 2-SSG with vertex preferences and 𝜏 < 1
2 is a potential

game on rings. ◀

Proof. We use an argument similar to the one in the proof of Theorem 3.21 and
use the same generalized ordinal potential function𝛹 (𝝈). The case where at
least one discontent agent is involved in the swap is analogous to the proof of
Theorem 3.21. Thus, we are left to consider the case where two content agents 𝑖
and 𝑗 swap. Two content agents swap if and only if they remain content after
the swap and if they get closer to their favorite vertices, i.e., dist𝐺 (𝝈 (𝑖), 𝜋𝑖) >
dist𝐺 (𝝈 𝑖 𝑗 (𝑖), 𝜋𝑖) and dist𝐺 (𝝈 ( 𝑗), 𝜋 𝑗 ) > dist𝐺 (𝝈 𝑖 𝑗 ( 𝑗), 𝜋 𝑗 ), respectively. Similar
to the proof of Theorem 3.21 it holds in this case that𝛹 (𝝈 𝑖 𝑗 ) −𝛹 (𝝈) > ( • , 0).
We show that after such a swap𝛷 (𝝈) = 𝛷 (𝝈 𝑖 𝑗 ) which implies that𝛹 increases
lexicographically. If both agents 𝑖 and 𝑗 are of the same type, a swap doesn’t
change the number of monochrome edges, thus,𝛷 (𝝈) = 𝛷 (𝝈 𝑖 𝑗 ). If two content
agents 𝑖 and 𝑗 of different types perform a profitable swap, then both of them
must have exactly one adjacent agent of their own type and one of the other
type, respectively. Moreover, agent 𝑖 and 𝑗 cannot be neighbors since otherwise,
both would be discontent after the swap. Thus, also in this case, the number of
monochrome edges does not change. ■

3.7 Conclusion and Open Problems

We conducted a thorough analysis of the dynamic properties of the first truly
game-theoretic version of Schelling’s segregation model where agents choose
strategically their location and provided tight threshold results for the IRD
convergence for several versions of the game. Furthermore, we found that the
number of agent types and the underlying graph has a severe impact on the
computational hardness of computing optimal feasible strategy profiles.
It remains open whether IRD always converge for the 1-1-SSG with 𝜏 ∈( 1

𝛥
, 5
𝛥−1

)
, and for the 1-1-JSG with 𝜏 ∈

( 1
𝛥
, 2
𝛥

)
on regular graphs. Since most

versions are not guaranteed to converge via IRD, the existence of stable feasible
strategy profiles for all graph types is not given. Agarwal et al. [Aga+21] showed
for the 1-𝑘-JSG that stable feasible strategy profiles exist if the underlying graph
is a star or a graph with maximum degree 2 and 𝜏 = 1. Furthermore, they proved
that if the underlying graph is a tree the existence of stable feasible strategy
profiles may fail to exist for 𝜏 = 1 in the 1-𝑘-JSG. However, in general, it remains
an open question in terms of different values of 𝜏 and for different underlying
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Figure 3.12: An instance of a Swap Schelling Game with two different types, with
𝑜 = 𝑏 = 5 000 and 𝜏 = 1

2 . Note, that we start with an initial feasible strategy profile of
the agents, similar to the one depicted in Figure 3.1. Left: A sample swap equilibrium of
the 2-SSG with common favorite vertex preferences, i.e., 𝜋𝑖 = 𝜋 𝑗 for 𝑖, 𝑗 ∈ [𝑛′]. Right:
A sample swap equilibrium of the 2-SSG with vertex preferences chosen uniformly at
random. The favorite vertices of the agents are chosen uniformly at random.

graphs whether stable feasible strategy profiles exist and whether they can be
computed efficiently. We conjecture the following:

▶ Conjecture 3.23. Equilibria are not guaranteed to exist in all cases for which
we constructed IRCs. ◀

Also, the computational hardness of finding optimal feasible strategy profiles
for some variants deserves further study and could be extended to study the
existence of other interesting states, e.g., stable states with low segregation.

We emphasize that there are many possible ways to model Schelling segrega-
tion with at least three agent types. For example, types could have preferences
over other types which then yields a rich unexplored setting. [KKV22] intro-
duced a generalization of Schelling Games considering such an ordering of the
types where agents are tolerant to other agents even if they are not of the same
type if they are close enough.
Moreover, it remains open how vertex preferences of the agents change the

properties of different variants of the Schelling game. We provide some prelim-
inary results for the swap version. However, the jump version with location
preferences remains completely open. We emphasize that there are again many
ways to model vertex preferences. For example, an ordering over the vertices is
also conceivable here.

Last, an ambitious endeavor is to prove bounds on the size of the monochrome
regions similar to the works [BEL16; BEL14; Bra+12; Imm+17]. In particular,
it would be interesting to explore the impact of location preferences on the
induced stable feasible strategy profile. Preliminary experimental results show
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that different location preferences indeed may have an impact on the size of the
monochrome regions and the segregation, cf. Figure 3.12.
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4 Topological Influence and Lo-
cality in Swap Schelling Games

This chapter is based on joint work with Davide Bilò, Vittorio Bilò, and Pascal
Lenzner [Bil+22b]. Moreover, I want to thank one anonymous reviewers who spotted
an error in one of the statements and gave helpful comments for fixing it.

In the following chapter, we deepen the investigations of Chapter 3 for Swap
Schelling Games. To this end, we follow the model of Agarwal et al. [Aga+21],
that is, we consider Swap Schelling Games with 𝜏 = 1, where the focus of
our analysis is on the influence of the underlying graph and on the impact of
restricting the agents to perform only local swaps.

In particular, we investigate the influence of the given topology that models the
residential area on core game-theoretic questions like the existence of equilibria
and game dynamics, the Price of Anarchy, and the Price of Stability. We thereby
focus on popularly studied topologies like grids, (almost) regular graphs, paths,
and cycles which were used in many empirical studies that simulated Schelling’s
process, see, e.g., [BEL16; BEL14; BMR14; Imm+17; OF18a; OF18b]. Concerning
the existence of equilibria and game dynamics, cf. Section 4.2, and the Price of
Anarchy, cf. Section 4.3, see Table 4.1 and Table 4.2 for a detailed result overview.
Moreover, a more condensed overview of the achieved asymptotic bounds on
the Price of Anarchy can be found in Table 4.3 in Section 4.5. Furthermore, we
also show how our existential results can be used to derive some non-trivial
upper bounds for the Price of Stability in both the general and the local version
of the model. The characterization of the Price of Stability in Swap Schelling
Games is quite a challenging task and very few results are currently known, see
the discussion in Section 4.4.

While in [Aga+21] it was proven that equilibria may fail to exist for arbitrary
underlying graphs and in Theorem 3.4 equilibrium existence was shown for
regular graphs, we extend and refine these results by investigating almost regular
graphs as well as paths, 4-grids and 8-grids. We establish equilibrium existence
for all these graph classes and all our results yield polynomial time algorithms
for computing an equilibrium. Moreover, we study the Price of Anarchy in-depth.
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Table 4.1: Result overview. We investigate the existence of equilibria and the finite
improvement property for arbitrary 𝑘 , except for 8-grids where we focus on 𝑘 = 2.
The “✓” symbol denotes that the respective property holds. Note that a “✓” in the
“𝑘-SSG” column implies a “✓” in the local 𝑘-SSG column. The “×” symbol denotes that
equilibrium existence is not guaranteed and that an IRC exists, respectively. We denote
with “1-regular” almost regular graphs.

Equilibrium Existence Finite Improvement Property

graph classes 𝑘-SSG local 𝑘-SSG 𝑘-SSG local 𝑘-SSG

arbitrary × ([Aga+21]) × ([Aga+21])
regular ✓(Thm. 3.4) ✓(Thm. 3.4) ✓(Thm. 3.4) ✓(Thm. 3.4)
1-regular ✓(Thm. 4.4) ✓(Thm. 4.4) ✓(Thm. 4.4) ✓(Thm. 4.4)
trees × ([Aga+21]) ✓(Thm. 4.7) × ([Aga+21])
cycles ✓(Thm. 3.4) ✓(Thm. 3.4) ✓(Thm. 3.4) ✓(Thm. 3.4)
paths ✓(Thm. 4.4) ✓(Thm. 4.4) ✓(Thm. 4.4) ✓(Thm. 4.4)
4-grids ✓(Thm. 4.5) ✓(Thm. 4.5) ✓(Thm. 4.5) ✓(Thm. 4.5)
8-grids ✓(Thm. 4.11) 𝑘 = 2 ✓(Thm. 4.11) 𝑘 = 2 × (Thm. 4.10) ✓(Thm. 4.9)

Since it was shown in [Aga+21] that the Price of Anarchy can be unbounded for
𝑘 ≥ 3, we focus on the Price of Anarchy of the (local) 2-SSG.

We give tight or almost tight bounds to the Price of Anarchy for all mentioned
graph classes which in many cases are significant improvements on the𝛩 (𝑛)
bound proven in [Aga+21]. In particular, for arbitrary graphs, cf. Section 4.3.1,
we improve the upper bound for balanced games. This result is obtained as
a corollary, cf. Corollary 4.13, of a more general upper bound of O

(
𝑏
𝑜

)
to the

Price of Anarchy, see Theorem 4.12, which implies that for instances that do
admit swap equilibria, we always have a constant Price of Anarchy whenever
none of the two parties forms a clear majority. We also provide an upper bound
of O

(
𝛥
𝛿

)
to the Price of Anarchy for general graphs that do admit swap equilibria.

This result is obtained by using advanced matching techniques, that are further
explored to provide tight bounds to the Local Price of Anarchy for the class
of regular and also non-regular graphs. Notably, this result implies non-trivial
upper bounds to the Price of Anarchy for graphs with a large minimum degree
or bounded degree. We believe that our advanced matching techniques still have
the potential to be successfully applied for future refinements to the Price of
Anarchy bounds.
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Table 4.2: Results overview. For the study of the PoA we focus on 𝑘 = 2. We denote by 𝑏 and 𝑜 the number of blue and
orange agents, respectively and we assume 𝑜 ≤ 𝑏. If we use 𝜁 or 𝜂 in the respective bound, their meaning is defined at the
top of the respective column. 𝜖 is a constant larger than zero.

Price of Anarchy

2-SSG local 2-SSG
𝑜 = 2𝜁 + 𝜂 𝑛 = 3𝜁 + 𝜂

arbitrary ∞ ([Aga+21]) 𝑜 = 1
(
2𝑛 + 8

𝑛
− 8, 2𝑛 − 8

𝑛

)
(Thm. 4.15) 𝑜 = 𝑛

2
≤ 3 (Thm. 4.12) 𝑜 = 𝑛

2 ≤ 2
(
1 + 𝛥−1

𝛿−1

)
(Thm. 4.16) 𝛿 ≥ 2

≤ 𝑛𝑜 (𝑛−𝑜 )−𝑛
𝑜 (𝑜−1) (𝑛−𝑜 ) (Thm. 4.12) otherwise

(
𝛥 (𝛥−1)

2 − 𝜖, 2(𝛥2 + 1)
)
(Thm. 4.17) 𝛥 ≤ 𝑛 − 2

regular 2 + 1
𝜁
(Cor. 4.20, Thm. 4.21) 𝛥 ∈ (2𝜁 , 2𝜁 + 1) 2 + 1

𝜁
(Cor. 4.20, Thm. 4.21) 𝛥 ∈ (2𝜁 , 2𝜁 + 1)

trees
(
𝛥 (𝛥−1)

2 − 𝜖, 2(𝛥2 + 1)
)
(Cor. 4.18, Thm. 4.17) 𝛥 ≤ 𝑛 − 2

(
𝛥 (𝛥−1)

2 − 𝜖, 2(𝛥2 + 1)
)
(Cor. 4.18, Thm. 4.17) 𝛥 ≤ 𝑛 − 2

cycles 1 (Thm. 4.22) 𝑜 = 1 1 (Thm. 4.23) 𝑜 = 1
𝑛−2
𝑏+𝜂 (Thm. 4.22) otherwise 𝑛−2

𝑏−𝑜 (Thm. 4.23) 𝑜 ≥ 2, 𝑏 ≥ 2𝑜
𝑛−2
𝜁 +𝜂 (Thm. 4.23) otherwise

paths ∞ (Thm. 4.24) 𝑛 = 3 ∞ (Thm. 4.25) 𝑛 = 3
2𝑛−2
2𝑛−5 (Thm. 4.24) 𝑛 > 3, 𝑜 = 1 2𝑛−2

2𝑛−5 (Thm. 4.25) 𝑛 > 3, 𝑜 = 1
𝑛−1

𝑏+1+𝜂 (Thm. 4.24) 𝑛 > 3, 𝑜 ≥ 2, 𝑛−1
𝑏−𝑜−1 (Thm. 4.25) 𝑛 > 3, 𝑜 ≥ 2, 𝑏 ≥ 2𝑜

𝜂 ≤ 2𝜁 + 1
𝑛−1
𝑏+𝜂 (Thm. 4.24) otherwise 𝑛−1

𝜁
(Thm. 4.25) otherwise

4-grids 25
22 (Prop. 4.26) 𝑜 = 1 (3 − 𝜖, 3) (Prop. 4.31) 2 × ℎ grid, ℎ ≥ 3

2 (Thm. 4.28, 4.30) otherwise
( 18
7 − 𝜖, 187

)
(Prop. 4.32) 3 × ℎ grid, ℎ ≥ 3( 5

2 − 𝜖, 52 + 𝜖
)
(Thm. 4.33) 𝑙 × ℎ grid, ℎ, 𝑙 ≥ 8 + 20

𝜖

8-grids 897
704 (Prop. 4.34) 𝑜 = 1 ≤ 9

4 + 𝜖 (Prop. 4.36) 𝑙 × ℎ grid, ℎ, 𝑙 ≥ 8 + 18
𝜖

≤ 4 (Thm. 4.35) otherwise ≤ 4 (Thm. 4.35) otherwise
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Moreover, we follow up on a proposal by Schelling [Sch71] to restrict the
movement of agents locally and study the influence of this restriction. Such
local swaps are realistic since people want to stay close to their working place
or important facilities like schools. This also holds when considering dynamics
where agents repeatedly perform local moves since these dynamics can be
understood as a process that happens over a long period and agents adapt to
their new neighborhoods over time. Thus, besides analyzing equilibria in the
general model of Agarwal et al. [Aga+21], we introduce and analyze a local
variant of the model, which, to the best of our knowledge, has not yet been
explored for Schelling’s model. Our results indicate that the local variant has
favorable properties. For instance, equilibria are guaranteed to exist on trees in
the local version while in [Aga+21] it was shown that this is not the case for
the general model. Moreover, for many cases, we can show that the Price of
Anarchy in the local version deteriorates only slightly compared to the global
version.

4.1 Model

We consider the Swap Schelling Game with 𝑘 types in the one-versus-all version
with an intolerance parameter 𝜏 = 1. The utility of an agent 𝑖 in 𝝈 is defined as
U𝑖 (𝝈) = |𝑁 (𝝈 (𝑖 ) )∩𝐶𝑖 (𝝈 ) |

deg𝝈 (𝑖 )
. Furthermore, we restrict strategy changes and investi-

gate local swaps. Remember that the set of local swap equilibria is a superset
of the set of swap equilibria. See Example 4.1 for an illustration of the (local)
𝑘-SSG.

▶ Example 4.1. Consider Figure 4.1. There are 𝑛 = 24 strategic agents with
𝑘 = 3 types (orange, blue and green) placed on a 4-grid with 𝑙 = 4 rows and ℎ = 6
columns. The game is not balanced since |𝑡𝑏𝑙𝑢𝑒 | = |𝑡𝑜𝑟𝑎𝑛𝑔𝑒 | = 10 but |𝑡𝑔𝑟𝑒𝑒𝑛 | = 4.
Agent 𝑖 occupies vertex 𝑢 and agent 𝑗 occupies vertex 𝑣, hence 1𝑖 𝑗 (𝝈) = 1. 𝝈 is
a local swap equilibrium but not a swap equilibrium since agent 𝑗 , occupying
vertex 𝑣 can swap with agent 𝑗 ′ occupying vertex 𝑤 to increase its utility from 1

3
to 1

2 , while 𝑗
′ can improve its utility from 1

2 to
2
3 . ◀

For investigating the dynamic properties, we recall the function 𝛷 (𝝈) =��{{𝑢, 𝑣} ∈ 𝐸 | 𝑐 (𝝈−1(𝑢)) = 𝑐 (𝝈−1(𝑣))
}��which counts the number ofmonochrome

edges. However, we will see that potential-preserving profitable swaps exist. For
analyzing such swaps, we consider the extended potential𝛹 (𝝈) which essentially
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u v

w

Figure 4.1: Example of a strategy profile 𝝈 in the (local) 𝑘-SSG. Please refer to Exam-
ple 4.1 for more details.

is𝛷 (𝝈) augmented with a tie-breaker. It is defined as𝛹 (𝝈) = (𝛷 (𝝈), 𝑛 − 𝑧 (𝝈)),
where 𝑧 (𝝈) is the number of agents having utility 0 under 𝝈 . We compare𝛹
for different strategy profiles 𝝈 and 𝝈 ′ lexicographically, i.e., on the one hand
we have𝛹 (𝝈) > 𝛹 (𝝈 ′) if𝛷 (𝝈) > 𝛷 (𝝈 ′), or𝛷 (𝝈) = 𝛷 (𝝈 ′) and 𝑧 (𝝈) < 𝑧 (𝝈 ′) .
On the other hand, we have𝛹 (𝝈) < 𝛹 (𝝈 ′) if𝛷 (𝝈) < 𝛷 (𝝈 ′), or𝛷 (𝝈) = 𝛷 (𝝈 ′)
and 𝑧 (𝝈) > 𝑧 (𝝈 ′) . Note that any profitable swap which increases (decreases)
the potential𝛷 also increases (decreases) the extended potential𝛹.

4.2 Equilibrium Existence and Dynamics

We start by providing a precise characterization that ties equilibria in both local
and general 2-SSGs with the sum of the utilities experienced by any two agents
of different colors.

▶ Lemma 4.2. A strategy profile 𝝈 for a (local) 2-SSG is an equilibrium if and
only if for any two agents 𝑖 and 𝑗 , with 𝑐 (𝑖) ≠ 𝑐 ( 𝑗) and deg𝝈 (𝑖 ) ≤ deg𝝈 ( 𝑗 ) , that
are allowed to swap their positions.5 U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1𝑖 𝑗 (𝝈 )

deg𝝈 (𝑖 )
. ◀

Proof. Without loss of generality, assume that 𝑖 is orange and 𝑗 is blue. Let 𝑜𝑖 be
the number of orange neighbors of 𝝈 (𝑖) and 𝑏 𝑗 be the number of blue neighbors
of 𝝈 ( 𝑗), respectively.6 It holds that

U𝑖 (𝝈) =
𝑜𝑖

deg𝝈 (𝑖 )
, U𝑗 (𝝈) =

𝑏 𝑗

deg𝝈 ( 𝑗 )

5 This is a restriction only for the local version of the game, where 𝑖 and 𝑗 have to be neighboring
vertices to perform a local swap.

6 Clearly, in the local version of the game 1𝑖 𝑗 (𝝈) = 1.
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and

U𝑖 (𝝈 𝑖 𝑗 ) =
deg𝝈 ( 𝑗 ) − 𝑏 𝑗 − 1𝑖 𝑗 (𝝈)

deg𝝈 ( 𝑗 )
= 1 −

1𝑖 𝑗 (𝝈)
deg𝝈 ( 𝑗 )

− U𝑗 (𝝈),

U𝑗 (𝝈 𝑖 𝑗 ) =
deg𝝈 (𝑖 ) − 𝑜𝑖 − 1𝑖 𝑗 (𝝈)

deg𝝈 (𝑖 )
= 1 −

1𝑖 𝑗 (𝝈)
deg𝝈 (𝑖 )

− U𝑖 (𝝈) .

Consider the case in which there exists a 𝑘 ∈ {𝑖, 𝑗} such thatU𝑘 (𝝈) ≥ U𝑘 (𝝈 𝑖 𝑗 ).
By substituting the formula corresponding to U𝑘 (𝝈 𝑖 𝑗 ) and by rearranging the
terms, using also the fact that deg𝝈 (𝑘 ) ≥ deg𝝈 (𝑖 ) , we obtain

U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 −
1𝑖 𝑗 (𝝈)
deg𝝈 (𝑘 )

≥ 1 −
1𝑖 𝑗 (𝝈)
deg𝝈 (𝑖 )

.

In the complementary case in which U𝑘 (𝝈) < U𝑘 (𝝈 𝑖 𝑗 ) for every 𝑘 ∈ {𝑖, 𝑗},
from U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) we derive

U𝑖 (𝝈) + U𝑗 (𝝈) < 1 −
1𝑖 𝑗 (𝝈)
deg𝝈 (𝑖 )

.

Therefore,
U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 −

1𝑖 𝑗 (𝝈)
deg𝝈 (𝑖 )

iff U𝑖 (𝝈) ≥ U𝑖 (𝝈 𝑖 𝑗 ) or U𝑗 (𝝈) ≥ U𝑗 (𝝈 𝑖 𝑗 ) holds. As 𝝈 is an equilibrium iff
for all 𝑖, 𝑗 that are allowed to swap U𝑖 (𝝈) ≥ U𝑖 (𝝈 𝑖 𝑗 ) or U𝑗 (𝝈) ≥ U𝑗 (𝝈 𝑖 𝑗 )
holds, we have that 𝝈 is an equilibrium iff for all 𝑖, 𝑗 that are allowed to swap
U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1𝑖 𝑗 (𝝈 )

deg𝝈 (𝑖 )
. ■

By exploiting the potential 𝛷 , we show in Chapter 3 that, for any 𝑘 ≥ 2, 𝑘-
SSGs played on regular graphs have the FIP and that any sequence of profitable
swaps has a length of at most𝑚, cf. Theorem 3.4. This result can be extended
to 𝛽-almost regular graphs for some values of 𝛽 . First, we need the following
technical lemma.

▶ Lemma 4.3. Fix a 𝑘-SSG (𝐺, t), with 𝑘 ≥ 2, a strategy profile 𝝈 and a
profitable swap in 𝝈 performed by agents 𝑖 and 𝑗 with deg𝜎 (𝑖 ) ≤ deg𝜎 ( 𝑗 ) . If
deg𝜎 ( 𝑗 ) − deg𝜎 (𝑖 ) ≤ 1, then the swap is 𝛷-increasing. If deg𝜎 ( 𝑗 ) − deg𝜎 (𝑖 ) = 2,
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then the swap is either 𝛷-increasing or 𝛷-preserving, with the swap being
𝛷-preserving only if U𝑗 (𝝈) ∈

( 1
2 , 1

)
. ◀

Proof. Assume, without loss of generality, that agent 𝑖 is orange and agent 𝑗 is
blue; moreover, define 𝜎 (𝑖) = 𝑢 and 𝜎 ( 𝑗) = 𝑣. Let 𝑜𝑢 be the number of orange
agents occupying vertices adjacent to 𝑢 in 𝝈 , let 𝑥𝑢 be the number of neither
orange nor blue agents occupying vertices adjacent to𝑢 in 𝝈 , let𝑏𝑣 be the number
of blue agents occupying vertices adjacent to 𝑣 in 𝝈 and let 𝑥𝑣 be the number of
neither orange nor blue agents occupying vertices adjacent to 𝑣 in 𝝈 . We have
U𝑖 (𝝈) = 𝑜𝑢

deg𝑢
, U𝑗 (𝝈) = 𝑏𝑣

deg𝑣
and

U𝑖 (𝝈 𝑖 𝑗 ) =
deg𝑣 − 𝑏𝑣 − 𝑥𝑣 − 1𝑖 𝑗 (𝝈)

deg𝑣
, U𝑗 (𝝈 𝑖 𝑗 ) =

deg𝑢 − 𝑜𝑢 − 𝑥𝑢 − 1𝑖 𝑗 (𝝈)
deg𝑢

.

As 𝑖 and 𝑗 perform a profitable swap in 𝝈 , we have U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) and
U𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ) which implies

deg𝑢𝑏𝑣 + deg𝑣𝑜𝑢 + deg𝑢𝑥𝑣 + deg𝑢1𝑖 𝑗 (𝝈) < deg𝑢deg𝑣 (4.1)

and
deg𝑢𝑏𝑣 + deg𝑣𝑜𝑢 + deg𝑣𝑥𝑢 + deg𝑣1𝑖 𝑗 (𝝈) < deg𝑢deg𝑣 . (4.2)

Moreover, we have

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = deg𝑢 − 1𝑖 𝑗 (𝝈) − 𝑜𝑢 − 𝑥𝑢 + deg𝑣 − 1𝑖 𝑗 (𝝈) − 𝑏𝑣 − 𝑥𝑣 − 𝑜𝑢 − 𝑏𝑣
= deg𝑢 + deg𝑣 − 𝑥𝑢 − 𝑥𝑣 − 2(𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈)) .

• If deg𝑢 = deg𝑣 := 𝛿 ′, Equation (4.1) implies 𝑜𝑢 +𝑏𝑣 +1𝑖 𝑗 (𝝈) +𝑥𝑣 < 𝛿 ′, while
Equation (4.2) implies 𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑢 < 𝛿 ′ which together yield

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 2𝛿 ′ − 𝑥𝑢 − 𝑥𝑣 − 2(𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈)) > 0.

• If deg𝑢 = deg𝑣 − 1, Equation (4.1) implies

𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑣 < deg𝑣 − 1 +
𝑏𝑣 + 𝑥𝑣 + 1𝑖 𝑗 (𝝈)

deg𝑣
,
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while Equation (4.2) implies

𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑢 < deg𝑣 − 1 + 𝑏𝑣

deg𝑣
.

As𝑏𝑣+𝑥𝑣+1𝑖 𝑗 (𝝈) ≤ deg𝑣 by definition, we get 𝑜𝑢+𝑏𝑣+1𝑖 𝑗 (𝝈)+𝑥𝑣 ≤ deg𝑣−1
and 𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑢 ≤ deg𝑣 − 1 which together yield

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 2deg𝑣 − 1 − 𝑥𝑢 − 𝑥𝑣 − 2(𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈)) > 0.

• If deg𝑢 = deg𝑣 − 2, Equation (4.1) implies

𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑣 < deg𝑣 − 2 +
2(𝑏𝑣 + 𝑥𝑣 + 1𝑖 𝑗 (𝝈))

deg𝑣
,

while Equation (4.2) implies

𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑢 < deg𝑣 − 2 + 2𝑏𝑣
deg𝑣

.

As𝑏𝑣+𝑥𝑣+1𝑖 𝑗 (𝝈) ≤ deg𝑣 by definition, we get 𝑜𝑢+𝑏𝑣+1𝑖 𝑗 (𝝈)+𝑥𝑣 ≤ deg𝑣−1
and 𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈) + 𝑥𝑢 ≤ deg𝑣 − 1 which together yield

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 2deg𝑣 − 2 − 𝑥𝑢 − 𝑥𝑣 − 2(𝑜𝑢 + 𝑏𝑣 + 1𝑖 𝑗 (𝝈)) ≥ 0.

However, note that equality occurs only in the case in which 2𝑏𝑣
deg𝑣

> 1
which requires 𝑏𝑣 >

deg𝑣
2 , that is, U𝑗 (𝝈) > 1

2 . Clearly, as 𝑗 improves after
the swap, it must also be U𝑗 (𝝈) < 1. ■

Given the above lemma, the existence and efficient computation of equilibria
for 𝑘-SSGs played on almost regular graphs can be easily obtained for any 𝑘 ≥ 2.

▶ Theorem 4.4. For any 𝑘 ≥ 2, 𝑘-SSGs played on almost regular graphs has the
FIP. Moreover, at most𝑚 profitable swaps are sufficient to reach an equilibrium
starting from any initial strategy profile. ◀

Proof. The first part of the claim comes from Lemma 4.3, as in any almost regular
graph𝐺 it holds that 𝛥 − 𝛿 = 1. The bound on the number of swaps comes from
the fact that for every strategy profile 𝝈 , we have 𝛷 (𝝈) ≤ 𝑚, and, moreover,
𝛷 (𝝈) is an integer and non-negative. ■
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Theorem 4.4 cannot be extended beyond almost regular graphs as Agarwal et
al. [Aga+21] provide a 2-SSG played on a 2-almost regular graph, more precisely,
a tree, admitting no equilibria. However, in the next theorem, we show that
positive results can be still achieved in games played on 2-almost regular graphs
obeying some additional properties which are in particular fulfilled by 4-grids.

▶ Theorem 4.5. Let 𝐺 be a 2-almost regular graph such that 𝛥 ≤ 4 and every
vertex of degree 𝛿 is adjacent to at most 𝛿 − 1 vertices of degree 𝛥. Then, for
any 𝑘 ≥ 2, every 𝑘-SSG played on𝐺 possesses the FIP. Moreover, at most𝑂 (𝑛𝑚)
profitable swaps are sufficient to reach an equilibrium starting from any initial
strategy profile. ◀

Proof. By Lemma 4.3, we know that any profitable swap occurring in a strategy
profile 𝝈 is𝛷-increasing unless it involves an agent 𝑖 occupying vertex 𝜎 (𝑖) = 𝑢,
with deg𝑢 = 𝛿 , and an agent 𝑗 occupying vertex 𝜎 ( 𝑗) = 𝑣, with deg𝑣 = 𝛥, and
such that U𝑗 (𝝈) ∈

( 1
2 , 1

)
. As 𝐺 is connected, we have 𝛿 ≥ 1, which yields

𝛥 ∈ {3, 4}. This fact, together with U𝑗 (𝝈) ∈
( 1
2 , 1

)
implies U𝑗 (𝝈) ∈

{ 2
3 ,

3
4
}
. As

U𝑗 (𝝈 𝑖 𝑗 ) > U𝑗 (𝝈), we get U𝑗 (𝝈 𝑖 𝑗 ) = 1 which implies that all vertices adjacent
to𝑢 are occupied by agents of the same color of agent 𝑗 , which impliesU𝑖 (𝝈) = 0.
Hence, we can conclude that to have a𝛷-preserving profitable swap, we need
a profitable swap involving a vertex 𝑢 of degree 𝛿 such that U𝜎−1 (𝑢 ) (𝝈) = 0
and U𝜎−1

𝑖 𝑗
(𝑢 ) (𝝈) = 1. Thus, for an agent occupying 𝑢 to perform once again a

𝛷-preserving profitable swap, all vertices in 𝑁 (𝑢) need to change their colors,
i.e., all agents occupying vertices adjacent to 𝑢 must perform a profitable swap.
By Lemma 4.3, any agent occupying a vertex 𝑣 ∈ 𝑁 (𝑢) can be involved in a
𝛷-preserving swap only if deg𝑣 = 𝛥. By assumption, 𝑢 has at least a neighbor
of degree different from 𝛥. Thus, between any two consecutive𝛷-preserving
profitable swaps involving an agent residing at a fixed vertex, a𝛷-increasing
profitable swap has to occur. This immediately implies that no more than 𝑛
consecutive𝛷-preserving profitable swaps are possible. ■

As 4-grids meet the conditions required by Theorem 4.5, we get the following
corollary.

▶ Corollary 4.6. For any 𝑘 ≥ 2, every 𝑘-SSG played on a 4-grid possesses
the FIP. Moreover, at most 𝑂 (𝑛𝑚) profitable swaps are sufficient to reach an
equilibrium starting from any initial strategy profile. ◀
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r

Figure 4.2: Example of the construction yielding an equilibrium on a tree. Let 𝑘 = 3
and assume green ≤ orange ≤ blue. We root the tree at a vertex 𝑟 , place the agents
bottom-up and ensure for every subtree 𝑇 ′ the corresponding root 𝑟 ′ is the last vertex
in 𝑇 ′ to be occupied. See the proof of Theorem 4.7 for more details.

As mentioned before, Agarwal et al. [Aga+21] pointed out that 2-SSGs played
on trees are not guaranteed to admit equilibria. We show that this is no longer
the case in local 𝑘-SSGs for any value of 𝑘 ≥ 2. The main reason for this is that
the given counter-example in [Aga+21] crucially relies on agents that perform
non-local swaps whereas in local 𝑘-SSGs such swaps cannot occur.

▶ Theorem 4.7. For any 𝑘 ≥ 2, every local 𝑘-SSG played on a tree has an
equilibrium that can be computed in polynomial time. ◀

Proof. Root the tree 𝑇 at a vertex 𝑟 . We place the agents color by color, starting
with color 1 and ending with color 𝑘 . Before we place an agent at an inner
vertex 𝑣 all of 𝑣’s descendants in 𝑇 have to be occupied. Hence, we place the
agents starting from the leaves, and the root 𝑟 ′ of every subtree 𝑇 ′ is the last
vertex in 𝑇 ′ which will be occupied. Thus, we ensure that, if the root 𝑟 ′ of a
subtree 𝑇 ′ is occupied by an agent of color 𝑖 ∈ [𝑘], 𝑇 ′ contains only agents of
color 𝑖′ ≤ 𝑖 . Clearly, this construction yields a feasible strategy profile, that we
denote by 𝝈 , and can be implemented in polynomial time. See Figure 4.2 for an
illustration.
Consider two agents 𝑖 and 𝑗 of different colors that occupy two adjacent

vertices 𝑢 and 𝑣, respectively. Without loss of generality, we assume that 𝑢 is
the parent of 𝑣 in 𝑇 . Since 𝑐 ( 𝑗) < 𝑐 (𝑖), the subtree of 𝑇 rooted at 𝑣 contains no
vertex of color 𝑐 (𝑖). As a consequence U𝑖 (𝝈 𝑖 𝑗 ) = 0. Hence 𝜎 is an LSE. ■

Note that, as we move from 4-grids to 8-grids, Corollary 4.6 does not hold
anymore. In fact, for the latter class of graphs, we show that for 𝑘 = 2 the FIP is
guaranteed to hold only for local games. For this, we first need the following
technical lemma which specifies all 𝛷-decreasing swaps which can occur in
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8-grids. Note that by Lemma 4.3 a𝛷-decreasing swap can only occur between
two agents 𝑖 and 𝑗 that occupy vertices that have a difference in their vertex
degree of at least 3.

▶ Lemma 4.8. Fix a local 2-SSG played on an 8-grid, a strategy profile 𝝈 and a
profitable swap in 𝝈 performed by agents 𝑖 and 𝑗 . It holds that

i) If deg𝜎 (𝑖 ) = 3 and deg𝜎 ( 𝑗 ) = 8, then the swap is 𝛷-decreasing by 1 if
U𝑖 (𝝈) = 0 and U𝑗 (𝝈) = 5

8 otherwise it is a𝛷-increasing swap.

ii) If deg𝜎 (𝑖 ) = 5 and deg𝜎 ( 𝑗 ) = 8, then the swap is 𝛷-decreasing by 1 if
U𝑖 (𝝈) = 0 and U𝑗 (𝝈) = 6

8 otherwise it is a𝛷-increasing swap.

◀

Proof. Assume, without loss of generality, that agent 𝑖 is orange and agent 𝑗 is
blue; moreover, define 𝜎 (𝑖) = 𝑢 and 𝜎 ( 𝑗) = 𝑣. Let 𝑜𝑢 be the number of orange
agents occupying vertices adjacent to 𝑢 in 𝝈 and 𝑏𝑣 be the number of blue agents
occupying vertices adjacent to 𝑣 in 𝝈 .

i) We have U𝑖 (𝝈) = 𝑜𝑢
3 , U𝑗 (𝝈) = 𝑏𝑣

8 and U𝑖 (𝝈 𝑖 𝑗 ) = 7−𝑏𝑣
8 , U𝑗 (𝝈 𝑖 𝑗 ) = 2−𝑜𝑢

3 .

As 𝑖 and 𝑗 perform a profitable swap in 𝝈 , we have U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) and
U𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ) which imply

𝑏𝑣 <
16
3 − 8

3𝑜𝑢 . (4.3)

Moreover, we have

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 3 − 1 − 𝑜𝑢 + 8 − 1 − 𝑏𝑣 − 𝑜𝑢 − 𝑏𝑣 = 9 − 2𝑜𝑢 − 2𝑏𝑣 .

From Equation (4.3) it follows that for 𝑜𝑢 = 2, 𝑏𝑣 < 0. Therefore, 𝑜𝑢 is in
the set {0, 1}, and we have the following cases:
If 𝑜𝑢 = 0, Equation (4.3) implies 𝑏𝑣 < 16

3 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > −5
3 .

If 𝑜𝑢 = 1, Equation (4.3) implies 𝑏𝑣 < 8
3 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > 5

3 .
Since𝛷 (𝝈) is integral, the statement follows.

ii) We have U𝑖 (𝝈) = 𝑜𝑢
5 , U𝑗 (𝝈) = 𝑏𝑣

8 and U𝑖 (𝝈 𝑖 𝑗 ) = 7−𝑏𝑣
8 , U𝑗 (𝝈 𝑖 𝑗 ) = 4−𝑜𝑢

5 .

As 𝑖 and 𝑗 perform a profitable swap in 𝝈 , we have U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) and
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U𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ) which imply

𝑏𝑣 <
32
5 − 8

5𝑜𝑢 . (4.4)

Moreover, we have

𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) = 5 − 1 − 𝑜𝑢 + 8 − 1 − 𝑏𝑣 − 𝑜𝑢 − 𝑏𝑣 = 11 − 2𝑜𝑢 − 2𝑏𝑣 .

From Equation (4.4) it follows that for 𝑜𝑢 = 4, 𝑏𝑣 < 0. Hence, 𝑜𝑢 is in the
set {0, 1, 2, 3}, and we have the following cases:
If 𝑜𝑢 = 0, Equation (4.4) implies 𝑏𝑣 < 32

5 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > −9
5 .

If 𝑜𝑢 = 1, Equation (4.4) implies 𝑏𝑣 < 24
5 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > −3

5 .
If 𝑜𝑢 = 2, Equation (4.4) implies 𝑏𝑣 < 16

5 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > 3
5 .

If 𝑜𝑢 = 3, Equation (4.4) implies 𝑏𝑣 < 8
5 which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) > 9

5 .
Since𝛷 (𝝈) is an integer, we just have to show that, if 𝑜𝑢 = 1, the swap
is in fact not𝛷-preserving, but𝛷-increasing. Notice that 𝑏𝑣 is an integer
as well. Hence, since Equation (4.4) implies 𝑏𝑣 < 24

5 , it holds that 𝑏𝑣 ≤ 4
which yields𝛷 (𝝈 𝑖 𝑗 ) −𝛷 (𝝈) ≥ 1. ■

We now show that the FIP is guaranteed to hold for local games played on 8-
grids. For this we recall the definition of the function𝛹 (𝝈) = (𝛷 (𝝈), 𝑛 − 𝑧 (𝝈)),
where 𝑧 (𝝈) is the number of agents having utility 0 under 𝝈 . As shown in
Lemma 4.3 and Lemma 4.8, there are only a few local swaps that can preserve
or decrease the potential𝛷 and all of them decrease it by at most 1. We show
that after a𝛷-preserving or a𝛷-decreasing swap, several swaps must happen
before at the same pair of vertices another𝛷-preserving or𝛷-decreasing swap
can occur. Hence, we prove that in total the extended potential 𝛹 increases
lexicographically which imply the FIP.
In the following proof, we assume towards a contradiction that an IRC ex-

ists and show first, that the IRC must contain at least one𝛷-decreasing swap.
We then assign necessarily profitable swaps which have to be executed after
a 𝛷-decreasing swap and before a comparable 𝛷-decreasing swap can again
be performed. To this end, we distinguish between the cases of whether an-
other possible𝛷-preserving or𝛷-decreasing swap can be performed within the
neighborhood and if so, how the neighbors are involved in these swaps.
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▶ Theorem 4.9. Any local 2-SSG played on an 8-grid possesses the FIP. ◀

Proof. The proof is structured as follows: We first show that there are only a few
swaps that can preserve or decrease the potential𝛷 . Then we assume towards a
contradiction that an IRC exists. By definition, such an IRC cannot contain only
𝛷-increasing swaps. Thus, it must contain𝛷-preserving or𝛷-decreasing swaps.
Next, we show that at least one𝛷-decreasing swap must occur. Concentrating
on such𝛷-decreasing swaps, note that we need at least one, assuming, without
loss of generality, that an orange agent 𝑖 with utility 0 occupies some vertex 𝑢.
We show that reversing the colors of the agents (via swaps) in the neighborhood
of𝑢 to enable another𝛷-decreasing swap involving an agent occupying𝑢 entails
several𝛷-increasing swaps, that contradict the assumed existence of the IRC.
We start by showing that only a few swaps can be non-increasing regarding

the potential 𝛷 . By Lemma 4.3, we know that any profitable swap occurring
in a strategy profile 𝝈 is 𝛷-increasing, and, hence, also 𝛹-increasing, unless
it involves two agents 𝑖 and 𝑗 occupying vertices 𝜎 (𝑖) = 𝑢 and 𝜎 ( 𝑗) = 𝑣 with
deg𝑢 ≠ deg𝑣, i.e., with different degrees. We assume, without loss of generality,
deg𝑢 < deg𝑣 and that agent 𝑖 is orange and agent 𝑗 is blue.
First, we note that in a𝛷-preserving or a𝛷-decreasing swap, for the orange

agent 𝑖 , it must be that U𝑖 (𝝈) = 0. By Lemma 4.8, we know that this is true if
deg𝑢 = 3 and deg𝑣 = 8 or deg𝑢 = 5 and deg𝑣 = 8. If deg𝑢 = 3 and deg𝑣 = 5, we
know by Lemma 4.3 that we may have a𝛷-preserving swap if for the utility of the
blue agent it holds that U𝑗 (𝝈) ∈

( 1
2 , 1

)
. As deg𝑣 = 5 and U𝑗 (𝝈 𝑖 𝑗 ) > U𝑗 (𝝈) > 1

2 ,
it must be that U𝑗 (𝝈) = 3

5 and U𝑗 (𝝈 𝑖 𝑗 ) = 2
3 , which implies that, in 𝝈 , all vertices

adjacent to 𝑢 are occupied by blue agents, so U𝑖 (𝝈) = 0, cf. Figure 4.3 (a).
We show that after every𝛹-decreasing swap, we can assign corresponding

𝛹-increasing swaps such that in total the extended potential𝛹 increases lex-
icographically which imply the FIP. Remember that the extended potential𝛹
is simply a more fine-grained version of the potential 𝛷 with the number of
agents having utility 0 as a tie-breaker. Thus, for simplicity, in some parts of
the proof, we work with 𝛷 instead of 𝛹. Since the extended potential 𝛹 is a
vector, we denote the change in𝛹 by a profitable swap as (𝜆, 𝜇) with 𝜆, 𝜇 ∈ ℤ

where 𝜆 denotes the change in𝛷 and 𝜇 denotes the change in 𝑛 −𝑧 (·). Moreover,
remember that we consider local games. Hence, two agents 𝑖 and 𝑗 are only
allowed to swap if 1𝑖 𝑗 (𝜎) = 1, i.e., if they are adjacent.
We now assume for the sake of contradiction that an IRC exists. Note that such

an IRC contains at least one swap which preserves or decreases the potential𝛷 .
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u v

(a)

u v

(b)

Figure 4.3: The coloring of 𝐺 in 𝝈 and 𝝈 𝑖 𝑗 before and after a𝛷-preserving swap of the
orange agent 𝑖 and the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively. The right
neighbors of 𝑣 are occupied by agents of different types, hence, the top vertex can also
be occupied by a blue agent if the lower one is occupied by an orange one. Symmetric
and equivalent cases are omitted. (a) the strategy profile 𝝈 before 𝑖 and 𝑗 perform a
𝛷-preserving swap, (b) the strategy profile 𝝈 𝑖 𝑗 after 𝑖 and 𝑗 perform a 𝛷-preserving
swap. See the proof of Theorem 4.9 for more details.

Hence, assume that there exists an IRC C = 𝝈0,𝝈1, . . . ,𝝈 ℓ . For the sake of
brevity, we denote 𝝈0 as 𝝈 in this proof. It holds that𝛹 (𝝈0) =𝛹 (𝝈 ℓ ) and C must
contain at least one𝛷-decreasing swap since any𝛷-preserving swap increases𝛹.
This follows from Lemma 4.3 and our above observation that one of the agents
involved in a𝛷-preserving swap must have utility 0 before the swap and, since
the swap is profitable, must have utility greater than 0 after the swap. Hence,
the extended potential𝛹 increases. As an illustration, consider Figure 4.3. If
the agents 𝑖 and 𝑗 perform a𝛷-preserving swap the number of agents having
utility 0 decreases by 1 since no new agent with utility 0 is created.
Therefore, we concentrate on𝛷-decreasing swaps. To this end, we need at

least one agent with utility 0 in one of the strategy profiles 𝝈𝑘 with 0 ≤ 𝑘 ≤ ℓ −1
which is contained in the IRC C. Assume, without loss of generality, that 𝝈0

contains at least one agent 𝑖 with utility 0. Note that since C is a cycle, we can
freely define the starting strategy profile 𝝈0. Hence, in 𝝈 ℓ the vertex 𝑢 has to be
occupied by an agent with utility 0 as well.

Recall that, by Lemma 4.8,𝛷 decreases by at most 1 in any𝛷-decreasing swap.
Also, we know that we have a𝛷-decreasing swap by 1 if and only if we have that
for the utility of the orange agent 𝑖 it holds that U𝑖 (𝝈) = 0 and vertex 𝑢 has to
be a border vertex, i.e., 𝑢 has degree 3 or 5. This implies that all vertices adjacent
to 𝑢 are occupied by blue agents. Thus, for agent 𝑗 , occupying vertex 𝑢 in 𝝈 𝑖 𝑗 ,
i.e., after the swap, to be involved once again in a𝛷-decreasing profitable swap,
all vertices in 𝑁 (𝑢) \ {𝑣} must become occupied by orange agents. Hence, we
need to reverse the color of the agents in the neighborhood of𝑢. Note, that in the
case that an orange agent on vertex 𝑢 is involved once again in a𝛷-decreasing
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swap without agent 𝑗 being involved in a𝛷-decreasing swap in-between implies
an increase in the potential𝛹. In particular, the swap between the agents 𝑖 and 𝑗
yields a change in 𝛹 of at least (−1, 𝑥), with 𝑥 > 1, since agent 𝑖 has utility
larger 0 now. Agent 𝑗 swapping away from vertex 𝑢 with an agent occupying an
adjacent vertex, denoted by 𝑤, is𝛷-increasing by assumption if deg𝑤 ≥ 5, and
yields a change in𝛹 of at least (1,−(𝑥−1)) since it was a profitable swap for both
involved agents. Therefore, after the swap, the agent occupying vertex 𝑢 cannot
have utility 0. Or, the swap of the blue agent 𝑗 is𝛷-preserving which implicates
deg𝑤 = 3 and a𝛷-increasing swap in-between since 𝑤 was occupied by a blue
agent in 𝝈 . Hence, in both cases the swaps, such that agent 𝑗 swaps away
from vertex 𝑢, are together𝛹-increasing by at least (0, 1). This contradicts the
assumption of an IRC. Note that in the case that agent 𝑗 performs a𝛷-increasing
swap with the agent placed on vertex 𝑤, 𝑤 is again occupied by a blue agent,
similar to the initial strategy profile 𝝈 . Hence, it will not interfere with the swaps
performed on vertex 𝑤 to negate other decreasing swaps later. Hence, the blue
agent 𝑗 occupying vertex 𝑢 needs to be involved in a 𝛷-decreasing profitable
swap and needs therefore utility 0. Vertex 𝑢 has, besides 𝑣, at least two further
adjacent vertices, say 𝑤1 and 𝑤2. We show in the following that occupying the
vertices 𝑤1 and 𝑤2 with orange agents will in total increase the potential𝛹.

Let dist(𝑥,𝑦) be the number of edges on a shortest path between two vertices 𝑥
and 𝑦 and let 𝑁 (𝑥)2 = {𝑦 ∈ 𝑉 : dist(𝑥,𝑦) ≤ 2} be the 2-neighborhood of 𝑥 , i.e.,
all vertices which are in hop distance at most 2 from 𝑥 .
We distinguish between two cases: (1) We assume that in 𝑁 (𝑢)2 it holds that

there is no agent with utility 0 before the agents occupying 𝑤1 and 𝑤2 swap, and
(2), in 𝑁 (𝑢)2 it holds that there is at least one agent with utility 0 before the
agents occupying 𝑤1 and 𝑤2 swap.

In these cases, we consider the direct neighbors of 𝑢 and show that reversing
the colors of the agents occupying these vertices entails several𝛷-increasing
swaps which we can assign clearly to the𝛷-decreasing swap of agent 𝑖 . This
implies that𝛹 increases and, hence, contradicts the assumption of the existing
IRC.
We start with the case (1), i.e., that in 𝑁 (𝑢)2 no other agent with utility 0 is

around before the agents occupying 𝑤1 and 𝑤2 swap.
Since all neighbors of 𝑤1 and 𝑤2 belong to 𝑁 (𝑢)2 and have by assumption

utility larger 0 and since the agents on𝑤1 and𝑤2 have positive utility as well and
are, due to locality, restricted to swaps with adjacent agents, two𝛷-increasing
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Figure 4.4: The coloring of 𝐺 where the orange agent 𝑖 and the blue agent 𝑗 occupy
vertices 𝑢 and 𝑣, respectively. We omitted symmetric and equivalent cases. (a) The
strategy profile where the neighbors,𝑤1 and𝑤′

1 and𝑤2 and𝑤′
2, respectively, can perform

two𝛷-increasing swaps within the neighborhood, (b) starting clockwise from the top
left corner, agent 𝑖 is the first agent with utility 0, (c) the 2-neighborhoods of 𝑢 and 𝑢′
overlap. See the proof of Theorem 4.9 for more details.

swaps occur before the agent occupying𝑢 can perform once again a𝛷-decreasing
swap. Thus, in total𝛷 increases, if we can assign the two𝛷-increasing swaps to
the𝛷-decreasing swap of agent 𝑖 occupying 𝑢 under 𝝈 . Note, that this is given
if the 2-neighborhoods of vertices which are occupied by agents with utility 0
do not overlap.

Consider Figure 4.4 (a) where the 2-neighborhoods of two such vertices overlap.
The agents occupying 𝑢 and 𝑢′ can both perform a𝛷-decreasing swap, while 𝑤1
and𝑤′

1 and𝑤2 and𝑤′
2, respectively, can perform two𝛷-increasing swaps, which,

in total, is𝛷-preserving. However vertex 𝑢 has, besides vertex 𝑣, four neighbors
which have to be involved in swaps. To this end, vertex𝑢 needs to have clockwise
and counter-clockwise along the border overlapping 2-neighborhoods with
vertices that are occupied by agents with utility 0. Otherwise, we have a clear
assignment of two 𝛷-increasing swaps to the 𝛷-decreasing swap of agent 𝑖
occupying vertex𝑢. In particular, assume, without loss of generality, that vertex𝑢
has clockwise along the border no overlapping 2-neighborhoods with vertices
which are occupied by agents with utility 0. Then we can assign the two 𝛷-
increasing swaps involving the first two clockwise neighbors of vertex 𝑢 which
are not vertex 𝑣, cf., for instance, vertices 𝑤1 and 𝑤2 in Figure 4.4 (b), to the
𝛷-decreasing swap of the agents 𝑖 and 𝑗 . Hence, towards a contradiction to
the assumption that an IRC exists, we have to show that there is at least one
agent with utility 0 whose neighbors increase𝛷 (and not only preserve it), and
therefore𝛷 increases in total.
To this end, we consider, starting clockwise from the top left corner, the

first agent with utility 0, say agent 𝑖 . If agent 𝑖 is not located at the corner
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vertex, i.e., a vertex with degree 3, cf. Figure 4.4 (b), we already found our agent
whose neighbors increase 𝛷 in total since at least one neighbor, vertex 𝑤1 in
Figure 4.4 (b), is not involved in a swap with a direct neighbor of another agent
with utility 0.

Hence, we assume that agent 𝑖 is located at the corner vertex, and there
is another agent located on a vertex 𝑢′ with utility 0 with an overlapping 2-
neighborhood, cf. Figure 4.4 (c). Note, that since we assume agent 𝑖 to be
involved in a 𝛷-decreasing swap, vertex 𝑣 has to be the adjacent vertex with
degree 8. Hence, vertex 𝑤1 is not in the 2-neighborhood of the agent occupying
vertex 𝑢′ and therefore, since with the agent occupying vertex𝑤2 only one direct
neighbor of vertex 𝑢 who is not placed on vertex 𝑣 can be involved in a swap
with an agent occupying vertex 𝑤′

1 or vertex 𝑤′
2, either the agent occupying

vertex𝑤′
1 or vertex𝑤′

2 is not involved in a swap with a direct neighbor of another
agent with utility 0 involved in a𝛷-decreasing swap. As a result, the potential𝛷
increases in total since we have two𝛷-decreasing swaps involving the vertices 𝑢
and 𝑢′, two𝛷-increasing swaps involving the vertices 𝑤1 and 𝑤2 with either 𝑤′

1
or 𝑤′

2, and an additional𝛷-increasing swap involving either 𝑤′
1 or 𝑤′

2.
We now turn our focus to case (2), i.e., that in 𝑁 (𝑢)2 there is at least one agent

with utility 0 before the agents occupying 𝑤1 and 𝑤2 swap.
We first note that we can assume that deg𝑢 = 5. To this end, consider Figure 4.5

and assume that there is no agent with utility 0 occupying a vertex with degree 5
in the IRC C. Furthermore, we consider a 3 × ℎ grid, with ℎ > 3, and that in 𝝈
the agent occupying 𝑤′

1, with deg𝑤′
1
= 3, has utility 0.

Note that if we consider ℓ ×ℎ grids, with ℓ ≠ 3, without an agent with utility 0
occupying a vertex with degree 5, we are in case (1) since due to our assumptions
all agents in 𝑁 (𝑢)2 have positive utility. In this case the swap between agents 𝑖
and 𝑗 , cf. Figure 4.5 (a), yields a change in the extended potential𝛹 of (−1, +2). To
enable another𝛷-preserving or decreasing swap involving an agent occupying
vertex 𝑢, agent 𝑖 on vertex 𝑣 needs to perform another profitable swap, yielding
a change in𝛹 of (𝑥,−1), with 𝑥 ≥ 1, since by assumption C does not contain an
agent with utility 0 occupying a vertex with degree 5. Therefore, since vertex 𝑣
is, by the assumption of the grid size, not adjacent to further vertices of degree 3
besides 𝑢 and 𝑤′

1, cf. Figure 4.5 (a), the swap of agent 𝑖 must be 𝛷-increasing.
Hence, in total the extended potential𝛹 increases by at least (0, 1). If the agent
occupying vertex 𝑤′

1 has utility larger than 0 in 𝝈 , the swap between agents 𝑖
and 𝑗 yields a change in𝛹 of (−1, +1). However, to create an agent with utility 0
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Figure 4.5: The coloring of 𝐺 in 𝝈 and 𝝈 𝑖 𝑗 before and after a𝛷-decreasing swap of the
orange agent 𝑖 and the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively. We omitted
symmetric and equivalent cases. (a) the strategy profile 𝝈 before 𝑖 and 𝑗 perform a
𝛷-decreasing swap, (b) the strategy profile 𝝈 𝑖 𝑗 after a 𝛷-decreasing swap of agents 𝑖
and 𝑗 occupying vertices 𝑢 and 𝑣 when the agent occupying 𝑤′

1 has utility 0 under 𝝈 . (c)
the strategy profile 𝝈 𝑖 𝑗 after a𝛷-decreasing swap of agents 𝑖 and 𝑗 occupying vertices 𝑢
and 𝑣 when the agent occupying 𝑤′

1 has utility larger 0 under 𝝈 . See the proof of
Theorem 4.9 for more details.

occupying 𝑤′
1, at least two𝛷-increasing swaps are necessary, cf. Figure 4.5 (c).

Note that if vertex 𝑤′
1 is occupied by a blue agent we are in case (1) since due to

our assumptions all agents in 𝑁 (𝑢)2 have positive utility. Consider Figure 4.6 to
check that also a 3 × 3 grid cannot contain an IRC.
Hence, it holds that U𝑖 (𝝈) = 0, deg𝑢 = 5, and there exists at least one other

vertex 𝑤′
1 ∈ 𝑁 (𝑢)2 which is occupied by an agent 𝑘 with U𝑘 (𝝈𝑞) = 0, with

𝑞 ∈ [ℓ], where 𝝈𝑞 is a placement before the agents occupying𝑤1 and𝑤2 under 𝝈
performed profitable swaps. Moreover, we assume that deg𝑤′

1
= 3 or deg𝑤′

1
= 5.

Otherwise, by Lemma 4.8, the agent occupying vertex 𝑤′
1 can only be involved

in a𝛷-increasing swap, and therefore the agents occupying the direct neighbors
of vertices 𝑢, 𝑤1, and 𝑤2, can only be involved in a𝛷-increasing swap as well
which yields that in total the potential 𝛷 increases. Note that we can define
a disjoint assignment of the neighbors 𝑤1 and 𝑤2 to their respective vertex 𝑢.
Since the vertex 𝑢 has besides 𝑣 four further neighbors, two with degrees lower
than 8, we can, without loss of generality, starting from the top left corner of
the grid, clockwise, assign to every border vertex, i.e., a vertex with degree 5,
occupied by an agent with utility 0, the first two clockwise vertices which are
not vertex 𝑣, as distinct 𝑤1 and 𝑤2, respectively, cf. Figure 4.7 (a).

For our case analysis, we consider, without loss of generality, the left neighbors
of vertex 𝑢, cf. Figure 4.7 (a), with deg𝑤1 = 5 and deg𝑤2 = 8. So in the following,
we distinguish between the three following cases: (a) vertex 𝑤1 is involved in
a𝛷-preserving swap, (b) vertex 𝑤2 is involved in a𝛷-decreasing swap, and (c)
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Figure 4.6: The coloring of 𝐺 in 𝝈 𝑖 𝑗 after a𝛷-decreasing swap of the orange agent 𝑖
and the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively, shown in Figure 4.5 (a) in
a 3 × 3 grid. We omitted symmetric cases. (a) - (d) show the possible strategy profiles
of 𝝈 𝑖 𝑗 . The red arrows show all possible profitable swaps of an orange agent while the
black arrows point toward the next possible strategy profile. Strategy profiles without
red arrows are swap equilibria. See the proof of Theorem 4.9 for more details.

vertex 𝑤1 is involved in a 𝛷-preserving swap and vertex 𝑤2 is involved in a
𝛷-decreasing swap. Note that since deg𝑤1 = 5 the agent occupying vertex 𝑤1
cannot be involved in a𝛷-decreasing swap since the agents placed on vertices𝑤1
and 𝑤2 have positive utility.

(a)We assume that vertex 𝑤1 is involved in a𝛷-preserving swap. Note that in
this case, it holds that deg𝑤′

1
= 3, cf. Figure 4.7 (b). A profitable swap between

the agents occupying vertices 𝑤1 and 𝑤′
1 yields a change in𝛹 of (0, +1) since

both agents have non-zero utility after the swap, cf. Figure 4.7 (c). However,
by assumption, the agent on vertex 𝑤2 must perform a profitable𝛷-increasing
swap which changes the extended potential𝛹 by at least (+1,−1). In total, the
extended potential 𝛹 must change by at least (0, +1), since the swap of the
agents 𝑖 and 𝑗 yields a change in𝛹 of (0, +1) which together with the changes
of (0, +1) and (+1,−1) imply a lexicographic increase.

(b)We assume that vertex𝑤2 is involved in a𝛷-decreasing swap. A profitable
swap between the agents occupying vertices 𝑤2 and 𝑤′

1 yields a change in𝛹 of
(−1, +1), since both agents have non-zero utility after the swap. Recall that we
want to reverse the colors of the agents occupying the neighbors of vertex 𝑢
to enable another 𝛷-decreasing swap with the agent on vertex 𝑢. Now, there
are two ways of how vertex 𝑤1 can become occupied by an orange agent, cf.
Figure 4.8 (a).
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Figure 4.7: The coloring of 𝐺 in 𝝈 and 𝝈 𝑖 𝑗 before and after a𝛷-decreasing swap of the
orange agent 𝑖 and the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively. We omitted
symmetric and equivalent cases. (a) the coloring of 𝐺 in 𝝈 𝑖 𝑗 after a𝛷-decreasing swap
by (−1, +1) of agents 𝑖 and 𝑗 occupying vertices 𝑢 and 𝑣. (b) the coloring of 𝐺 before a
𝛷-preserving swap by (0, +1) of agents occupying vertices 𝑤1 and 𝑤′

1. (c) the coloring
of 𝐺 after a𝛹-preserving swap by agents occupying vertices 𝑤1 and 𝑤′

1. See the proof
of Theorem 4.9 for more details.

First, by swapping with an agent who is in the neighborhood of vertex 𝑢,
e.g., with the agent occupying vertex 𝑤2. Then, by Lemma 4.8, the extended
potential𝛹 changes by (+1, 0). After this swap, the blue agent who was previ-
ously on vertex 𝑤1 has to perform another swap with an orange agent, which
changes𝛹 again by (+1, 0). The second way for vertex𝑤1 to become occupied by
an orange agent is that one of the two vertices which are adjacent to vertex 𝑤1
but not to vertex 𝑢 is occupied by an orange agent, cf. Figure 4.8 (d), and then
this agent swaps with the agent on vertex 𝑤1. To this end, we have to consider
two different cases: (i) the agent occupying vertex 𝑤2 in 𝝈 𝑖 𝑗 swapped with a
neighbor of vertex𝑤1, and (ii) the agent occupying vertex𝑤2 in 𝝈 𝑖 𝑗 did not swap
with a neighbor of vertex 𝑤1.

Considering case (i) and assuming that the left neighbor of 𝑤1 has degree 3,
we note that both vertices which are in the neighborhood of vertex 𝑤1 but not
in the neighborhood of vertex 𝑢, we denote them by 𝑤′

1 and 𝑤′
2, have degree 3

and 5, respectively. Moreover, the agents who are placed on vertices 𝑤′
1 and 𝑤′

2
are blue and have utility larger than 0, since one out of the two agents which
are placed under 𝝈 𝑖 𝑗 on vertices 𝑤′

1 and 𝑤′
2 is orange and has utility 0 under 𝝈 𝑖 𝑗 ,

cf. Figure 4.8 (e). Remember that we assume that vertex 𝑤2 is involved in
a 𝛷-decreasing swap with one of the agents occupying vertices 𝑤′

1 and 𝑤′
2,

respectively. Therefore, we have two𝛹-increasing swaps, the swap involving
the agent occupying vertex 𝑤′

1 or vertex 𝑤′
2 with an orange agent and the swap

with the corresponding orange agent and the agent occupying vertex 𝑤1, by at
least (+1, 0) and (+1,−1), respectively, before an orange agent occupies vertex𝑤1,
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Figure 4.8: The coloring of𝐺 in 𝝈 𝑖 𝑗 after a𝛷-decreasing swap of the orange agent 𝑖 and
the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively. We omitted symmetric and
equivalent cases. (a) and (b) show the coloring of𝐺 after a𝛷-decreasing swap by (−1, +1)
by the agent occupying𝑤2. (c) shows the coloring of𝐺 before the agent occupying𝑤′

2 can
perform another𝛷-decreasing swap by (−1, +1). (d) shows the coloring of 𝐺 before the
agent occupying 𝑤1 can swap with its left orange neighbor. (e) shows the coloring of 𝐺
after the agent occupying 𝑤2 performed a𝛷-decreasing swap with the agent occupying
𝑤′
1 or 𝑤′

2. See the proof of Theorem 4.9 for more details.

which in total yields a lexicographic increase, since we have two𝛷-decreasing
swaps of (−1, +1) involving the vertices𝑢 and 𝑣, and𝑤2, and a neighbor of𝑤1 plus
the two𝛷-increasing swaps of (+1, 0) and (+1,−1) for vertex 𝑤1 to be occupied
by an orange agent.
Next, we assume that the left neighbor of vertex 𝑤1 has degree 5, cf. Fig-

ure 4.8 (b). Note, that all neighbors of vertex 𝑤′
1 have to be occupied by blue

agents, since otherwise, no𝛷-decreasing swap with the agent occupying ver-
tex 𝑤2 in 𝝈 𝑖 𝑗 is possible. Hence, the agent occupying vertex 𝑤′

1 has utility larger
than 0 and a swap such that vertex 𝑤′

1 becomes occupied by an orange agent is
𝛹-increasing by at least (+1, 0). We denote the remaining neighbor of vertex 𝑤1,
that is not adjacent to vertex 𝑢, again by 𝑤′

2, cf. Figure 4.8 (b). Note that it is
possible that the agent placed on vertex 𝑤′

2 swaps with an orange agent via a
𝛷-decreasing swap, cf. Figure 4.8 (c). However, in this case, the left neighbors of
vertex 𝑤′

2 have to be corner and border vertices, i.e, vertices with degree equal 3
or 5, denoted as 𝑥1, 𝑥2 and 𝑥3 in Figure 4.8 (c). Hence, to end up in an equivalent
strategy profile, i.e., having agents with utility 0 placed on vertices𝑤′

1 and 𝑥3, the
blue agents on 𝑥1, 𝑥2, and𝑤′

2 have to leave the neighborhood of vertices𝑤′
1 and 𝑥3
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(and 𝑢), which implies at least three𝛹-increasing swaps by (+1, 0), since all of
the blue agents who are occupying the corresponding border and corner vertices
have utility larger than 0. In total, the extended potential𝛹 lexicographically
increases.
Turning our focus to case (ii), i.e., that the agent occupying vertex 𝑤2 in 𝝈 𝑖 𝑗

swapped with a non-neighbor of vertex𝑤1, we note that the only additional case
is that the left neighbor of vertex 𝑤1 is occupied by an orange agent since all
other cases are already covered by the case (i). Assume that the left neighbor of
vertex𝑤1 has degree 5, cf. Figure 4.8 (d). Note that in this case, i.e., vertex𝑤1 and
the left neighbor of vertex𝑤1 have the same degree of 5 and the two correspond-
ing agents occupying these two vertices perform a profitable swap, the extended
potential𝛹 changes by at least (+2, 0), which in total implies a lexicographic
increase since we have two𝛷-decreasing swaps which change the potential𝛹 by
(−1, +1), respectively, and one𝛷-increasing swap of (+2, 0). In total, this yields
a change in𝛹 by (0, +2).
Assuming that the left neighbor of vertex 𝑤1 has degree 3, note that a swap

of the agent occupying vertex 𝑤1 with its left neighbor changes𝛹 by (+2, 0): In
case the left neighbor has utility 0, since, by assumption, it is not a𝛷-preserving
swap, the agent occupying vertex𝑤1 has a utility of at most 2

5 . If the left neighbor
of vertex𝑤1 has utility 1

3 , the agent occupying vertex𝑤1 has a utility of at most 1
5 ,

and if the left neighbor of vertex 𝑤1 has utility 2
3 no profitable swap between the

agent occupying vertex 𝑤1 and its left neighbor is possible. Thus, in total the
extended potential𝛹 increases lexicographically.

(c)We assume that vertex𝑤1 is involved in a𝛷-preserving swap and vertex𝑤2
is involved in a𝛷-decreasing swap. In this case, we have that there exist two
vertices𝑤′

1 ∈ 𝑁 (𝑢)2 and𝑤′
2 ∈ 𝑁 (𝑢)2 which are occupied by agents with utility 0.

Moreover, it holds that deg𝑤′
1
= 3 and deg𝑤′

2
= 3 or deg𝑤′

2
= 5, cf. Figure 4.9 (a).

Let deg𝑤′
2
= 5. By Lemma 4.3, a swap by the agents on vertices 𝑤′

1 and 𝑤1
changes𝛹 by (0, +1). Now, note that if such a 𝛷-preserving swap is possible,
it holds that the agent occupying vertex 𝑤1 in 𝝈 𝑖 𝑗 has utility 3

5 and therefore
the agent on vertex 𝑤2 has a utility of at most 5

8 , cf. Figure 4.9 (b), and a swap
with the agent on vertex 𝑤′

2 must be 𝛷-increasing, which in total yields an
increase in𝛹. Hence, at least one orange agent in the neighborhood of vertex 𝑢
has to perform a profitable 𝛷-increasing swap, which again in total yields an
increase in𝛹. Note that a𝛷-decreasing swap of the agent occupying vertex 𝑤2
prevents a𝛷-preserving swap afterward of the agent occupying vertex 𝑤1, since
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Figure 4.9: The coloring of 𝐺 in 𝝈 𝑖 𝑗 after a𝛷-decreasing swap of the orange agent 𝑖
and the blue agent 𝑗 occupying vertices 𝑢 and 𝑣, respectively. We omitted symmetric
and equivalent cases. (a) the coloring of 𝐺 in 𝝈 𝑖 𝑗 after a𝛷-decreasing swap by (−1, +1)
of agents 𝑖 and 𝑗 occupying vertices 𝑢 and 𝑣. (b) and (c) the coloring of 𝐺 after a 𝛷-
preserving swap by (0, +1) of agents occupying vertices 𝑤1 and 𝑤′

1. See the proof of
Theorem 4.9 for more details.

in this case vertex 𝑤2 is occupied by an orange agent and, therefore, the agent
occupying vertex 𝑤′

1 cannot have utility 0, which is a requirement for a non-
𝛷-increasing swap. Let deg𝑤′

2
= 3. By Lemma 4.3, a swap by the agents on

vertices 𝑤′
1 and 𝑤1 changes 𝛹 by (0, +1). Again, a 𝛷-decreasing swap of the

agent occupying vertex 𝑤2 prevents a𝛷-preserving swap afterward of the agent
occupying vertex 𝑤1. If the agent on vertex 𝑤2 has a utility of 5

8 a swap with
the agent on vertex 𝑤′

2 changes𝛹 by (−1, +1), cf. Figure 4.9 (c). To end up in an
equivalent strategy profile, i.e., that the agents occupying vertices 𝑢, 𝑤′

1 and 𝑤′
2

are involved in 𝛷-decreasing and 𝛷-preserving swaps, the agent occupying
vertex 𝑤 has to perform two 𝛷-increasing swaps to leave the neighborhood
of vertices 𝑤′

1 and 𝑤′
2. In total, the extended potential 𝛹 must change by at

least (0, +3), since together with the 𝛷-decreasing swap of the agents 𝑖 and 𝑗
occupying the vertices 𝑢 and 𝑣, we have two 𝛷-decreasing swaps of (−1, +1),
one𝛷-preserving swap of (0, +1), and two𝛷-increasing swaps of (+1, 0). This
implies a lexicographic increase of the extended potential𝛹.
We have shown that after a 𝛹-decreasing profitable local swap involving

agents on two vertices 𝑢 and 𝑣 additional swaps are necessary before another
𝛹-decreasing swap can happen again involving the same vertices. Moreover, we
proved that in total these additional swaps increase the extended potential𝛹
more than it was decreased by the initial swap. Thus, in total the extended
potential𝛹 increases. This contradicts the existence of an IRC. ■

Now we see that compared to the local 𝑘-SSG, the 𝑘-SSG on 8-grids behaves
differently. There the FIP does not hold.
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Figure 4.10: An improving response cycle for the 𝑘-SSG played on an 8-grid. The agent
types are marked orange and blue. See the proof of Theorem 4.10 for more details.

▶ Theorem 4.10. There cannot exist a potential function for the 𝑘-SSG played
on an 8-grid, for any 𝑘 ≥ 2. ◀

Proof. We prove the statement by providing an improving response cycle 𝝈0, 𝝈1,
𝝈2, 𝝈3, 𝝈4. The construction is shown in Figure 4.10, where vertices are labeled
with the agent occupying them. We have orange and blue agents. Agents with
other types can be placed in a grid outside of the depicted cutout.

In the initial strategy profile𝝈0, cf. Figure 4.10 (a),U𝑏 (𝝈0) = 3
5 andU𝑐 (𝝈0) = 3

8 .
Both agents𝑏 and 𝑐 improve by swapping, since in𝝈1 ≔ 𝝈0

𝑏𝑐
we haveU𝑏 (𝝈1) = 5

8
and U𝑐 (𝝈1) = 2

5 . After the first swap, cf. Figure 4.10 (b), agents 𝑎 and 𝑑 can
perform a profitable swap, since U𝑎 (𝝈1) = 1

3 , U𝑑 (𝝈1) = 5
8 and in 𝝈2 ≔ 𝝈1

𝑎𝑑

we have U𝑎 (𝝈2) = 3
8 and U𝑑 (𝝈2) = 2

3 . Then, cf. Figure 4.10 (c), agents 𝑎 and 𝑐
can swap and improve from U𝑎 (𝝈2) = 3

8 and U𝑐 (𝝈2) = 3
5 to U𝑎 (𝝈3) = 2

5 and
U𝑐 (𝝈3) = 5

8 , respectively, with 𝝈3 ≔ 𝝈2
𝑎𝑐 . Finally, cf. Figure 4.10 (d), agents 𝑏

and 𝑑 can improve by swapping, since U𝑏 (𝝈3) = 5
8 , U𝑑 (𝝈3) = 1

3 and in 𝝈
4 ≔ 𝝈3

𝑏𝑑

we have U𝑏 (𝝈4) = 2
3 and U𝑑 (𝝈4) = 3

8 . Now observe that the coloring induced
by 𝝈4 is the same as the one induced by 𝝈0, see Figure 4.10 (a), where 𝑎 exchanges
position with 𝑏 and 𝑐 exchanges position with 𝑑 . So, the sequence of profitable
swaps defined above can be repeated over and over mutatis mutandis. ■

However, even if convergence to an equilibrium is not guaranteed for 𝑘 ≥ 2,
they are guaranteed to exist for 𝑘 = 2.

▶ Theorem 4.11. Every 2-SSG played on an 8-grid has an equilibrium that can
be computed in polynomial time. ◀

Proof. Remember that we denote with ℓ the number of rows and with ℎ the
number of columns. Assume without loss of generality that the grid is such that
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Figure 4.11: The structure of an equilibrium when 𝑜 ≥ 2ℎ − 1. See the proof of
Theorem 4.11 for more details.

ℎ ≤ ℓ . If this is not the case, simply rotate the grid by ninety degrees. We give
two different constructions depending on how the number of orange agents
compares with the threshold 2ℎ − 1.
If 𝑜 ≥ 2ℎ − 1, let 𝝈 be the strategy profile in which orange agents occupy

the grid starting from the upper-left corner and proceedings towards the right,
filling the grid in increasing order of rows, see Figure 4.11 for a pictorial example.
Denote by 𝑥 the number of entirely orange rows and by 𝑦 the number of orange
vertices in the unique row containing both, orange and blue vertices, if this row
exists, otherwise set 𝑦 = 0. Moreover, whenever 𝑦 ≠ 0, let 𝑢 be the last orange
vertex, i.e., the 𝑦-th vertex along the (𝑥 + 1)-th row, and 𝑣 be the first blue one,
i.e., the vertex at the right of 𝑢; again, see Figure 4.11 for an example. Observe
that, by the assumption 𝑜 ≥ 2ℎ − 1 and the fact that 𝑜 ≤ 𝑏, the following two
properties hold:

(P.1) 𝑥 ≥ 1 and 𝑥 = 1 if and only if 𝑦 = ℎ − 1;

(P.2) 𝑥 ≤ ℓ − 2 and 𝑥 = ℓ − 2 only if 𝑦 = 0.

Fix an orange agent 𝑖 . It is easy to see that, by property (P.1), it holds that

U𝑖 (𝝈) ≥


2
3 if 𝝈 (𝑖) is a corner vertex,
3
5 if 𝝈 (𝑖) is a border vertex unless 𝑦 = 1 which gives U𝑖 (𝝈) = 2

5 ,

5
8 if 𝝈 (𝑖) is an inner vertex unless 𝝈 (𝑖) = 𝑢 which gives U𝑖 (𝝈) = 1

2 .

Fix a blue agent 𝑗 . It is easy to see that, by property (P.2), it holds that
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o = 10 o = 11 o = 12 o = 13 o = 14

Figure 4.12: The structure of an equilibrium when 𝑜 < 2ℎ − 1 and 𝑜 ∈ [14]. Only the
orange vertices are depicted. See the proof of Theorem 4.11 for more details.

U𝑗 (𝝈) ≥


2
3 if 𝝈 ( 𝑗) is a corner vertex,
3
5 if 𝝈 ( 𝑗) is a border vertex unless 𝑦 = ℎ − 1 then U𝑗 (𝝈) = 2

5 ,

5
8 if 𝝈 ( 𝑗) is an inner vertex unless 𝝈 ( 𝑗) = 𝑣 then U𝑗 (𝝈) = 1

2 .

As 2
5 + min

{ 2
3 ,

3
5 ,

5
8
}

≥ 1, it follows by Lemma 4.2 that profitable swaps are
possible in 𝝈 only between an orange agent 𝑖 and a blue agent 𝑗 satisfying one
of the following three conditions:

(i) U𝑖 (𝝈) = 2
5 and U𝑗 (𝝈) = 2

5 ,

(ii) U𝑖 (𝝈) = 2
5 and U𝑗 (𝝈) = 1

2 ,

(iii) U𝑖 (𝝈) = 1
2 and U𝑗 (𝝈) = 2

5 .

(i) requires 1 = 𝑦 = ℎ − 1 which implies ℎ = 2 so that 1𝑖 𝑗 (𝝈) = 1. By
deg𝝈 (𝑖 ) = deg𝝈 ( 𝑗 ) = 5, we get U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1𝑖 𝑗 (𝝈 )

5 satisfying the
condition of Lemma 4.2.

(ii) requires 𝑦 = 1, which yields 𝝈 (𝑖) = 𝑢, and 𝝈 ( 𝑗) = 𝑣 so that 1𝑖 𝑗 (𝝈) = 1.
By deg𝝈 (𝑖 ) = 5 and deg𝝈 ( 𝑗 ) = 8, we get U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1𝑖 𝑗 (𝝈 )

5 again
satisfying the condition of Lemma Lemma 4.2.

(iii) requires 𝑦 = ℎ − 1, which yields 𝝈 ( 𝑗) = 𝑣, and 𝝈 (𝑖) = 𝑢 so that 1𝑖 𝑗 (𝝈) = 1.
By deg𝝈 ( 𝑗 ) = 5 and deg𝝈 (𝑖 ) = 8, we get U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1𝑖 𝑗 (𝝈 )

5
satisfying the condition of Lemma 4.2. Thus, 𝝈 is an equilibrium and can
be constructed in polynomial time.
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Figure 4.13: The structure of an 𝑥-triangle, with 𝑥 = 6. The grid needs to have additional
blue rows and columns which are not depicted. See the proof of Theorem 4.11 for more
details.

If 𝑜 < 2ℎ − 1, a more involved construction is needed. For any 𝑜 ∈ [14],
the proposed strategy profile 𝝈 is depicted in Figure 4.12. We stress that the
two assumptions ℎ ≤ ℓ and 𝑜 < 2ℎ − 1 imply that the grid is large enough to
accommodate a coloring implementing 𝝈 . It is not difficult to check by direct
inspection that 𝝈 is an equilibrium. To this aim, it is important to observe that,
when 𝑜 ≥ 7, there must be at least two blue agents occupying vertices on the
first row, otherwise the assumption 𝑜 < 2ℎ − 1 would be contradicted.
Now, for any 15 ≤ 𝑜 < 2ℎ − 1, we propose a general rule, which can be

implemented in polynomial time, to construct an equilibrium profile 𝝈 . First,
we define some suitable structures. For an integer 𝑥 ≥ 5, an 𝑥-triangle is a
strategy profile obtained as follows: for each 𝑦 = 𝑥 down to 1, 𝑦 orange agents
are assigned to the first 𝑦 vertices of the (𝑥 + 1−𝑦)-th row, see Figure 4.13. Thus,
a total of 𝑥 (𝑥+1)

2 orange agents are assigned.
For an integer 𝑥 ≥ 5, an (𝑥, 1)-almost triangle is a strategy profile obtained

by assigning 𝑥 orange agents to the first 𝑥 vertices of the first two rows, 𝑥 − 1
orange agents to the first 𝑥 − 1 vertices of the third row, and then, for each
𝑦 = 𝑥 − 3 down to 2, 𝑦 orange agents are assigned to the first 𝑦 vertices of the
(𝑥 + 1 − 𝑦)-th row, see the top-left picture in Figure 4.14. Thus, a total of

𝑥−3∑︁
𝑖=2

𝑖 + 3𝑥 − 1 = 𝑥 (𝑥 + 1)
2 + 1

orange agents are assigned.
For a pair of integers (𝑥,𝑦), with 𝑥 ≥ 5 and 2 ≤ 𝑦 ≤ 𝑥 , we define an (𝑥,𝑦)-

almost triangle as follows: for 2 ≤ 𝑦 ≤ 𝑥−2, the (𝑥,𝑦)-almost triangle is obtained
from the (𝑥,𝑦−1)-one by locating an orange agent to the first non-orange vertex
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Figure 4.14: The structure of (𝑥,𝑦)-triangles, with 𝑥 = 6 and 𝑦 ∈ [6]. The grid needs
to have additional blue rows and columns which are not depicted. See the proof of
Theorem 4.11 for more details.

of the (𝑦 + 2)-th row; the (𝑥, 𝑥 − 1)-almost triangle is obtained by locating an
orange agent to the first non-orange vertex, i.e., the second, of the 𝑥-th row of
the (𝑥, 𝑥 − 2)-one; the (𝑥, 𝑥)-almost triangle is obtained by locating an orange
agent to the first non-orange vertex, i.e., the (𝑥 + 1)-th, of the first row of the
(𝑥, 𝑥 − 1)-one, see Figure 4.14 for a pictorial example.

Now observe that any number 𝑜 ≥ 15 can be decomposed as 𝑜 =
𝑥 (𝑥 + 1)

2 +𝑦
for some integers 𝑥 and 𝑦 such that 𝑥 ≥ 5 and 0 ≤ 𝑦 ≤ 𝑥 . The strategy profile 𝝈
is the 𝑥-triangle if 𝑦 = 0 and the (𝑥,𝑦)-almost triangle, otherwise. Clearly, 𝝈 can
be constructed in polynomial time. We are left to prove that 𝝈 is an equilibrium.
We shall use Lemma 4.2 in conjunction with the following claims which can be
easily verified with the help of Figure 4.13 and Figure 4.14. In any 𝑥-triangle 𝝈
with 𝑥 ≥ 5, U𝑖 (𝝈) ≥ 2

5 for any orange agent 𝑖 and U𝑗 (𝝈) ≥ 5
8 for any blue

agent 𝑗 . Thus, 𝝈 is an equilibrium. Now, let us consider (𝑥,𝑦)-almost triangles.

If 𝑦 ∈ [𝑥 − 3], we have U𝑖 (𝝈) ≥ 1
2 for any orange agent 𝑖 and U𝑗 (𝝈) ≥ 1

2 for
any blue agent 𝑗 . So, 𝝈 is an equilibrium.

If 𝑦 = 𝑥 − 2, U𝑖 (𝝈) ≥ 1
2 for each orange agent 𝑖 , except for the one occupying

the unique orange vertex at the 𝑥-th row who gets utility equal to 2
5 ; moreover,

U𝑗 (𝝈) ≥ 5
8 for each blue agent 𝑗 , except for the one occupying the first blue

vertex of the 𝑥-th row, see the bottom-left picture in Figure 4.14.
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Thus, we get

U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 −
1𝑖 𝑗 (𝝈)

min{deg𝝈 (𝑖 ) , deg𝝈 ( 𝑗 ) }

for each orange agent 𝑖 and blue agent 𝑗 . So, 𝝈 is an equilibrium. If 𝑦 = 𝑥 − 1,
U𝑖 (𝝈) ≥ 1

2 for each orange agent 𝑖 and U𝑗 (𝝈) ≥ 5
8 for each blue agent 𝑗 , thus

implying that 𝝈 is an equilibrium, see the bottom-middle picture in Figure 4.14.
Finally, if 𝑦 = 𝑥 , U𝑖 (𝝈) ≥ 2

5 for each orange agent 𝑖 and U𝑗 (𝝈) ≥ 5
8 for each

blue agent 𝑗 . see the bottom-right picture in Figure 4.14, and so also in this
case 𝝈 is an equilibrium. ■

4.3 Price of Anarchy for Two Types of Agents

In the following section, we consider the efficiency of equilibrium assignments
and bound the Price of Anarchy for different classes of underlying graphs. In
particular, besides investigating general graphs, cf. Section 4.3.1, we analyze
regular graphs, cf. Section 4.3.2, cycles, paths, cf. Section 4.3.3, 4-grids and
8-grids, cf. Section 4.3.4. Agarwal et al. [Aga+21] already proved that the Price
of Anarchy for the 2-SSG is in 𝛩 (𝑛) on underlying star graphs if there are at
least two agents of each type and between 667

324 and 4 for the balanced version,
i.e., 𝑜 = 𝑛

2 . We improve this result by providing an upper bound of 8
3 which tends

to 2 for 𝑛 going to infinity. Furthermore, the authors of [Aga+21] showed that
the Price of Anarchy can be unbounded for 𝑘 ≥ 3 using a cycle topology with
additional leaves. Note that topological restrictions could circumvent this non-
existence result. Nevertheless, we concentrate on the (local) 2-SSG for several
graph classes.

4.3.1 General Graphs

Remember that for a 2-SSG game, we assume that 𝑜 is the less frequent color.
We significantly improve and generalize the results of [Aga+21] for the case

of 𝑜 > 1 by providing a general upper bound of 𝑛𝑜 (𝑛−𝑜 )−𝑛
𝑜 (𝑜−1) (𝑛−𝑜 ) . For balanced games,

it yields an upper bound of 2(𝑛+2)
𝑛

which shows that the PoA tends to 2 as the
number of vertices increases. Moreover, if 𝑏

𝑜
∈ O(1), the PoA is constant.
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With the help of Lemma 4.2, we can now prove our general upper bound for
the 2-SSG.

▶ Theorem 4.12. The PoA of 2-SSGs with 𝑜 > 1 is at most 𝑛𝑜 (𝑛−𝑜 )−𝑛
𝑜 (𝑜−1) (𝑛−𝑜 ) . Hence,

the PoA ∈ O
(
𝑏
𝑜

)
. ◀

Proof. Fix a 2-SSG with 𝑜 > 1 orange agents played on a graph𝐺 with 𝑛 vertices.
First, we observe that the social welfare of a social optimum is at most

𝑛 − 2 + 𝑜 − 1
𝑜

+ 𝑏 − 1
𝑏

= 𝑛 − 1
𝑜
− 1
𝑏
,

as there must be at least one orange vertex that is adjacent to at least one blue
vertex, thus getting utility at most 𝑜−1

𝑜
, and at least one blue vertex that is

adjacent to at least one orange vertex, thus getting utility at most 𝑏−1
𝑏
.

Given a strategy profile 𝝈 ′, a feasible pair is a pair of vertices (𝑢, 𝑣) such
that 𝑢 and 𝑣 are occupied by agents of different colors in 𝝈 ′ and {𝑢, 𝑣} ∉ 𝐸 (𝐺),
i.e., 𝑢 and 𝑣 are not adjacent. Now fix a swap equilibrium 𝝈 and consider a
maximum cardinality matching𝑀 of feasible pairs. Clearly 0 ≤ |𝑀 | ≤ 𝑜 . Hence,
|𝑀 | = 𝑜 − 𝑥 for some 0 ≤ 𝑥 ≤ 𝑜 . If 𝑥 > 0, then, there are exactly 𝑥 orange and at
least 𝑥 blue leftover vertices of 𝑉 that do not belong to any feasible pair in 𝑀 .
As𝑀 has maximum cardinality, each orange leftover vertex has to be adjacent
to all leftover blue ones and vice-versa. That is, for each leftover vertex 𝑢, we
have deg𝑢 (𝐺) ≥ 𝑥 . Let 𝑇 be a set of pairs of vertices obtained by matching
each leftover orange vertex with a leftover blue one. By Lemma 4.2, for each
(𝑢, 𝑣) ∈ 𝑀 , it holds that

U𝝈−1 (𝑢 ) (𝝈) + U𝝈−1 (𝑣) (𝝈) ≥ 1

and for each (𝑢, 𝑣) ∈ 𝑇 , it holds that U𝝈−1 (𝑢 ) (𝝈) +U𝝈−1 (𝑣) (𝝈) ≥ 1− 1
𝑥
. Thus, the

social welfare of 𝝈 is at least 𝑜 − 𝑥 + 𝑥 (1 − 1
𝑥
) = 𝑜 − 1. ■

▶ Corollary 4.13. The PoA of 2-SSGs is constant if 𝑏
𝑜
is constant. ◀

We want to emphasize that for the case where both colors are perfectly
balanced, the PoA is constant. Although this was already known [Aga+21], we
provide an improved upper bound. As for 𝑛 = 2, the 2-SSG is trivial and has a
PoA = 1 and for 𝑛 = 4 we can show that the PoA = 1 as well, we get the following
corollary.
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▶ Corollary 4.14. The PoA of balanced 2-SSGs is at most min
{
8
3 ,

2(𝑛+2)
𝑛

}
. ◀

Proof. We only have to show that for 𝑛 = 4 the 2-SSG has a PoA = 1. In particular,
assume that there are two orange and two blue agents. To show that PoA = 1, it
suffices to show that either the underlying graph is a star or that the two orange
agents are connected, and the two blue agents are connected. This is enough as
the graph is connected and has four vertices.

Observe that it cannot be the case that both blue agents are connected only to
orange agents and both orange agents are connected only to blue agents. If this
were the case, there would exist an orange-blue pair that would like to swap. So,
without loss of generality, the blue agents are connected.

Now, assume that the orange agents are not connected, and thus have utility 0.
Observe that it cannot be the case that an orange agent 𝑖 is connected to both
blue agents. If this were the case, consider the swap between 𝑖 and the blue
agent 𝑗 that is also connected to the other orange agent. Then, 𝑖 improves its
utility by getting connected to the other orange agent, while 𝑗 remains connected
to the other blue agent and, at the same time, decrease the number of orange
neighbors. So, every orange agent has only one blue neighbor.
Only two cases are remaining: The two orange agents have the same blue

neighbor or they have different blue neighbors. If the orange agents have the
same blue neighbor, this implies that the topology is a star with a blue center,
hence, the assignment is a swap equilibrium and optimal in terms of social
welfare. If the orange agents have different blue neighbors, then, the topology is
a line with the two orange agents occupying the outer vertices and the two blue
agents occupying the two inner vertices. This is clearly not a swap equilibrium,
as, for instance, the left-most blue and the right-most orange want to swap.
Hence, the PoA is 1 for 𝑛 = 4. ■

We now show that in contrast to the balanced 2-SSG, the balanced local 𝑘-SSG
has a much higher LPoA.

▶ Theorem 4.15. The LPoA of local balanced 2-SSGs with 𝑜 > 1 is between
2𝑛 + 8

𝑛
− 8 and 2𝑛 − 8

𝑛
. ◀

Proof. Fix a 2-SSG with 𝑜 > 1 orange agents played on a graph𝐺 with 𝑛 vertices.
First, as derived in the proof of Theorem 4.12, we have that the social welfare of
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...

...

v1

v2

v3

(a) Worst equilibrium

...

...

v1

v2

v3

(b) Social optimum

Figure 4.15: A lower bound for the local balanced 2-SSG. The agent types are marked
orange and blue. See the proof of Theorem 4.15 for more details.

a social optimum is at most

𝑛 − 2 + 𝑜 − 1
𝑜

+ 𝑛 − 𝑜 − 1
𝑛 − 𝑜 = 𝑛 − 𝑛

𝑜 (𝑛 − 𝑜) ,

as there must be at least one orange vertex that is adjacent to at least one blue
vertex.

Now fix a local swap equilibrium 𝝈 . We show that the social welfare of 𝝈
is at least 1

2 . First, assume that there is exactly one vertex 𝑣 with deg𝑣 (𝐺) > 1.
Then, 𝐺 has to be a star and since 𝑜 > 1 there has to be at least one leaf vertex
with an agent 𝑖 with U𝑖 (𝝈) = 1. Therefore, there have to be at least two adjacent
vertices 𝑣1 and 𝑣2 with deg𝑣𝑖 > 1 for 𝑖 ∈ {1, 2}. By Lemma 4.2 we know that if 𝑣1
and 𝑣2 are occupied by agents of different types then U𝝈−1 (𝑣1 ) + U𝝈−1 (𝑣2 ) ≥ 1

2 .
Hence, assume that there is no such pair 𝑣1 and 𝑣2 and assume, without loss of
generality, that all adjacent vertex pairs 𝑣1 and 𝑣2, with deg𝑣𝑖 > 1 for 𝑖 ∈ {1, 2},
are occupied by orange agents. It follows, since 𝐺 is connected, that all blue
agents only occupy leaf vertices. If the social welfare of 𝝈 is less than 1

2 , all
orange agents have to be surrounded by more blue than orange agents. Since one
blue agent is only adjacent to one orange agent this contradicts our requirement
of a balanced game. Hence, the PoA is upper bounded by 2

(
𝑛 − 𝑛

𝑜 (𝑛−𝑜 )

)
. With

𝑜 = 𝑛
2 this is equal to 2𝑛 − 8

𝑛
.

For the lower bound consider the graph 𝐺 in Figure 4.15. 𝐺 consists of two
stars which are connected by a common leaf vertex. Let 𝑣1 be the center of the
first star, 𝑣3 be the center of the second star and 𝑣2 be the common vertex. We
first prove that the configuration shown in Figure 4.15 (a) is an equilibrium. Note,
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that none of the leaf vertices can perform a profitable swap since the agents on 𝑣1
and 𝑣3, respectively, would receive U𝝈−1 (𝑣1 ) = 0 and U𝝈−1 (𝑣2 ) = 0, respectively. So
the only possible swap is between the agents placed on 𝑣1 and 𝑣2. However, the
orange agent currently located on 𝑣1 would not increase its utility by swapping
since it would be surrounded only by two blue agents placed on 𝑣1 and 𝑣2 and
therefore would receive a utility equal 0. Hence, no local swap is possible and
only the agents placed on 𝑣2 and 𝑣3 receive positive utility. The social welfare
is equal to 1

2 +
1

𝑜−1 which is for 𝑜 = 𝑛
2 equal to 1

2 +
2

𝑛−2 . The social optimum
is shown in Figure 4.15 (b). This is easy to see since we meet the trivial upper
bound

𝑛 − 2 + 𝑜 − 1
𝑜

+ 𝑛 − 𝑜 − 1
𝑛 − 𝑜 = 𝑛 − 𝑛

𝑜 (𝑛 − 𝑜)

which is for 𝑜 = 𝑛
2 equal to 𝑛 − 4

𝑛
. Hence, the PoA is lower bounded by 2(𝑛−2)2

𝑛
=

2𝑛 + 8
𝑛
− 8. ■

If the underlying graph 𝐺 does not contain leaf vertices, i.e., all vertices have
at least degree 2, we can prove a smaller LPoA. In particular, if the ratio between
the maximum and minimum degree of vertices in 𝐺 is constant, we achieve a
constant LPoA.

▶ Theorem 4.16. The LPoA of local 2-SSGs on a graph𝐺 with minimum degree
𝛿 ≥ 2 and maximum degree 𝛥 is at most 2

(
1 + 𝛥+1

𝛿−1
)
. ◀

Proof. Fix a local swap equilibrium 𝝈 on 𝐺 . Let 𝜌 := 𝛿−1
2𝛿 and let 𝑜 ′ and 𝑏′ be

the numbers of orange and blue agents that have a utility strictly less than 𝜌 ,
respectively. Clearly, 𝑜 −𝑜 ′ and 𝑏 −𝑏′ are the numbers of orange and blue agents
that have a utility of at least 𝜌 , respectively. We first prove that 𝑏 − 𝑏′ ≥ 𝛿𝑜′

𝛥
as

well as that 𝑜 − 𝑜 ′ ≥ 𝛿𝑏′

𝛥
and show then how these two inequalities imply the

theorem statement.
We only prove the inequality 𝑏 − 𝑏′ ≥ 𝛿𝑜′

𝛥
as the proof of the other inequality

is similar. Let 𝑖 and 𝑗 , respectively, be a blue agent and an orange agent that
occupy two adjacent vertices in 𝐺 , say 𝜎 (𝑖) = 𝑢 and 𝜎 ( 𝑗) = 𝑣, and such that
U𝑗 (𝝈) < 𝜌 . By Lemma 4.2, we have that U𝑖 (𝝈) + U𝑗 (𝝈) ≥ 1 − 1

𝛿
, from which

we derive
U𝑖 (𝝈) > 1 − 1

𝛿
− 𝛿 − 1

2𝛿 =
𝛿 − 1
2𝛿 = 𝜌.

Let𝐺 ′ be the subgraph of𝐺 containing all the non-monochrome edges, i.e.,
each edge of 𝐺 ′ connects a vertex occupied by an orange agent with a vertex
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occupied by a blue agent. Clearly, 𝐺 ′ is bipartite. Consider the vertex-induced
subgraph 𝐻 of 𝐺 ′ in which we have all the 𝑜 ′ orange agents having a utility
strictly less than 𝜌 on one side and all the 𝑏 − 𝑏′ blue agents having a utility of
at least 𝜌 on the other side. Since for each vertex 𝑣 of 𝐻 occupied by an orange
agent, there are at least (1−𝜌)deg𝑣 ≥ 𝛿+1

2 vertices adjacent to𝑢 that are occupied
by blue agents and each such blue agent has a utility of at least 𝜌 , the degree
of 𝑣 in 𝐻 is at least 𝛿+1

2 . Therefore,

|𝐸 (𝐻 ) | ≥ 𝛿 + 1
2 𝑜 ′. (4.5)

Furthermore, since each edge of 𝐻 is incident to a blue agent that has a utility of
at least 𝜌 , the degree in 𝐻 of every vertex 𝑢 that is occupied by a blue agent is at
most (1 − 𝜌)deg𝑢 ≤ 𝛿+1

2𝛿 𝛥. Therefore,

|𝐸 (𝐻 ) | ≤ 𝛥 (𝛿 + 1)
2𝛿 (𝑏 − 𝑏′) . (4.6)

Plugging Equation (4.5) into Equation (4.6) and simplifying gives 𝑏 − 𝑏′ ≥ 𝛿
𝛥
𝑜 ′.

Finally, we show how 𝑏 − 𝑏′ ≥ 𝛿𝑜′

𝛥
and 𝑜 − 𝑜 ′ ≥ 𝛿𝑏′

𝛥
imply the theorem

statement. The average utility of all the agents in 𝐻 is at least

𝜌 (𝑏 − 𝑏′)
𝑜 ′ + (𝑏 − 𝑏′) ≥

𝜌 𝛿
𝛥

1 + 𝛿
𝛥

=
𝛿 − 1

2(𝛿 + 𝛥) .

Similarly, the average utility of the 𝑏′ blue agents whose utilities are strictly less
than 𝜌 and the 𝑜 − 𝑜 ′ orange agents whose utilities are of at least 𝜌 is also at
least 𝛿−1

2(𝛿+𝛥 ) . Therefore, the LPoA is at most 2(𝛿+𝛥 )
𝛿−1 = 2

(
1 + 𝛥+1

𝛿−1
)
. ■

In Argarwal et al. [Aga+21], the authors showed that in the case where agents
are unique in their type the PoA can be unbounded. We observe, by using the
same instance from [Aga+21], that the LPoA on a graph with minimum degree
𝛿 = 1 can be unbounded as well. For this, consider the star graph with 𝛥 leaves
and let 𝝈 be a strategy profile where the unique orange agent occupies the
star center, while all the blue agents occupy the leaves. This is clearly a swap
equilibrium of 0 social welfare. Any configuration in which a blue agent occupies
the star center has strictly positive social welfare.

However, as the following theorem shows, the LPoA can be upper bounded by
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a function of 𝛥 if we force 𝑛 ≥ 𝛥 + 2, i.e., we avoid the pathological star graph
of 𝛥 + 1 vertices.

▶ Theorem 4.17. For every 𝜖 > 0, the LPoA of local 2-SSGs on a graph 𝐺 with
maximum degree 𝛥 ≤ 𝑛 − 2 is between 𝛥 (𝛥−1)

2 − 𝜖 and 2(𝛥2 + 1). ◀

Proof. We claim that for every agent 𝑖 , with deg𝜎 (𝑖 ) ≥ 2, there is an agent 𝑗 , with
𝜎 ( 𝑗) ∈ 𝑁 (𝜎 (𝑖)) and deg𝜎 ( 𝑗 ) ≥ 2, such that U𝑖 (𝝈) ≥ 1

𝛥
or U𝑗 (𝝈) ≥ 1

2 . Indeed,
assume that U𝑖 (𝝈) < 1

𝛥
. This implies that U𝑖 (𝝈) = 0 and, therefore, that every

agent occupying a vertex in 𝑁 (𝜎 (𝑖)) is of a different type from that of 𝑖 . Let 𝑗 be
an agent occupying a vertex in 𝑁 (𝜎 (𝑖)) and such that deg𝜎 ( 𝑗 ) ≥ 2. By Lemma 4.2
the sum of utilities of agents 𝑖 and 𝑗 is of at least 1

2 and therefore, U𝑗 (𝝈) ≥ 1
2 .

This implies that all the vertices of the graph can be partitioned into two types
of sets:

type-1 set: It has a size smaller than or equal to 𝛥 + 1 and contains a vertex 𝑢
occupied by an agent that has a utility of at least 1

𝛥
together with a subset

of 𝑁 (𝑢);

type-2 set: It has a size smaller than or equal to 1 + 𝛥 + 𝛥 (𝛥 − 1) = 𝛥2 + 1 and
contains a vertex 𝑢 occupied by an agent that has a utility of at least 1

2
together with a subset of 𝑁 (𝑢) ∪ ⋃

𝑣∈𝑁 (𝑢 ) 𝑁 (𝑣).

The average utility of all the agents contained in type-1 sets is at least 1
𝛥2+𝛥 ,

while the average utility of all the agents contained in type-2 sets is at least
1

2(𝛥2+1) . Therefore, as 𝛥 ≥ 2, the average utility of an agent is at least

min
{

1
𝛥2 + 𝛥 ,

1
2(𝛥2 + 1)

}
=

1
2(𝛥2 + 1) .

The upper bound of the LPoA follows.
For the lower bound of the LPoA, it is enough to consider the instance with 𝑜

orange agents and 𝑏 = (𝛥 − 2)𝑜 blue agents – thus, 𝑛 = (𝛥 − 1)𝑜 – consisting of
a cycle of length 𝑜 and whose vertices are all occupied by the orange agents and
where each vertex of the cycle is the center of a star of 𝛥 − 2 1-degree additional
vertices that are occupied by the blue agents. Clearly, all the degree-1 vertices
are occupied by the blue agents. The utility of an orange agent is equal to 2

𝛥

while the utility of a blue agent is equal to 0. By Lemma 4.2, we have that the
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considered strategy profile is a local swap equilibrium. The social welfare of this
local swap equilibrium is equal to 2𝑜

𝛥
= 2𝑛

𝛥 (𝛥−1) .
If we assume that 𝑜 = 𝛥 − 1 and consider the strategy profile where the 𝛥 − 1

orange agents occupy any vertex of the cycle together with all the 𝛥−2 1-degree
vertices appended to it, and the blue agents occupy the remaining vertices, we
have that the social welfare of the considered instance is equal to

𝑛 − 3 + 2𝛥 − 1
𝛥

+ 𝛥 − 2
𝛥

= 𝑛 − 4
𝛥
.

Therefore, if we choose 𝑛 ≥ 2(𝛥−1)
𝜖

, we have that the LPoA is lower bounded by(
𝑛 − 4

𝛥

)
𝛥 (𝛥 − 1)

2𝑛 =
𝛥 (𝛥 − 1)

2 − 2(𝛥 − 1)
𝑛

≥ 𝛥 (𝛥 − 1)
2 − 𝜖. ■

If we desist from star graphs, the class of trees meets the conditions required
by Theorem 4.17 and we get the following corollary.

▶ Corollary 4.18. For every 𝜖 > 0, the LPoA of local 2-SSGs on a tree graph 𝐺
with maximum degree 𝛥 ≤ 𝑛 − 2 is at least 𝛥 (𝛥−1)

2 − 𝜖 . ◀

Proof. Consider the lower bound construction given in Theorem 4.17 in which
we remove one edge from the cycle. There is a threshold value 𝑓 (𝛥, 𝜖) such that
for every 𝑛 ≥ 𝑓 (𝛥, 𝜖), the LPoA is at least 𝛥 (𝛥−1)

2 − 𝜖 . ■

4.3.2 Regular Graphs

In this section, we provide upper and lower bounds on the LPoA for regular
graphs, i.e., for graphs where all vertices have the same degree. The key is the
following technical lemma which is later useful also for non-regular graphs.

▶ Lemma 4.19. Let 𝝈 be a local swap equilibrium, and let 𝛥 = 2𝜁 + 𝜂, with
𝜁 ∈ N and 𝜂 ∈ {0, 1}. Let 𝑋 ⊆ 𝑉 be a subset of vertices such that deg𝑣 = 𝛥

for every 𝑣 ∈ 𝑁 (𝑋 ) ≔ ⋃
𝑥∈𝑋 𝑁 (𝑥). Finally, let 𝑍 ⊆ 𝑁 (𝑋 ) be the set of vertices

occupied by the agents that have a utility strictly larger than 𝜌 := 𝜁

2𝜁+1 . Then, the
average utility of the agents that occupy the vertices in 𝑋 ∪ 𝑍 is at least 𝜌 . ◀

Proof. Let 𝑋𝑜 ⊆ 𝑋 (respectively, 𝑋𝑏 ⊆ 𝑋 ) be the set of vertices occupied by the
orange (respectively, blue) agents that have a utility strictly less than 𝜌 . Similarly,
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let 𝑍𝑜 ⊆ 𝑁 (𝑋 ) (respectively, 𝑍𝑏 ⊆ 𝑁 (𝑋 )) be the set of vertices occupied by the
orange (respectively, blue) agents that have a utility strictly larger than 𝜌 . We
show that the average utility of the agents that occupy the vertices 𝑋𝑜 ∪ 𝑍𝑏
(respectively, 𝑋𝑏 ∪ 𝑍𝑜 ) is at least 𝜌 . Notice that this immediately implies the
theorem statement.

In the rest of the proof, without loss of generality, we prove that the average
utility of the agents that occupy the vertices in 𝑋𝑜 ∪ 𝑍𝑏 is at least 𝜌 . First of all,
we observe that the utility of each agent in 𝑁 (𝑋 ) is in the set

{
ℓ
𝛥
| ℓ = 0, . . . , 𝛥

}
.

Let 𝑜ℓ be the number of orange agents that occupy the vertices of 𝑋 and whose
utilities are equal to ℓ

𝛥
. Similarly, let 𝑏ℓ be the number of orange agents that

occupy the vertices of 𝑁 (𝑋 ) and whose utilities are equal to ℓ
𝛥
. Since we are

interested in the orange agents occupying the vertices of 𝑋𝑜 , we consider the
values 𝑜ℓ such that ℓ

𝛥
< 𝜌 , or, equivalently, ℓ ≤ 𝜁 − 1. Similarly, since we are

interested in the blue agents occupying the vertices of 𝑍𝑏 , we consider the values
𝑏𝛥−ℓ−1 such that 𝛥−ℓ−1

𝛥
> 𝜌 , or, equivalently, ℓ ≤ 𝜁 − 1. We prove that, for every

0 ≤ ℎ ≤ 𝜁 − 1,
ℎ∑︁
ℓ=0

(ℓ + 1)𝑏𝛥−ℓ−1 ≥
ℎ∑︁
ℓ=0

(𝛥 − ℓ)𝑜ℓ . (4.7)

We observe that if any orange agent 𝑖 that occupies a vertex 𝑣 ∈ 𝑋𝑜 has a utility
of ℓ

𝛥
, where 0 ≤ ℓ ≤ 𝜁 − 1, then, since we are in a local swap equilibrium, any of

the 𝛥 − ℓ blue agents that occupy the vertices in 𝑁 (𝑣) has a utility of at least
𝛥−ℓ−1

𝛥
> 𝜌 by Lemma 4.2.

Let 𝐺 ′ be the (bipartite) subgraph of 𝐺 containing all the non-monochrome
edges. Consider the subgraph 𝐻 of𝐺 ′ that is induced by the vertices in 𝑋ℎ ⊆ 𝑋𝑜

that are occupied by agents having a utility of at most ℎ
𝛥
and the agents in

𝑍ℎ ⊆ 𝑍𝑏 having a utility of at least 𝛥−ℎ−1
𝛥

. By construction, the degree of a
vertex of 𝑋ℎ occupied by an agent of utility equal to ℓ

𝛥
, with ℓ ≤ ℎ, is equal to

𝛥 − ℓ . Therefore, if deg𝑣 (𝐻 ) denotes the degree of 𝑣 in 𝐻 , we have that

|𝐸 (𝐻 ) | =
∑︁
𝑣∈𝑋ℎ

deg𝑣 (𝐻 ) =
ℎ∑︁
ℓ=0

(𝛥 − ℓ)𝑜ℓ . (4.8)

Since the degree in𝐻 of each vertex in 𝑍ℎ that is occupied by a blue agent whose

93



Chapter 4 Topological Influence and Locality in Swap Schelling Games

utility is equal to 𝛥−ℓ−1
𝛥

, with ℓ ≤ ℎ, is upper bounded by ℓ + 1, we have that

|𝐸 (𝐻 ) | ≤
∑︁
𝑣∈𝑍ℎ

deg𝑣 (𝐻 ) =
ℎ∑︁
ℓ=0

(ℓ + 1)𝑏𝛥−ℓ−1. (4.9)

Combining Equation (4.8) with Equation (4.9) gives Equation (4.7). We are now
able to compute the average utility concerning the agents occupying the vertices
in 𝑋𝑜 ∪ 𝑍𝑏 . The average utility of such agents equals

Uavg :=
∑𝜁−1

ℓ=0
(
𝛥−ℓ−1

𝛥
𝑏𝛥−ℓ−1

)
+ ∑𝜁−1

ℓ=0
(
ℓ
𝛥
𝑜ℓ

)∑𝜁−1
ℓ=0 𝑏𝛥−ℓ−1 +

∑𝜁−1
ℓ=0 𝑜ℓ

.

Now, we prove that Uavg ≥ 𝜌 . We assume that the values of all the 𝑜ℓ ’s are
fixed and that there is at least one 𝑜ℓ , with 0 ≤ ℓ ≤ 𝜁 − 1, that is strictly greater
than 0. Since ℓ

𝛥
< 𝜌 , while 𝛥−ℓ−1

𝛥
> 𝜌 , we have that Uavg is minimized when the

values we can assign to the 𝑏𝛥−ℓ−1’s, that must satisfy Equation (4.7) for every
0 ≤ ℎ ≤ 𝜁 − 1, are somehow minimized.
Since, for every ℓ < ℓ ′ and every 0 < 𝜖 < 𝑏𝛥−ℓ ′−1,

𝛥 − ℓ − 1
𝛥

>
𝛥 − ℓ ′ − 1

𝛥

as well as

(ℓ ′ + 1) (𝑏𝛥−ℓ−1 + 𝜖) + (ℓ + 1) (𝑏𝛥−ℓ ′−1 − 𝜖) > (ℓ ′ + 1)𝑏𝛥−ℓ−1 + (ℓ + 1)𝑏𝛥−ℓ ′−1,

we have that Uavg is minimized exactly when 𝑏𝛥−ℓ−1 =
𝛥−ℓ
ℓ+1 𝑜ℓ .

7 Therefore, if we
denote by𝛹 = {ℓ | 0 ≤ ℓ ≤ 𝜁 − 1 ∧ 𝑜ℓ > 0}, we have that

Uavg ≥

∑
ℓ∈𝛹

(
(𝛥−ℓ−1) (𝛥−ℓ )

𝛥 (ℓ+1) 𝑜ℓ

)
+ ∑

ℓ∈𝛹
(
ℓ
𝛥
𝑜ℓ

)∑
ℓ∈𝛹

(
𝛥−ℓ
ℓ+1 𝑜ℓ

)
+ ∑

ℓ∈𝛹 𝑜ℓ

=

∑
ℓ∈𝛹

2ℓ2−2(𝛥−1)ℓ+𝛥 (𝛥−1)
𝛥 (ℓ+1)∑

ℓ∈𝛹
𝛥+1
ℓ+1

≥ min
ℓ∈𝛹

2ℓ2 − 2(𝛥 − 1)ℓ + 𝛥 (𝛥 − 1)
𝛥 (𝛥 + 1) .

7 We are relaxing the constraint that 𝑏𝛥−ℓ−1 must be an integer.
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We complete the proof by showing that

min
ℓ∈𝛹

2ℓ2 − 2(𝛥 − 1)ℓ + 𝛥 (𝛥 − 1)
𝛥 (𝛥 + 1) ≥ 𝜌. (4.10)

The numerator of the left-hand side of Equation (4.10) is a parabola with respect
to the variable ℓ and is therefore minimized when ℓ is chosen as closest as
possible to the value 𝛥−1

2 .
As

⌊
𝛥−1
2

⌋
≥ 𝜁 − 1 and ℓ ≤ 𝜁 − 1, it follows that the value of ℓ that mini-

mizes Equation (4.10) is ℓ = 𝜁 − 1. Therefore,

2(𝜁 − 1)2 − 2(2𝜁 − 1) (𝜁 − 1) + 2𝜁 (2𝜁 − 1)
2𝜁 (2𝜁 + 1) = 𝜌.

Hence, Uavg ≥ 𝜌 . ■

▶ Corollary 4.20. The LPoA of local 2-SSG on a regular graph𝐺 with𝛥 = 2𝜁 +𝜂,
with 𝜁 ≥ 1 and 𝜂 ∈ {0, 1} is at most 2 + 1

𝜁
. ◀

Proof. The corollary follows from Lemma 4.19 by setting 𝑋 = 𝑉 . ■

The matching lower bound is provided in the following.

▶ Theorem 4.21. The LPoA of local 2-SSG on a regular graph𝐺 with𝛥 = 2𝜁 +𝜂,
with 𝜁 ≥ 1 and 𝜂 ∈ {0, 1} is equal to 2 + 1

𝜁
. ◀

Proof. For a fixed degree 𝛥 ≥ 38, we define the 𝛥-regular graph 𝐺 (𝛥) := 𝐺 as
follows: There are 𝑞 := 𝑡 (𝛥 + 1) gadgets 𝐺1, . . . ,𝐺𝑞 . For each 𝑖 ∈ [𝑞], gadget 𝐺𝑖

is obtained from a complete graph of 𝛥 + 1 vertices, denoted as 𝑣10, . . . , 𝑣𝑖𝛥 , by
removing edge {𝑣𝑖0, 𝑣𝑖𝛥}. Observe that, by construction, for any 𝑖 ∈ [𝑞], each
vertex 𝑣𝑖𝑗 , with 1 ≤ 𝑗 ≤ 𝛥 − 1, has degree 𝛥, while vertices 𝑣𝑖0 and 𝑣𝑖𝛥 have
degree 𝛥 − 1. We obtain𝐺 by connecting the 𝑞 gadgets through edges {𝑣𝑖

𝛥
, 𝑣𝑖+10 }

for each 𝑖 ∈ [𝑞 − 1] and edge {𝑣𝑞
𝛥
, 𝑣10}. Call these edges extra-gadget edges.

Thus, 𝐺 is connected and 𝛥-regular. Consider now the local 2-SSG played on 𝐺
in which there are ⌈𝛥+12 ⌉𝑞 blue agents and ⌊𝛥+12 ⌋𝑞 orange ones.
On the one hand, the social optimum is at least

𝑛 − 4
𝛥

= 𝑞(𝛥 + 1) − 4𝛥,

8 We assume 𝛥 ≥ 3 as for 𝛥 = 2 the regular graph 𝐺 would collapse to a cycle.
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as in the strategy profile in which all vertices of the first ⌈𝛥+12 ⌉𝑡 gadgets are
colored blue and all vertices of the remaining ⌊𝛥+12 ⌋𝑡 gadgets are colored orange,
there are 𝑛 − 4 vertices getting utility 1, and 4 vertices getting utility 𝛥−1

𝛥
.

On the other hand, the strategy profile 𝝈 in which the first ⌈𝛥+12 ⌉ vertices
of each gadget are colored blue and the remaining ones are colored orange is
a swap equilibrium. As extra-gadget edges connect vertices of different colors,
every blue vertex is adjacent to ⌈𝛥+12 ⌉ − 1 blue ones, while every orange vertex
is adjacent to ⌈𝛥+12 ⌉ blue ones. If a blue vertex swaps with an adjacent orange
one, it ends up being adjacent to ⌈𝛥+12 ⌉ − 1 blue vertices. Thus, no profitable
swap exists in 𝝈 .
As the social welfare of 𝝈 is

𝑞

𝛥

(⌈
𝛥 + 1
2

⌉(⌈
𝛥 + 1
2

⌉
− 1

)
+

⌊
𝛥 + 1
2

⌋ (⌊
𝛥 + 1
2

⌋
− 1

))
=


𝑞 (𝛥2−1)

2𝛥 if 𝑞 is odd,
𝑞𝛥

2 if 𝑞 is even,

we get that the LPoA of the game is lower bounded by

2𝛥 (𝑞(𝛥 + 1) − 4𝛥)
𝑞(𝛥2 − 1)

when 𝛥 is odd and by 2(𝑞 (𝛥+1)−4𝛥 )
𝑞𝛥

when 𝛥 is even. By letting 𝑞 going to infinity,
we get 2𝛥

𝛥−1 and
2(𝛥+1)

𝛥
, respectively. By using 𝛥 = 2𝜁 + 1 in the first case, and

𝛥 = 2𝜁 in the second one, we finally obtain the lower bound of 2 + 1
𝜁
. ■

4.3.3 Paths and Cycles

In this section, we provide upper and lower bounds for the (L)PoA of paths and
cycles. We first provide a full characterization of the PoA for cycles.

▶ Theorem 4.22. The PoA of 2-SSGs played on cycles with 𝑛 ≥ 3 vertices and
𝑜 = 2𝜁 + 𝜂 orange agents, where 𝜁 ∈ N, 𝜂 ∈ {0, 1}, and 𝑏 ≥ 𝑜 , is equal to

PoA =

{
1 if 𝑜 = 1;
𝑛−2
𝑏+𝜂 otherwise.
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◀

Proof. The social welfare of the social optimum is clearly equal to 𝑛 − 2 and
is attained when the cycle contains one path whose vertices are all occupied
by the 𝑏 blue agents and another path whose vertices are all occupied by the 𝑜
orange agents. Now, we prove matching upper and lower bounds for all the
cases.
When 𝑜 = 1 we clearly have that any strategy profile is a swap equilibrium

because the unique orange agent always has a utility of 0, the two blue agents
that occupy the vertices adjacent to the vertex occupied by the orange agent
have a utility of 1

2 each, and the remaining 𝑏 − 2 blue agents all have a utility
of 1. Therefore, the social welfare is equal to 𝑛 − 2, and the claim follows.

Let 𝝈 be a swap equilibrium. Let ℓ be the number of maximal vertex-induced
(sub)paths whose vertices are occupied by orange agents only. Clearly, ℓ is also
the number of maximal vertex-induced (sub)paths whose vertices are occupied by
blue agents only. We claim that ℓ ≤ 𝜁 by showing that every agent has a strictly
positive utility in 𝝈 , i.e., each of the 2ℓ maximal paths formed by monochrome
edges contains 2 or more vertices. Indeed, for the sake of contradiction, assume
without loss of generality that there is an orange agent 𝑖 such that U𝑖 (𝝈) = 0.
This implies that there must be a blue agent 𝑗 that occupies a vertex 𝑣 such
that 𝑣 is not adjacent to the vertex occupied by 𝑖 and 𝑣 is adjacent to a vertex
occupied by an orange agent 𝑖′ ≠ 𝑖 . As a consequence, U𝑗 (𝝈) ≤ 1

2 . In this
case, swapping 𝑖 with 𝑗 would be an improving move since 𝑢𝑖 (𝝈 𝑖 𝑗 ) > 0 = 𝑢𝑖 (𝝈)
and 1 = 𝑢 𝑗 (𝝈 𝑖 𝑗 ) > 1

2 ≥ 𝑢 𝑗 (𝝈), thus contradicting the fact that 𝝈 is a swap
equilibrium.
As a consequence the utility of 2ℓ orange agents is equal to 1

2 , while the utility
of the other 𝑜 − 2ℓ = 𝑛 − 𝑏 − 2ℓ orange agents is equal to 1; similarly, the utility
of 2ℓ blue agents is equal to 1

2 , while the utility of the other 𝑏 − 2ℓ blue agents is
equal to 1. Therefore, the social cost is at least

1
2 (2ℓ + 2ℓ) + (𝑛 − 𝑏 − 2ℓ) + (𝑏 − 2ℓ) = 𝑛 − 2ℓ ≥ 𝑛 − 2𝜁 = 𝑏 + 𝜂.

The upper bound to the PoA follows. For the matching lower bound, it is enough
to consider the strategy profile in which ℓ = 𝜁 , i.e., there are 𝜁 −1 maximal vertex-
induced paths occupied by orange (respectively, blue) agents only of length 2
each, and one maximal vertex-induced path occupied by orange (respectively,
blue) agents only of length 2 + 𝜂 (respectively, 𝑏 − 2𝜁 + 2). In this case, the social
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welfare is exactly equal to

1
22𝜁 + 𝜂 +

1
2𝜁 + (𝑏 − 2𝜁 ) = 𝑏 + 𝜂. ■

The following theorem provides almost tight upper bounds to the LPoA for
cycles.

▶ Theorem 4.23. The LPoA of local 2-SSGs played on cycles with 𝑛 = 3𝜁 + 𝜂
vertices and 𝑏 blue agents, where 𝜁 ∈ N, 𝜂 ∈ {0, 1, 2}, and 𝑏 ≥ 𝑜 , is upper
bounded by

PoA ≤


1 if 𝑜 = 1;
𝑛−2
𝑏−𝑜 if 𝑜 ≥ 2 and 𝑏 ≥ 2𝑜 ;
𝑛−2
𝜁+𝜂 otherwise (i.e., 𝑜 ≥ 2 and 𝑏 < 2𝑜).

The upper bounds are tight when (i) 𝑜 = 1 and (ii) 𝑜 ≥ 2 and 𝑏 ≥ 2𝑜 . ◀

Proof. The social welfare of the social optimum is equal to 𝑛 − 2. Now, we prove
matching upper and lower bounds for all cases.
When 𝑜 = 1, any configuration is a (local) swap equilibrium; therefore the

social welfare is equal to 𝑛 − 2 and the claim follows.
Now, we consider the case in which 𝑜 ≥ 2. Let 𝑜ℎ and 𝑏ℎ be the numbers

of orange and blue agents having a utility equal to ℎ ∈
{
0, 12 , 1

}
, respectively.

Every configuration can be decomposed into maximal vertex-induced paths
whose vertices are all occupied by agents of the same type. Furthermore, if ℓ
is the overall number of these maximal vertex-induced paths whose vertices
are all occupied by orange agents, then ℓ is also the overall number of maximal
vertex-induced paths whose vertices are all occupied by blue agents. This implies
that 𝑜 1

2
= 2(ℓ − 𝑜0) and 𝑏 1

2
= 2(ℓ − 𝑏0). Therefore,

𝑜 = 𝑜0 + 𝑜 1
2
+ 𝑜1 = 2ℓ − 𝑜0 + 𝑜1

and
𝑏 = 𝑏0 + 𝑏 1

2
+ 𝑏1 = 2ℓ − 𝑏0 + 𝑏1,

i.e., 𝑜1 = 𝑜 − 2ℓ + 𝑜0 and 𝑏1 = 𝑏 − 2ℓ + 𝑏0. As a consequence, using the fact that
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𝑏 + 𝑜 = 𝑛, the social welfare is equal to∑︁
ℎ∈

{
0, 12 ,1

} ℎ𝑜ℎ + ∑︁
ℎ∈

{
0, 12 ,1

} ℎ𝑏ℎ = ℓ − 𝑜0 + 𝑜 − 2ℓ + 𝑜0 + ℓ − 𝑏0 + 𝑏 − 2ℓ + 𝑏0 = 𝑛 − 2ℓ .

We observe that each orange agent of utility 0 occupies a vertex that is adjacent to
two vertices occupied by blue agents having a utility of 1

2 each. As a consequence,
𝑏 1

2
= 2(ℓ −𝑏0) ≥ 2𝑜0, or, equivalently, ℓ ≥ 𝑏0 +𝑜0. Therefore, the social welfare is

minimized exactly when ℓ is maximized, as shown by the following ILP (where
the second and third constraints are of the form 𝑜0 + 𝑜 1

2
≤ 𝑜 and 𝑏0 + 𝑏 1

2
≤ 𝑏,

respectively):

maximize ℓ

subject to 𝑏0 + 𝑜0 ≤ ℓ

2ℓ − 𝑜0 ≤ 𝑜
2ℓ − 𝑏0 ≤ 𝑏
ℓ, 𝑏0, 𝑜0 ∈ N.

Combining the first three inequalities, we obtain

2ℓ + 2ℓ ≤ 𝑜 + 𝑜0 + 𝑏 + 𝑏0 ≤ 𝑛 + ℓ,

from which we derive ℓ ≤ ⌊𝑛3 ⌋ = 𝜁 . Furthermore, since 𝑜0 ≤ ℓ , we have that
ℓ ≤ 2ℓ − 𝑜0 ≤ 𝑜 . Therefore, the value of an optimum solution is upper bounded
by ℓ = min{𝑜, 𝜁 }. If 𝑏 ≥ 2𝑜 , then setting ℓ , 𝑜0 = 𝑜 , and all other variables to 0 is
an optimal solution. If 𝑏 < 2𝑜 , then setting ℓ = 𝜁 , 𝑜0 = 2𝜁 − 𝑜 , and 𝑏0 = 2𝜁 − 𝑏 is
an optimal solution. The upper bound to the LPoA follows.

For the matching lower bound when 𝑜 ≥ 2 and 𝑏 ≥ 2𝑜 , it is enough to consider
the strategy profile in which ℓ = 𝑜 , i.e., each orange agent occupies a vertex that
is adjacent to vertices occupied by blue agents only. As a consequence, the 𝑜
orange agents have a utility of 0, the 2𝑜 blue agents have a utility of 1

2 each,
while the remaining 𝑏 − 2𝑜 = 𝑛 − 3𝑜 ≥ 0 blue agents have a utility of 1 each. The
social welfare in this case is exactly equal to 1

22𝑜 + 𝑛 − 3𝑜 = 𝑛 − 2𝑜 = 𝑏 − 𝑜 . ■

We now prove similar results for paths.

▶ Theorem 4.24. The PoA of 2-SSGs played on paths with 𝑛 ≥ 3 vertices and
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𝑜 = 2𝜁 + 𝜂 orange agents, where 𝜁 ∈ N, 𝜂 ∈ {0, 1}, and 𝑏 ≥ 𝑜 , is equal to

PoA =


+∞ if 𝑛 = 3;
2𝑛−2
2𝑛−5 if 𝑛 > 3 and 𝑜 = 1;
𝑛−1
𝑏+1+𝜂 if 𝑛 > 3, 𝑜 ≥ 2 and 𝑏 ≤ 2𝜁 + 1;
𝑛−1
𝑏+𝜂 otherwise (i.e., 𝑜 ≥ 2 and 𝑏 ≥ 2𝜁 + 2).

◀

Proof. For 𝑛 ≥ 4, the social welfare of the social optimum is equal to 𝑛 − 1 and
is attained when the path contains a subpath whose vertices are all occupied
by the 𝑏 blue agents and one subpath whose vertices are all occupied by the 𝑜
orange agents. For 𝑛 = 3, the social welfare of the social optimum is equal to 3

2
and is attained when the orange agent occupies one end vertex of the path. Now,
we prove matching upper and lower bounds for all the cases.
When 𝑜 = 1, we clearly have that any strategy profile is a swap equilibrium.

The strategy profile with minimum social welfare is when the orange agent
occupies a vertex that is adjacent to an end vertex of the path. In this case, the
blue agent that occupies such an end vertex has a utility of 0, the orange agent
has a utility of 0, the other blue agent that is adjacent to the vertex occupied
by the orange agent has a utility of 0, if 𝑛 = 3, and of 1

2 , if 𝑛 ≥ 4, while all the
other blue agents, if any, have a utility of 1 each. Therefore, for 𝑛 = 3 the social
welfare is 0, while for 𝑛 ≥ 4, the social welfare is equal to 𝑛 − 5

2 , and the claim
follows.
Therefore, we are only left to prove the bounds to the PoA when 𝑛 > 3 and

𝑜 ≥ 2. Let 𝝈 be a swap equilibrium. We first show that every agent has a strictly
positive utility in 𝝈 . Indeed, for the sake of contradiction, assume without loss of
generality that there is an orange agent 𝑖 such that U𝑖 (𝝈) = 0. This implies that
there must be a blue agent 𝑗 that occupies a vertex 𝑣 such that 𝑣 is not adjacent
to the vertex occupied by 𝑖 and 𝑣 is adjacent to a vertex occupied by an orange
agent 𝑖′ ≠ 𝑖 . As a consequence, U𝑗 (𝝈) ≤ 1

2 . In this case, swapping 𝑖 with 𝑗 would
be an improving move sinceU𝑖 (𝝈 𝑖 𝑗 ) > 0 = U𝑖 (𝝈) and 1 = U𝑗 (𝝈 𝑖 𝑗 ) > 1

2 ≥ U𝑗 (𝝈),
thus contradicting the fact that 𝝈 is a local swap equilibrium.

Let ℓ be the number of maximal vertex-induced (sub)paths whose vertices are
all occupied by the orange agents. Since every orange agent has strictly positive
utility, it follows that ℓ ≤ 𝜁 . Let 𝑥 and 𝑦 be the number of orange and blue
agents that occupy the end vertices of the path, respectively. Clearly 𝑥 + 𝑦 = 2.
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Let ℓ ′ be the number of maximal vertex-induced (sub)paths whose vertices are
all occupied by the blue agents. We have that ℓ ′ ≤ ℓ + 1. Furthermore, the utility
of 2ℓ −𝑥 orange agents is 1

2 while the utility of the other 𝑜 − 2ℓ +𝑥 orange agents
is 1; similarly, the utility of 2ℓ ′ − 𝑦 blue agents is 1

2 , while the utility of the other
𝑏 − 2ℓ ′ + 𝑦 blue agents is 1. Therefore, the social welfare is at least

1
2 (2ℓ−𝑥 +2ℓ

′−𝑦) + (𝑜−2ℓ +𝑥) + (𝑏−2ℓ ′+𝑦) = 𝑛+ 1
2 (𝑥 +𝑦) −ℓ−ℓ

′ ≥ 𝑛+1−ℓ−ℓ ′.

If 𝑏 ≤ 2𝜁 + 1, then ℓ ′ ≤ 𝜁 and therefore

𝑛 + 1 − ℓ − ℓ ′ ≥ 𝑛 + 1 − 2𝜁 = 𝑏 + 1 + 𝜂.

If 𝑏 ≥ 2𝜁 + 2, then ℓ ′ ≤ ℓ + 1 and therefore

𝑛 + 1 − ℓ − ℓ ′ ≥ 𝑛 − 2𝜁 = 𝑏 + 𝜂.

For the matching lower bound, consider the strategy profile that induces ℓ = 𝜁
maximal vertex-induced paths occupied by orange agents only and ℓ ′ maximal
vertex-induced paths that are occupied by blue agents only, where ℓ ′ = 𝜁 if
𝑏 ≤ 2𝜁 + 1 and to ℓ ′ = ℓ + 1 otherwise. In this case, the social welfare is exactly
equal to 𝑏 + 1 + 𝜂 if 𝑏 ≤ 2𝜁 + 1 and 𝑏 + 𝜂, otherwise. ■

▶ Theorem 4.25. The LPoA of local 2-SSGs played on paths with 𝑛 = 3𝜁 + 𝜂
vertices and 𝑏 blue agents, where 𝜁 ∈ N, 𝜂 ∈ {0, 1, 2}, and 𝑏 ≥ 𝑜 , is upper
bounded by

PoA ≤


+∞ if 𝑛 = 3;
2𝑛−2
2𝑛−5 if 𝑛 > 3 and 𝑜 = 1;
𝑛−1

𝑏−𝑜−1 if 𝑛 > 3, 𝑜 ≥ 2, 𝑏 ≥ 2𝑜 ;
𝑛−1
𝜁

otherwise (i.e., 𝑛 > 3, 𝑜 ≥ 2 and 𝑏 < 2𝑜).

The upper bounds are tight when (i) 𝑛 = 3, (ii) 𝑛 > 3 and 𝑜 = 1, and (iii) 𝑛 > 3,
𝑜 ≥ 2, 𝑏 ≥ 2𝑜 . ◀

Proof. As shown in Theorem 4.24, the social welfare of the social optimum is
equal to 𝑛−1. Furthermore, both, the upper and lower bounds to the PoA proved
in Theorem 4.24 for 𝑛 = 3 as well as for 𝑛 > 3 and 𝑜 = 1, also hold for the LPoA.
Therefore, in the rest of the proof, we assume that 𝑛 ≥ 4 and 𝑜 ≥ 2.
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Let 𝑜𝑟 and 𝑏𝑟 be the numbers of orange and blue agents having a utility equal
to 𝑟 ∈

{
0, 12 , 1

}
, respectively. Let ℓ (respectively, ℓ ′) be the overall number of

maximal vertex-induced paths whose vertices are all occupied by orange (respec-
tively, blue) agents. We observe that ℓ −1 ≤ ℓ ′ ≤ ℓ +1. Let 𝑥𝑟 (respectively, 𝑦𝑟 ) be
the number of orange (respectively, blue) agents that occupy the end vertices of
the path and whose utility is equal to 𝑟 ∈ {0, 1}. We have that 𝑥0+𝑥1+𝑦0+𝑦1 = 2.
Furthermore, we have that 𝑜 1

2
= 2(ℓ −𝑜0) −𝑥1 and 𝑏 1

2
= 2(ℓ ′−𝑏0) −𝑦1. Therefore,

𝑜 = 𝑜0 + 𝑜 1
2
+ 𝑜1 = 2ℓ − 𝑜0 − 𝑥1 + 𝑜1

and
𝑏 = 𝑏0 + 𝑏 1

2
+ 𝑏1 = 2ℓ ′ − 𝑏0 − 𝑦1 + 𝑏1,

i.e., 𝑜1 = 𝑜 − 2ℓ + 𝑜0 + 𝑥1 and 𝑏1 = 𝑏 − 2ℓ ′ + 𝑏0 + 𝑦1. As a consequence, the social
welfare is equal to∑︁

ℎ∈{0, 12 ,1}

ℎ𝑟ℎ +
∑︁

ℎ∈{0, 12 ,1}

ℎ𝑏ℎ

= ℓ − 𝑜0 −
1
2𝑥1 + 𝑜 − 2ℓ + 𝑜0 + 𝑥1 + ℓ ′ − 𝑏0 −

1
2𝑦1 + 𝑏 − 2ℓ ′ + 𝑏0 + 𝑦1

= 𝑛 − ℓ − ℓ ′ + 1
2𝑥1 +

1
2𝑦1.

Now, observe that each orange (respectively, blue) agent that has a utility of 0
and occupies neither an end vertex of the path nor its adjacent vertex is adjacent
to two blue (respectively, orange) agents of utility equal to 1

2 each. Therefore
𝑏 1

2
= 2(ℓ ′ − 𝑏0) − 𝑦1 ≥ 2(𝑜0 − 𝑥0) as well as 𝑜 1

2
= 2(ℓ − 𝑜0) − 𝑥1 ≥ 2(𝑏0 − 𝑦0), or,

equivalently, ℓ ′ ≥ 𝑏0 + 𝑜0 − 𝑥0 + 1
2𝑦1 as well as ℓ ≥ 𝑏0 + 𝑜0 − 𝑦0 +

1
2𝑥1. Therefore,

to minimize social welfare we need to solve the following ILP.

maximize ℓ + ℓ ′ − 1
2𝑥1 −

1
2𝑦1

subject to 𝑏0 + 𝑜0 − 𝑦0 +
1
2𝑥1 ≤ ℓ

𝑏0 + 𝑜0 − 𝑥0 +
1
2𝑦1 ≤ ℓ ′

2ℓ − 𝑜0 − 𝑥1 ≤ 𝑜
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2ℓ ′ − 𝑏0 − 𝑦1 ≤ 𝑏
𝑥0 + 𝑥1 + 𝑦0 + 𝑦1 = 2
𝑥0 ≤ 𝑜0
𝑦0 ≤ 𝑏0
ℓ ′ ≤ ℓ + 1
ℓ ≤ ℓ ′ + 1
ℓ, ℓ ′, 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑏0, 𝑜0 ∈ N.

Combining the first 4 inequalities of the ILP we obtain

2ℓ + 2ℓ ′ ≤ 𝑜 + 𝑜0 + 𝑥1 + 𝑏 + 𝑏0 + 𝑦1 ≤ 𝑛 +
1
2 ℓ +

1
2𝑦0 +

3
4𝑦1 +

1
2 ℓ

′ + 1
2𝑥0 +

3
4𝑥1,

from which we derive

ℓ + ℓ ′ − 1
2 (𝑥1 + 𝑦1) ≤

2
3𝑛 +

1
3 (𝑥0 + 𝑦0) = 2𝜁 + 2

3𝜂 +
2
3 − 1

3 (𝑥1 + 𝑦1).

By considering the constraints 0 ≤ 𝑥1 + 𝑦1 ≤ 2 and the fact that 𝑥1, 𝑦1, ℓ and ℓ ′
are all non-negative integers, it turns out that the above inequality is maximized
exactly when 𝑥1 + 𝑦1 = 0 or, equivalently, 𝑥1 = 𝑦1 = 0, and therefore, ℓ + ℓ ′ ≤⌊
2𝜁 + 2

3𝜂 +
2
3
⌋
= 2𝜁 + 𝜂. Furthermore, by combining the seventh inequality of

the ILP with the first one, we obtain 𝑜0 ≤ ℓ , and therefore, using the third
inequality of the ILP, we obtain that ℓ ≤ 𝑜 . Since the eighth inequality implies
that ℓ ′ ≤ ℓ + 1 ≤ 𝑜 + 1, we have the value ℓ + ℓ ′ ≤ 2𝑜 + 1. As a consequence, the
value of an optimum solution is upper bounded by

min{2𝑜 + 1, 2𝜁 + 𝜂}.

We now divide the proof into two cases:

Case 1: 𝑏 ≥ 2𝑜 . Setting ℓ , 𝑜0 = 𝑜 , ℓ ′ = 𝑜 + 1, 𝑦0, 𝑏0 = 2, and all the
remaining variables to 0 gives an optimum solution for the ILP and the
corresponding value of the objective function matches the upper bound
of 2𝑜 + 1. Therefore, the social welfare is at least 𝑛 − 2𝑜 − 1 = 𝑏 − 𝑜 − 1,
and the upper bound to the LPoA follows. Furthermore, this upper bound
is tight. Indeed, consider the strategy profile in which each orange agent
occupies a vertex that is adjacent to two vertices occupied by blue agents
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only and two orange agents occupy the second and last but one vertex of
the path, i.e., the two vertices adjacent to the path end vertices. Observe
that there are exactly 2(𝑜 − 1) blue agents having a utility equal to 1

2 and 2
agents having a utility of 0, thus 𝑏 − 2(𝑜 − 1) − 2 agents having a utility
of 1. The social welfare of this configuration is equal to

1
22(𝑜 − 1) + (𝑏 − 2(𝑜 − 1) − 2) = 𝑜 − 1 + 𝑏 − 2𝑜 = 𝑏 − 𝑜 − 1.

Case 2: 𝑏 < 2𝑜 . The optimum value of the ILP is upper bounded by 2𝜁 + 𝜂.
Hence, the social welfare is at least 𝑛 − 2𝜁 − 𝜂 = 𝜁 , and the upper bound
to the LPoA follows. ■

4.3.4 Grids

We now turn our focus to grid graphs with 4- and 8-neighbors. Remember
that grids are formed by a two-dimensional lattice. Hence, we can partition the
vertices of an 𝑙 × ℎ grid 𝐺 into three sets9: corner vertices, border vertices and
middle vertices, denoted, respectively, as 𝐶 (𝐺), 𝐵(𝐺), and𝑀 (𝐺). We have

𝐶 (𝐺) =
{
𝑣𝑖, 𝑗 : 𝑖 ∈ {1, ℓ} and 𝑗 ∈ {1, ℎ}

}
,

𝐵(𝐺) =
{
𝑣𝑖, 𝑗 : 𝑖 ∈ {1, ℓ} or 𝑗 ∈ {1, ℎ}

}
\𝐶 (𝐺)

and𝑀 (𝐺) = 𝑉 (𝐺) \ (𝐶 (𝐺) ∪ 𝐵(𝐺)).
First, we focus on 2-SSGs in 4-grids and start by characterizing the PoA for

the case in which one type has a unique representative.

▶ Proposition 4.26. The PoA of 2-SSGs played on a 4-grid in which one type
has cardinality 1 is equal to 25

22 . ◀

Proof. Assume, without loss of generality, that orange is the type with a unique
representative. For this game, any strategy profile 𝝈 is an equilibrium, since in
any profile, the orange agent 𝑜 gets utility zero, the agents not adjacent to 𝑜 get
utility 1, while all agents adjacent to 𝑜 get less than 1. Call these last agents the
penalized agents. Thus, the PoA is maximized by comparing the social welfare of
the strategy profile minimizing the overall loss of the penalized agents with one
of the strategy profiles maximizing it. It is easy to see that the overall loss of the

9 We assume ℓ, ℎ > 1 as otherwise, the grid would collapse to a path.
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penalized agents is minimized when 𝑜 is occupying a corner vertex, while it is
maximized when 𝑜 is occupying a border one in a 4-grid with 𝑙 = 2 and ℎ = 3.
Comparing the two social welfares gives the claimed bound. ■

Clearly, if one type has only one representative, this agent receives utility
zero. However, this is not possible in equilibrium assignments when there are at
least two agents of each type.

▶ Lemma 4.27. In any equilibrium for a 2-SSG played on a 4-grid in which
both types have cardinality larger than 1, all agents get positive utility. ◀

Proof. Fix an equilibrium 𝝈 for a game satisfying the premises of the lemma.
Let 𝑖 be a vertex such that U𝑖 (𝝈) = 0 and assume, without loss of generality,
that 𝑖 is orange. This implies that 𝑖 is surrounded by blue vertices only.
Pick another orange vertex 𝑗 ≠ 𝑖 which is adjacent to at least a blue one ℓ . If

ℓ ∉ 𝑁 (𝜎 (𝑖)), it follows that 𝑖 and ℓ can perform a profitable swap contradicting
the assumption that 𝝈 is an equilibrium. Thus, ℓ has to belong to 𝑁 (𝜎 (𝑖)). Let
us now consider two cases.
If 𝑖 occupies a corner vertex, ℓ needs to be placed on a border one. So, as ℓ is

adjacent to 𝑖 and 𝑗 , it holds that Uℓ (𝝈) ≤ 1
3 . Thus, as we have Uℓ (𝝈 𝑖ℓ ) = 1

2 and
U𝑖 (𝝈 𝑖ℓ ) > 0, 𝑖 and ℓ can perform a profitable swap contradicting the assumption
that 𝝈 is an equilibrium.
If 𝑖 is not located on a corner vertex, as ℓ is adjacent to 𝑖 and 𝑗 , it holds that

Uℓ (𝝈) ≤ 1
2 . Moreover, |𝑁 (𝜎 (𝑖)) | ≥ 3 which yields

Uℓ (𝝈 𝑖ℓ ) =
|𝑁 (𝜎 (𝑖)) | − 1
|𝑁 (𝜎 (𝑖)) | ≥ 2

3 .

Thus, also in this case, 𝑖 and ℓ can perform a profitable swap contradicting the
assumption that 𝝈 is an equilibrium. ■

When no agent gets utility zero, the minimum possible utility is 1
4 . Thus,

Proposition 4.26 and Lemma 4.27 together imply an upper bound of 4 on the PoA.
However, a much better result can be shown.

▶ Theorem 4.28. The PoA of 2-SSGs played on 4-grids is at most 2. ◀

Proof. Without loss of generality, we consider an 𝑙 × ℎ grid, with 𝑙 ≤ ℎ. By
Proposition 4.26, we only need to consider the case in which there are at least
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?

(c)(b)(a)

Figure 4.16: The unique swap equilibrium for 2 × 3 4-grids is shown in (a). Indeed,
in (b) the blue agent in 𝑣1,1 can swap with the orange agent in 𝑣2,2, while in (c) the blue
agent in 𝑣1,1 can swap with the orange agent in 𝑣1,2 (the question mark in 𝑣2,3 means
that the vertex can be occupied by an agent of any type). Please refer to Theorem 4.28
for more details.

two agents per type. By Lemma 4.27, we know that, in this case, the utility of
each agent is strictly positive. We prove the claim by showing that the average
utility of an agent is at least 1

2 . We divide the proof into two cases, depending
on the utilities of the middle agents, i.e., agents occupying the middle vertices.

Case 1. In the first case, we assume that the utility of every middle agent
is at least 1

2 . As corner agents, i.e., agents occupying corner vertices, have
a utility of at least 1

2 each, we only need to prove the claim when there is
at least one border agent, i.e., an agent occupying a border vertex, whose
utility is equal to 1

3 . This implies that 𝑙 + ℎ ≥ 5. Without loss of generality,
we assume that there are more orange than blue agents having a utility
equal to 1

3 . Let 𝐼 be the border vertices occupied by the orange (border)
agents having a utility of 1

3 . As the overall number of border vertices is

2(𝑙 − 2) + 2(ℎ − 2) = 2𝑙 + 2ℎ − 8,

we have that the number of border agents having a utility greater than or
equal to 2

3 is at least 2𝑙 + 2ℎ − 8 − 2|𝐼 |. Therefore, if |𝐼 | = 1 and 𝑙 + ℎ ≥ 6,
then

2𝑙 + 2ℎ − 8 − 2|𝐼 | ≥ 12 − 8 − 2 = 2;

hence, the average utility of an agent is greater than or equal to 1
2 . If |𝐼 | = 1

and 𝑙 + ℎ = 5, then the only configuration in which a swap equilibrium
exists, unless of symmetries, is shown in Figure 4.16 (a).
We observe that, in such a configuration, the average utility of an agent
is strictly greater than 1

2 . It remains to prove the case in which |𝐼 | ≥ 2.
Since 𝝈 is a swap equilibrium, the utility of a blue agent that occupies
a vertex that is not adjacent to all the vertices in 𝐼 is at least 2

3 . As each
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blue agent occupies a vertex that is adjacent to at most 2 vertices in 𝐼 and
because each vertex in 𝐼 is adjacent to exactly 2 vertices occupied by blue
agents, the number of blue agents is at least 2|𝐼 |/2 = |𝐼 |. Therefore, if we
assume that every blue agent has a utility of at least 2

3 , then the average
utility of an agent would be at least 1

2 . We observe that this assumption
holds when either (a) |𝐼 | ≥ 3, because no blue agent is occupying a vertex
that is adjacent to all the vertices of 𝐼 , or (b) |𝐼 | = 2 and the two vertices
of 𝐼 are either at 𝑡-hop distance from each other, with 𝑡 ≥ 2, or they are
at 2-hop distance from each other and the utility of the border agent that
occupies the vertex in between is at least 2

3 . For the remaining case in
which |𝐼 | = 2, the two vertices of 𝐼 are at 2-hop distance from each other,
and the agent occupying the border vertex in between is equal to 1

3 – and
thus is of blue type – we simply observe that the overall number of blue
agents is at least 4. Indeed, without loss of generality, let 𝑣1,𝑥−1 and 𝑣1,𝑥+1
be the two vertices of 𝐼 . As 𝑣1,𝑥 is occupied by a blue agent that has strictly
positive utility, 𝑣2,𝑥 is also occupied by a blue agent. Furthermore, either
𝑣1,𝑥−2 or 𝑣2,𝑥−1 is occupied by a blue agent. Similarly, either 𝑣1,𝑥+2 or 𝑣2,𝑥+1
is occupied by a blue agent. Therefore, there are at least 4 blue agents.
Since 3 out of these 4 blue agents have a utility of at least 2

3 , again, the
average utility of an agent is at least 1

2 .

Case 2. In the second case, we assume that at least one agent is occupying
a middle vertex and whose utility is equal to 1

4 . Without loss of generality,
we assume that there are more orange than blue agents having a utility
equal to 1

4 . Let 𝐼 be the vertices of the orange agents having a utility of 1
4 .

We prove that
(i) every blue agent has a utility of at least 1

2 ;
(ii) the number of blue agents having utility greater than or equal to 3

4 is
at least |𝐼 |;
(iii) all border and corner agents are of blue type.
This would imply that the average utility of an agent is 1

2 since the utility
of border and corner agents would be at least 2

3 .
Let 𝑣𝑥,𝑦 be a vertex of 𝐼 and, without loss of generality, we assume that
𝑣𝑥,𝑦−1, 𝑣𝑥−1,𝑦 , and 𝑣𝑥,𝑦+1 are occupied by blue agents whose utilities are
greater than or equal to 1

2 . Similarly, we can prove that the utility of every

107



Chapter 4 Topological Influence and Locality in Swap Schelling Games

other blue agent that occupies a vertex that is not adjacent to all vertices
in 𝐼 is at least 3

4 . This implies that at least one vertex between 𝑣𝑥−1,𝑦−1
and 𝑣𝑥−1,𝑦+1 is occupied by a blue agent whose utility is greater than or
equal to 3

4 ; similarly, at least one vertex between 𝑣𝑥+1,𝑦−1 and 𝑣𝑥+1,𝑦+1
is occupied by a blue agent whose utility is greater than or equal to 3

4 .
Therefore, we have proved (ii) for the case in which |𝐼 | ≤ 2. To prove (ii)
when |𝐼 | > 2, it is enough to observe that all blue agents have a utility
greater than or equal to 3

4 because none of them occupies a vertex that is
adjacent to all the vertices in 𝐼 . But this implies that each blue agent of
the utility of at least 3

4 occupies a vertex that is adjacent to at most one
vertex in 𝐼 . Hence, the overall number of blue agents is at least |𝐼 |.

We now conclude the proof by proving (iii). First of all, we prove that
at least one border or corner vertex is occupied by a blue agent. For the
sake of contradiction, we assume that all border and corner vertices are
occupied by the orange agents. Let 𝑣𝑥,𝑦 be the topmost-leftmost vertex
occupied by a blue agent, i.e., both 𝑣𝑥,𝑦−1 and 𝑣𝑥−1,𝑦 are occupied by orange
agents and there is no other vertex 𝑣𝑥 ′,𝑦′ occupied by a blue agent such that
𝑥 ′ < 𝑥 or 𝑥 = 𝑥 ′ and 𝑦′ < 𝑦. We observe that such a vertex always exists
because 𝑥 , 𝑦 > 1 and that 𝑣𝑥−1,𝑦−1 must be occupied by an orange agent.
Furthermore, by the choice of 𝑣𝑥,𝑦 , the utility of the two orange agents that
occupy the vertices 𝑣𝑥−1,𝑦 and 𝑣𝑥,𝑦−1 must be at least 1

2 . Since the utility
of the blue agent occupying the vertex 𝑣𝑥,𝑦 has to be at least 1

2 , 𝑣𝑥+1,𝑦 and
𝑣𝑥,𝑦+1 are occupied by blue agents. As a consequence, 𝑁 (𝑣𝑥,𝑦) ∩ 𝐼 = ∅.
Therefore, swapping the agent that occupies 𝑣𝑥,𝑦 with any agent occupying
a vertex in 𝐼 would be an improving move. Now that we know that at
least one border or corner agent is of blue type, we prove that all of them
must be of blue type. For the sake of contradiction assume that at least
one border or corner vertex is occupied by an orange agent. Without loss
of generality, let 𝑣1,𝑦 be a vertex occupied by an orange agent such that
𝑣1,𝑦+1 is occupied by a blue agent. Since the utility of such a blue agent
is at least 1

2 , the unique middle vertex adjacent to 𝑣1,𝑦+1, i.e., 𝑣2,𝑦+1, must
be occupied by a blue agent. This implies that 𝑣1,𝑦+1 cannot be adjacent
to any vertex in 𝐼 . As the utility of the agent occupying vertex 𝑣1,𝑦+1 is
at most 2

3 , swapping the agent occupying the vertex 𝑣1,𝑦+1 and any agent
occupying a vertex in 𝐼 would be an improving move. This completes the
proof. ■
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Figure 4.17: Visualization of the first three frames of 𝐺 with the coloring induced by
the strategy profile defined in the proof of Theorem 4.30. Please refer to the proof for
more details.

The following lemma gives a sufficient condition for a strategy profile to be
an equilibrium.

▶ Lemma 4.29. Fix a 2-SSG played on a 4-grid. Any strategy profile in which
corner and middle vertices get utility at least 1

2 and border ones get utility at
least 2

3 is an equilibrium. ◀

Proof. For every two agents 𝑖 and 𝑗 of different types we have that the sum of
their utilities is at least 1. Therefore, by Lemma 4.2, the considered strategy
profile is an equilibrium. ■

We now show a matching lower bound.

▶ Theorem 4.30. The PoA of 2-SSGs played on 4-grids is at least 2, even for
balanced games. ◀

Proof. Fix a 2-SSG played on an 𝑛 × 𝑛 grid 𝐺 , with 𝑛 being an even number. We
define a strategy profile 𝝈 by giving a coloring rule for any frame of 𝐺 . Clearly,
being 𝑛 an even number, there are 𝑛

2 frames in 𝐺 that we number from 1 to 𝑛
2 ,

with frame 1 corresponding to the outer one, i.e., the biggest. Frame 𝑖 , whose
size is 𝑛𝑖 ≔ 𝑛 − 2(𝑖 − 1), is colored as follows: all vertices in the right column
except for the first and the last and all vertices in the left column are of the basic
color of 𝑖 , all other vertices, that are the ones on the upper and lower rows except
for the vertices falling along the left column, take the other color. Observe that
𝑛𝑖 + 𝑛𝑖 − 2 = 2(𝑛𝑖 − 1) vertices take the basic color of 𝑖 and 2(𝑛𝑖 − 1) vertices
take the other one so that every frame evenly splits its vertices between the two
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Figure 4.18: Visualization of the neighborhood of vertices belonging to a frame 𝑖 > 1.
The target vertices are the ones included in the box. On the left, vertices belong to the
left column; on the right, vertices belong to the right column; on the center, vertices
belong to a row but not to a column. See the proof of Theorem 4.30 for more details.

colors. Thus, 𝝈 is a well-defined strategy profile for a 2-SSG with both types
having the same cardinality. The basic color of frame 𝑖 is orange if 𝑖 is odd and
blue otherwise, see Figure 4.17 for a pictorial example. To show that 𝝈 is an
equilibrium, it suffices to prove that it satisfies the premises of Lemma 4.29.
To address corner and border vertices, consider frame 1, see again Figure 4.17.

It comes by construction that every corner vertices gets utility 1
2 and that every

border vertices gets utility at least 2
3 , except for vertices (1, 2), (2, 𝑛), (𝑛−1, 𝑛) and

(𝑛, 2) for which further investigation is needed. In particular, they get utility 2
3

if and only if the following coloring holds: (2, 2) is blue, (2, 𝑛 − 1) is orange,
(𝑛 − 1, 𝑛 − 1) is orange and (𝑛 − 1, 2) is blue. This holds by construction and can
be verified by a direct inspection of Figure 4.17.
To address middle vertices, it suffices to prove that, any vertex belonging to

frame 𝑖 > 1 has two orange and two blue neighbors. Let 𝑐 denote the basic color
of frame 𝑖 and 𝑐 be the other color. Consider a generic vertex 𝑣 belonging to
frame 𝑖 . By inspecting all possible positions of 𝑣 within the frame as shown
in Figure 4.18, it can be easily verified that the desired property holds. By
Lemma 4.29, 𝝈 is an equilibrium. ■

We now show matching upper and lower bounds on the LPoA for local 2-SSGs
played on grids. By inspecting all the possibilities, the LPoA of local 2-SSGs
played on 2×2 grids is 1. Indeed, assuming 𝑏 ≥ 𝑜 , for 𝑜 = 1, all the configurations
are isomorphic to each other, while, for 𝑜 = 2, the unique (local) swap equilibrium
– up to isomorphisms – is

[
𝑜 𝑏
𝑜 𝑏

]
.

▶ Proposition 4.31. The LPoA of local 2-SSGs played on 2 × ℎ 4-grids, with
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(b)(a) (c)

Figure 4.19: The local swap equilibrium with the lowest social welfare is shown in (a)
and the social optimum is shown in (b). (c) shows the unique local swap equilibrium
which contains an agent with utility 0. See the proof of Proposition 4.31 for more details.

ℎ ≥ 2 is 3. Furthermore, for every 𝜖 > 0, there is a value ℎ0 such that, for every
ℎ ≥ ℎ0, the PoA of 2 × ℎ 4-grid is at least 3 − 𝜖 . ◀

Proof. For the lower bound consider the strategy profile in which ℎ is a multiple
of 6, 𝑜 = 𝑏, odd columns are filled with orange agents, and even columns are filled
with blue agents, see Figure 4.19 (a) for an example on a 2×6 4-grid. The strategy
profile is a local swap equilibrium and the corresponding social welfare is equal
to 1

3 (𝑛 − 4) + 2 = 𝑛+2
3 . A social optimum having social welfare of 𝑛 − 4

3 = 3𝑛−4
3 is

the strategy profile in which all the orange agents occupy the first ℎ
2 columns,

and the blue agents occupy the last ℎ
2 columns, see Figure 4.19 (b) for an example

on a 2 × 6 4-grid. Therefore, for every ℎ ≥ 5−𝜖
𝜖
, we have that the following

formula is a lower bound to the LPoA
3𝑛 − 4
𝑛 + 2 = 3 − 10

𝑛 + 2 = 3 − 5
ℎ + 1 ≥ 3 − 𝜖.

To prove the upper bound of 3, we show that the average utility of an agent is
at least 1

3 . We consider only the agents that have a utility of 0 since all the other
agents have a utility of at least 1

3 each. When ℎ is equal to 2, the unique strategy
profile (unless of symmetries) that is in local swap equilibrium and contains at
least one agent that has 0 utility is depicted in Figure 4.19 (c). However, it is
easy to check that the average utility of an agent is 1

2 . Therefore, we only need
to prove the claim for ℎ ≥ 3. We prove that if 𝑥 is the number of agents whose
utilities are equal to 0, then there are at least 𝑥 agents that have a utility of at
least 2

3 each. Indeed, let 𝑖 be any agent that has a utility equal to 0. Since 𝝈
is a local swap equilibrium and ℎ ≥ 3, we have that there is an agent 𝑗 such
that (i) 𝜎 ( 𝑗) ∈ 𝑁 (𝜎 (𝑖)), (ii) the type of 𝑖 is different from the type of 𝑗 , and (iii)
U𝑗 (𝝈) ≥ 2

3 . Indeed, if 𝑖 occupies a corner vertex, say 𝑣, then we can swap 𝑖 with
the agent occupying the unique border vertex adjacent to 𝑣, say 𝑢. Furthermore,
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Figure 4.20: The strategy profile inducing an average agent’s utility that can be made
arbitrarily close to 7

18 is shown on the left side via a small example (3× 9 4-grid). On the
right side, it is shown a strategy profile inducing an average agent’s utility arbitrarily
close to 1. See the proof of Proposition 4.32 for more details.

since by Lemma 4.2 the utility of the agent occupying the corner vertex adjacent
to 𝑣, say 𝑢′, has a strictly positive utility, we have that the border agent adjacent
to 𝑢 is occupied by an agent of the same type of the two ones that occupy 𝑢
and 𝑢′. If 𝑖 occupies a border vertex of the first (respectively, second) row, say 𝑣,
then we can swap 𝑖 with the agent 𝑗 occupying the unique border vertex adjacent
to the second (respectively, first) row that is adjacent to 𝑣. In either case, we are
uniquely assigning an agent 𝑗 that has a utility of at least 2

3 to every agent 𝑖 that
has a utility of 0. The claim follows. ■

▶ Proposition 4.32. The LPoA of local 2-SSG played on 3 × ℎ 4-grids, with
ℎ ≥ 3 is 18

7 . Furthermore, for every 𝜖 > 0, there is a value ℎ0 such that, for every
ℎ ≥ ℎ0, the PoA of 3 × ℎ 4-grid is at least 18

7 − 𝜖 . ◀

Proof. For the lower bound of 18
7 − 𝜖 consider the strategy profile in Figure 4.20.

The average utility of the agents that occupy any column from 2 to ℎ − 1 is equal
to 7

18 .
Now, we prove the upper bound of 18

7 . In the remainder of the proof, by utility
of the 𝑟 -th column we mean the overall utility of the agents that occupy the
vertices of the 𝑟 -th column. We show that the utility of the first (respectively,
last) column is of at least 5

6 and we show that the average utility of the other
columns is at least 7

6 .
First of all, using Lemma 4.2, we have that at most one of the agents that

occupy the vertices of the 𝑟 -th column can have a utility of 0. This observation
implies that the utility of the 𝑟 -th column, with 𝑟 = 1, ℎ, is lower bounded by 5

6 .
Now, we show that on average the utility of the 𝑟 -th column, with 2 ≤ 𝑟 ≤ ℎ−1,

is of at least 7
6 . We divide the proof into cases:

Case 1. We assume that the middle agent has a utility of 0. By Lemma 4.2,
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Figure 4.21: Case 2: In case the 𝑟 -th column has utility 13
12 , and therefore, a border agent

has utility 0, without loss of generality, the upper orange one in the 𝑟 -th column, the
middle agent utility 3

4 and the other border agent utility 1
3 . Applying Lemma 4.2 yields

that the right (respectively left) neighbor of the orange border agent with utility 0 has a
utility of at least 2

3 and is blue. Therefore, the right (left) neighbor of the middle agent
has a utility of at least 1

2 . Again applying Lemma 4.2 yields that the right (respectively
left) neighbor of the lower blue border agent has a utility of at least 1

3 . Summing up all
utilities yields a utility of 3

2 for the 𝑟 + 𝑡-th (respectively 𝑟 − 1-th) column. Please refer
to Case 2 in the proof of Proposition 4.32 for more details.

both border agents of the column have a utility of at least 2
3 and therefore,

the utility of the 𝑟 -th column is at least 4
3 ≥ 7

6 .

Case 2. We assume that a border agent has a utility of 0. This implies that
the middle agent has a utility of 3

4 and the other border agent has a utility
of at least 1

3 . Therefore, the utility of the 𝑟 -th column is at least 13
12 . In case

the column has utility 13
12 , then the next column has utility at least 3

2 by
applying Lemma 4.2, cf. Figure 4.21. As a consequence, for column with
utility 13

12 there is another column with utility 3
2 , and the average utility is

at least 31
24 ≥ 7

6 . Otherwise, if the column has a utility of at least 17
12 ≥ 7

6 .

Case 3. We assume that all agents that occupy the vertices of the 𝑟 -th
column have a strictly positive utility. We observe that the only interesting
case to look at is when the border agents both have a utility of 1

3 and the
middle agent has a utility of 1

4 , as in all the other cases, the utility of the
𝑟 -th column would be greater than or equal to 7

6 . However, by Lemma 4.2
this case cannot occur since at least one border agent has the opposite
color than the middle agent, who has utility 1

4 , and they swap.

This completes the proof. ■

▶ Theorem 4.33. For every 𝜖 > 0, the LPoA of local 2-SSG played on 𝑙 × ℎ
4-grids, with ℓ, ℎ ≥ 8 + 20

𝜖
is in the interval

( 5
2 − 𝜖,

5
2 + 𝜖

]
. ◀
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Proof. Let 𝑋 be the set of middle vertices that are adjacent neither to the border
nor to corner vertices. Clearly, 𝑁 (𝑋 ) = ⋃

𝑣∈𝑋 𝑁 (𝑣) is the set of all the middle
vertices. Therefore, the degree of each vertex 𝑣 ∈ 𝑁 (𝑋 ) is equal to 4. Let
𝑍 ⊆ 𝑁 (𝑋 ) be the set of vertices occupied by agents that have a utility strictly
greater than 2

5 . From Lemma 4.19, we have that the average utility of the agents
in 𝑋 ∪ 𝑍 is at least 2

5 . As a consequence, the social welfare is lower bounded by

2
5 |𝑋 ∪ 𝑍 | ≥ 2

5 (𝑙 − 4) (ℎ − 4) > 2
5𝑙ℎ −

8
5 (𝑙 + ℎ) .

Therefore, the LPoA can be upper bounded by

𝑙ℎ
2
5𝑙ℎ −

8
5 (𝑙 + ℎ)

=
1

2
5 −

8
5
𝑙+ℎ
𝑙ℎ

≤ 1
2
5 −

8
5
2(8+20/𝜖 )
(8+20/𝜖 )2

=
5
2 + 𝜖.

For the lower bound, consider the 𝑙 × ℎ grid, with 𝑙 = 5𝑙 ′ + 1 and ℎ = 5ℎ′, that
is filled as shown in Figure 4.22. The social welfare for arbitrarily large values
of 𝑙 ′ and ℎ′, i.e., 𝑙 and ℎ, can be made arbitrarily close to the average utility of the
agents that occupy the vertices of the tiles labeled with 𝑇 . Observe that 2

5 is the
average utility of the agents that occupy all the vertices of any tile labeled with𝑇 .
As the ratio between blue and orange agents can be made arbitrarily close to 3

2 ,
the maximum average utility of an agent is arbitrarily close to 1 by placing the
orange agents over the vertices of the first 2

5ℎ columns and the blue agents in
the remaining 3

5ℎ columns. Therefore, the LPoA is lower bounded by 5
2 − 𝜖 . ■

We now turn our focus to the 8-grid and prove upper bounds to the LPoA.

▶ Proposition 4.34. The PoA of 2-SSGs played on an 8-grid in which one type
has cardinality 1 is equal to 897

704 . ◀

Proof. Assume, without loss of generality, that orange is the type with a unique
representative. For this game, any strategy profile 𝝈 is an equilibrium, since in
any profile 𝝈 the orange agent 𝑜 gets utility zero, the agents not adjacent get
utility 1, while all agents adjacent to 𝑜 get strictly less than 1. Call these last
agents the penalized agents. Thus, the PoA is maximized by comparing the social
welfare of the strategy profile minimizing the overall loss of the penalized agents
with one of the strategy profiles maximizing it. The overall loss of the penalized
agents is minimized when 𝑜 is occupying a corner vertex, while it is maximized
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Figure 4.22: The strategy profile inducing an average agent’s utility arbitrarily close to
2
5 is shown on the left side via a small example over an 11 × 10 4-grid. On the right side,
the tiling shows the pattern we have used for building the instance. The tiles 𝑇𝑐 and 𝑇 ′

𝑐

are only used to fill the bottom-left and bottom-right corners of the 4-grid. Observe
that using exactly the same tiles, one can build arbitrarily large instances. Moreover, for
arbitrarily large instances, the average utility of an agent is determined by the average
utility of the agents that occupy the vertices of any tile 𝑇 , i.e., 2

5 . See the proof of
Theorem 4.33 for more details.

when 𝑜 is a middle one on an 8-grid with 𝑙 = ℎ = 3. Comparing the two social
welfares gives the claimed bound. ■

▶ Theorem 4.35. The LPoA of 2-SSGs played on an 8-grid is at most 4. ◀

Proof. Let 𝑖 be an agent with utility strictly less than 1
4 and let 𝑗 be an agent of

type different from the one of 𝑖 that occupies a vertex, say 𝑣, that is adjacent to
the one occupied by 𝑖 , say 𝑢. By Lemma 4.2 the sum of the utilities of agent 𝑖
and 𝑗 is at least 1 − 1

3 = 2
3 if either 𝑢 or 𝑣 is a corner vertex and at least 1 − 1

5 = 4
5

in any other case.
Now observe that 𝑁 (𝑣) \ {𝑢} is occupied by at most one agent of the same

type of 𝑖 , say 𝑖′, but only if neither 𝑢 nor 𝑣 is a corner vertex; in any other case,
𝑁 (𝑣) \ {𝑢} is occupied by agents of the same type of 𝑗 except for the unique
vertex of 𝑁 (𝑣) occupied by 𝑖 . As a consequence, if either 𝑢 or 𝑣 is a corner vertex
then the average utility of 𝑖 and 𝑗 is greater than or equal to 1

3 ; in the other cases

115



Chapter 4 Topological Influence and Locality in Swap Schelling Games

the average utility of 𝑖 , 𝑗 , and the potential agent 𝑖′ of the same type of 𝑖 that
occupies a vertex in 𝑁 (𝑣) \ {𝑢} is at least 4

15 > 1
4 . In either case, the average

utility of the considered agents is at least 1
4 . As we are assigning 𝑗 to the unique

agents of different types of 𝑗 that occupy vertices in 𝑁 (𝑣), we have that the
average utility of an agent is greater than or equal to 1

4 . This completes the
proof. ■

We conclude by proving a much better bound for the (L)PoA if the 8-grid is
large enough.

▶ Proposition 4.36. For every 𝜖 > 0, the LPoA of local 2-SSGs played on an
𝑙 × ℎ 8-grid, with 𝑙, ℎ ≥ 8 + 18

𝜖
is at most 9

4 + 𝜖 . ◀

Proof. Let 𝑋 be the set of middle vertices that are adjacent neither to the border
nor to corner vertices. Clearly, 𝑁 (𝑋 ) = ⋃

𝑣∈𝑋 𝑁 (𝑣) is the set of all the middle
vertices. Therefore, the degree of each vertex 𝑣 ∈ 𝑁 (𝑋 ) is equal to 8. Let
𝑍 ⊆ 𝑁 (𝑋 ) be the set of vertices occupied by agents that have a utility strictly
greater than 4

9 . From Lemma 4.19, we have that the average utility of the agents
in 𝑋 ∪ 𝑍 is at least 4

9 . As a consequence, the social welfare is lower bounded by

4
9 |𝑋 ∪ 𝑍 | ≥ 4

9 (𝑙 − 4) (ℎ − 4) > 4
9𝑙ℎ −

16
9 (𝑙 + ℎ) .

Therefore, the LPoA is at most

𝑙ℎ
4
9𝑙ℎ −

16
9 (𝑙 + ℎ)

=
1

4
9 −

16
9
𝑙+ℎ
𝑙ℎ

≤ 1
4
9 −

16
9
2(8+18/𝜖 )
(8+18/𝜖 )2

=
9
4 + 𝜖. ■

4.4 Price of Stability

Although our work is mainly devoted to the characterization of the Price of
Anarchy in (local) Swap Schelling Games, some results for the Price of Stability
can be derived as a by-product of our analysis. The characterization of the
(L)PoS is much more challenging than that of the (L)PoA, and very few results
are known in this setting within the realm of Swap Schelling Games. In particular,
Agarwal et al. [Aga+21] show that PoS(G, 2) ≥ 4

3 when G is the class of trees
and PoS(G, 𝑘) = 1, for any 𝑘 ≥ 2, when G is the class of regular graphs. The
last result is shown by employing the potential method, which leverages the
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existence of a potential function for games played on regular graphs. In the same
spirit, we can exploit Theorem 4.4 to obtain a significant upper bound on the
PoS for games played on almost-regular graphs.

▶ Theorem 4.37. For any 𝑘 ≥ 2, PoS(G, 𝑘) ≤ 𝛥
𝛿
= 𝛿+1

𝛿
when G is the class of

almost regular graphs. ◀

Proof. For any 𝑘 ≥ 2, fix a 𝑘-𝑆𝑆𝐺 (𝐺, 𝑡) defined on an almost-regular graph of
minimum degree 𝛿 , so that, the maximum degree is 𝛥 = 𝛿 + 1. Observe that, for
any feasible strategy profile 𝝈 , it holds that

U(𝝈) ≥ 2𝛷 (𝝈)
𝛿 + 1 (4.11)

and
U(𝝈) ≤ 2𝛷 (𝝈)

𝛿
. (4.12)

Let 𝝈 be a feasible strategy profile maximizing 𝛷 . By Theorem 4.4, we know
that𝛷 is a potential for (𝐺, 𝑡). This implies that 𝝈 is a swap equilibrium and

𝛷 (𝝈∗) ≤ 𝛷 (𝝈), (4.13)

where 𝝈∗ is a short-hand for 𝝈∗(𝐺, 𝑡) Thus, the PoS(𝐺, 𝑡) is upper bounded by
U(𝝈∗ )
U(𝝈 ) . Putting everything together, we get

PoS(𝐺, 𝑡) ≤ U(𝝈∗)
U(𝝈) ≤

2𝛷 (𝝈∗ )
𝛿

2𝛷 (𝝈 )
𝛿+1

≤
2𝛷 (𝝈 )

𝛿

2𝛷 (𝝈 )
𝛿+1

=
𝛿 + 1
𝛿

,

where the second inequality comes from both Equation (4.11) and Equation (4.12)
and the third inequality comes from Equation (4.13). ■

We observe that the proof of Theorem 4.37 can be generalized to any game for
which the global maximum of𝛷 is a swap equilibrium, to produce an upper bound
of 𝛥

𝛿
on the PoS. As Corollary 4.6, claiming that games played on 4-grids possess

the FIP, is proved by showing that a global maximum of𝛷 is a swap equilibrium,
we immediately get an upper bound of 2 on the PoS which, however, does not
improve on the upper bound on the PoA shown in Theorem 4.28. However, by
refining the proof of Theorem 4.37, an upper bound of 3

2 can be derived.
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▶ Theorem 4.38. For any 𝑘 ≥ 2, PoS(G, 𝑘) ≤ 3
2 when G is the class of 4-

grids. ◀

Proof. Fix a 4-grid 𝐺 = (𝑉 , 𝐸). Let 𝐸1 ⊆ 𝐸 be the set of edges that are incident
to a corner vertex of 𝐺 , that is, to one of the 4 vertices of degree 2. Concerning
partition (𝐸1, 𝐸 \ 𝐸1) of 𝐸, we can refine the definition of 𝛷 to be equal to the
number of monochrome edges in 𝐸1 plus the number of monochrome edges
in 𝐸 \ 𝐸1. So, for each 𝝈 , define 𝛷 (𝝈) := 𝛷𝐸1 (𝝈) +𝛷𝐸\𝐸𝑖 (𝝈). Observing that
the degree of every vertex incident to an edge in 𝐸1 is either 2 or 3 and the
degree of every vertex incident to an edge in 𝐸 \ 𝐸1 is either 3 or 4, inequalities
Equation (4.11) and Equation (4.12) rewrite as

U(𝝈) ≥
2𝛷𝐸1 (𝝈)

3 +
2𝛷𝐸\𝐸1 (𝝈)

4 (4.14)

and
U(𝝈) ≤

2𝛷𝐸1 (𝝈)
2 +

2𝛷𝐸\𝐸1 (𝝈)
3 . (4.15)

By using these inequalities in place of Equation (4.11) and Equation (4.12) within
the final derivation in the proof of Theorem 4.37, we get the desired bound. ■

In Theorem 4.9, we show that local games with two types played on 8-grids
have the FIP. This is achieved by proving that function𝛹 is a potential for these
games, which implies that the global maximum of𝛷 is a local swap equilibrium.
Hence, the same approach of Theorem 4.38 can be adapted to obtain an upper
bound of 5

3 on the local Price of Stability.
▶ Proposition 4.39. LPoS(G, 2) ≤ 5

3 when G is the class of 8-grids. ◀

Moreover, by using the algorithmic construction used to show Theorem 4.11,
we can derive an upper bound of 5

2 which holds even for the Price of Stability
and rapidly approaches 1 as both dimensions of the grid increase.
▶ Theorem 4.40. PoS(G, 2) ≤ 5

2 when G is the class of 8-grids. ◀

Proof. Observe that, when 𝑜 ≥ 2ℎ−1, we show in the proof of Theorem 4.11 that
the computed swap equilibrium 𝝈 is such that, for each 𝑖 ∈ [𝑛], either U𝑖 (𝝈) = 1
orU𝑖 (𝝈) ≥ 2

5 . This immediately implies an upper bound of 5
2 of the PoS. Similarly,

for the case in which 𝑜 < 2ℎ − 1, the computed swap equilibrium 𝝈 is such that
the minimum utility of any player is at least 2

5 , see Figure 4.14, which gives an
upper bound of 5

2 on the PoS also in this case. ■
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▶ Corollary 4.41. For any game with 2 types played on an 8-grid, the PoS ,
and so also the LPoS, approaches 1 as both dimensions of the grid increase. ◀

Proof. When 𝑜 ≥ 2ℎ− 1, observe that the number of agents whose utility is not 1
is at most 2(ℎ + 1), see Figure 4.11. As there are 𝑛 = ℓℎ agents in total, and at
most 2(ℎ + 1) of them lose at most 3

5 over their possible maximum utility, which
equals 1, it follows that the PoS is upper bounded by ℓℎ

ℓℎ− 3
5 ·2(ℎ+1)

. This function
approaches 1 when both ℎ and ℓ increase. When 𝑜 < 2ℎ − 1, the number of
agents whose utility is not 1 can be upper bounded by 2(ℓ + ℎ), see Figure 4.14.
Thus, the PoS is upper bounded by

ℓℎ

ℓℎ − 3
5 · 2(ℎ + ℓ)

.

Also this function approaches 1 when both ℎ and ℓ increase. ■

Finally, it can be tempting to use the local swap equilibrium computed in
Theorem 4.7 to upper bound the LPoS in games played on trees. However, it is
easy to show that the constructed local swap equilibrium may have an arbitrarily
bad performance. Consider a game with 3 types such that 𝑡 = (𝑡1, 𝑡2, 1) played
on a tree whose root 𝑟 has 𝑡2 children and one of these children, say 𝑢, has 𝑡1
children. Our algorithm assigns all agents of type 1 to the children of𝑢, all agents
of type 2 to the children of 𝑟 , and the unique agent of type 3 to 𝑟 . This is a local
swap equilibrium 𝝈 such that U(𝝈) = 0. As there is a feasible strategy profile 𝝈∗

such that U(𝝈∗) > 0, the ratio between U(𝝈∗) and U(𝝈) is unbounded.

4.5 Conclusion and Open Problems

We have shed light on the influence of the underlying graph topology on the
existence of equilibria, the game dynamics, and the Price of Anarchy in Swap
Schelling Games on graphs. Moreover, we have studied the impact of restricting
agents to local swaps. We present tight or almost tight bounds for a variety of
graph classes and for both the Swap Schelling Game and its local variant, where
only swaps between neighboring agents are allowed.

As the main takeaway from this chapter, we find that both the specific struc-
ture of the underlying graph and the restriction to only local swaps strongly
influence the existence and the quality of equilibria. Regarding the existence
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Chapter 4 Topological Influence and Locality in Swap Schelling Games

Table 4.3: Asymptotic Price of Anarchy results. For the study of the PoA we focus on
𝑘 = 2 types. Remember that 𝑛 is the cardinality of𝑉 and 𝛥 denotes the maximum degree
of vertices in 𝐺 = (𝑉 , 𝐸). We denote by 𝑏 and 𝑜 the number of blue and orange agents,
respectively, and we assume 𝑜 ≤ 𝑏.

Price of Anarchy

2-SSG local 2-SSG

arbitrary ∞ 𝑜 = 1 𝛩 (2𝑛) 𝑜 = 𝑛
2

O( 𝑏
𝑜
) 𝑜 = 𝑛

2 O( 𝛥
𝛿
) 𝛿 ≥ 2

𝛩 (𝛥2 ) 𝛥 ≤ 𝑛 − 2
regular O(1) O (1)
trees 𝛩 (𝛥2 ) 𝛩 (𝛥2 ) 𝛥 ≤ 𝑛 − 2
cycles 𝛩 ( 𝑛

𝑏
) 𝛩 ( 𝑛

𝑏−𝑜 ) 𝑜 ≥ 2, 𝑏 ≥ 2𝑜
O(1) otherwise

paths ∞ 𝑛 = 3 ∞ 𝑛 = 3
O( 𝑛

𝑏
) 𝑛 > 3, 𝑜 ≥ 2, 𝛩 ( 𝑛

𝑏−𝑜 ) 𝑛 > 3, 𝑜 ≥ 2, 𝑏 ≥ 2𝑜
O(1) otherwise

4-grids O(1) O (1)
8-grids O(1) O (1)

of equilibria, we find that for the Swap Schelling Game existence is guaranteed
on all investigated graph classes, except for trees, as proven earlier by Agar-
wal et al. [Aga+21]. Interestingly, by enforcing only local swaps, and thereby
strictly enlarging the set of equilibria, we also have equilibrium existence on
trees. Moreover, as our bounds on the Price of Anarchy indicate, see Table 4.3 for
a condensed overview of the asymptotic bounds, the quality of the equilibrium
states deteriorates only slightly when enforcing local swaps. For deriving these
bounds in the Price of Anarchy, we introduce novel techniques that are based
on matchings. We believe that this approach might be advantageous for future
research on the quality of equilibria in Schelling games.
Clearly, improving on the non-tight bounds is an interesting challenge for

future work. Regarding the local Swap Schelling Game, we leave some interesting
problems open. Among them is the question of whether local swap equilibria
are guaranteed to exist in general and whether the local 𝑘-SSG always has
the finite improvement property. So far, we are not aware of any counter-
examples for both questions and extensive agent-based simulations indicate that
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both equilibrium existence and guaranteed convergence of improving response
dynamics may hold. Another open problem is of understanding whether the
finite improvement property holds for tree instances when we consider local
swap equilibria. This result would create a sharp contrast between the concepts
of swap equilibrium and local swap equilibrium as we know of the existence of
a tree instance that does not admit a swap equilibrium, and thus, cannot satisfy
the finite improvement property, [Aga+21].
Another interesting line of study is to analyze the Jump Schelling Game

concerning varying underlying graphs and locality.
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5 Single-Peaked Swap
Schelling Games

This chapter is based on joint work with Davide Bilò, Vittorio Bilò, and Pascal
Lenzner [Bil+22a].

The game-theoretic variants of Schelling’s model that we investigated in
Chapter 3 and Chapter 4 and which were introduced and studied very recently
in the literature [Aga+21; BSV21; KKV21], incorporate utility functions that are
monotone in the fraction of same-type neighbors, i.e., the utility of an agent
is proportional to the fraction of same-type neighbors in its neighborhood. In
Chapter 3 agents are equipped with a utility function as shown in Figure 5.1
(left); in Chapter 4 we investigate a simplified model with 𝜏 = 1.

However, non-monotone utility functions are well-justified by real-world
data and hence might be more suitable for modeling real-world segregation.
Representative sociological polls, in particular data from the General Social
Survey10 (GSS) [Smi+19], indicate that this assumption of monotone utility
functions should be challenged. For example, in 1982 all black respondents were
asked “If you could find the housing that you would want and like, would you
rather live in a neighborhood that is all black; mostly black; half black, half white;
or mostly white?” and 54% responded with “half black, half white” while only
14% chose “all black”. Later, starting from 1988 until 2018 all respondents, of
whom on average 78% were white, were asked what they think of “Living in
a neighborhood where half of your neighbors were blacks?” a clear majority11
responded “strongly favor”, “favor” or “neither favor nor oppose”. This shows that
the maximum utility should not be attained in a homogeneous neighborhood.
Based on these real-world empirical observations, this chapter sets out to

explore a game-theoretic variant of Schelling’s model with non-monotone util-
ity functions. In particular, we focus on single-peaked utility functions with
maximum utility at a 𝛬-fraction of same-type neighbors, see Figure 5.1 (mid-

10 Since 50 years the GSS is regularly conducted in the US and it is a valuable and widely used
data set for social scientists.

11 In numbers: 1988: 57%, 1998: 70%, 2008: 79%, 2018: 82%. In 2018 33% answered with “favor” or
“strongly favor”.
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Figure 5.1: Left: example of the monotone utility functions employed in recent related
work. Middle and right: example of a single-peaked utility function considered in this
chapter.

dle and right), with 𝛬 ∈ (0, 1), satisfying mild assumptions. More precisely,
we only require a function 𝑝 (𝑥) to be zero-valued at 𝑥 = 0 and 𝑥 = 1, to be
strictly increasing in the interval [0, 𝛬] and to be such that 𝑝 (𝑥) = 𝑝

(
𝛬 (1−𝑥 )
1−𝛬

)
for each 𝑥 ∈ [𝛬, 1], that is, both sides of 𝑝 approach the peak, one from the
left and the other from the right, in the same way, up to a re-scaling due to the
width of their domains, [0, 𝛬], vs. [𝛬, 1]. Our main findings shed light on the
existence of equilibrium states and their quality in terms of the recently defined
Degree of Integration [Aga+21] that measures the number of agents that live in
a heterogeneous neighborhood.

Zhang [Zha04] proposed a model that is similar to our model. There, agents
on a toroidal grid graph with degree 4 also have a non-monotone single-peaked
utility function. However, in contrast to our model, random noise is added to
the utilities and transferable utilities are assumed. Zhang analyzed the Markov
process of random swaps and showed that this process converges with a high
probability to segregated states. For the jump version, Pancs & Vriend [PV07] in-
vestigated empirically different individual preferences, especially a single-peaked
utility function where agents strictly prefer to live in a perfectly integrated neigh-
borhood and any deviation regardless of the direction is equally bad, cf. Figure 5.1
(middle). This is a special case of our proposed utility function and corresponds to
𝛬 = 1

2 . They showed for paths, cycles, grids, and torus that even if all individual
agents have a strict preference for perfect integration, best response dynamics
lead to segregation, although complete segregation seems to be avoided.

Recently, a model was introduced where the agent itself is included in the set
of its neighbors [KKV21]. We adapt this modified version in our model. Since
the agent itself contributes to the diversity in its neighborhood, we include for
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the computation of the fraction of same-type neighbors the agent itself in the
set of its neighbors but also in the set of same-type neighbors.
Our main focus is on a broad class of non-monotone utility functions well-

known in economics and algorithmic game theory: single-peaked utilities. This
can be understood as single-peaked preferences, which date back to Black [Bla48]
and are a common theme in the economics and game theory literature. In
particular, such preferences yield favorable behavior in the hedonic diversity
games [BE20; BEI19] and the realm of voting and social choice [BSU13; Bra+15;
EFS20; Wal07; YCE13]. We emphasize that our results hold for all such functions
that satisfy our mild assumptions. See Table 5.1 for a detailed result overview.
Concerning the existence of equilibria, cf. Section 5.3, for games with in-

tegration oriented agents, i.e., 𝛬 ≤ 1
2 , we show that swap equilibria exist on

almost regular graphs and that improving response dynamics are guaranteed
to converge to such stable states, cf. Theorem 5.6. Moreover, for 𝛬 = 1

2 swap
equilibria exist on the broad class of graphs that admit an independent set that
is large enough to accommodate the minority type agents, cf. Theorem 5.9.
In particular, this implies equilibrium existence and efficient computability on
bipartite graphs, including trees, cf. Corollary 5.10, which is in contrast to the
non-existence results by [Aga+21].

Another contrast are our bounds on the Price of Anarchy, cf. Section 5.4. On
general graphs, we prove a tight bound on the Price of Anarchy that depends
on 𝑜 , the number of agents of the minority color, and we give a bound of 𝛥
on all graphs 𝐺 , cf. Theorem 5.13, that is asymptotically tight on 𝛥-regular
graphs, cf. Theorem 5.14 and Theorem 5.15. Also for the Price of Stability, cf.
Section 5.5, we get stronger positive results compared to [Aga+21]. For 𝛬 = 1

2
we give a tight Price of Stability bound of 2 on bipartite graphs, cf. Theorem 5.18
and Theorem 5.19, and show that the Price of Stability is 1 on almost regular
graphs with maximum degree 3, cf. Theorem 5.20, or if the size of the maximum
independent set of the graph is at most 𝑜 , cf. Theorem 5.21. The latter implies
a Price of Stability of 1 on regular graphs for balanced games, i.e., if there are
equally many agents of both colors, cf. Corollary 5.22. Even more general, for
constant 𝛬 ≤ 1

2 we prove a constant Price of Stability on almost regular graphs
via a sophisticated proof technique that relies on the greedy algorithm for the
k-Max-Cut problem, cf. Theorem 5.25 and Corollary 5.26.
Moreover, we investigate the influence of the underlying graph on compu-

tational complexity aspects, cf. Section 5.6, and provide hardness results for
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Table 5.1: Overview of our results. We investigate the existence of equilibria, the finite improvement property, the PoA,
and the PoS. The “✓” symbol denotes that the respective property holds, and the “×” means the opposite. The respective
conditions are stated next to the result. 𝜖 is a constant larger than zero. “1-regular” stands for almost regular graphs. Note,
PoS results for almost regular graphs hold for regular graphs as well. For the PoA the stated lower bounds of other graph
classes hold for arbitrary graphs as well.

graph classes Equilibrium Existence Finite Improvement Property

arbitrary × (Thm. 5.7) 𝛬 > 1
2 × (Thm. 5.7, 5.8) 𝛬 ≥ 1

2
✓(Thm. 5.9) 1

𝛿+1 ≤ 𝛬 ≤ 1
2 , 𝛼 + 1 ≥ 𝑜

bipartite ✓(Cor. 5.10) 𝛬 = 1
2

1-regular ✓(Thm. 5.6) 𝛬 ≤ 1
2 ✓(Thm. 5.6) 𝛬 ≤ 1

2
2-regular × (Thm. 5.7) 𝛬 > 1

2 × (Thm. 5.7) 𝛬 > 1
2

Price of Anarchy Price of Stability

arbitrary ≤ min
{
𝛥, 𝑛

𝑜+1 ,
(𝛥+1)𝑜
𝑜+1

}
(Thm. 5.13) ≥ 𝛺

(√
𝑛𝛬

)
(Thm. 5.17)

bipartite ≥ 𝑛−1
3 (Thm. 5.13) 𝑜 = 1 2 (Thm. 5.18, 5.19) 𝛬 = 1

2
≥ 𝑛

𝑜+1 (Thm. 5.13) 𝑜 > 1
regular ≤ min

{
𝛥+1
2 , 𝑛

2𝑜
}
(Thm. 5.14) 𝛬 < 1

𝛥

≥ 𝛥+1
2 − 𝛥+1

4𝛥+2 (Thm. 5.15) 𝛬 ≤ 1
2 , 𝛥 ≥ 2

1-regular 1 (Thm. 5.20) 𝛬 ≤ 1
2 , 𝛥 ≤ 3 or

(Thm. 5.21) 𝛬 ∈
[ 1
𝛿+1 ,

1
2
]
, 𝑜 ≥ 𝛼 (𝐺 )

min
{
𝛥 + 1,O

( 1
𝛬

)}
(Thm. 5.25) 𝛬 ≤ 1

2 , 𝑜 < 𝛼

O(1) (Cor. 5.26) 𝛬 ≤ 1
2

ring > 2 − 𝜖 (Thm. 5.16)
3
2 − 𝜖 (Thm. 5.16) 𝛬 < 1

2
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Model Section 5.2

computing a strategy profile or a swap equilibrium that maximize the Degree of
Integration on cubic graphs or on bipartite graphs. We establish that all these
problems are NP-hard and that they cannot be approximated to within a certain
constant factor in polynomial time, unless P = NP.

5.1 Model

We consider the Single-Peaked Swap Schelling Game with 2 types. Thus, any
strategy profile 𝝈 corresponds to a bi-coloring of 𝐺 in which exactly 𝑜 vertices
of 𝐺 are colored orange and 𝑛 − 𝑜 are colored blue.
The utility of an agent 𝑖 in 𝝈 is defined as U𝑖 (𝝈) = 𝑝

(
|𝑁 [𝝈 (𝑖 ) ]∩𝐶𝑖 (𝝈 ) |

|𝑁 [𝝈 (𝑖 ) ] |

)
. Note

that we consider the closed neighborhood, that is, the agent itself is included.
The function 𝑝 is a single-peaked function with the peak at 𝛬. For the exact
definition of 𝑝 , we refer to Definition 2.4. We say an agent 𝑖 is below the peak
when 𝑓𝑖 (𝝈) < 𝛬, above the peak when 𝑓𝑖 (𝝈) > 𝛬, at the peak when 𝑓𝑖 (𝝈) = 𝛬,
and segregated when 𝑓𝑖 (𝝈) = 1.
Note that the SP-2-SSG (𝐺,𝑜, 𝛬) depends on the choice of 𝑝 . However, as all

our results are independent of 𝑝 , we remove it from the notation for the sake of
simplicity. Remember that we denote by 𝛼 the independence number of𝐺 . More-
over, we measure the quality of a strategy profile 𝝈 via the Degree of Integration.
We prefer it to the standard utilitarian welfare since it measures segregation inde-
pendently of the value of 𝛬. For investigating the dynamic properties, we mainly
use the potential function𝛷 (𝝈) =

��{{𝑢, 𝑣} ∈ 𝐸 | 𝑐 (𝝈−1(𝑢)) = 𝑐 (𝝈−1(𝑣))
}��.

5.2 Preliminaries

In this section, we provide some facts and lemmas that will be widely exploited
throughout this chapter. We start by observing the following fundamental
relationship occurring between 𝑓𝑖 (𝝈) and 𝑓𝑗 (𝝈 𝑖 𝑗 ) for two swapping agents 𝑖
and 𝑗 :

if 𝑓𝑖 (𝝈) =
𝑥

𝑦
, 12 then 𝑓𝑗 (𝝈 𝑖 𝑗 ) =

𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)
𝑦

. (5.1)

12 For the sake of conciseness, from now on, whenever we write 𝑓𝑖 (𝝈) = 𝑥
𝑦 for some agent 𝑖 ,

we implicitly mean that 𝑥 ≔ |𝑁 [𝝈 (𝑖)] ∩𝐶𝑖 (𝝈) | and 𝑦 ≔ |𝑁 [𝝈 (𝑖)] |. Observe that, under this
assumption, 𝑓𝑖 (𝝈) = 3

6 is different than 𝑓𝑖 (𝝈) = 1
2 .
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Using property (1), we claim the following observation.

▶ Observation 5.1. If 𝑓𝑖 (𝝈) = 𝑥
𝑦
< 1

2 , then 𝑓𝑗 (𝝈 𝑖 𝑗 ) > 1
2 . If 𝑓𝑖 (𝝈) =

𝑥
𝑦
> 1

2 , then
𝑓𝑗 (𝝈 𝑖 𝑗 ) ≤ 1

2 , unless 𝑦 = 2𝑥 − 1 and 1𝑖 𝑗 (𝝈) = 0 for which 𝑓𝑗 (𝝈 𝑖 𝑗 ) = 𝑓𝑖 (𝝈) = 𝑥
𝑦
>

1
2 . ◀

Proof. If 𝑓𝑖 (𝝈) = 𝑥
𝑦
< 1

2 , by Equation (5.1) we have

𝑓𝑗 (𝝈 𝑖 𝑗 ) =
𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)

𝑦
= 1 − 𝑥

𝑦
+
1 − 1𝑖 𝑗 (𝝈)

𝑦
>

1
2 .

If 𝑓𝑖 (𝝈) = 𝑥
𝑦

> 1
2 , we distinguish among different cases. If 1𝑖 𝑗 (𝝈) = 1, by

Equation (5.1) we get

𝑓𝑗 (𝝈 𝑖 𝑗 ) =
𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)

𝑦
= 1 − 𝑥

𝑦
<

1
2 ,

while, if 𝑦 < 2𝑥 − 1, which implies 𝑥 ≥ 𝑦+2
2 , it follows

𝑓𝑗 (𝝈 𝑖 𝑗 ) =
𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)

𝑦
= 1 − 𝑥

𝑦
+
1 − 1𝑖 𝑗 (𝝈)

𝑦
≤ 1

2 −
1𝑖 𝑗 (𝝈)
𝑦

≤ 1
2 .

Finally, for 𝑦 = 2𝑥 − 1 and 1𝑖 𝑗 (𝝈) = 0, by Equation (5.1) we get

𝑓𝑗 (𝝈 𝑖 𝑗 ) =
𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)

𝑦
=
𝑥

𝑦
>

1
2 . ■

The following series of lemmas characterizes the conditions under which a
profitable swap can take place.

▶ Lemma 5.2. For any 𝛬 ≤ 1
2 , no profitable swaps can occur between agents

below the peak. ◀

Proof. Fix a strategy profile 𝝈 and two agents 𝑖 and 𝑗 , below the peak, who can
perform a profitable swap in 𝝈 . By Observation 5.1, both 𝑖 and 𝑗 are above the
peak in 𝝈 𝑖 𝑗 . Assume, without loss of generality, that 𝑓𝑖 (𝝈) = 𝑥

𝑦
< 𝛬 which by

Equation (5.1) yields

𝑓𝑗 (𝝈 𝑖 𝑗 ) =
𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)

𝑦
> 𝛬.

128
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We claim that U𝑗 (𝝈 𝑖 𝑗 ) ≤ U𝑖 (𝝈). By the definition of 𝑝 , this holds whenever

𝑥

𝑦
≥ 𝛬

1 − 𝛬

(
1 −

𝑦 + 1 − 𝑥 − 1𝑖 𝑗 (𝝈)
𝑦

)
=

𝛬

1 − 𝛬

(
𝑥

𝑦
−
1 − 1𝑖 𝑗 (𝝈)

𝑦

)
which holds true as 𝛬

1−𝛬 ≤ 1 and 1 − 1𝑖 𝑗 (𝝈) ≥ 0.
By applying the same argument, with 𝑖 and 𝑗 swapped, we also get U𝑖 (𝝈 𝑖 𝑗 ) ≤

U𝑗 (𝝈). As the swap is profitable, we haveU𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) andU𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ).
Putting all these inequalities together, we conclude that

U𝑗 (𝝈 𝑖 𝑗 ) ≤ U𝑖 (𝝈) < U𝑖 (𝝈 𝑖 𝑗 ) ≤ U𝑗 (𝝈) < U𝑗 (𝝈 𝑖 𝑗 ),

which yields a contradiction. ■

▶ Lemma 5.3. For any 𝛬 ≤ 1
2 , no profitable swaps can occur between adjacent

agents at different sides of the peak. ◀

Proof. Assume towards a contradiction, that 𝑖 and 𝑗 can perform a profitable swap
in 𝝈 , and, without loss of generality, that 𝑓𝑖 (𝝈) = 𝑥

𝑦
< 𝛬 and 𝑓𝑗 (𝝈) = 𝑥 ′

𝑦′ > 𝛬. By
Observation 5.1, 𝑗 ends up above the peak in 𝝈 𝑖 𝑗 . As 𝑗 improves after the swap,
we have

U𝑗 (𝝈 𝑖 𝑗 ) = 𝑝
(
1 − 𝑥

𝑦

)
> U𝑗 (𝝈) = 𝑝

(
𝑥 ′

𝑦′

)
which, given that 1 − 𝑥

𝑦
> 𝛬 and 𝑥 ′

𝑦′ > 𝛬, yields 1 − 𝑥
𝑦
< 𝑥 ′

𝑦′ . This implies that

𝑓𝑖 (𝝈 𝑖 𝑗 ) = 1 − 𝑥 ′

𝑦′
< 1 − 1 + 𝑥

𝑦
=
𝑥

𝑦
= 𝑓𝑖 (𝝈)

which, given that 𝑓𝑖 (𝝈) < 𝛬, contradicts the fact that 𝑖 improves after the
swap. ■

In the following, we present a technical result that will help to prove Lemma 5.5.
▶ Lemma 5.4. For any 𝛬 ≤ 1

2 , any profitable swap occurring between two
agents 𝑖 and 𝑗 in a strategy profile 𝝈 , with 𝑓𝑖 (𝝈) < 𝛬 and 𝑓𝑗 (𝝈) > 𝛬, requires
deg(𝝈 (𝑖)) > deg(𝝈 ( 𝑗)). ◀

Proof. Assume towards a contradiction, that deg(𝝈 (𝑖)) ≤ deg(𝝈 ( 𝑗)) and 𝑖 and
𝑗 can perform a profitable swap in 𝝈 , and, without loss of generality, that
𝑓𝑖 (𝝈) = 𝑥

𝑦
< 𝛬 and 𝑓𝑗 (𝝈) = 𝑥 ′

𝑦′ > 𝛬.

129
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By Lemma 5.3, it must be 1𝑖 𝑗 (𝝈) = 0. By Observation 5.1, 𝑗 ends up above the
peak in 𝝈 𝑖 𝑗 . As 𝑗 improves after the swap, we have

U𝑗 (𝝈 𝑖 𝑗 ) = 𝑝 (1 −
𝑥

𝑦
+ 1
𝑦
) > U𝑗 (𝝈) = 𝑝

(
𝑥 ′

𝑦′

)
which, given that 1− 𝑥

𝑦
+ 1

𝑦
> 𝛬 and 𝑥 ′

𝑦′ > 𝛬, yields 1− 𝑥
𝑦
𝑦 + 1

𝑦
< 𝑥 ′

𝑦′ . This implies
that

𝑓𝑖 (𝝈 𝑖 𝑗 ) = 1 − 𝑥 ′

𝑦′
+ 1
𝑦′

< 1 − 1 + 𝑥
𝑦
− 1
𝑦
+ 1
𝑦′

=
𝑥

𝑦
+ 1
𝑦′

− 1
𝑦
.

Now, as the hypothesis deg(𝝈 (𝑖)) ≤ deg(𝝈 ( 𝑗)) can be restated as 𝑦 ≤ 𝑦′, we
derive

𝑓𝑖 (𝝈 𝑖 𝑗 ) <
𝑥

𝑦
+ 1
𝑦′

− 1
𝑦
≤ 𝑥

𝑦
= 𝑓𝑖 (𝝈),

which, given that 𝑓𝑖 (𝝈) < 𝛬, contradicts the fact that 𝑖 improves after the
swap. ■

▶ Lemma 5.5. For any 𝛬 ≤ 1
2 , no profitable swaps can occur between agents at

different sides of the peak in SP-2-SSGs on almost regular graphs. ◀

Proof. Fix a strategy profile 𝝈 and two agents 𝑖 and 𝑗 at different sides of the peak
admitting a profitable swap in 𝝈 . As the game is played on an almost regular
graph, by Lemma 5.4, it must be 𝑓𝑖 (𝝈) = 𝑥

𝑦+1 < 𝛬, 𝑓𝑗 (𝝈) = 𝑥 ′

𝑦
> 𝛬. Moreover,

by Lemma 5.3, we have 1𝑖 𝑗 (𝝈) = 0.
Since 𝑗 improves after the swap, we have

U𝑗 (𝝈 𝑖 𝑗 ) = 𝑝
(
𝑦 − 𝑥 + 2
𝑦 + 1

)
> U𝑗 (𝝈) = 𝑝

(
𝑥 ′

𝑦

)
which, given that 𝑦−𝑥+2

𝑦+1 > 𝛬 and 𝑥 ′

𝑦
> 𝛬, yields 𝑥 ′

𝑦
>

𝑦−𝑥+2
𝑦+1 .We derive 𝑥 ′(𝑦+1) >

𝑦 (𝑦 − 𝑥 + 2), which, given that both sides of the inequality are integers, yields

𝑥 ′(𝑦 + 1) ≥ 𝑦 (𝑦 − 𝑥 + 2) + 1. (5.2)

Since 𝑖 improves after the swap, we have

U𝑖 (𝝈 𝑖 𝑗 ) = 𝑝
(
𝑦 − 𝑥 ′ + 1

𝑦

)
> U𝑖 (𝝈) = 𝑝

(
𝑥

𝑦 + 1

)
.
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We now distinguish between two possible cases: Since 𝑖 improves after the swap,
we have

U𝑖 (𝝈 𝑖 𝑗 ) = 𝑝
(
𝑦 − 𝑥 ′ + 1

𝑦

)
> U𝑖 (𝝈) = 𝑝

(
𝑥

𝑦 + 𝑡

)
.

We now distinguish between two possible cases:
(i) 𝑦−𝑥 ′+1

𝑦
≤ 𝛬 and

(ii) 𝑦−𝑥 ′+1
𝑦

> 𝛬.

If case (i) occurs, it must be 𝑥
𝑦+1 <

𝑦−𝑥 ′+1
𝑦

which is equivalent to 𝑥 ′(𝑦 + 1) <
(𝑦+1)2−𝑥𝑦. Together with Inequality 5.2, this yields𝑦 (𝑦−𝑥+2)+1 < (𝑦+1)2−𝑥𝑦
which yields a contradiction.

If case (ii) occurs, from 𝑦−𝑥 ′+1
𝑦

> 𝛬, we get

𝑥 ′ < 𝑦 (1 − 𝛬) + 1. (5.3)

Since
U𝑖 (𝝈 𝑖 𝑗 ) = 𝑝

(
𝑦 − 𝑥 ′ + 1

𝑦

)
> U𝑖 (𝝈) = 𝑝

(
𝑥

𝑦 + 1

)
,

𝑥

𝑦 + 1 < 𝛬

and 𝑦−𝑥 ′+1
𝑦

> 𝛬, by the definition of 𝑝 , we derive

𝑥

𝑦 + 1 <
𝛬

1 − 𝛬

(
1 − 𝑦 − 𝑥

′ + 1
𝑦

)
=

𝛬

1 − 𝛬
𝑥 ′ − 1
𝑦

,

by which we get 𝑥 <
𝛬 (𝑥 ′−1) (1+𝑦)

(1−𝛬)𝑦 . Together with Inequality 5.3, this yields

𝑥 < 𝛬(𝑦 + 1) . (5.4)

By summing up Inequality 5.3 and Inequality 5.4, we get 𝑥 + 𝑥 ′ < 𝑦 + 1 + 𝛬. As
𝑥 , 𝑥 ′, 𝑦 are integers and 𝛬 ∈ [0, 12 ], we derive

𝑥 + 𝑥 ′ ≤ 𝑦 + 1. (5.5)

Starting from Inequality 5.2 and then using Inequality 5.5, we derive

𝑥 ′ ≥ 𝑦 (𝑦 − 𝑥 − 𝑥 ′ + 2) + 1 ≥ 𝑦 + 1,

which, given that 𝑥 ′ ≤ 𝑦, yields a contradiction. ■
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5.3 Equilibrium Existence and Dynamics

In this section, we provide existential results for SP-2-SSGs played on some
specific graph topologies. We start by showing that games on almost regular
graphs enjoy the FIP property and converge to a swap equilibrium in at most𝑚
swaps in any game in which the peak does not exceed 1

2 . This result does not
hold when the peak exceeds 1

2 , as we prove the existence of a game played on a
2-regular graph (i.e., a ring) admitting no swap equilibrium.

▶ Theorem 5.6. For any 𝛬 ≤ 1
2 , fix a SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular

graph 𝐺 and a strategy profile 𝝈 . Any sequence of profitable swaps starting
from 𝝈 ends in a swap equilibrium after at most𝑚 swaps. ◀

Proof. We show that, after a profitable swap, the potential function𝛷 decreases
by at least 1. Consider a profitable swap performed by agents 𝑖 and 𝑗 such
that 𝑓𝑖 (𝝈) = 𝑥

𝑦
and 𝑓𝑗 (𝝈) = 𝑥 ′

𝑦+𝑡 ) , with 𝑡 ∈ {0, 1} since 𝐺 is almost regular. By
Lemma 5.2 and Lemma 5.5, we have that both, 𝑖 and 𝑗 , are above the peak, i.e.,
𝑥
𝑦
> 𝛬 and 𝑥 ′

𝑦+𝑡 > 𝛬. By Observation 5.1, after the swap, both 𝑖 and 𝑗 do not go
below the peak. Thus, a necessary condition for the swap to be profitable is that
𝑓𝑖 (𝝈 𝑖 𝑗 ) < 𝑓𝑖 (𝝈) and 𝑓𝑗 (𝝈 𝑖 𝑗 ) < 𝑓𝑗 (𝝈). Again, by Observation 5.1, the latter yields

𝑥 ′

𝑦 + 𝑡 > 1 − 𝑥

𝑦
+
1 − 1𝑖 𝑗 (𝝈)

𝑦
,

which gives

𝑥 ′ > 𝑦 − 𝑥 + 1 − 1𝑖 𝑗 (𝝈) + 𝑡
(
1 − 𝑥

𝑦
+
1 − 1𝑖 𝑗 (𝝈)

𝑦

)
≥ 𝑦 − 𝑥 + 1 − 1𝑖 𝑗 (𝝈) .

Since 𝑥 , 𝑥 ′, 𝑦 and 1𝑖 𝑗 (𝝈) are integers, we derive 𝑥 ′ ≥ 𝑦 − 𝑥 + 2 − 1𝑖 𝑗 (𝝈) . As it
holds that𝛷 (𝝈) −𝛷 (𝝈 𝑖 𝑗 ) equals

𝑥−1+𝑥 ′−1−
(
𝑦 − 𝑥 − 1𝑖 𝑗 (𝝈) + 𝑦 + 𝑡 − 𝑥 ′ − 1𝑖 𝑗 (𝝈)

)
= 2(𝑥+𝑥 ′−1+1𝑖 𝑗 (𝝈))−2𝑦−𝑡,

we get𝛷 (𝝈) −𝛷 (𝝈 𝑖 𝑗 ) ≥ 1. ■

This result does not hold when the peak exceeds 1
2 .

▶ Theorem 5.7. For any 𝛬 > 1
2 , there exists a SP-2-SSG played on a 2-regular

graph admitting no swap equilibrium. ◀

132



Equilibrium Existence and Dynamics Section 5.3

Proof. Consider an instance of a game played on a ring with 6 vertices, where
𝑜 = 𝑏 = 3. Only the following two complementary cases may occur:

• The orange agents occupy vertices that induce a path of length 2. In
this case, there are two segregated agents of different colors, both with
utility 0. As 𝑝 (0) = 0 and 𝑝 (𝑥) > 0 for 𝑥 ∈ (0, 1), the two agents swap
their positions.

• There are two neighboring agents 𝑖 and 𝑗 of different colors both being
below the peak. In this case, as 𝑝

( 1
3
)
< 𝑝

( 2
3
)
, both 𝑖 and 𝑗 prefer to swap

their positions. ■

A fundamental question is whether a swap equilibrium always exists in SP-2-
SSGs with tolerant agents, i.e., for 𝛬 ≤ 1

2 . The next result shows that Theorem 5.6
cannot be generalized to all graphs.

▶ Theorem 5.8. There cannot exist a generalized ordinal potential function in
SP-2-SSGs on arbitrary graphs for 𝛬 = 1

2 . ◀

Proof. We prove the statement by providing an improving response cycle where
in every step a profitable swap is possible. The construction and arising strategy
profiles are shown in Figure 5.2. For the sake of simplicity we assume 𝑝 (𝑥) = 𝑥
for 𝑥 ∈ [0, 12 ]. However, our result is independent of the choice of 𝑝 . Remember
that, since 𝛬 = 1

2 , 𝑝 (𝑥) = 𝑝 (1 − 𝑥) for 𝑥 ∈ [ 12 , 1].
In the initial feasible strategy profile, cf. Figure 5.2 (a), agents 𝑎 and 𝑏 can

swap. By swapping their positions, agent 𝑎 increases its utility from 1 − 5
7 = 2

7
to 1 − 9

13 = 4
13 and agent 𝑏 increases its utility from 5

13 to
3
7 .

Next, agents 𝑐 and 𝑑 can swap, cf. Figure 5.2 (b). Swapping with agent 𝑑
increases agent 𝑐’s utility from 1 − 4

7 = 3
7 to

6
13 , and agent 𝑑 increases its utility

from 1 − 8
13 = 5

13 to 1 − 4
7 = 3

7 .
After this, cf. Figure 5.2 (c), agents 𝑒 and 𝑓 , and agents 𝑔 and ℎ, respectively,

have the opportunity to swap and increase their utility. Agent 𝑒 increases its
utility from 3

7 to
1
2 while agent 𝑓 increases its utility from 1 − 2

2 = 0 to 1 − 5
7 = 2

7 .
Agent 𝑔 improves its utility from 1 − 2

2 = 0 to 1 − 3
5 = 2

5 and agent ℎ increases its
utility from 1 − 3

5 = 2
5 to

1
2 .

Next, cf. Figure 5.2 (d), swaps between agents 𝑖 and 𝑗 , and 𝑘 and 𝑙 , respectively,
are possible. Agent 𝑖 increases its utility from 1 − 2

2 = 0 to 1 − 4
5 = 1

5 and 𝑗
increases its utility from 2

5 to
1
2 . Agent 𝑘 improves its utility from 1 − 2

2 = 0 to
1 − 3

5 = 2
5 and agent 𝑙 increases its utility from 1 − 3

5 = 2
5 to

1
2 .
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In the next step, agents 𝑒 and𝑚 can swap. Agent 𝑒 increases its utility from
1 − 2

2 = 0 to 1 − 3
5 = 2

5 and𝑚 increases its utility from 1 − 3
5 = 2

5 to
1
2 .

In the final step, agents 𝑛 and 𝑜 swap. Swapping with agent 𝑜 increases
agent 𝑛’s utility from 1 − 2

2 = 0 to 1 − 8
13 = 5

13 and agent 𝑜 increases its utility
from 6

13 to 1
2 . Now the reached feasible strategy profile, cf. Figure 5.2 (g), is

equivalent to the initial feasible strategy profile, cf. Figure 5.2 (a).
However, note that although convergence is not guaranteed there still exists

a stable state, cf. Figure 5.2 (h). ■

For the special case of 𝛬 = 1
2 , however, the existence of a swap equilibrium is

guaranteed in any graph whose independence number is at least the number of
orange agents.

▶ Theorem 5.9. Fix a SP-2-SSG (𝐺,𝑜, 𝛬) with 1
𝛿+1 ≤ 𝛬 ≤ 1

2 . Any strategy
profile in which all agents of the same color are located on an independent set
of 𝐺 is a swap equilibrium. ◀

Proof. Let 𝝈 be a strategy profile in which all agents of the same color are located
on an independent set of 𝐺 . Assume, without loss of generality, that all orange
agents are assigned to the vertices of an independent set of 𝐺 and consider a
profitable swap performed by an orange agent 𝑖 and a blue agent 𝑗 . If 1𝑖 𝑗 (𝝈) = 0,
since 𝑖 is only adjacent to blue agents other than 𝑗 , it holds that 𝑓𝑗 (𝝈 𝑖 𝑗 ) = 1,
which gives U𝑗 (𝝈 𝑖 𝑗 ) = 0, thus contradicting the fact that 𝑗 performs a profitable
swap. If 1𝑖 𝑗 (𝝈) = 1, instead, we obtain

𝑓𝑖 (𝝈) =
1

deg(𝝈 (𝑖)) + 1 ≤ 1
𝛿 + 1 ≤ 𝛬.

The numerator comes from the fact that 𝑖 is only adjacent to blue agents. Knowing
that 𝑖 cannot be at the peak, we conclude that it is below the peak. If 𝑗 is also
below the peak, Lemma 5.2 contradicts the fact that the swap is profitable, while,
if 𝑗 is above the peak, the contradiction comes from Lemma 5.3. ■

▶ Corollary 5.10. For 𝛬 = 1
2 , SP-2-SSGs played on bipartite graphs always

admit a swap equilibrium which can be efficiently computed. ◀
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(b) Feasible strategy profile after the first swap
of 𝑎 and 𝑏
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(c) Feasible strategy profile after the second
swap of 𝑐 and 𝑑
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(d) Feasible strategy profile after the third and
forth swap of 𝑒 and 𝑓 , and 𝑔 and ℎ, respectively.
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(e) Feasible strategy profile after the fifth and
sixth swap of 𝑖 and 𝑗 , and 𝑘 and 𝑙 , respectively.
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(f) Feasible strategy profile after the seventh
swap of 𝑒 and𝑚.
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(g) Feasible strategy profile after the last swap
of 𝑛 and 𝑜 .

(h) The swap equilibrium for the same instance.

Figure 5.2: An IRC and the swap equilibrium for a SP-2-SSG (𝐺,𝑜, 12 ). See the proof of
Theorem 5.8 for more details.
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5.4 Price of Anarchy

In this section, we give bounds on the PoA for SP-2-SSGs played on different
topologies, even in those cases for which the existence of a swap equilibrium is
not guaranteed.

5.4.1 General Graphs

The next lemma provides a necessary condition that needs to be satisfied by
any swap equilibrium and an upper bound on the value of the social optimum,
respectively.

▶ Lemma 5.11. In a swap equilibrium for any SP-2-SSG (𝐺,𝑜, 𝛬), no agents of
different colors can be segregated. ◀

Proof. Fix a strategy profile 𝝈 . If there exist two agents 𝑖 and 𝑗 such that 𝑓𝑖 (𝝈) =
𝑓𝑗 (𝝈) = 1, they can perform a profitable swap, as 𝑓𝑖 (𝝈) = 𝑓𝑗 (𝝈) = 1 and
𝑓𝑖 (𝝈 𝑖 𝑗 ) = 𝑓𝑗 (𝝈 𝑖 𝑗 ) ∉ {0, 1}. So, 𝝈 cannot be a swap equilibrium for (𝐺,𝑜, 𝛬). ■

This directly gives an upper bound for the Degree of Integration.

▶ Lemma 5.12. For any SP-2-SSG (𝐺,𝑜, 𝛬), we have

DoI(𝝈∗) ≤ min{(𝛥 + 1)𝑜, 𝑛}.

◀

Proof. As an orange vertex can be adjacent to at most 𝛥 blue ones, it follows
that, in any strategy profile, there cannot be more than (𝛥 + 1)𝑜 non-segregated
agents, so that DoI(𝝈∗) ≤ min{(𝛥 + 1)𝑜, 𝑛}. ■

We now give (almost) tight bounds on the PoA for general graphs.

▶ Theorem 5.13. For any SP-2-SSG (𝐺,𝑜, 𝛬),

PoADoI(𝐺,𝑜, 𝛬) ≤ min
{
𝛥,

𝑛

𝑜 + 1 ,
(𝛥 + 1)𝑜
𝑜 + 1

}
.

Moreover, there exists a SP-2-SSG on a bipartite graph such that

PoADoI(𝐺,𝑜, 𝛬) ≥
𝑛

𝑜 + 1
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(a) An instance with 𝑜 = 1 orange
agents. Left: 𝝈∗ with DoI(𝝈∗) = 𝑛 −
1. Right: a swap equilibrium 𝝈 with
DoI(𝝈) = 3.

}
K1,b}
K1,b−1}
Kb−1,n−2b

}
K1,b}
K1,b−1}
Kb−1,n−2b

(b) An instance with 𝑜 ≥ 2 orange
agents. (a) 𝝈∗ with DoI(𝝈∗) = 𝑛. (b)
a swap equilibrium 𝝈 with DoI(𝝈) =

𝑜 + 1.

Figure 5.3: Lower bounds for PoADoI (𝐺,𝑜, 𝛬) when (a) 𝑜 = 1, and (b) 𝑜 > 1. Left:
the socially optimal feasible strategy profile 𝝈∗. Right: the swap equilibrium 𝝈 with
minimum social welfare. See the proof of Theorem 5.13 for more details.

when 𝑜 > 1 and when 𝑜 = 1

PoADoI(𝐺,𝑜, 𝛬) ≥
𝑛 − 1
3 .

◀

Proof. For the upper bound, fix a game (𝐺,𝑜, 𝛬) and a swap equilibrium 𝝈 . By
Lemma 5.11, only agents of one color, say 𝑐 , can be segregated in 𝝈 . Thus, we
get DoI(𝝈) ≥ 𝑜 + 1. Let 𝑉 ′ be the set of vertices of color 𝑐′ ≠ 𝑐 . Every vertex
in 𝑉 ′ has to be adjacent to a vertex of color 𝑐 . So, there are at least |𝑉 ′ | ≥ 𝑜 non-
monochrome edges in the coloring induced by 𝝈 . As every vertex of color 𝑐 can
be adjacent to at most 𝛥 vertices of color 𝑐′, there must be at least

⌈
𝑜
𝛥

⌉
vertices

of color 𝑐 incident to a non-monochrome edge, that is, being non-segregated
in 𝝈 . Thus, we get

DoI(𝝈) ≥ (𝛥 + 1)𝑜
𝛥

.

We conclude that
DoI(𝝈) ≥ max

{ (𝛥 + 1)𝑜
𝛥

, 𝑜 + 1
}
.

The upper bounds follow from Lemma 5.12. For the lower bounds, consider the
SP-2-SSGs defined in Figure 5.3. ■
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5.4.2 Regular Graphs

For 𝛥-regular graphs, we derive an upper bound of 𝛥 on the PoA from Theo-
rem 5.13. A better result is possible when 𝛬 is sufficiently small.

▶ Theorem 5.14. For any SP-2-SSG (𝐺,𝑜, 𝛬) on a 𝛥-regular graph 𝐺 with
𝛬 < 1

𝛥
, PoADoI(𝐺,𝑜, 𝛬) ≤ min

{
𝛥+1
2 , 𝑛

2𝑜
}
. ◀

Proof. Fix a swap equilibrium 𝝈 . By Lemma 5.11, only agents of a unique color,
say 𝑐 , can be segregated in 𝝈 . Let 𝑉 be the set of vertices of color 𝑐′ ≠ 𝑐 . As
𝛬 < 1

𝛥
, every vertex in𝑉 has to be adjacent to vertices of color 𝑐 only. Otherwise,

any agent in 𝑉 that is adjacent to an agent of color 𝑐′ can perform a profitable
swap with a segregated agent of color 𝑐 . Thus, there are at least 𝛥 |𝑉 | ≥ 𝛥𝑜

non-monochrome edges in the coloring induced by 𝝈 . As every agent of one
color can be adjacent to at most 𝛥 agents of the other one, there are at least 𝑜
non-segregated agents of color 𝑐 . Together with the at least 𝑜 agents of color 𝑐′,
this gives DoI(𝝈) ≥ 2𝑜 which, together with Lemma 5.12, yields the claim. ■

As a lower bound, we have the following.

▶ Theorem 5.15. For every 𝛥 ≥ 2 and 𝛬 ≤ 1
2 , there exists a SP-2-SSG (𝐺,𝑜, 𝛬)

on a 𝛥-regular graph such that

PoADoI(𝐺,𝑜, 𝛬) ≥
𝛥 (𝛥 + 1)
2𝛥 + 1 =

𝛥 + 1
2 − 𝛥 + 1

4𝛥 + 2 .

◀

Proof. Consider graph 𝐺 shown in Figure 5.4. 𝐺 consists of three combined
gadgets that we call the left gadget, the upper right gadget and the lower right
gadget. The left gadget is essentially the complete bipartite graph 𝐾𝛥,𝛥 with a
missing edge: the one connecting the last two vertices of the respective partitions.
These vertices are connected to the upper right gadget and the lower right one,
respectively. So each vertex in the left gadget has degree 𝛥. The upper right
gadget consists of a clique 𝐾𝛥−1 whose vertices are all connected to two special
vertices, one on the left of 𝐾𝛥−1 and one on the right. The vertex on the left is
the one adjacent to the vertex from the left gadget, while the vertex on the right
connects the gadget with the lower right one. Thus, every vertex in this gadget
has degree 𝛥. Finally, the lower right gadget is any 𝛥-regular graph with 𝑛∗
vertices with a missing edge: the one connecting the vertex incident to the edge
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︸ ︷︷ ︸
K∆−1,∆−1

︸︷︷︸
K1,∆−1

K1,∆−1︷︸︸︷

︸︷︷︸
K∆−1

︸ ︷︷ ︸
∆-regular graph with n∗>>0 vertices

Figure 5.4: Lower bound construction for the PoA on 𝛥-regular graphs. The swap
equilibrium 𝝈 has DoI(𝝈) = 2𝛥 + 1. See the proof of Theorem 5.15 for more details.

coming from the left gadget with the vertex incident to the edge coming from
the upper right gadget. So, every vertex in this gadget has a degree equal to 𝛥
and we conclude that 𝐺 is 𝛥-regular.

Now set 𝑜 = 𝛥. We claim that the strategy profile 𝝈 depicted in Figure 5.4 is a
swap equilibrium. If a blue agent 𝑖 swaps with a non-adjacent orange agent 𝑗 ,
we have 𝑓𝑖 (𝝈 𝑖 𝑗 ) = 1 which results in a non-profitable swap. So a blue agent
can profitably swap only with an adjacent orange agent. Any orange agent 𝑗
has 𝑓𝑗 (𝝈) = 1

𝛥+1 . By swapping with an adjacent blue agent 𝑖 , we have that
either 𝑓𝑗 (𝝈 𝑖 𝑗 ) = 1

𝛥+1 or 𝑓𝑗 (𝝈 𝑖 𝑗 ) = 𝛥
𝛥+1 which never yields an improvement

when 𝛬 ≤ 1
2 or 𝑓𝑗 (𝝈 𝑖 𝑗 ) = 𝛥−1

𝛥+1 when swapping one orange agent 𝑗 with the
rightmost blue one of the left gadget. In this case, it is blue agent 𝑖 that has no
improvement in swapping since 𝑓𝑖 (𝝈) = 2

𝛥+1 and 𝑓𝑖 (𝝈 𝑖 𝑗 ) = 𝛥
𝛥+1 which never

yields an improvement when 𝛬 ≤ 1
2 . So, 𝝈 is a swap equilibrium such that

DoI(𝝈) = 2𝛥 + 1.
By letting 𝑛∗ go to infinity, it is always possible to select 𝑜 = 𝛥 vertices in the

lower right gadget such that their closed neighborhoods are pairwise disjoint,
which yields DoI(𝝈∗) = 𝛥 (𝛥 + 1) and thus the desired lower bound. ■

The lower bound given in Theorem 5.15 holds for all values of 𝛥. It may be
the case then that, for fixed values of 𝛥, better lower bounds are possible. For
𝛥 = 2 indeed, lower bounds matching the upper bounds given in Theorem 5.13
and Theorem 5.14 can be derived.

▶ Theorem 5.16. For any 𝜖 > 0, there exists a SP-2-SSG (𝐺,𝑜, 𝛬) on a ring
such that PoADoI(𝐺,𝑜, 12 ) > 2 − 𝜖 and PoADoI(𝐺,𝑜, 𝛬) > 3

2 − 𝜖 for 𝛬 < 1
2 . ◀
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Proof. For any even 𝑜 ≥ 2, let 𝐺 be a ring defined by the sequence of vertices
𝑣1, 𝑣2, . . . , 𝑣𝑛 , with 𝑛 = 3𝑜 .

Assume 𝛬 = 1
2 . In this case, 𝑝

( 1
3
)
= 𝑝

( 2
3
)
> 𝑝 (0) = 𝑝 (1). Let 𝝈 be the strategy

profile obtained as follows: starting from 𝑣1, assign two orange agents followed
by a blue one as long as this is possible. At this time, vertices up to 𝑣𝑥 , with
𝑥 = 3𝑜

2 , have been assigned an agent. All the remaining vertices are assigned
to the remaining blue agents. Since for any orange agent 𝑖 we have 𝑓𝑖 (𝝈) = 2

3 ,
all orange agents are getting the largest possible utility and are not interested
in swapping. Thus, 𝝈 is a swap equilibrium. As all agents residing at vertices
𝑣𝑛, 𝑣1, . . . , 𝑣𝑥 are not segregated, we have DoI(𝝈) = 3𝑜

2 + 1.
Now assume 𝛬 < 1

2 . In this case, 𝑝
( 1
3
)
> 𝑝

( 2
3
)
> 𝑝 (0) = 𝑝 (1). Let 𝝈 be the

strategy profile obtained by alternating orange and blue agents for as much as
possible. Since for any orange agent 𝑖 we have 𝑓𝑖 (𝝈) = 1

3 , all orange agents are
getting the largest possible utility and are not interested in swapping. Thus, 𝝈
is a swap equilibrium. As all agents residing at vertices 𝑣𝑛, 𝑣1, . . . , 𝑣2𝑜 are not
segregated, we have DoI(𝝈) = 2𝑜 + 1.
A strategy profile of social value 3𝑜 can be obtained by sequencing triplets

made of two blue agents with an orange one in between. Both claims follow by
choosing 𝑜 sufficiently large. ■

5.5 Price of Stability

In this section, we give bounds on the PoS for SP-2-SSGs played on different
topologies.

5.5.1 General Graphs

We give a lower bound on the Price of Stability on general graphs which asymp-
totically matches the upper bound on the Price of Anarchy when 𝑜 = 𝛩 (

√
𝑛)

and 𝛬 is a constant with respect to 𝑛.

▶ Theorem 5.17. For every 𝛬, there is a SP-2-SSG (𝐺,𝑜, 𝛬) such that

PoSDoI(𝐺,𝑜) = 𝛺 (
√
𝑛𝛬) .

◀
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}
(q − 1)o

}
(q − 1)o

}
Ko

︸ ︷︷ ︸
q−2

︸ ︷︷ ︸
q−2

Figure 5.5: The instance used in the proof of Theorem 5.17. Shown is the socially
optimal feasible strategy profile 𝝈∗.

Proof. Let 𝑞 ≥ 2 be an integer such that 1
𝑞
≤ 𝛬 < 1

𝑞−1 . Consider the instance in
Figure 5.5 in which there is a clique of 𝑜 vertices such that every vertex in the
clique is additionally adjacent to (𝑞 − 1)𝑜 leaves (depicted to the up) and to the
leaf of a star with 𝑞 vertices (depicted at the bottom). It is easy to check that
𝑛 = (𝑞 − 1)𝑜2 +𝑜 +𝑜𝑞. Letting 𝑜 go to infinity, we get 𝑛 = 𝛩 ((𝑞 − 1)𝑜2), by which

𝑜 = 𝛺 (
√︂

𝑛

𝑞 − 1 ) = 𝛺 (
√
𝑛𝛬) .

The socially optimal feasible strategy profile 𝝈∗, depicted in Figure 5.5 has all
orange agents on the vertices of the clique and thereby achieves

DoI(𝝈∗) = (𝑞 − 1)𝑜2 + 2𝑜 = 𝛺 ((𝑞 − 1)𝑜2) .

We claim that, in contrast, any swap equilibrium 𝝈 can have at most one
orange agent in the clique. Assume, by way of contradiction, that there are
two or more orange agents in the clique, and let 𝑖 be one of these agents. Then,
there is at least one center of a star of 𝑞 vertices that is occupied by a segregated
blue agent 𝑗 . If 𝑖 and 𝑗 swap, we have 𝑓𝑗 (𝝈) = 1 and 𝑓𝑗 (𝝈 𝑖 𝑗 ) ∉ {0, 1} so that 𝑗
improves, and

𝑓𝑖 (𝝈) ≤
𝑜

𝑞𝑜 + 1
and

𝑓𝑖 (𝝈 𝑖 𝑗 ) =
1
𝑞
∈

(
𝑜

𝑞𝑜 + 1 , 𝛬
]
,

so that 𝑖 improves too. This contradicts that 𝝈 is a swap equilibrium. Hence, for
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any swap equilibrium 𝝈 , it holds that

DoI(𝝈) ≤ (𝑜 − 1)𝑞 + 𝑞𝑜 + 1 = 𝑂 (2𝑞𝑜),

the fact that a swap equilibrium exists can be easily checked by considering the
strategy profile obtained by placing one orange agent in a vertex 𝑣 of the clique
and all the remaining 𝑜 − 1 ones to the 𝑜 − 1 centers of a star of 𝑞 vertices that
are not appended to 𝑣. It follows that the Price of Stability is

𝛺 ((𝑞 − 1)𝑜2)
𝑂 (2𝑞𝑜) = 𝛺 (𝑜) = 𝛺 (

√
𝑛𝛬) . ■

5.5.2 Bipartite Graphs

For bipartite graphs, we provide a tight bound of 2 for the PoS of SP-2-SSGs for
which the peak is at 1

2 . We start with the upper bound.

▶ Theorem 5.18. For any SP-2-SSG (𝐺,𝑜, 12 ) on a bipartite graph 𝐺 , we have
PoSDoI(𝐺,𝑜, 12 ) ≤ 2. ◀

Proof. Let (𝑉1,𝑉2), with |𝑉1 | ≤ |𝑉2 |, be the bipartition of the vertices of 𝐺 . For
a fixed optimal profile 𝝈∗, denote by 𝑂1 (respectively 𝑂2) the set of vertices
of 𝑉1 (respectively 𝑉2) occupied by an orange agent in 𝝈∗. Moreover, denote
by 𝐵1 (respectively 𝐵2) the set of vertices occupied by a blue agent in 𝝈∗ falling
in the neighborhood of some vertex in 𝑂2 (respectively 𝑂1). Clearly, we have
DoI(𝝈∗) ≤ 𝑜 + |𝐵1 | + |𝐵2 |. We shall prove the existence of two swap equilibria,
namely 𝝈1 and 𝝈2, whose performance compares nicely with that of 𝝈∗.
To construct 𝝈1, start from 𝝈∗ and swap all orange agents in 𝑂2 with blue

agents in𝑉1 as long as this is possible. If all orange agents end up in𝑉1, we have
that all orange agents occupy the vertices of an independent set of 𝐺 and so,
by Theorem 5.9, 𝝈1 is a swap equilibrium. If some orange agents are left out
from 𝑉1, then all blue agents are located in 𝑉2. So, we have that all blue agents
occupy the vertices of an independent set of𝐺 and, by Theorem 5.9, 𝝈1 is a swap
equilibrium also in this case. As the set of vertices in 𝑂1 are orange in both 𝝈∗

and 𝝈1, we obtain that DoI(𝝈1) ≥ |𝐵2 |.
Equilibrium 𝝈2 is obtained symmetrically by swapping all orange agents in𝑂1

with blue agents in 𝑉2 as long as this is possible. In this case, as 𝑜 ≤ 𝑛
2 ≤ |𝑉2 |, all

orange agents end up in 𝑉2 and, by Theorem 5.9, 𝝈2 is a swap equilibrium. As
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Figure 5.6: Left: a SP-2-SSG with its socially optimal strategy profile 𝝈∗ shown. Right:
the swap equilibrium with maximum social welfare for the same instance. Please refer
to Theorem 5.19 for more details.

the set of vertices in 𝑂2 are orange in both 𝝈∗ and 𝝈2 and all orange agents are
adjacent to some blue agent in 𝝈2, we obtain that DoI(𝝈2) ≥ 𝑜 + |𝐵1 |. Thus, we
conclude that

PoSDoI(𝐺,𝑜,
1
2 ) ≤

DoI(𝝈∗)
max{DoI(𝝈1),DoI(𝝈2)}

≤ 𝑜 + |𝐵1 | + |𝐵2 |
max{𝑜 + |𝐵1 |, |𝐵2 |}

≤ 2. ■

We now give the matching lower bound.

▶ Theorem 5.19. There exists a SP-2-SSG (𝐺,𝑜, 12 ) on a bipartite graph such
that PoSDoI(𝐺,𝑜, 12 ) ≥ 2. ◀

Proof. Consider the instance (𝐺,𝑜, 12 ) defined in Figure 5.6. 𝐺 consists of a path
of 𝑜 vertices, that we call the base of the graph. Any vertex in the base of the
graph is additionally connected to 2(𝑜 − 1) leaves (depicted on the top) and to a
2-vertex path (depicted on the bottom). For the socially optimal profile 𝝈∗, we
get DoI(𝝈∗) = 2(𝑜 − 1)𝑜 + 2𝑜. However, this is not a swap equilibrium. In any
strategy profile 𝝈 in which two orange agents are adjacent in the base of the
graph, like in the socially optimal profile 𝝈∗, one of them, denote this agent by 𝑖 ,
can swap with a segregated blue agent, denoted by 𝑗 , placed on a leaf vertex in
the lower row. Observe that agent 𝑗 is always guaranteed to exists. Since we
have 𝑓𝑖 (𝝈) ≤ 𝑜

2𝑜+1 < 1
2 and 𝑓𝑖 (𝝈 𝑖 𝑗 ) = 1

2 , agent 𝑖 improves its utility. For agent 𝑗 ,
we have 𝑓𝑗 (𝝈) = 1 and 𝑓𝑗 (𝝈 𝑖 𝑗 ) ∉ {0, 1}, so the swap is profitable and 𝝈 cannot be
a swap equilibrium. The maximum number of agents with non-zero utility that
can be obtained by respecting this necessary constraint isDoI(𝝈) = 𝑜 (𝑜−1) + 5𝑜

2 ,
achieved by the swap equilibrium 𝝈 depicted in Figure 5.6 (right). The claim
follows by letting 𝑜 go to infinity. ■
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5.5.3 Almost Regular Graphs

We provide upper bounds to the PoS for SP-2-SSGs played on almost regular
graphs. We start by considering the case of graphs with a small degree.

▶ Theorem 5.20. For any SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular graph with
𝛥 ≤ 3 and 𝛬 ≤ 1

2 , PoSDoI(𝐺,𝑜, 𝛬) = 1. ◀

Proof. Let 𝝈∗ be a socially optimal profile. Using Lemma 5.28 from the next
section, we have that there exists a swap equilibrium 𝝈 satisfying DoI(𝝈) ≥
DoI(𝝈∗). ■

An analogous result holds for the case in which 𝑜 ≥ 𝛼 .

▶ Theorem 5.21. For any SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular graph with
𝑜 ≥ 𝛼 and 1

𝛿+1 ≤ 𝛬 ≤ 1
2 , we have PoSDoI(𝐺,𝑜, 𝛬) = 1. ◀

Proof. We prove the claim by showing the existence of a swap equilibrium 𝝈
such that DoI(𝝈) = 𝑛. Clearly, if 𝑜 = 𝛼 , then the strategy profile 𝝈 in which
the orange agents occupy all the vertices of a maximum independent set of 𝐺 is
a swap equilibrium by Theorem 5.9, and thus, DoI(𝝈) = 𝑛, and the statement
follows. Therefore, in the following, we assume that 𝑜, 𝑏 > 𝛼 .
Let 𝝈 be a strategy profile minimizing the value 𝛷 (𝝈) (ties are arbitrarily

broken). By Theorem 5.6, 𝝈 is a swap equilibrium. We now prove that DoI(𝝈) =
𝑛. For the sake of contradiction, assume that DoI(𝝈) < 𝑛, i.e., there is at least a
segregated agent, say 𝑖 , in 𝝈 . Assume without loss of generality that 𝑖 is orange.
We claim that all blue agents are placed on vertices that form an independent
set, i.e., 𝑏 ≤ 𝛼 . This allows us to obtain the desired contradiction as 𝑏 > 𝛼 . If
the blue agents are not placed on vertices that form an independent set, then
there exists a blue agent, say 𝑗 , having at least a blue neighbor in 𝝈 . The strategy
profile 𝝈 𝑖 𝑗 satisfies

𝛷 (𝝈) −𝛷 (𝝈 𝑖 𝑗 ) ≥ deg(𝝈 (𝑖)) + 1 − (deg(𝝈 ( 𝑗)) − 1) ≥ 1,

since |deg(𝝈 (𝑖))−deg(𝝈 ( 𝑗)) | ≤ 1. Therefore,𝛷 (𝝈 𝑖 𝑗 ) < 𝛷 (𝝈), thus contradicting
the fact that 𝝈 minimizes𝛷 . ■

Recall that a SP-2-SSG (𝐺,𝑜, 𝛬) is balanced if 𝑜 =
⌊
𝑛
2
⌋
. Using Theorem 5.21,

we show that the PoS is 1 in balanced games on regular graphs.
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▶ Corollary 5.22. For any balanced SP-2-SSG (𝐺,𝑜, 𝛬) on a 𝛥-regular graph𝐺
and 1

𝛥+1 ≤ 𝛬 ≤ 1
2 , we have PoSDoI(𝐺,𝑜, 𝛬) = 1. ◀

Proof. We have that 𝑜 = ⌊𝑛2 ⌋. We show that 𝛼 ≤ ⌊𝑛2 ⌋ using a simple counting
argument. This allows us to use Theorem 5.21 to prove the claim.
To show the upper bound on 𝛼 , we count all the edges that are incident to

the vertices of a fixed maximum independent set of 𝐺 and bound this value
from above by the number of edges of the graph, thus obtaining the following
inequality 𝛥𝛼 ≤ 𝛥

2 𝑛, i.e., 𝛼 ≤ 𝑛
2 . Using the fact that 𝛼 is an integer value, we

derive 𝛼 ≤ ⌊𝑛2 ⌋. ■

To bound the Price of Stability when 𝑜 < 𝛼 , we need to introduce some
new definitions and additional technical lemmas based on some well-known
optimization cut problems. For a given graph𝐺 and a subset of vertices of𝑉 , we
denote by 𝐺 [𝑈 ] the sub-graph of 𝐺 induced by 𝑈 . More precisely, the vertex set
of𝐺 [𝑈 ] is𝑈 and, for every 𝑢, 𝑣 ∈ 𝑈 ,𝐺 [𝑈 ] contains the edge (𝑢, 𝑣) if and only if
𝐺 contains the edge (𝑢, 𝑣).

The𝑘-Max-Cut problem is an optimization problem in which, given a graph𝐺
as input, we want to compute a 𝑘-partition {𝑉1, . . . ,𝑉𝑘 } of the vertices of 𝐺 that
maximizes the number of edges that cross the cut induced by the 𝑘-partition,
that is, the number of edges {𝑢, 𝑣} such that 𝑢 ∈ 𝑉𝑡 , 𝑣 ∈ 𝑉ℎ , and ℎ ≠ 𝑡 . It is
well-known that the greedy algorithm for the 𝑘-Max-Cut problem computes a
𝑘-partition {𝑉1, . . . ,𝑉𝑘 } of the vertices of a graph such that, for every vertex 𝑣,
the number of edges incident to 𝑣 that cross the cut induced by the 𝑘-partition
is at least ⌈

(
1 − 1

𝑘

)
deg(𝑣)⌉ [Vaz13]. Using this folklore result, we can derive the

following useful lemma.

▶ Observation 5.23. Let 𝐺 be a graph and 𝑈 ⊆ 𝑉 such that |𝑈 | ≥ 𝑘 . There
exists a 𝑘-partition {𝑉1, . . . ,𝑉𝑘 } of 𝐺 [𝑈 ] such that, for every 𝑡 ∈ {1, . . . , 𝑘}, the
degree of each vertex 𝑣 ∈ 𝑉𝑡 in 𝐺 [𝑉𝑡 ] is at most ⌊ deg(𝑣)

𝑘
⌋. ◀

Proof. The greedy algorithm for the 𝑘-Max-Cut problem computes a 𝑘-partition
{𝑉1, . . . ,𝑉𝑘 } of𝐺 [𝑈 ] such that, for every vertex 𝑣 of𝑈 , the number of edges inci-
dent to 𝑣 that cross the cut induced by the 𝑘-partition is at least ⌈

(
1 − 1

𝑘

)
deg(𝑣)⌉ .

As a consequence, for any 𝑣 ∈ 𝑉𝑡 , with 𝑡 ∈ {1, . . . , 𝑘}, the number of edges that
are incident to 𝑣 in 𝐺 [𝑉𝑡 ] is at most

deg(𝑣) − ⌈
(
1 − 1

𝑘

)
deg(𝑣)⌉ = ⌊deg(𝑣)

𝑘
⌋ . ■
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The Balanced 𝑘-Max-Cut problem is a 𝑘-Max-Cut in which we additionally
require the 𝑘-partition {𝑉1, . . . ,𝑉𝑘 } to be balanced, i.e., for every 𝑡 ∈ {1, . . . , 𝑘},
|𝑉𝑡 | ≥ ⌊𝑛

𝑘
⌋.13 For the Balanced 𝑘-Max-Cut problem we can prove a useful

lemma that is analogous to Observation 5.23.

▶ Lemma 5.24. Let 𝐺 be a graph and𝑈 ⊆ 𝑉 such that |𝑈 | ≥ 2. There exists a
balanced 𝑘-partition {𝑉1, . . . ,𝑉𝑘 } of 𝑈 such that, for at least one 𝑡 ∈ {1, . . . , 𝑘},
|𝑉𝑡 | ≥ 1 and the degree of every 𝑣 ∈ 𝑉𝑡 in 𝐺 [𝑉𝑡 ] is at most ⌊ deg(𝑣)

𝑘
⌋. ◀

Proof. In the remainder of this proof, for a given 𝑘-partition {𝑉1, . . . ,𝑉𝑘 } of 𝑈
and a bijective function 𝜌 : {𝑣1, . . . , 𝑣𝑘 } → {𝑣1, . . . , 𝑣𝑘 }, with 𝑣𝑡 ∈ 𝑉𝑡 for every
𝑡 ∈ {1, . . . , 𝑘}, we define the 𝜌-swap as the 𝑘-partition {𝑉 ′

1 , . . . ,𝑉
′
𝑘
} in which,

for every 𝑡 ∈ {1, . . . , 𝑘}, the set 𝑉 ′
𝑡 is obtained from 𝑉𝑡 by replacing 𝑣𝑡 with

𝜌 (𝑣𝑡 ) (it may happen that 𝜌 (𝑣𝑡 ) = 𝑣𝑡 ). We say that the 𝜌-swap is profitable if
the number of edges crossing the cut induced by {𝑉 ′

1 , . . . ,𝑉
′
𝑘
} is strictly larger

than the number of edges crossing the cut induced by {𝑉1, . . . ,𝑉𝑘 }. A balanced
𝑘-partition {𝑉1, . . . ,𝑉𝑘 } is stable if there is no profitable 𝜌-swap.

Let {𝑉1, . . . ,𝑉𝑘 } be a balanced 𝑘-partition of 𝑈 that maximizes the number
of edges in the cut, ties can be arbitrarily broken. We claim that {𝑉1, . . . ,𝑉𝑘 }
satisfies all the properties of the lemma statement. This is true when |𝑈 | ≤ 𝑘

as all edges of 𝐺 are in the cut, for this, consider, for instance, the solution in
which each set of the 𝑘-partition contains at most one vertex. Therefore, we
only need to prove the claim when |𝑈 | > 𝑘 . This implies that |𝑉𝑡 | > 0 for
every 𝑡 ∈ {1, . . . , 𝑘}. As a consequence, we only need to prove that there exist
𝑡 ∈ {1, . . . , 𝑘} such that, for every vertex 𝑣 ∈ 𝑉𝑡 , the degree of 𝑣 in 𝐺 [𝑉𝑡 ] is at
most ⌊ deg(𝑣)

𝑘
⌋.

For the sake of contradiction, assume that there are 𝑘 vertices 𝑣1, . . . , 𝑣𝑘 , with
𝑣𝑡 ∈ 𝑉𝑡 , such that, for every 𝑡 ∈ {1, . . . , 𝑘}, the degree of 𝑣𝑡 in 𝐺 [𝑉𝑡 ] is strictly
larger than ⌊ deg(𝑣𝑡 )

𝑘
⌋. Consider the graph 𝐻 on the 𝑘 vertices 𝑣1, . . . , 𝑣𝑘 , where

we add the direct edge (𝑣𝑡 , 𝑣ℎ) between 𝑣𝑡 and 𝑣ℎ , with 𝑡 ≠ ℎ, if and only if
the number of edges incident to 𝑣𝑡 whose other endpoints are in 𝑉ℎ is at most
⌊ deg(𝑣𝑡 )

𝑘
⌋. We observe that the out-degree of each vertex in 𝐻 is at least 1. As a

consequence, 𝐻 contains at least one directed cycle. Let 𝐶 be any fixed directed
cycle in 𝐻 . We define 𝜌 : {𝑣1, . . . , 𝑣𝑘 } → {𝑣1, . . . , 𝑣𝑘 } as follows. For each edge
(𝑣𝑡 , 𝑣ℎ) of 𝐶 , we define 𝜌 (𝑣𝑡 ) = 𝑣ℎ , while 𝜌 (𝑣ℓ ) = 𝑣ℓ for every ℓ ∈ {1, . . . , 𝑘} such

13 When 𝑛 < 𝑘 , we might have empty sets in the 𝑘-partition.
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that 𝑣ℓ is not contained in 𝐶 . Clearly, 𝜌 is a bijective function. Furthermore, the
𝜌-swap is profitable as each vertex 𝑣𝑡 that is moved from 𝑉𝑡 to 𝑉 ′

ℎ
, with ℎ ≠ 𝑡 ,

contributes with at least one more edge in the cut. This contradicts the fact that
{𝑉1, . . . ,𝑉𝑘 } maximizes the number of edges in the cut. ■

We are now ready to prove the upper bound on the PoS for SP-2-SSGs played
on almost regular graphs when 𝑜 < 𝛼 .

▶ Theorem 5.25. For any SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular graph 𝐺
with 𝑜 < 𝛼 and 𝛬 ≤ 1

2 , we have PoSDoI(𝐺,𝑜, 𝛬) = min
{
𝛥 + 1,O

( 1
𝛬

)}
. ◀

Proof. Let 𝝈∗ be a strategy profile that maximizes DoI(𝝈∗) for (𝐺,𝑜, 𝛬). Let 𝑂
and 𝐵 be the vertices occupied by the non-segregated orange and blue agents
in 𝝈∗, respectively. Clearly, DoI(𝝈∗) = |𝑂 | + |𝐵 |. Moreover, |𝑂 | ≥ 1 if and only
if |𝐵 | ≥ 1. We prove the claim by showing the existence of a strategy profile 𝝈
such that 𝝈 is a swap equilibrium and DoI(𝝈) = 𝛺 (𝛬( |𝑂 | + |𝐵 |)).
We first rule out the case in which 𝑜 ≤ ⌊𝛬(𝛥 − 1)⌋ − 1. In fact, in this case,

𝐺 [𝑂] has a maximum degree of at most ⌊𝛬(𝛥 − 1)⌋ − 1, which implies that
every orange agent is below the peak in 𝝈∗. As a consequence, from Lemma 5.2
and Lemma 5.5, 𝝈∗ is also a swap equilibrium. Therefore, in the following, we
assume that 𝑜 > ⌊𝛬(𝛥 − 1)⌋ − 1. As 𝑜 is an integer, we have that 𝑜 ≥ 𝛬𝛥 − 𝛬 − 1,
from which we derive

𝛥 ≤ 𝑜

𝛬
+ 1 + 1

𝛬
. (5.6)

Next, we rule out the case in which |𝑂 | + |𝐵 | = O
(
𝑜
𝛬

)
, i.e., 𝑜 = 𝛺 (𝛬( |𝑂 | + |𝐵 |)).

In fact, in this case, let 𝝈 be any swap equilibrium, that we know to exist by
Theorem 5.6. By Lemma 5.11, there is a color for which all agents of that color
are not segregated in 𝝈 . Therefore

DoI(𝝈) ≥ min{𝑜, 𝑟 } = 𝑜 = 𝜔 (𝛬( |𝑂 | + |𝐵 |)).

Hence, for the rest of the proof, we assume that |𝑂 | + |𝐵 | = 𝜔 ( 𝑜
𝛬
). As |𝑂 | ≤ 𝑜 , it

holds that
|𝐵 | = 𝜔 ( 𝑜

𝛬
). (5.7)

Finally, we rule out the case inwhich𝛥 = O
(
𝑜
𝛬

)
. By Theorem 5.13, PoSDoI(𝐺,𝑜, 𝛬)

≤ 𝛥 + 1. In the following, for any subset𝑂 ′ of𝑂 , we denote by B(𝑂 ′) the subset
of vertices of 𝐵 that are dominated by 𝑂 ′, i.e., B(𝑂 ′) contains all vertices 𝑢 ∈ 𝐵
for which there exists a vertex 𝑣 in 𝑂 ′ such that (𝑢, 𝑣) is an edge of 𝐺 .
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We iteratively use Observation 5.23 to compute hierarchical 𝑘-partitions of 𝑂 ,
with 𝑘 = ⌈ 𝛥−1

𝛬𝛥−1⌉. We observe that 𝑘 ≥ 1 as 𝛬 > 1
𝛥+1 .

Starting from 𝑂 , we compute the 𝑘-partition {𝑂1
0, . . . ,𝑂

𝑘
0 } of 𝑂 that satisfies

the premises of Observation 5.23. This is called the 𝑘-partition of level 0. For the
remaining part of this proof, we use the shortcut 𝐵𝑡0 to denote B(𝑂𝑡

0). Without
loss of generality, we assume that |𝐵10 | ≥ max𝑡 |𝐵𝑡0 |. Now, given the 𝑘-partition
{𝑂1

ℎ
, . . . ,𝑂𝑘

ℎ
} of level ℎ such that |𝑂1

ℎ
| ≥ 2 and |𝐵1

ℎ
| ≥ max𝑡 |𝐵𝑡ℎ |, we compute a

𝑘-partition {𝑂1
ℎ+1, . . . ,𝑂

𝑘
ℎ+1} of𝑂

1
ℎ
that satisfies the premises of Observation 5.23.

This is the 𝑘-partition of level ℎ + 1 where, again, we use the shortcut 𝐵𝑡
ℎ+1

to denote B
(
𝑂𝑡
ℎ+1

)
and, without loss of generality, we assume that |𝐵1

ℎ+1 | ≥
max𝑡 |𝐵𝑡ℎ+1 |. We stop the process at level 𝐿, where we compute a 𝑘-partition
{𝑂1

𝐿
, . . . ,𝑂𝑘

𝐿
} such that |𝑂1

𝐿
| = 1 and |𝐵1

𝐿
| ≤ 𝛥. We observe that

|𝐵 | ≥ |𝐵10 | ≥ |𝐵11 | ≥ · · · ≥ |𝐵1𝐿 |

by construction.

Let ℓ be the minimum index such that |𝐵\𝐵1ℓ | ≥ 𝑘 (𝑜−1). Such an index always
exists because, by Inequality 5.7, Equation (5.6), and the fact that 𝛥 = 𝜔

( 1
𝛬

)
, we

have
|𝐵 \ 𝐵1𝐿 | = |𝐵 | − |𝐵1𝐿 | ≥ |𝐵 | − 𝛥 = 𝜔

( 𝑜
𝛬

)
≥ 𝑘𝑜.

Let {𝐵1, . . . , 𝐵𝑘 } be a balanced 𝑘-partition of 𝐵 \ 𝐵1ℓ that satisfies the premises
of Lemma 5.24. We have that |𝐵𝑡 | ≥ 𝑜 for every 𝑡 ∈ {1, . . . , 𝑘}. Without loss of
generality, we assume that the degree of each vertex 𝑣 ∈ 𝐵1 in 𝐺 [𝐵1] is at most
⌊ deg(𝑣)

𝑘
⌋. By construction, also each vertex 𝑣 ∈ 𝑂1

ℓ has a degree in 𝐺 [𝑂1
ℓ ] of at

most ⌊ deg(𝑣)
𝑘

⌋. Since there is no edge (𝑢, 𝑣) of 𝐺 such that 𝑢 ∈ 𝑂1
ℓ and 𝑣 ∈ 𝐵 \ 𝐵1ℓ ,

it follows that the degree of each vertex 𝑣 ∈ 𝑂1
ℓ ∪ 𝐵1 in𝐺 [𝑂1

ℓ ∪ 𝐵1] is also upper
bounded by ⌊ deg(𝑣)

𝑘
⌋.

Let 𝝈 be the strategy profile in which exactly |𝑂1
ℓ | orange agents are placed

on the vertices of 𝑂1
ℓ and the remaining 𝑜 − |𝑂1

ℓ | orange agents are placed on a
subset of vertices of 𝐵1 (ties among vertices of 𝐵1 are arbitrarily broken). Let 𝑖
be any orange agent and let 𝑣 be the vertex occupied by 𝑖 in 𝝈 . By the choice
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of 𝑘 we have 𝑘 ≥ ⌈ deg(𝑣)
𝛬 (deg(𝑣)+1)−1⌉. This implies that

𝑓𝑖 (𝝈) ≤
⌊ deg(𝑣)

𝑘
⌋ + 1

deg(𝑣) + 1 ≤
deg(𝑣)

𝑘
+ 1

deg(𝑣) + 1 ≤ 𝛬.

Therefore, the orange agent 𝑖 is below the peak in 𝝈 . Since every orange agent is
below the peak in 𝝈 , from Lemma 5.2 and Lemma 5.5, 𝝈 is a swap equilibrium.
We conclude the proof by showing that DoI(𝝈) = 𝛺 (𝛬( |𝑂 | + |𝐵 |)). By con-

struction, each orange agent occupies a vertex that is adjacent to at least one
other vertex occupied by a blue agent. Moreover, each blue agent that occupies
a vertex of 𝐵1ℓ is in the neighborhood of at least one vertex of𝑂1

ℓ that is occupied
by an orange agent. Therefore,

DoI(𝝈) ≥ 𝑜 + |𝐵1ℓ |. (5.8)

For proof convenience, let us denote by 𝐵1−1 the set 𝐵. By the choice of ℓ we
know that |𝐵 | − |𝐵1ℓ−1 | = |𝐵 \ 𝐵1ℓ−1 | < 𝑘𝑜 , which implies that |𝐵1ℓ−1 | > |𝐵 | − 𝑘𝑜 .
As a consequence, since

𝑘∑︁
𝑖=1

|𝐵𝑖ℓ | ≥ |𝐵1ℓ−1 | > |𝐵 | − 𝑘𝑏

and |𝐵1ℓ | ≥ max𝑖 |𝐵𝑖ℓ |, we obtain

|𝐵1ℓ | >
|𝐵 |
𝑘

− 𝑜. (5.9)

Combining Inequality 5.8 and Inequality 5.9 we obtain DoI(𝝈) >
|𝐵 |
𝑘
. Using

Inequality 5.7 and the fact that 𝑘 = 𝑂
( 1
𝛬

)
we finally obtain DoI(𝝈) = 𝛺 (𝛬( |𝑂 | +

|𝐵 |)), as desired. ■

We can derive the following upper bound to the Price of Stability.

▶ Corollary 5.26. For any SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular graph with
a constant value of 𝛬 ≤ 1

2 , we have PoSDoI(𝐺,𝑜, 𝛬) = O(1). ◀

Proof. By Theorem 5.13, the PoSDoI is constant if 𝛥 is constant. The result
when 𝛥 is not constant is divided into two cases. For the case 𝑜 ≥ 𝛼 the claim
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immediately follows from Theorem 5.21. For the case 𝑜 < 𝛼 the claim follows
from Theorem 5.25 and the fact that 𝛬 is constant by assumption. ■

5.6 Computational Complexity

In this section, we analyze the computational complexity aspects of the SP-2-
SSG played on both, bipartite and regular graphs. More precisely, we provide
hardness results for the two problems of computing a social optimum and a
swap equilibrium 𝝈 that maximizes the value DoI(𝝈), respectively.

▶ Theorem 5.27. There is a constant 𝑐 > 1 such that, given a SP-2-SSG (𝐺,𝑜, 𝛬)
played on a cubic graph 𝐺 with 𝛬 ∈ (0, 1), the problem of computing a strategy
profile 𝜎 that maximizesDoI(𝝈) is not 𝑐-approximable in polynomial time, unless
P = NP. ◀

Proof. The reduction is from the Minimum Dominating Set problem on cubic
graphs, an optimization problem where the goal is to compute a minimum-size
set 𝐷 of vertices of a given cubic graph 𝐺 ′ that dominates 𝑉 (𝐺 ′), i.e., for every
vertex 𝑣 ∈ 𝑉 (𝐺 ′), 𝑣 ∈ 𝐷 or there is an edge {𝑢, 𝑣} ∈ 𝐸 (𝐺 ′) such that 𝑢 ∈ 𝐷 . It
is known that a minimum dominating set on cubic graphs is not approximable
within some constant 𝑐′ > 1, unless P = NP, see [AK97].

Let 𝐺 be a cubic graph of 𝑛 vertices that has a minimum dominating set of
size 𝑘∗ and let 𝑏 = 𝑘∗.14 We claim that a strategy profile 𝝈∗ satisfies DoI(𝝈∗) = 𝑛
if and only if the 𝑜 orange agents are placed on the vertices that form a minimum
dominating set of 𝐺 . Indeed, a blue agent placed on a vertex 𝑣 is not segregated
in 𝝈∗ if and only if there is an orange agent placed on a vertex that dominates 𝑣.
Furthermore, an orange agent placed on a vertex 𝑢 is never segregated in 𝝈∗

because of the minimality of the dominating set, i.e., each vertex of a minimum
dominating set 𝐷 must dominate a vertex of the graph that is not in 𝐷 .

Let 𝑐 = 4
5−𝑐′ . Since all vertices of the graph trivially form a dominating set of

size 𝑛 ≤ 4𝑘∗, each vertex of the dominating set dominates 4 vertices, we have
that 𝑐′ < 4 and therefore, 𝑐 > 1.
14 Without loss of generality, we can guess the value of 𝑘∗. Indeed, when 𝑘∗ is unknown, it is

enough to generate all the possible 𝑛 instances of the problem where, in the 𝑖-th instance, we
set the number of orange agents 𝑜 to be equal to 𝑖 . Any 𝑐-approximation algorithm for all the 𝑛
instances is obviously a 𝑐-approximation algorithm for the instance in which 𝑜 = 𝑘∗. This
explains why it is enough to consider only the instance for which 𝑜 = 𝑘∗ in the rest of the
proof.
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We complete the proof by showing that, if we were able to compute, in
polynomial time, a strategy profile 𝝈 such that DoI(𝝈∗ )

DoI(𝝈 ) ≤ 𝑐, then we could
compute, in polynomial time, a 𝑐′-approximate dominating set of 𝐺 .

Let 𝝈 be a strategy profile such that DoI(𝝈∗ )
DoI(𝝈 ) ≤ 𝑐 and let 𝐷 be the set of vertices

that are occupied by the orange agents in 𝝈 . Let 𝑛∗ be the vertices of 𝐺 that are
not dominated by 𝐷 . We have that 𝑛

𝑛−∗ ≤ 𝑐 , from which we derive that

𝑛∗ ≤ 𝑐 − 1
𝑐

𝑛 =

4
5−𝑐′ − 1

4
5−𝑐′

𝑛 ≤ 𝑐′ − 1
4 4𝑘∗ = (𝑐′ − 1)𝑘∗.

We now compute, in polynomial time, a dominating set 𝐷 ′ of 𝐺 whose size is
at most 𝑘∗ + (𝑐′ − 1)𝑘∗ = 𝑐′𝑘∗. 𝐷 ′ contains 𝐷 and all the ∗ vertices of 𝐺 that are
not dominated by 𝐷 . Clearly, 𝐷 ′ is a dominating set of 𝐺 that approximates the
value 𝑘∗ within a factor of 𝑐′. This completes the proof. ■

The following lemma allows us to convert any strategy profile into a swap
equilibrium without increasing the number of segregated agents.

▶ Lemma 5.28. Given a SP-2-SSG (𝐺,𝑜, 𝛬) on an almost regular graph, with
𝛥 ≤ 3 and 𝛬 ≤ 1

2 , and given a strategy profile 𝝈 , we can compute a swap
equilibrium 𝝈 ′ such that DoI(𝝈 ′) ≥ DoI(𝝈) in polynomial time. ◀

Proof. We prove the following claim: if a feasible strategy profile 𝝈 is not a swap
equilibrium, then there exists a (not necessarily profitable) swap decreasing the
potential function𝛷 and not creating new segregated agents. This implies that
after a sequence of at most𝑚 = |𝐸 (𝐺) | swaps of this type, we obtain a swap
equilibrium 𝝈 ′ such thatDoI(𝝈 ′) ≥ DoI(𝝈). Therefore, given 𝝈 , we have that 𝝈 ′

can be computed in polynomial time.
It remains to prove the existence of a (not necessarily profitable) swap 𝝈 ′ such

that𝛷 (𝝈 ′) < 𝛷 (𝝈) and not creating new segregated agents. Towards this end,
fix a non-equilibrium feasible strategy profile 𝝈 and consider an orange agent 𝑖
and a blue agent 𝑗 possessing a profitable swap in 𝝈 . If no segregated agents
are created in 𝝈 𝑖 𝑗 , then the claim holds. So assume that a segregated agent 𝑘 is
created in 𝝈 𝑖 𝑗 . Clearly, by definition of profitable swaps, it must be 𝑘 ∉ {𝑖, 𝑗}.
Assume, without loss of generality, that 𝑘 is blue. Then, since we have

𝑓𝑘 (𝝈 𝑖 𝑗 ) =
deg(𝝈 (𝑘)) + 1
deg(𝝈 (𝑘)) + 1 = 1,
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𝑘 needs be adjacent to 𝑖 in 𝝈 , i.e. 1𝑖𝑘 (𝝈) = 1, and

𝑓𝑘 (𝝈) =
deg(𝝈 (𝑘))

deg(𝝈 (𝑘)) + 1 .

Let 𝑥𝑜 (respectively 𝑥𝑏 ) be the number of orange agents (respectively blue agents
other than 𝑘) adjacent to 𝑖 in 𝝈 . Since profitable swaps in almost regular graphs
can only occur between agents above the peak, we have 𝑥𝑜+1

𝑥𝑜+𝑥𝑏+2 > 𝛬 which
implies 𝑥𝑏 < 𝑥𝑜 as 𝛬 ≤ 1

2 . By swapping 𝑖 and 𝑘 , we get

𝛷 (𝝈) −𝛷 (𝝈 𝑖𝑘 ) = deg(𝝈 (𝑘)) − 1 + 𝑥𝑜 − 𝑥𝑏 > 0.

Therefore 𝝈 𝑖𝑘 is a swap such that𝛷 (𝝈 𝑖𝑘 ) < 𝛷 (𝝈).
We are left to prove that no segregated agents are created in 𝝈 𝑖𝑘 . The neighbor-

hood of vertex 𝝈 (𝑘) in 𝝈 is composed of vertex 𝝈 (𝑖) and a remaining set of blue
vertices. Thus, when 𝝈 (𝑘) and 𝝈 (𝑖) exchange their colors in 𝝈 𝑖𝑘 , no segregated
agents are created in the closed neighborhood of 𝝈 (𝑘). The neighborhood of
vertex 𝝈 (𝑖) in 𝝈 is composed of vertex 𝝈 (𝑘) and a remaining set of 𝑥𝑜 orange
vertices and 𝑥𝑏 blue vertices, not counting 𝝈 (𝑘), with 𝑥𝑜 > 𝑥𝑏 . As the maximum
degree of 𝐺 is at most 3 and 𝝈 (𝑖) is adjacent to 𝝈 (𝑘), we have 𝑥𝑜 + 𝑥𝑏 ≤ 2,
which, since 𝑥𝑜 > 𝑥𝑏 , implies 𝑥𝑏 = 0. Thus, when 𝝈 (𝑘) and 𝝈 (𝑖) exchange
their colors in 𝝈 𝑖𝑘 , no segregated agents are created in the closed neighborhood
of 𝝈 (𝑖). No other vertices are affected by the swap, thus no segregated agents
are created. ■

▶ Corollary 5.29. There is a constant 𝑐 > 1 such that, given a SP-2-SSG
(𝐺,𝑜, 𝛬) on a cubic graph 𝐺 , with 𝛬 ≤ 1

2 , the problem of computing a swap
equilibrium 𝝈 that maximizes DoI(𝝈) is not 𝑐-approximable in polynomial time,
unless P = NP. ◀

Proof. Let 𝝈∗ be a strategy profile that maximizes the value DoI(𝝈∗). Thanks to
Lemma 5.28, we know that there is a swap equilibrium 𝝈 such that DoI(𝝈) ≥
DoI(𝝈∗). As a consequence, any swap equilibrium that approximates DoI(𝝈)
within a factor of 𝑐 would also approximate DoI(𝝈∗) within a factor of 𝑐 . The
claim now follows from Theorem 5.27. ■

We now provide analogous results for bipartite graphs.
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(a) A cubic graph 𝐺 ′ with 𝑛∗ = 4,𝑚∗ = 6, with a minimum vertex cover 𝑘∗ = 3.
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(b) An instance (𝐺,𝑜) of a SP-2-SSG constructed from 𝐺 ′ with 𝑛 = 𝑛∗ + 7𝑚∗ + 1 vertices and
𝑜 = 𝑘∗ + 1 orange agents.

Figure 5.7: An example instance of the reduction from Vertex Cover shown in Theo-
rem 5.30.

▶ Theorem 5.30. There is a constant 𝑐 > 1 such that, given a SP-2-SSG (𝐺,𝑜, 𝛬)
on a bipartite graph 𝐺 with 𝛬 ∈ (0, 1), the problem of computing a strategy
profile that maximizes DoI(𝝈) is not 𝑐-approximable in polynomial time, unless
P = NP. ◀

Proof. The reduction is from the Minimum Vertex Cover problem on cubic
graphs, an optimization problem in which the goal is to compute a minimum-size
set 𝐶 of vertices of a given cubic graph 𝐺 ′ such that every edge {𝑢, 𝑣} of 𝐺 ′ is
covered by 𝐶 , i.e., {𝑢, 𝑣} ∩𝐶 ≠ ∅. It is known that a minimum vertex cover on
cubic graphs is not approximable within some constant 𝑐′ > 1, unless P = NP,
see [AK97].
Let us assume that 𝑛∗ and 𝑚∗ = 3

2𝑛
∗ are the number of vertices and edges

of the input graph 𝐺 ′, respectively. We construct a graph 𝐺 as follows, see
Figure 5.7 for an example. 𝐺 contains 𝑛 = 𝑛∗ + 7𝑚∗ + 1 vertices. More precisely,
each vertex 𝑣 of 𝐺 ′ is modeled by a vertex 𝑥𝑣 in 𝐺 , while each edge 𝑒 of 𝐺 ′

is modeled by two vertices 𝑦1𝑒 and 𝑦2𝑒 in 𝐺 . 𝐺 also contains a special vertex 𝑧
and 5𝑚∗ additional dummy vertices. The special vertex 𝑧 is connected by an
edge to each of the 5𝑚∗ dummy vertices and the 𝑛∗ vertices 𝑥𝑣, with 𝑣 being a
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vertex of 𝐺 ′. Finally, 𝐺 contains the two edges connecting 𝑥𝑣 with 𝑦1𝑒 and 𝑦2𝑒 if
and only if 𝑣 is an endpoint of the edge 𝑒 in 𝐺 ′.

By construction, we have that 𝐺 is a bipartite graph. Let 𝑘∗ denote the size of
a minimum vertex cover of𝐺 ′.15 We consider the SP-2-SSG (𝐺,𝑜) played on the
constructed graph 𝐺 , where 𝑜 = 𝑘∗ + 1.
We claim that a social optimum 𝝈∗ has a DoI(𝝈∗) = 𝑛 if and only if𝐺 ′ admits

a vertex cover of size 𝑘∗.
(⇐) Let𝐶∗ be a vertex cover of𝐺 ′ of size𝑘∗. Consider the strategy profile𝝈∗ in

which one orange agent is placed on the special vertex 𝑧, while the remaining 𝑘∗
orange agents are placed on the vertices 𝑥𝑣, with 𝑣 ∈ 𝐶∗. Clearly, the blue agents
are placed on the remaining vertices of the graph. By construction, one can
check that no agent in 𝐺 is segregated, see Figure 5.7 for an example. Therefore,
DoI(𝝈∗) = 𝑛.

(⇒) Let 𝝈∗ be a strategy profile such that DoI(𝝈∗) = 𝑛. First of all, as
𝑘∗ + 1 ≤ 𝑛∗ + 1 < 5𝑚∗, we have that no dummy vertex can be occupied by an
orange agent. This is because all edges that connect a dummy vertex with the
special vertex 𝑧 must be non-monochrome and the number of orange agents is
not sufficient to cover all the dummy vertices. Therefore, all dummy vertices
must be occupied by blue agents and, as a consequence, the special vertex 𝑧 is
occupied by an orange agent. We claim that the set

𝐶 (𝝈∗) := {𝑣 ∈ 𝑉 (𝐺 ′) | 𝑥𝑣 is occupied by an orange agent}

has size 𝑘∗ and forms a vertex cover of 𝐺 ′. We observe that, by construction, it
is enough to prove that 𝐶 (𝝈∗) has size 𝑘∗ as each vertex 𝑦𝑖𝑒 , with 𝑖 ∈ {1, 2}, is
adjacent to the vertices 𝑥𝑣 such that 𝑣 covers 𝑒 in𝐺 ′. For the sake of contradiction,
assume that |𝐶 (𝝈∗) | < 𝑘 . We show the existence of a vertex cover of 𝐺 ′ of size
strictly smaller than 𝑘∗. Let 𝐸′ be the subset of the edges of𝐺 ′ such that, for each
𝑒 ∈ 𝐸′, 𝑦1𝑒 and 𝑦2𝑒 are both occupied by orange agents. Let 𝐶 be a set of vertices
of 𝐺 ′ that contains 𝐶 (𝝈∗) plus any of the two end vertices of 𝑒 , for each 𝑒 ∈ 𝐸′.
We now show that |𝐶 | < 𝑘∗. As DoI(𝝈∗) = 𝑛, each vertex 𝑦𝑖𝑒 that is occupied by
a blue agent should be adjacent to a vertex 𝑥𝑣 occupied by an orange agent. By
construction 𝑣 covers 𝑒 and 𝑣 ∈ 𝐶 (𝝈∗). Therefore, 𝐶 (𝝈∗) covers all the edges of
𝐸 (𝐺) \ 𝐸′. Hence, 𝐶 is a vertex cover of 𝐺 ′ of size strictly smaller than 𝑘∗.
We complete the proof by showing that there is a constant 𝑐 > 1 such that the

15 Similar to the proof of Theorem 5.27, we can guess the value 𝑘∗.
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problem of computing, in polynomial time, a strategy profile 𝝈 that approximates
the social optimum 𝝈∗ is not approximable within 𝑐 , unless P = NP. Let 𝑐′ > 1
be the constant such that the Minimum Vertex Cover problem on cubic graphs
is not approximable within a factor of 𝑐′ in polynomial time. As each vertex
of𝐺 ′ covers 3 edges, we have that 𝑘∗ ≥ 𝑚∗

3 = 𝑛∗

2 . This implies that the Minimum
Vertex Cover problem on cubic graphs is approximable within a factor of 2,
and all vertices of the graph suffice. Therefore, 𝑐′ < 2. We set 𝑐 = 13

(14−𝑐′ ) .
Observe that 𝑐 > 1 as 1 < 𝑐′ < 2. We now prove that if we were able to
compute, in polynomial time, a strategy profile 𝝈 such that DoI(𝝈∗ )

DoI(𝝈 ) ≤ 𝑐 , then we
could 𝑐′-approximate the Minimum Vertex Cover problem on cubic graphs in
polynomial time.
For the sake of contradiction, let 𝝈 be a strategy profile that 𝑐-approximates

DoI(𝝈∗) and assume that 𝝈 can be computed in polynomial time. We use 𝝈 to
define a new strategy profile 𝝈 ′ such that (i) DoI(𝝈 ′) ≥ DoI(𝝈), (ii) one orange
agent is placed on the special vertex 𝑧, and (iii) all the other orange agents are
placed on a subset of vertices 𝑥𝑣 with 𝑣 ∈ 𝑉 (𝐺 ′).

First of all, we show that the special vertex 𝑧 is occupied by an orange agent
in 𝝈 . If not, there would be at least 5𝑚∗ −𝑘∗ − 1 ≥ 4𝑚∗ dummy vertices occupied
by blue agents and therefore DoI(𝝈) ≤ 𝑛 − 4𝑚∗. As a consequence, using also
the fact that𝑚∗ = 3

2𝑛
∗ and𝑚∗ ≥ 1, we would obtain DoI(𝝈∗ )

DoI(𝝈 ) ≥

𝑛

𝑛 − 4𝑚∗ = 1 + 4𝑚∗

𝑛 − 4𝑚∗ = 1 + 4𝑚∗

𝑛∗ + 3𝑚∗ + 1 ≥ 1 + 3𝑚∗

2
3𝑚

∗ + 3𝑚∗ +𝑚∗ =
23
14 > 𝑐,

thus contradicting the fact that our solution is 𝑐-approximate.
The strategy profile 𝝈 ′ is obtained by modifying 𝝈 as follows. Blue agents

that occupy dummy vertices exchange their position with blue agents occupying
vertices of the form 𝑥𝑣, with 𝑣 ∈ 𝑉 (𝐺 ′). At the same time, every orange agent
that occupies a vertex 𝑦𝑖𝑒 , with 𝑒 ∈ 𝐸 (𝐺 ′) and 𝑖 ∈ {1, 2}, exchanges its position
with a blue agent occupying a vertex 𝑥𝑣 such that 𝑣 ∈ 𝑉 (𝐺 ′), where we give
priority to vertices that cover 𝑒 . Clearly, given 𝝈 , strategy profile 𝝈 ′ can be
computed in polynomial time and we have DoI(𝝈 ′) ≥ DoI(𝝈).

Let𝑚′ be the number of edges of 𝐺 ′ that are not covered by

𝐶 (𝝈 ′) := {𝑣 ∈ 𝑉 (𝐺 ′) | 𝑥𝑣 is occupied by an orange agent}.

We show that 𝑚′ ≤ (𝑐′ − 1)𝑘∗. First of all, we observe all the 5𝑚∗ dummy
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vertices, the special vertex 𝑧, and all the 𝑛∗ vertices 𝑥𝑣 corresponding to the
vertices 𝑣 ∈ 𝑉 (𝐺 ′) are not segregated in 𝝈 ′. Therefore, the number of uncovered
edges of 𝐺 ′ equals twice the number of segregated blue agents in 𝐺 , two blue
agents per uncovered edge 𝑒 of 𝐺 ′ that occupy the vertices 𝑦1𝑒 and 𝑦2𝑒 . Therefore
DoI(𝝈 ′) = 𝑛 − 2𝑚′. As a consequence

𝑐 >
DoI(𝝈∗)
DoI(𝝈 ′) ≥ 𝑛

𝑛 − 2𝑚′ ,

from which we derive

𝑚′ ≤ 𝑐 − 1
2𝑐 𝑛 =

13
14−𝑐′ − 1
2 13
14−𝑐′

𝑛 =
𝑐′ − 1
26 (𝑛∗ + 7𝑚∗ + 1)

≤ 𝑐′ − 1
26

(
2
3𝑚

∗ + 7𝑚∗ +𝑚∗
)
=
𝑐′ − 1
3 𝑚∗ ≤ (𝑐′ − 1)𝑘∗,

where we use the facts that𝑚∗ = 3
2𝑛

∗, i.e.,𝐺 ′ is cubic, 1 ≤ 𝑚∗, and 𝑘∗ ≥ 𝑚∗

3 , each
vertex of 𝐺 ′ covers 3 edges.

To complete the proof, let 𝐶 be a vertex cover of𝐺 ′ that contains 𝐶 (𝝈 ′) and a
vertex that covers each of the edges of𝐺 ′ that are not covered by𝐶 (𝝈 ′). Clearly,
given 𝝈 ′,𝐶 can be computed in polynomial time. The size of𝐶 is upper bounded
by the size of𝐶 (𝝈 ′) plus the number of uncovered edges, i.e., |𝐶 | ≤ 𝑘∗+𝑚′ ≤ 𝑐′𝑘∗.
Hence, 𝐶 is a 𝑐′-approximate vertex cover of 𝐺 ′. This completes the proof. ■

▶ Theorem 5.31. There is a constant 𝑐 > 1 such that, given a SP-2-SSG (𝐺,𝑜, 12 )
on a bipartite graph 𝐺 , the problem of computing a swap equilibrium 𝝈 that
maximizesDoI(𝝈) is not 𝑐-approximable in polynomial time, unless P = NP. ◀

Proof. We consider the same reduction that we used in the proof of Theorem 5.30
and show the existence of a strategy profile 𝝈∗ that maximizes DoI(𝝈∗) which
is also a swap equilibrium. Observe that, once we prove that 𝝈∗ is a swap
equilibrium, the rest of the proof can be derived from Theorem 5.30.

Consider the strategy profile 𝝈∗ in which an orange agent occupies the special
vertex 𝑧, while the remaining 𝑘∗ orange agents are placed on vertices of the
form 𝑥𝑣 such that 𝑣 ∈ 𝐶∗ and 𝐶∗ is an optimal vertex cover of 𝐺 ′, see also
Figure 5.7. In the proof of Theorem 5.30 we already showed that DoI(𝝈∗) = 𝑛.
In the following, we show that 𝝈∗ is also a swap equilibrium.
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The blue agents on the dummy vertices have maximum utility, so they never
swap. Let 𝑗 be a blue agent that is placed on a vertex of the form 𝑥𝑣, with
𝑣 ∈ 𝑉 (𝐺 ′). The strategy 𝝈 𝑖 𝑗 where 𝑖 is an orange agent placed on a vertex 𝑥𝑣,
with 𝑣 ∈ 𝑉 (𝐺 ′), is not a profitable swap by Lemma 5.4. The strategy 𝝈 𝑖 𝑗 where
𝑖 is the orange agent placed on the special vertex 𝑧 is not a profitable swap by
Lemma 5.3.
Finally, consider any blue agent 𝑗 that is placed on a vertex of the form 𝑦ℓ𝑒

with 𝑒 ∈ 𝐸 (𝐺 ′) and ℓ ∈ {1, 2}. This agent has a utility of either 𝑝
( 1
3
)
or 𝑝

( 2
3
)
.

But 𝑝
( 1
3
)
= 𝑝

( 2
3
)
whenever 𝛬 ≤ 1

2 . The strategy 𝝈 𝑖 𝑗 , where 𝑖 is an orange
agent placed on a vertex 𝑥𝑣 with 𝑣 ∈ 𝑉 (𝐺 ′), is not a profitable swap either by
Lemma 5.3, when 𝜎 (𝑖) is adjacent to 𝜎 ( 𝑗), or simply because the utility of 𝑗
in 𝝈 𝑖 𝑗 is 𝑝

( 7
8
)
< 𝑝

( 2
3
)
. The orange agent 𝑖 on the special vertex 𝑧 has a utility

that is strictly smaller than 𝑝
( 1
6
)
as

𝑘∗ + 1
5𝑚∗ + 𝑛∗ + 1 ≤ 𝑛∗

5𝑛∗ + 𝑛∗ + 1 <
1
6 .

Therefore, 𝝈 𝑖 𝑗 is not a profitable swap because the utility of 𝑗 in 𝝈 𝑖 𝑗 is upper
bounded by 𝑝

( 5
6
)
< 𝑝

( 2
3
)
. ■

5.7 Conclusion and Open Problems

We studied game-theoretic residential segregation with integration-oriented
agents and thereby opened up the novel research direction of considering non-
monotone utility functions. Our results clearly show that moving frommonotone
to non-monotone utilities yields novel structural properties and different results
in terms of equilibrium existence and quality. We have equilibrium existence
for a larger class of graphs, compared to [Aga+21], and it is an important open
problem to prove or disprove if swap equilibria for our model with 𝛬 ≤ 1

2 are
guaranteed to exist on any graph.
So far we considered single-peaked utilities that are supported by data from

real-world sociological polls. However, also other natural types of non-monotone
utilities could be studied. Ties in the utility function could be resolved by breaking
them consistently towards favoring being in the minority or being in the majority.
The non-existence example of swap equilibria used in the proof of Theorem 5.7
also applies to the case with 𝛬 = 1

2 and breaking ties towards being in the
majority. Interestingly, by breaking ties the other way we get the same existence
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results as without tie-breaking and also our other results hold in this case. This is
another indication that tolerance helps with stability. Moreover, all our existence
results also hold for utility functions having a symmetric plateau shape around 𝛬.
Investigating the Price of Anarchy for these utility functions is open.

Regarding the quality of equilibria, we analyzed the Degree of Integration as
social welfare function, as this is in line with considering integration-oriented
agents. Of course, studying the quality of the equilibria in terms of the standard
utilitarian social welfare, i.e., SUM(𝝈) = ∑𝑛

𝑖=1 U𝑖 (𝝈), would also be interesting.
We note that in passing that on ring topologies the Price of Anarchy and the
Price of Stability concerning both social welfare functions coincide.
So far, we only considered single-peaked utilities for two types of agents.

However, it is not obvious at all how to generalize the single-peaked model to
more than two agent types. As discussed in Chapter 3, this is already non-trivial
for the model with monotone utility functions. The simplest setting would
be the “1-versus-all” variant, where the utility only depends on the numbers
of same-type and other-type neighbors. But, as shown in Chapter 3, even in
this simple setting, the behavior of Schelling games changes drastically. We
expect similarly drastic changes for this model. Moreover, we are not convinced
that “1-versus-all” captures realistic agent behavior. Ideally, in a setting with
more than two types, a diverse neighborhood should contain agents of many
different types and it should be balanced such that no subgroup dominates the
neighborhood. This would rather suggest the “1-versus-1” variant.
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6 The Impact of Geometry in
the Flip Schelling Process

This chapter is based on joint work with Thomas Bläsius, Tobias Friedrich, and
Martin S. Krejca [Blä+23]. Moreover, I want to thank Thomas Sauerwald for the
discussions on random walks.

In the following chapter, we initiate the study of the Flip Schelling Process
(FSP), which can be understood as the Schelling model in a saturated open city.
Starting from an initial configuration where the type of each agent is chosen
uniformly at random, we investigate a simultaneous-move, one-shot process
and bound the number of monochrome edges, which is a popular measurement
for segregation strength [CR15; Fre78].
Saturated city models are also known as voter models [DS93; Lig94; Lig99].

In general, in voter models, two types of agents are placed on a graph. Agents
examine their neighbors and, if a certain threshold is of another type, they
change their types. Also in this model, segregation is visible. There is a line
of work, mainly in physics, that studies the voting dynamics on several types
of graphs [Bal+10; COM03; LSS08; PM05; WH10]. Related to voter models,
Granovetter [Gra78] proposed another threshold model treating binary decisions
and spurred a number of research, which studied and motivated variants of the
model, see [BKH21; KKT03; Mac91; Poi21].
Close to the FSP is the work by Omidvar and Franceschetti [OF18a; OF18b],

who initiated an analysis of the size of monochrome regions in the so called
Schelling Spin Systems. Agents of two different types are placed on a grid [OF18a]
and a geometric graph [OF18b], respectively. Then independent and identical
Poisson clocks are assigned to all agents and, every time a clock rings, the
state of the corresponding agent is flipped if and only if the agent is discontent
concerning a certain intolerance threshold 𝜏 regarding the neighborhood size.
The model corresponds to the Ising model with zero temperature with Glauber
dynamics [CFL09; SS07].
The commonly used underlying topology for modeling the residential areas

are (toroidal) grid graphs, regular graphs, paths, cycles, and trees, see e.g. [BEL18;
KKV21; OF18a]. Considering the influence of the given topology that models the
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Figure 6.1: The fraction of monochrome edges after the Flip Schelling Process (FSP) in
Erdős–Rényi graphs and random geometric graphs for different graph sizes (number of
vertices 𝑛) and different expected average degrees. Each data point shows the average
of over 1000 generated graphs with one simulation of the FSP per graph. The error bars
show the interquartile range, i.e., 50 % of the measurements lie between the top and
bottom end of the error bar.

residential area regarding, e.g., the existence of stable states and convergence
behavior leads to phenomena like the non-existence of stable states [Aga+21] and
see also our results in Chapter 3, non-convergence to stable states, see Chapter 3
and Chapter 4, and high-mixing times in corresponding Markov chains [BMR14;
Ger+08]. To avoid such undesirable characteristics, we suggest investigating
random geometric graphs [Pen03], like in [OF18b]. Random geometric graphs
demonstrate, in contrast to other random graphs without geometry, such as
Erdős–Rényi graphs [ER59; Gil59], community structures, i.e., densely connected
clusters of vertices. An effect observed by simulating the FSP is that the fraction of
monochrome edges is significantly higher in random geometric graphs compared
to Erdős–Rényi graphs, where the fraction stays almost stable around 1

2 , cf.
Figure 6.1.

We set out to rigorously prove this phenomenon. In particular, we prove for
random geometric graphs with 𝑛 vertices that if the expected average degree
is o

(√
𝑛
)
, there exists a positive constant 𝑐 such that, given an edge {𝑢, 𝑣}, the

probability that {𝑢, 𝑣} is monochrome is lower-bounded by 1
2 +𝑐 , cf. Theorem 6.6.

In contrast, we show for Erdős–Rényi graphs that segregation is not likely to
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occur and that the probability that {𝑢, 𝑣} is monochrome is upper-bounded by
1
2 + o(1), cf. Theorem 6.17.
We introduce a general framework to deepen the understanding of the in-

fluence of the underlying topology on residential segregation. To this end, we
first show that a highly decisive common neighborhood supports segregation,
cf. Section 6.3.1. In particular, we provide a lower bound on the probability
that an edge {𝑢, 𝑣} is monochrome based on the probability that the difference
between the majority and the minority regarding both types in the common
neighborhood, i.e., the number of agents which are adjacent to 𝑢 and 𝑣, is larger
than their exclusive neighborhoods, i.e., the number of agents which are adja-
cent to either 𝑢 or 𝑣. Next, we show that large sets of agents are more decisive,
cf. Section 6.3.2. This implies that a large common neighborhood, compared
to the exclusive neighborhood is likely to be more decisive, i.e., makes it more
likely that the absolute value of the difference between the number of differ-
ent types in the common neighborhood is larger than in the exclusive ones.
These considerations hold for arbitrary graphs. Hence, we reduce the question
concerning a lower bound for the fraction of monochrome edges in the FSP to
the probability that, given {𝑢, 𝑣}, the common neighborhood is larger than the
exclusive neighborhoods of 𝑢 and 𝑣, respectively.

For random geometric graphs, we prove that a large geometric region, i.e., the
intersecting region that is formed by intersecting disks, leads to a large vertex set,
cf. Section 6.3.3, and that random geometric graphs have enough edges that have
sufficiently large intersecting regions, cf. Section 6.3.4, such that segregation is
likely to occur. In contrast, for Erdős–Rényi graphs, we show that the common
neighborhood between two vertices 𝑢 and 𝑣 is with high probability empty and
therefore segregation is not likely to occur, cf. Section 6.4.
In Section 6.5, we complement our theoretical results with empirical inves-

tigations that consider multiple iterations of the FSP. We find that for random
geometric graphs, the segregation strength increases with every further iteration,
while Erdős–Rényi graphs become single-colored over time. However, our results
also show that random geometric graphs with 𝑛 vertices become single-colored
with non-vanishing probability once their average degree is Θ

(√
𝑛
)
, suggesting

that our theoretical results, which hold up to average degrees of o
(√
𝑛
)
, are close

to tight.
Overall, we shed light on the influence of the structure of the underlying

graph and discovered the significant impact of the community structure as an
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important factor in the obtained segregation strength. We reveal for random
geometric graphs that already after one round a provable tendency is apparent
and strong segregation occurs.

6.1 Model

Remember that a random geometric graph 𝐺 ∼ G(𝑛, 𝑟 ) is obtained by dis-
tributing 𝑛 vertices uniformly at random in some geometric ground space
and connecting vertices 𝑢 and 𝑣 if and only if dist(𝑢, 𝑣) ≤ 𝑟 . We use a two-
dimensional toroidal Euclidean space with a total area of 1 as ground space.
More formally, each vertex 𝑣 is assigned to a point (𝑣1, 𝑣2) ∈ [0, 1]2 and the
distance between 𝑢 = (𝑢1, 𝑢2) and 𝑣 is dist(𝑢, 𝑣) =

√︁
|𝑢1 − 𝑣1 |2◦ + |𝑢2 − 𝑣2 |2◦ for

|𝑢𝑖 − 𝑣𝑖 |◦ = min{|𝑢𝑖 − 𝑣𝑖 |, 1− |𝑢𝑖 − 𝑣𝑖 |}. We note that using a torus instead of, e.g.,
a unit square, has the advantage that we do not have to consider edge cases, for
vertices that are close to the boundary. A disk of radius 𝑟 around any point has
the same area π𝑟 2. We consider a ground space with total area 1, π𝑟 2 = 1. As
every vertex 𝑣 is connected to all vertices in the disk of radius 𝑟 around it, its
expected average degree is deg = (𝑛 − 1)π𝑟 2.

Consider two different vertices 𝑢 and 𝑣. Let 𝑁 (𝑢 ∩ 𝑣) B |𝑁 (𝑢) ∩ 𝑁 (𝑣) | be the
number of vertices in the common neighborhood, let 𝑁 (𝑢 \ 𝑣) B |𝑁 (𝑢) \ 𝑁 (𝑣) |
be the number of vertices in the exclusive neighborhood of 𝑢, and let 𝑁 (𝑣 \ 𝑢) B
|𝑁 (𝑣) \ 𝑁 (𝑢) | be the number of vertices in the exclusive neighborhood of 𝑣.
Furthermore, with 𝑁 (𝑢 ∪ 𝑣) B |𝑉 \ (𝑁 (𝑢) ∪ 𝑁 (𝑣)) |, we denote the number of
vertices that are neither adjacent to 𝑢 nor 𝑣.

We consider the Flip Schelling Process with 2 types. Let 𝐺 be a graph where
each vertex represents an orange or blue agent. The type of each agent is chosen
independently and uniformly at random. Remember that an agent is content if
the fraction of agents in its neighborhood with the same type is larger than 1

2 .
Otherwise, if the fraction is smaller than 1

2 , an agent is discontent and is willing
to flip its type to become content. If the fraction of the same type of agents in its
neighborhood is exactly 1

2 , an agent flips its type with probability 1
2 .

6.2 Preliminaries

In this section, we state several lemmas that we will use to prove our results in
the next sections.
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▶ Lemma 6.1. Let 𝑋 ∼ Bin(𝑛, 𝑝) and 𝑌 ∼ Bin(𝑛, 𝑞) with 𝑝 ≥ 𝑞 be independent.
Then Pr[𝑋 ≥ 𝑌 ] ≥ 1

2 . ◀

Proof. Let 𝑌1, . . . , 𝑌𝑛 be the individual Bernoulli trials for 𝑌 , i.e.,

𝑌 =
∑︁
𝑖∈[𝑛]

𝑌𝑖 .

Define new random variables 𝑌 ′
1 , . . . , 𝑌

′
𝑛 such that 𝑌𝑖 = 1 implies 𝑌 ′

𝑖 = 1 and if
𝑌𝑖 = 0, then 𝑌 ′

𝑖 = 1 with probability (𝑝 − 𝑞)/(1 − 𝑞) and 𝑌 ′
𝑖 = 0 otherwise. Note

that for each individual 𝑌 ′
𝑖 , we have 𝑌 ′

𝑖 = 1 with probability 𝑝 , i.e.,

𝑌 ′ =
∑︁
𝑖∈[𝑛]

𝑌 ′
𝑖 ∼ Bin(𝑛, 𝑝) .

Moreover, as 𝑌 ′ ≥ 𝑌 for every outcome, we have Pr[𝑋 ≥ 𝑌 ] ≥ Pr[𝑋 ≥ 𝑌 ′] . It
remains to show that

Pr[𝑋 ≥ 𝑌 ′] ≥ 1
2 .

As 𝑋 and 𝑌 ′ are equally distributed, we have Pr[𝑋 ≥ 𝑌 ′] = Pr[𝑋 ≤ 𝑌 ′] . More-
over, as one of the two inequalities, holds in any event, we get Pr[𝑋 ≥ 𝑌 ′] +
Pr[𝑋 ≤ 𝑌 ′] ≥ 1, and thus equivalently 2Pr[𝑋 ≥ 𝑌 ′] ≥ 1, which proves the
claim. ■

▶ Lemma 6.2 ([Dar64]). Let 𝑛 ∈ N+, 𝑝 ∈ [0, 1), and let 𝑋 ∼ Bin(𝑛, 𝑝). Then,
for all 𝑖 ∈ [0..𝑛], it holds that Pr[𝑋 = 𝑖] ≤ Pr[𝑋 = ⌊𝑝 (𝑛 + 1)⌋]. ◀

Proof. We interpret the distribution of 𝑋 as a finite series and consider the sign
of the differences 𝑏 : [0, 𝑛 − 1] → R of two neighboring terms. That is, for all
𝑑 ∈ [0, 𝑛 − 1] ∩ N, it holds that

𝑏 (𝑑) = Pr[𝑋 = 𝑑 + 1] − Pr[𝑋 = 𝑑]

=

(
𝑛

𝑑 + 1

)
𝑝𝑑+1(1 − 𝑝)𝑛−𝑑−1 −

(
𝑛

𝑑

)
𝑝𝑑 (1 − 𝑝)𝑛−𝑑 .

We are interested in the sign of 𝑏, as a local maximum of the distribution of 𝑋
is located at the position at which 𝑏 switches from positive to negative. In more
detail, for any 𝑑 ∈ [0, 𝑛 − 2] ∩ N, if sgn

(
𝑏 (𝑑)

)
≥ 0 and sgn

(
𝑏 (𝑑 + 1)

)
≤ 0, then
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𝑑 + 1 is a local maximum. If the sign is always negative, then there is a global
maximum in the distribution of 𝑋 at position 0.
In order to determine the sign of 𝑏, for all 𝑖 ∈ [0..𝑛 − 1], we rewrite

𝑏 (𝑖) = 𝑛!
𝑖!(𝑛 − 𝑖 − 1)!𝑝

𝑖 (1 − 𝑝)𝑛−𝑖−1 𝑝

𝑖 + 1 − 𝑛!
𝑖!(𝑛 − 𝑖 − 1)!𝑝

𝑖 (1 − 𝑝)𝑛−𝑖−1 1 − 𝑝
𝑛 − 𝑖

=
𝑛!

𝑖!(𝑛 − 𝑖 − 1)!𝑝
𝑖 (1 − 𝑝)𝑛−𝑖−1

(
𝑝

𝑖 + 1 − 1 − 𝑝
𝑛 − 𝑖

)
.

Since the term 𝑛!/(𝑖!(𝑛 − 𝑖 − 1)!)𝑝𝑖 (1 − 𝑝)𝑛−𝑖−1 is always non-negative, the sign
of 𝑏 (𝑖) is determined by the sign of 𝑝/(𝑖 + 1) − (1 − 𝑝)/(𝑛 − 𝑖). Solving for 𝑖 , we
get that

𝑝

𝑖 + 1 − 1 − 𝑝
𝑛 − 𝑖 ≥ 0 ⇔ 𝑖 ≤ 𝑝 (𝑛 + 1) − 1.

Note that 𝑝 (𝑛 + 1) − 1 is not necessarily an integer. Further note that the
distribution of 𝑋 is uni-modal, as the sign of 𝑏 changes at most once. Thus, each
local maximum is also a global maximum. As discussed above, the largest value
𝑑 ∈ [0, 𝑛 − 2] ∩ N such that sgn

(
𝑏 (𝑑)

)
≥ 0 and sgn

(
𝑏 (𝑑 + 1)

)
≤ 0 then results

in a global maximum at position 𝑑 + 1. Since 𝑑 needs to be an integer, the largest
value that satisfies this constraint is ⌊𝑝 (𝑛 + 1) − 1⌋. If the sign of 𝑏 is always
negative (𝑝 ≤ 1/(𝑛 + 1)), then the distribution of 𝑋 has a global maximum at 0,
which is also satisfied by ⌊𝑝 (𝑛 + 1) − 1⌋ + 1, which concludes the proof. ■

▶ Theorem 6.3 (Stirling’s Formula [Fel68, page 54]). For all 𝑛 ∈ N+, it holds
that

√
2π𝑛𝑛+1/2 e−𝑛 · e(12𝑛+1)

−1
< 𝑛! <

√
2π𝑛𝑛+1/2 e−𝑛 · e(12𝑛)

−1
.

◀

▶ Corollary 6.4. For all 𝑛 ≥ 2 with 𝑛 ∈ N, it holds that

𝑛! >
√
2π𝑛𝑛+1/2 e−𝑛 and (6.1)

𝑛! < 𝑛𝑛+1/2 e−𝑛+1 . (6.2)

◀
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Proof. For both inequalities, we aim at using Theorem 6.3.
Equation (6.1): Note that e(12𝑛+1)−1 > 1, since 1

12𝑛+1 > 0. Hence,
√
2π𝑛𝑛+1/2 e−𝑛 <

√
2π𝑛𝑛+1/2 e−𝑛 · e(12𝑛+1)

−1
.

Equation (6.2): We prove this case by showing that
√
2π e(12𝑛)

−1
< e . (6.3)

Note, that e(12𝑛)−1 is strictly decreasing. Hence, we only have to check whether
Equation (6.3) holds for 𝑛 = 2.

√
2π e(12𝑛)

−1
≤
√
2π e

1
24 < 2.7 < e . ■

▶ Lemma 6.5. Let𝐴, 𝐵, and𝐶 be random variables such that Pr[𝐴 > 𝐶 ∧ 𝐵 ≤ 𝐶]
> 0 and Pr[𝐴 > 𝐶 ∧ 𝐵 > 𝐶] > 0. Then Pr[𝐴 > 𝐵 ∧𝐴 > 𝐶] ≥ Pr[𝐴 > 𝐵] ·
Pr[𝐴 > 𝐶]. ◀

Proof. Using the definition of conditional probability, we obtain

Pr[𝐴 > 𝐵 ∧𝐴 > 𝐶] = Pr[𝐴 > 𝐵 | 𝐴 > 𝐶 ] · Pr[𝐴 > 𝐶] .

Hence, we are left with bounding Pr[𝐴 > 𝐵 | 𝐴 > 𝐶 ] ≥ Pr[𝐴 > 𝐵]. Partitioning
the sample space into the two events 𝐵 > 𝐶 and 𝐵 ≤ 𝐶 and using the law of total
probability, we obtain

Pr[𝐴 > 𝐵 | 𝐴 > 𝐶] = Pr[𝐵 > 𝐶 | 𝐴 > 𝐶 ] · Pr[𝐴 > 𝐵 | 𝐴 > 𝐶 ∧ 𝐵 > 𝐶]
+ Pr[𝐵 ≤ 𝐶 | 𝐴 > 𝐶 ] · Pr[𝐴 > 𝐵 | 𝐴 > 𝐶 ∧ 𝐵 ≤ 𝐶] .

Note that the condition 𝐴 > 𝐶 ∧ 𝐵 ≤ 𝐶 already implies 𝐴 > 𝐵 and thus the last
probability equals to 1. Moreover, using the definition of conditional probability,
we obtain

Pr[𝐴 > 𝐵 | 𝐴 > 𝐶] = Pr[𝐵 > 𝐶 | 𝐴 > 𝐶 ] · Pr[𝐴 > 𝐵 ∧𝐴 > 𝐶 ∧ 𝐵 > 𝐶]
Pr[𝐴 > 𝐶 ∧ 𝐵 > 𝐶]

+ Pr[𝐵 ≤ 𝐶 | 𝐴 > 𝐶 ] .

Using that Pr[𝐵 > 𝐶 | 𝐴 > 𝐶 ] ≥ Pr[𝐴 > 𝐶 ∧ 𝐵 > 𝐶], that𝐴 > 𝐵∧𝐵 > 𝐶 already
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implies 𝐴 > 𝐶 , that Pr[𝐵 ≤ 𝐶 | 𝐴 > 𝐶 ] ≥ Pr[𝐴 > 𝐵 ∧ 𝐵 ≤ 𝐶], and finally the
law of total probability, we obtain

Pr[𝐴 > 𝐵 | 𝐴 > 𝐶] ≥ Pr[𝐴 > 𝐵 ∧𝐴 > 𝐶 ∧ 𝐵 > 𝐶] + Pr[𝐵 ≤ 𝐶 | 𝐴 > 𝐶 ]
= Pr[𝐴 > 𝐵 ∧ 𝐵 > 𝐶] + Pr[𝐵 ≤ 𝐶 | 𝐴 > 𝐶 ]
≥ Pr[𝐴 > 𝐵 ∧ 𝐵 > 𝐶] + Pr[𝐴 > 𝐵 ∧ 𝐵 ≤ 𝐶]
= Pr[𝐴 > 𝐵] . ■

6.3 Monochrome Edges in Geometric Random Graphs

In this section, we prove the following main theorem.

▶ Theorem 6.6. Let 𝐺 ∼ G(𝑛, 𝑟 ) be a random geometric graph with expected
average degree deg = o

(√
𝑛
)
. The expected fraction of monochrome edges after

the FSP is at least

1
2 + 9

800 ·
©­­«
1
2 − 1√︃

2𝜋 ⌊deg/2⌋

ª®®¬
2

·
(
1 − e−deg/2

(
1 + deg

2

))
· (1 − o(1)) .

◀

Note that the bound in Theorem 6.6 is bounded away from 1
2 for all deg ≥ 2.

Moreover, the two factors depending on deg go to 1
2 and 1, respectively, for a

growing deg.
Given an edge {𝑢, 𝑣}, we prove the above lower bound on the probability that

{𝑢, 𝑣} is monochrome in the following four steps.

(1) For a vertex set, we introduce the concept of decisiveness that measures
how much the majority is ahead of the minority in the FSP. With this, we
give a lower bound on the probability that {𝑢, 𝑣} is monochrome based on
the probability that the common neighborhood of 𝑢 and 𝑣 is more decisive
than their exclusive neighborhoods.

(2) We show that large neighborhoods are likely to be more decisive than small
neighborhoods. To this end, we give bounds on the likelihood that two
similar random walks behave differently. This step reduces the question
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of whether the common neighborhood is more decisive than the exclusive
neighborhoods to whether the former is larger than the latter.

(3) Turning to geometric random graphs, we show that the common neighbor-
hood is sufficiently likely to be larger than the exclusive neighborhoods if
the geometric region corresponding to the former is sufficiently large. We
do this by first showing that the actual distribution of the neighborhood
sizes is well approximated by independent binomial random variables.
Then, we give the desired bounds for these random variables.

(4) We show that the existence of the edge {𝑢, 𝑣} in the geometric random
graph makes it sufficiently likely that the geometric region hosting the
common neighborhood of 𝑢 and 𝑣 is sufficiently large.

6.3.1 Monochrome Edges via Decisive Neighborhoods

Let {𝑢, 𝑣} be an edge of a given graph. To formally define the above-mentioned
decisiveness, let 𝑁𝑜 (𝑢 ∩ 𝑣) and 𝑁𝑏 (𝑢 ∩ 𝑣) be the number of vertices in the com-
mon neighborhood of 𝑢 and 𝑣 that are occupied by orange and blue agents,
respectively. Then 𝐷 (𝑢 ∩ 𝑣) B |𝑁𝑜 (𝑢 ∩ 𝑣) −𝑁𝑏 (𝑢 ∩ 𝑣) | is the decisiveness of the
common neighborhood of 𝑢 and 𝑣. Analogously, we define 𝐷 (𝑢 \ 𝑣) and 𝐷 (𝑣 \ 𝑢)
for the exclusive neighborhoods of 𝑢 and 𝑣, respectively.
The following theorem bounds the probability for {𝑢, 𝑣} to be monochrome

based on the probability that the common neighborhood is more decisive than
each of the exclusive ones.

▶ Theorem 6.7. In the FSP, let {𝑢, 𝑣} ∈ 𝐸 be an edge and let 𝐷 be the event
{𝐷 (𝑢 ∩ 𝑣) > 𝐷 (𝑢 \ 𝑣) ∧ 𝐷 (𝑢 ∩ 𝑣) > 𝐷 (𝑣 \ 𝑢)}. Then {𝑢, 𝑣} is monochrome with
probability at least 1/2 + Pr[𝐷]/2. ◀

Proof. If 𝐷 occurs, then the types of 𝑢 and 𝑣 after the FSP coincide with the
predominant type before the FSP in the shared neighborhood. Thus, {𝑢, 𝑣} is
monochrome.
Otherwise, assuming 𝐷 , without loss of generality, let 𝐷 (𝑢 ∩ 𝑣) ≤ 𝐷 (𝑢 \ 𝑣)

and assume further that the type of 𝑣 has already been determined. If 𝐷 (𝑢 ∩ 𝑣) =
𝐷 (𝑢 \ 𝑣), then 𝑢 chooses a type uniformly at random, which coincides with the
type of 𝑣 with probability 1

2 . Otherwise, 𝐷 (𝑢 ∩ 𝑣) < 𝐷 (𝑢 \ 𝑣) and thus 𝑢 takes
the type that is predominant in 𝑢’s exclusive neighborhood, which is orange
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and blue with probability 1
2 , each. Moreover, this is independent of the type of 𝑣

as 𝑣’s neighborhood is disjoint to 𝑢’s exclusive neighborhood.
Thus, for the event𝑀 that {𝑢, 𝑣} is monochrome, we get Pr[𝑀 | 𝐷] = 1 and

Pr
[
𝑀 | 𝐷

]
= 1

2 . Hence, we get Pr[𝑀] ≥ Pr[𝐷]+ 1
2 (1 − Pr[𝐷]) = 1

2+Pr[𝐷]/2. ■

6.3.2 Large Neighborhoods are More Decisive

The goal of this section is to reduce the question of how decisive a neighborhood
is to the question of how large it is. To be more precise, assume we have a set
of vertices of size 𝑎 and give each vertex the type orange and blue, respectively,
each with probability 1

2 . Let 𝐴𝑖 for 𝑖 ∈ [𝑎] be the random variable that takes
the value +1 and −1 if the 𝑖-th vertex in this set is orange and blue, respectively.
Then, for𝐴 =

∑
𝑖∈[𝑎] 𝐴𝑖 , the decisiveness of the vertex set is |𝐴|. In the following,

we study the decisiveness |𝐴| depending on the size 𝑎 of the set. Note that this
can be viewed as a random walk on the integer line: Starting at 0, in each step,
it moves one unit either to the left or to the right with equal probabilities. We
are interested in the distance from 0 after 𝑎 steps.

Assume for the vertices𝑢 and 𝑣 that we know that 𝑏 vertices lie in the common
neighborhood and 𝑎 vertices lie in the exclusive neighborhood of 𝑢. Moreover,
let 𝐴 and 𝐵 be the positions of the above random walk after 𝑎 and 𝑏 steps,
respectively. Then the event 𝐷 (𝑢 ∩ 𝑣) > 𝐷 (𝑢 \ 𝑣) is equivalent to |𝐵 | > |𝐴|.
Motivated by this, we study the probability of |𝐵 | > |𝐴|, assuming 𝑏 ≥ 𝑎. The
core difficulty here comes from the fact that we require |𝐵 | to be strictly larger
than |𝐴|. Also, note that 𝑎 + 𝑏 corresponds to the degree of 𝑢 in the graph. Thus,
we have to study the random walks also for small numbers of 𝑎 and 𝑏. We note
that all results in this section are independent of the specific application to the
FSP, and thus might be of independent interest.
Before we give a lower bound on the probability that |𝐵 | > |𝐴|, we need the

following technical lemma. It states that doing more steps in the random walk
only makes it more likely to deviate further from the starting position.

▶ Lemma 6.8. For 𝑖 ∈ [𝑎] and 𝑗 ∈ [𝑏] with 0 ≤ 𝑎 ≤ 𝑏, let 𝐴𝑖 and 𝐵 𝑗 be
independent random variables that are −1 and 1 each with probability 1

2 . Let
𝐴 =

∑
𝑖∈[𝑎] 𝐴𝑖 and 𝐵 =

∑
𝑗∈[𝑏 ] 𝐵 𝑗 . Then Pr[|𝐴| < |𝐵 |] ≥ Pr[|𝐴| > |𝐵 |]. ◀
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Proof. Let 𝛥𝑘 be the event that |𝐵 | − |𝐴| = 𝑘 . First, note that

Pr[|𝐴| < |𝐵 |] =
∑︁
𝑘∈[𝑏 ]

Pr[𝛥𝑘 ] and Pr[|𝐴| > |𝐵 |] =
∑︁
𝑘∈[𝑎]

Pr[𝛥−𝑘 ] .

To prove the statement of the lemma, it thus suffices to prove the following claim.

▶ Claim 6.9. For 𝑘 ≥ 0, Pr[𝛥𝑘 ] ≥ Pr[𝛥−𝑘 ]. ◀

We prove this claim via induction on 𝑏 − 𝑎. For the base case 𝑎 = 𝑏, 𝐴 and 𝐵
are equally distributed, and thus Claim 6.9 holds.
For the induction step, let 𝐵+ be the random variable that takes the values

𝐵 + 1 and 𝐵 − 1 with probability 1
2 each. Note that 𝐵+ represents the same

type of random walk as 𝐴 and 𝐵 but with 𝑏 + 1 steps. Moreover 𝐵+ is coupled
with 𝐵 to make the same decisions in the first 𝑏 steps. Let 𝛥+

𝑘
be the event that

|𝐵+ | − |𝐴| = 𝑘 . It remains to show that Claim 6.9 holds for these 𝛥+
𝑘
. For this,

first, note that the claim trivially holds for 𝑘 = 0. For 𝑘 ≥ 1, we can use the
definition of 𝛥+

𝑘
and the induction hypothesis to obtain

Pr
[
𝛥+
𝑘

]
=
Pr[𝛥𝑘−1]

2 + Pr[𝛥𝑘+1]
2

≥ Pr[𝛥−𝑘+1]
2 + Pr[𝛥−𝑘−1]

2 = Pr
[
𝛥+
−𝑘

]
. ■

Using Lemma 6.8, we now prove the following general bound for the probabil-
ity that |𝐴| < |𝐵 |, depending on certain probabilities for binomially distributed
variables.

▶ Lemma 6.10. For 𝑖 ∈ [𝑎] and 𝑗 ∈ [𝑏] with 0 ≤ 𝑎 ≤ 𝑏, let 𝐴𝑖 and 𝐵 𝑗 be
independent random variables that are −1 and 1 each with probability 1

2 . Let
𝐴 =

∑
𝑖∈[𝑎] 𝐴𝑖 and 𝐵 =

∑
𝑗∈[𝑏 ] 𝐵 𝑗 . Moreover, let 𝑋 ∼ Bin(𝑎, 12 ), 𝑌 ∼ Bin(𝑏, 12 ),

and 𝑍 ∼ Bin(𝑎 + 𝑏, 12 ). Then

Pr[|𝐴| < |𝐵 |] ≥ 1
2 − Pr

[
𝑍 =

𝑎 + 𝑏
2

]
+
Pr

[
𝑋 = 𝑎

2
]
· Pr

[
𝑌 = 𝑏

2
]

2 .

◀
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Proof. Using that Pr[|𝐴| < |𝐵 |] ≥ Pr[|𝐴| > |𝐵 |] (see Lemma 6.8), we obtain

Pr[|𝐴| < |𝐵 |] + Pr[|𝐴| > |𝐵 |] + Pr[|𝐴| = |𝐵 |] = 1
⇒ 2Pr[|𝐴| < |𝐵 |] + Pr[|𝐴| = |𝐵 |] ≥ 1

⇔ Pr[|𝐴| < |𝐵 |] ≥ 1
2 − Pr[|𝐴| = |𝐵 |]

2 . (6.4)

Thus, it remains to give an upper bound for Pr[|𝐴| = |𝐵 |]. Using the inclusion–
exclusion principle and the fact that 𝐵 is symmetric around 0, i.e., Pr[𝐵 = 𝑥] =
Pr[𝐵 = −𝑥] for any 𝑥 , we obtain

Pr[|𝐴| = |𝐵 |] = Pr[𝐴 = 𝐵 ∨𝐴 = −𝐵]
= Pr[𝐴 = 𝐵] + Pr[𝐴 = −𝐵] − Pr[𝐴 = 𝐵 = 0]
= 2Pr[𝐴 = −𝐵] − Pr[𝐴 = 𝐵 = 0] . (6.5)

We estimate Pr[𝐴 = −𝐵] and Pr[𝐴 = 𝐵 = 0] using bounds for binomially dis-
tributed variables. To this end, define new random variables 𝑋𝑖 =

𝐴𝑖+1
2 for

𝑖 ∈ [𝑎] and let 𝑋 =
∑

𝑖∈[𝑎] 𝑋𝑖 . Note that the 𝑋𝑖 are independent and take values 0
and 1, each with probability 1

2 . Thus, 𝑋 ∼ Bin(𝑎, 12 ). Moreover, 𝐴 = 2𝑋 − 𝑎.
Analogously, we define 𝑌 with 𝑌 ∼ Bin(𝑏, 12 ) and 𝐵 = 2𝑌 − 𝑏. Note that 𝑋 and 𝑌
are independent and thus 𝑍 = 𝑋 + 𝑌 ∼ Bin(𝑎 + 𝑏, 12 ). With this, we get

Pr[𝐴 = −𝐵] = Pr[2𝑋 − 𝑎 = −2𝑌 + 𝑏] = Pr
[
𝑍 =

𝑎 + 𝑏
2

]
, and

Pr[𝐴 = 𝐵 = 0] = Pr[𝐴 = 0] · Pr[𝐵 = 0] = Pr
[
𝑋 =

𝑎

2

]
· Pr

[
𝑌 =

𝑏

2

]
.

This, together with Equations (6.4) and (6.5) yield the claim. ■

The bound in Lemma 6.10 becomes worse for smaller values of 𝑎 and 𝑏. Con-
sidering this worst case, we obtain the following specific bound.

▶ Theorem 6.11. For 𝑖 ∈ [𝑎] and 𝑗 ∈ [𝑏] with 0 ≤ 𝑎 ≤ 𝑏, let 𝐴𝑖 and 𝐵 𝑗 be
independent random variables that are −1 and 1 each with probability 1

2 . Let
𝐴 =

∑
𝑖∈[𝑎] 𝐴𝑖 and 𝐵 =

∑
𝑗∈[𝑏 ] 𝐵 𝑗 . Pr[|𝐴| < |𝐵 |] = 0 if 𝑎 = 𝑏 = 0 or 𝑎 = 𝑏 = 1.

Otherwise, Pr[|𝐴| < |𝐵 |] ≥ 3
16 . ◀

Proof. Clearly, if 𝑎 = 𝑏 = 0, then𝐴 = 𝐵 = 0 and thus Pr[|𝐴| < |𝐵 |] = 0. Similarly,
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if 𝑎 = 𝑏 = 1, then |𝐴| = |𝐵 | = 1 and thus Pr[|𝐴| < |𝐵 |] = 0. For the remainder,
assume that neither 𝑎 = 𝑏 = 0 nor 𝑎 = 𝑏 = 1, and let 𝑋 , 𝑌 , and 𝑍 be defined as in
Lemma 6.10, i.e., 𝑋 ∼ Bin(𝑎, 12 ), 𝑌 ∼ Bin(𝑏, 12 ), and 𝑍 ∼ Bin(𝑎 + 𝑏, 12 ).
If 𝑎 + 𝑏 is odd, then Pr

[
𝑍 = 𝑎+𝑏

2
]

= 0. Thus, by Lemma 6.10, we have
Pr[|𝐴| < |𝐵 |] ≥ 1

2 . If 𝑎 + 𝑏 is even and 𝑎 + 𝑏 ≥ 6, then

Pr
[
𝑍 =

𝑎 + 𝑏
2

]
=

(
𝑎 + 𝑏
𝑎+𝑏
2

) (
1
2

)𝑎+𝑏
≤

(
6
3

) (
1
2

)6
=

5
16 .

Hence, by Lemma 6.10, we have Pr[|𝐴| < |𝐵 |] ≥ 1
2 −

5
16 = 3

16 .
If 𝑎 + 𝑏 < 6 (and 𝑎 + 𝑏 is even), there are four cases: 𝑎 = 0, 𝑏 = 2; 𝑎 = 0, 𝑏 = 4;

𝑎 = 1, 𝑏 = 3; 𝑎 = 2, 𝑏 = 2.
If 𝑎 = 0 and 𝑏 = 2, then𝐴 = 0 with probability 1 and |𝐵 | = 2 with probability 1

2 .
Thus, Pr[|𝐴| < |𝐵 |] = 1

2 .
If 𝑎 = 0 and 𝑏 = 4, then |𝐴| < |𝐵 | unless 𝐵 = 0. As Pr[𝐵 = 0] =

(4
2
)
· ( 12 )

4 = 3
8 ,

we get Pr[|𝐴| < |𝐵 |] = 1 − 3
8 = 5

8 .
If𝑎 = 1 and𝑏 = 3, then |𝐴| = 1with probability 1 and |𝐵 | = 3with probability 1

4
(either 𝐵1 = 𝐵2 = 𝐵3 = 1 or 𝐵1 = 𝐵2 = 𝐵3 = −1). Thus, Pr[|𝐴| < |𝐵 |] = 1

4 .
If 𝑎 = 𝑏 = 2, then |𝐴| = 0 with probability 1

2 and |𝐵 | = 2 with probability 1
2 .

Thus Pr[|𝐴| < |𝐵 |] = 1
4 .

We note that the bound of Pr[|𝐴| < |𝐵 |] = 3
16 is tight for 𝑎 = 𝑏 = 3. ■

6.3.3 Large Common Regions Yield Large Common
Neighborhoods

To be able to apply Theorem 6.11 to an edge {𝑢, 𝑣}, we need to make sure that
the size of their common neighborhood (corresponding to 𝑏 in the theorem) is at
least the size of the exclusive neighborhoods (corresponding to 𝑎 in the theorem).
In the following, we give bounds for the probability that this happens. Note
that this is the first time we take the graph into account. Thus, all the above
considerations hold for arbitrary graphs.
Recall that we consider random geometric graphs G(𝑛, 𝑟 ) and 𝑢 and 𝑣 are

each connected to all vertices that lie within a disk of radius 𝑟 around them.
As 𝑢 and 𝑣 are adjacent, their disks intersect, which separates the ground space
into four regions; cf. Figure 6.2. Let 𝑅(𝑢 ∩ 𝑣) be the intersection of the two
disks. Let 𝑅(𝑢 \ 𝑣) be the set of points that lie in the disk of 𝑢 but not in the disk
of 𝑣, and analogously, let 𝑅(𝑣 \ 𝑢) be the disk of 𝑣 minus the disk of 𝑢. Finally,
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Ru∩v

Ru\v Rv\u
u v

Figure 6.2: The geometric regions corresponding to the common and exclusive neigh-
borhoods, respectively, with yellow illustrating 𝑅(𝑢 ∩ 𝑣) and blue illustrating 𝑅(𝑢 \ 𝑣)
and 𝑅(𝑣 \ 𝑢). Please refer to Section 6.3.3 for details.

let 𝑅(𝑢 ∪ 𝑣) be the set of points outside both disks. Then, each of the 𝑛 − 2
remaining vertices ends up in exactly one of these regions with a probability
equal to the corresponding measure. Let 𝜇 (·) be the area of the respective region
and 𝑝 = 𝜇 (𝑅(𝑢 ∩ 𝑣)) and 𝑞 = 𝜇 (𝑅(𝑢 \ 𝑣)) = 𝜇 (𝑅(𝑣 \ 𝑢)) be the probabilities for a
vertex to lie in the common and exclusive regions, respectively. The probability
for 𝑅(𝑢 ∪ 𝑣) is then 1 − 𝑝 − 2𝑞.
We are now interested in the sizes 𝑁 (𝑢 ∩ 𝑣), 𝑁 (𝑢 \ 𝑣), and 𝑁 (𝑣 \ 𝑢) of the

common and the exclusive neighborhoods, respectively. As each of the 𝑛 − 2
remaining vertices ends up in 𝑁 (𝑢 ∩ 𝑣) with probability 𝑝 , we have

𝑁 (𝑢 ∩ 𝑣) ∼ Bin(𝑛 − 2, 𝑝) .

For 𝑁 (𝑢 \ 𝑣) and 𝑁 (𝑣 \ 𝑢), we already know that 𝑣 is a neighbor of 𝑢 and vice
versa. Thus,

(𝑁 (𝑢 \ 𝑣) − 1) ∼ Bin(𝑛 − 2, 𝑞) and (𝑁 (𝑣 \ 𝑢) − 1) ∼ Bin(𝑛 − 2, 𝑞).

Moreover, the three random variables are not independent, as each vertex lies
in only exactly one of the four neighborhoods, i.e., 𝑁 (𝑢 ∩ 𝑣), (𝑁 (𝑢 \ 𝑣) − 1),
(𝑁 (𝑣 \ 𝑢) − 1), and the number of vertices in neither neighborhood together
follow a multinomial distribution Multi(𝑛 − 2,𝒑) with 𝒑 = (𝑝, 𝑞, 𝑞, 1 − 𝑝 − 2𝑞).

The following lemma shows that these dependencies are small if 𝑝 and 𝑞 are
sufficiently small. This lets us assume that, if the expected average degree is
not too large, 𝑁 (𝑢 ∩ 𝑣), (𝑁 (𝑢 \ 𝑣) − 1), (𝑁 (𝑣 \ 𝑢) − 1) are independent random
variables following binomial distributions.
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▶ Lemma 6.12. Let 𝒑 = (𝑝, 𝑞, 𝑞, 1 − 𝑝 − 2𝑞) and let 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) ∼
Multi(𝑛,𝒑). Then there exist independent random variables 𝑌1 ∼ Bin(𝑛, 𝑝),
𝑌2 ∼ Bin(𝑛, 𝑞), and 𝑌3 ∼ Bin(𝑛, 𝑞) such that

Pr[(𝑋1, 𝑋2, 𝑋3) = (𝑌1, 𝑌2, 𝑌3)] ≥ 1 − 3𝑛 ·max(𝑝, 𝑞)2.

◀

Proof. Let 𝑌1 ∼ Bin(𝑛, 𝑝), and 𝑌2, 𝑌3 ∼ Bin(𝑛, 𝑞) be independent random vari-
ables. We define the event 𝐵 to hold if each of the 𝑛 individual trials increments
at most one of the random variables 𝑌1, 𝑌2, or 𝑌3. More formally, for 𝑖 ∈ [3]
and 𝑗 ∈ [𝑛], let 𝑌𝑖, 𝑗 be the individual Bernoulli trials of 𝑌𝑖 , i.e., 𝑌𝑖 =

∑
𝑗∈[𝑛] 𝑌𝑖, 𝑗 .

For 𝑗 ∈ [𝑛], we define the event 𝐵 𝑗 to be 𝑌1, 𝑗 + 𝑌2, 𝑗 + 𝑌3, 𝑗 ≤ 1, and the event

𝐵 =
⋂
𝑗∈[𝑛]

𝐵 𝑗 .

Based on this, we now define the random variables 𝑋1, 𝑋2, 𝑋3, and 𝑋4 as
follows. If 𝐵 holds, we set 𝑋𝑖 = 𝑌𝑖 for 𝑖 ∈ [3] and 𝑋4 = 𝑛 − 𝑋1 − 𝑋2 − 𝑋3.
Otherwise, if 𝐵, we draw 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) ∼ Multi(𝑛,𝒑) independently from
𝑌1, 𝑌2, and𝑌3 with 𝒑 = (𝑝, 𝑞, 𝑞, 1−𝑝−2𝑞). Note that𝑋 clearly follows Multi(𝑛,𝒑)
if 𝐵. Moreover, conditioned on 𝐵, each individual trial increments exactly one of
the variables𝑋1,𝑋2,𝑋3, or𝑋4 with probabilities 𝑝 , 𝑞, 𝑞, and 1−𝑝−2𝑞, respectively,
i.e., 𝑋 ∼ Multi(𝑛,𝒑).
Thus, we end up with 𝑋 ∼ Multi(𝑛,𝒑). Additionally, we have three indepen-

dent random variables 𝑌1 ∼ Bin(𝑛, 𝑝), and 𝑌2, 𝑌3 ∼ Bin(𝑛, 𝑞) with (𝑋1, 𝑋2, 𝑋3) =
(𝑌1, 𝑌2, 𝑌3) if 𝐵 holds. Thus, to prove the lemma, it remains to show that

Pr[𝐵] ≥ 1 − 3𝑛max(𝑝, 𝑞)2.

For 𝑗 ∈ [𝑛], the probability that the 𝑗th trial goes wrong is

Pr
[
𝐵 𝑗

]
= 1 −

(
(1 − 𝑝) (1 − 𝑞)2

)
−

(
𝑝 (1 − 𝑞)2

)
− 2(𝑞(1 − 𝑝) (1 − 𝑞))

= 2𝑝𝑞 − 2𝑝𝑞2 + 𝑞2 ≤ 2𝑝𝑞 + 𝑞2 ≤ 3 ·max(𝑝, 𝑞)2.

Using the union bound it follows that Pr
[
𝐵

]
≤ ∑

𝑗∈[𝑛] Pr
[
𝐵 𝑗

]
≤ 3𝑛 ·max(𝑝, 𝑞)2.

■
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As mentioned before, we are interested in the event 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑢 \ 𝑣) (and
likewise 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑣 \ 𝑢)), in order to apply Theorem 6.11. Moreover, due to
Lemma 6.12, we know that 𝑁 (𝑢 ∩ 𝑣) and (𝑁 (𝑢 \ 𝑣) − 1) almost behave like inde-
pendent random variables that follow Bin(𝑛−2, 𝑝) and Bin(𝑛−2, 𝑞), respectively.
The following lemma helps to bound the probability for 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑢 \ 𝑣).
Note that it gives a bound for the probability of achieving strict inequality (in-
stead of just ≥), which accounts for the fact that (𝑁 (𝑢 \ 𝑣) − 1) and not 𝑁 (𝑢 \ 𝑣)
itself follows a binomial distribution.

▶ Lemma 6.13. Let 𝑛 ∈ N with 𝑛 ≥ 2, and let 𝑝 ≥ 𝑞 > 0. Further, let
𝑋 ∼ Bin(𝑛, 𝑝) and 𝑌 ∼ Bin(𝑛, 𝑞) be independent, let 𝑑 = ⌊𝑝 (𝑛 + 1)⌋, and assume
𝑑 = o

(√
𝑛
)
, then

Pr[𝑋 > 𝑌 ] ≥
(1
2 − 1/

√
2π𝑑

)
(1 − o(1)).

◀

Proof. By Lemma 6.1, we get Pr[𝑋 ≥ 𝑌 ] ≥ 1
2 , and we bound

Pr[𝑋 > 𝑌 ] = Pr[𝑋 ≥ 𝑌 ] − Pr[𝑋 = 𝑌 ] ≥ 1
2 − Pr[𝑋 = 𝑌 ],

leaving us to bound Pr[𝑋 = 𝑌 ] from above. By independence of 𝑋 and 𝑌 , we get

Pr[𝑋 = 𝑌 ] =
∑︁
𝑖∈[𝑛]

Pr[𝑋 = 𝑖] · Pr[𝑌 = 𝑖] . (6.6)

Note that, by Lemma 6.2, for all 𝑖 ∈ [0..𝑛], it holds that Pr[𝑋 = 𝑖] ≤ Pr[𝑋 = 𝑑].
Assume that we have a bound 𝐵 such that Pr[𝑋 = 𝑑] ≤ 𝐵. Substituting this into
Equation (6.6) yields

Pr[𝑋 = 𝑌 ] ≤ 𝐵
∑︁
𝑖∈[𝑛]

Pr[𝑌 = 𝑖] = 𝐵,

resulting in Pr[𝑋 > 𝑌 ] ≥ 1
2 −𝐵. Thus, we now derive such a bound for 𝐵, noting

that Pr[𝑋 = 𝑑] is increasing as long as 𝑑 −𝑛𝑝 ≥ 0, and by applying the inequality
that for all 𝑥 ∈ R, it holds that 1 + 𝑥 ≤ e𝑥 , as well as Equation (6.1). We get
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Pr[𝑋 = 𝑑] =
(
𝑛

𝑑

)
𝑝𝑑 (1 − 𝑝)𝑛−𝑑 ≤ 𝑛𝑑

𝑑!

(
𝑑

𝑛

)𝑑 (
1 − 𝑑

𝑛

)𝑛 (
1 − 𝑑

𝑛

)−𝑑
≤ 𝑑𝑑

𝑑! e
−𝑑

(
1 − 𝑑

𝑛

)−𝑑
≤ 𝑑𝑑

√
2π𝑑𝑑+1/2e−𝑑

e−𝑑
(
1 − 𝑑

𝑛

)−𝑑
=

1
√
2π𝑑

1
(1 − 𝑑/𝑛)𝑑

. (6.7)

By Bernoulli’s inequality, we bound (1 − 𝑑/𝑛)𝑑 ≥ 1 − 𝑑2/𝑛 = 1 − o(1) by the
assumption 𝑑 = o

(√
𝑛
)
. Substituting this back into Equation (6.7) concludes the

proof. ■

Finally, in order to apply Theorem 6.11, we have to make sure not to end up
in the special case where 𝑎 = 𝑏 ≤ 1, i.e., we have to make sure that the common
neighborhood includes at least two vertices. The probability for this to happen
is given by the following lemma.

▶ Lemma 6.14. Let 𝑋 ∼ Bin(𝑛, 𝑝) and let 𝑐 = 𝑛𝑝 ∈ o(𝑛). Then it holds that

Pr[𝑋 > 1] ≥ (1 − e−𝑐 (1 + 𝑐)) (1 − o(1)).

◀

Proof. As 𝑋 > 1 holds if and only if 𝑋 ≠ 0 and 𝑋 ≠ 1, we get

Pr[𝑋 > 1] = 1 − Pr[𝑋 = 0] − Pr[𝑋 = 1] = 1 − (1 − 𝑝)𝑛 − 𝑛 · 𝑝 · (1 − 𝑝)𝑛−1.

Using that for all 𝑥 ∈ R it holds that 1 − 𝑥 ≤ e−𝑥 , we get

Pr[𝑋 > 1] ≥ 1 − e−𝑝𝑛 − 𝑛 · 𝑝 · e−𝑝 (𝑛−1)

= 1 − e−𝑐 − 𝑐 · e𝑐/𝑛 · e−𝑐

= 1 − e−𝑐
(
1 + 𝑐 · e𝑐/𝑛

)
.

As e𝑐/𝑛 goes to 1 for 𝑛 → ∞, we get the claimed bound. ■
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6.3.4 Many Edges Have Large Common Regions

In Section 6.3.3, we derived a lower bound on the probability that 𝑁 (𝑢 ∩ 𝑣) ≥
𝑁 (𝑢 \ 𝑣) provided that the probability for a vertex to end up in the shared region
𝑅(𝑢 ∩ 𝑣) is sufficiently large compared to 𝑅(𝑢 \ 𝑣). In the following, we estimate
the measures of these regions depending on the distance between 𝑢 and 𝑣. Then,
we give a lower bound on the probability that 𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ 𝜇 (𝑅(𝑢 \ 𝑣)).
▶ Lemma 6.15. Let 𝐺 ∼ G(𝑛, 𝑟 ) be a random geometric graph with expected
average degree deg, let {𝑢, 𝑣} ∈ 𝐸 be an edge, and let 𝜏 B dist(𝑢,𝑣)

𝑟
. Then,

𝜇 (𝑅(𝑢 ∩ 𝑣)) = deg
(𝑛 − 1)π

(
2 arccos

(𝜏
2

)
− sin

(
2 arccos

(𝜏
2

)))
(6.8)

and

𝜇 (𝑅(𝑢 \ 𝑣)) = 𝜇 (𝑅(𝑣 \ 𝑢)) = deg
𝑛 − 1 − 𝜇 (𝑅(𝑢 ∩ 𝑣)) . (6.9)

◀

Proof. We start with proving Equation (6.8). Let 𝑖 and 𝑗 be the two intersection
points of the disks of 𝑢 and 𝑣, let 𝛼 be the central angle enclosed by 𝑖 and 𝑗 ,
and let 𝑥 be the corresponding circular sector, cf. Figure 6.3 (a). Moreover,
let the triangle 𝑦 be a subarea of 𝑥 determined by 𝛼 and the radical axis ℓ , cf.
Figure 6.3 (b). Let ℎ denote the height of the triangle 𝑦, cf. Figure 6.3 (c). For our
calculations, we restrict the length of ℓ by the intersection points 𝑖 and 𝑗 . Since we
consider the intersection between disks and thus ℓ divides the area 𝜇 (𝑅(𝑢 ∩ 𝑣))
into two subareas of equal sizes, it holds that 𝜇 (𝑅(𝑢 ∩ 𝑣)) = 2(𝜇 (𝑥) − 𝜇 (𝑦)).
Considering the two areas 𝜇 (𝑥) and 𝜇 (𝑦), it holds that

𝜇 (𝑥) = 𝛼

2 𝑟
2 and 𝜇 (𝑦) = ℎ · ℓ2 = cos

(𝛼
2

)
𝑟 · sin

(𝛼
2

)
𝑟 =

sin(𝛼)
2 𝑟 2. (6.10)

For the central angle 𝛼 we know cos(𝛼/2) = ℎ/𝑟 = 𝜏/2 and therefore 𝛼 =

2 arccos
(
𝜏
2
)
. Together with Equation (6.10), we obtain

𝜇 (𝑅(𝑢 ∩ 𝑣)) = 2(𝜇 (𝑥) − 𝜇 (𝑦))

= 2
(
2 arccos

(
𝜏
2
)

2 𝑟 2 −
sin

(
2 arccos

(
𝜏
2
) )

2 𝑟 2

)
. (6.11)
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xα

j

i

(a) Let 𝛼 be the
central angle deter-
mined by the inter-
section points 𝑖 and 𝑗 ,
and let 𝑥 be the corre-
sponding circular sec-
tor (illustrated in yel-
low).

y

`

(b) Let𝑦 be a triangle
in the intersection (il-
lustrated in green) de-
termined by the radi-
cal axis ℓ and the cen-
tral angle 𝛼 , cf. Fig-
ure 6.3 (a).

h
`

r

(c) The height ℎ di-
vides the area 𝜇 (𝑦) (il-
lustrated in green) of
the triangle 𝑦, cf. Fig-
ure 6.3 (b), into two
subareas of equal size,
since adjacent and op-
posite legs have the
same length 𝑟 .

Figure 6.3: The neighborhood of two adjacent vertices 𝑢 and 𝑣 in a random geometric
graph. See the proof of Lemma 6.15 for more details.

The area of a general circle is equal to π𝑟 2. Since we consider a ground space
with total area 1, the area of one disk in the random geometric graph equals deg

𝑛−1 ,
i.e., 𝑟 2 = deg

(𝑛−1)π . Together with Equation (6.11), we obtain Equation (6.8).
Equation (6.9): We get the claimed equality by noting that

𝜇 (𝑅(𝑢 ∩ 𝑣)) + 𝜇 (𝑅(𝑢 \ 𝑣)) = π𝑟 2. ■

▶ Lemma 6.16. Let𝐺 ∼ G(𝑛, 𝑟 ) be a random geometric graph, and let {𝑢, 𝑣} ∈ 𝐸
be an edge. Then Pr[𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ 𝜇 (𝑅(𝑢 \ 𝑣))] ≥

( 4
5
)2. ◀

Proof. Let 𝜏 = dist(𝑢,𝑣)
𝑟

. By Lemma 6.15 with 𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ 𝜇 (𝑅(𝑣 \ 𝑢)), we get(
2 arccos

(𝜏
2

)
− sin

(
2 arccos

(𝜏
2

)))
≥ π

2 ,

which is true for 𝜏 ≥ 4
5 . The area of a disk of radius 4

5𝑟 is
(
π( 45𝑟 )

2)/(π𝑟 2) = ( 4
5
)2

times the area of a disk of radius 𝑟 . Hence, the fraction of edges with distance at
most 4

5𝑟 is at least
( 4
5
)2, concluding the proof. ■
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6.3.5 Proof of Theorem 6.6

By Theorem 6.7, the probability that a random edge {𝑢, 𝑣} is monochrome is at
least 1

2 + Pr[𝐷]/2, where 𝐷 is the event that the common neighborhood of 𝑢
and 𝑣 is more decisive than each exclusive neighborhood. It remains to bound
Pr[𝐷].

Existence of an edge yields a large shared region. Let𝑅 be the event that
𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ 𝜇 (𝑅(𝑢 \ 𝑣)). Note that this also implies 𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ 𝜇 (𝑅(𝑣 \ 𝑢))
as 𝜇 (𝑅(𝑢 \ 𝑣)) = 𝜇 (𝑅(𝑣 \ 𝑢)). Due to the law of total probability, we have

Pr[𝐷] ≥ Pr[𝑅] · Pr[𝐷 | 𝑅] .

Due to Lemma 6.16, we have Pr[𝑅] ≥
( 4
5
)2. Recall that the area of one disk in the

random geometric graph equals deg
𝑛−1 , where deg is the expected average degree.

By conditioning on 𝑅 in the following, since 𝜇 (𝑅(𝑢 ∩ 𝑣)) + 𝜇 (𝑅(𝑢 \ 𝑣)) = deg
𝑛−1 , it

holds that 𝜇 (𝑅(𝑢 ∩ 𝑣)) ≥ deg
2(𝑛−1) ≥ 𝜇 (𝑅(𝑢 \ 𝑣)) = 𝜇 (𝑅(𝑣 \ 𝑢)).

Neighborhood sizes are roughly binomially distributed. The next step
is to go from the size of the regions to the number of vertices in these regions.
Each of the remaining 𝑛′ = 𝑛 − 2 vertices is sampled independently to lie in
one of the regions 𝑅(𝑢 ∩ 𝑣), 𝑅(𝑢 \ 𝑣), 𝑅(𝑣 \ 𝑢), or 𝑅(𝑢 ∪ 𝑣). Denote the resulting
numbers of vertices with 𝑋1, 𝑋2, 𝑋3, and 𝑋4, respectively. Then (𝑋1, 𝑋2, 𝑋3, 𝑋4)
follows a multinomial distribution with parameter 𝒑 = (𝑝, 𝑞, 𝑞, 1 − 𝑝 − 2𝑞) for
𝑝 = 𝜇 (𝑅(𝑢 ∩ 𝑣)) and 𝑞 = 𝜇 (𝑅(𝑢 \ 𝑣)) = 𝜇 (𝑅(𝑣 \ 𝑢)). Note that 𝑁 (𝑢 ∩ 𝑣) = 𝑋1,
𝑁 (𝑢 \ 𝑣) = 𝑋2 + 1, and 𝑁 (𝑣 \ 𝑢) = 𝑋3 + 1 holds for the sizes of the common and
exclusive neighborhoods, where the +1 comes from the fact that 𝑣 is always a
neighbor of 𝑢 and vice versa.
We apply Lemma 6.12 to obtain independent binomially distributed random

variables 𝑌1, 𝑌2, and 𝑌3 that are likely to coincide with 𝑋1 = 𝑁 (𝑢 ∩ 𝑣), 𝑋2 =

𝑁 (𝑢 \ 𝑣) − 1, and 𝑋3 = 𝑁 (𝑣 \ 𝑢) − 1, respectively. Let 𝐵 denote the event that
(𝑁 (𝑢 ∩ 𝑣), 𝑁 (𝑢 \ 𝑣) − 1, 𝑁 (𝑣 \ 𝑢) − 1) = (𝑌1, 𝑌2, 𝑌3). Again, using the law of total
probabilities and since 𝑅 and 𝐵 are independent, we get

Pr[𝐷 | 𝑅] ≥ Pr[𝐵 | 𝑅] · Pr[𝐷 | 𝑅 ∩ 𝐵] = Pr[𝐵] · Pr[𝐷 | 𝑅 ∩ 𝐵] .
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Note that 𝑝, 𝑞 ≤ deg
𝑛′ for the expected average degree deg. Thus, Lemma 6.12

implies that Pr[𝐵] ≥
(
1 − 3deg2/𝑛′

)
. Conditioning on 𝐵 makes it correct to

assume that 𝑁 (𝑢 ∩ 𝑣) ∼ Bin(𝑛′, 𝑝), (𝑁 (𝑢 \ 𝑣) − 1) ∼ Bin(𝑛′, 𝑞), (𝑁 (𝑣 \ 𝑢) − 1) ∼
Bin(𝑛′, 𝑞) are independently distributed. Additionally conditioning on 𝑅 gives
us 𝑝 ≥ deg

2𝑛′ ≥ 𝑞.

A large shared region yields a large shared neighborhood. In the next
step, we consider an event that makes sure that the number 𝑁 (𝑢 ∩ 𝑣) of vertices
in the shared neighborhood is sufficiently large. Let 𝑁1, 𝑁2, and 𝑁3 be the events
that 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑢 \ 𝑣), 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑣 \ 𝑢), and 𝑁 (𝑢 ∩ 𝑣) > 1, respectively.
Let 𝑁 be the intersection of 𝑁1, 𝑁2, and 𝑁3. We obtain

Pr[𝐷 | 𝑅 ∩ 𝐵]
≥ Pr[𝑁 | 𝑅 ∩ 𝐵] · Pr[𝐷 | 𝑅 ∩ 𝐵 ∩ 𝑁 ]
≥ Pr[𝑁1 | 𝑅 ∩ 𝐵] · Pr[𝑁2 | 𝑅 ∩ 𝐵] · Pr[𝑁3 | 𝑅 ∩ 𝐵] · Pr[𝐷 | 𝑅 ∩ 𝐵 ∩ 𝑁 ],

where the last step follows from Lemma 6.5 as the inequalities in 𝑁1, 𝑁2, and
𝑁3 all go in the same direction. Note that 𝑁 (𝑢 ∩ 𝑣) ≥ 𝑁 (𝑢 \ 𝑣) is equivalent to
𝑁 (𝑢 ∩ 𝑣) > 𝑁 (𝑢 \ 𝑣)−1. Due to the condition on 𝐵, 𝑁 (𝑢 ∩ 𝑣) and𝑁 (𝑢 \ 𝑣)−1 are
independent random variables following Bin(𝑛′, 𝑝) and Bin(𝑛′, 𝑞), respectively,
with 𝑝 ≥ 𝑞 due to the condition on 𝑅. Thus, we can apply Lemma 6.13, to obtain

Pr[𝑁1 | 𝑅 ∩ 𝐵] = Pr[𝑁2 | 𝑅 ∩ 𝐵] ≥
©­­«
1
2 − 1√︃

2𝜋 ⌊deg/2⌋

ª®®¬(1 − o(1)),

and Lemma 6.14 gives the bound

Pr[𝑁3 | 𝑅 ∩ 𝐵] ≥
(
1 − e−deg/2

(
1 + deg

2

))
(1 − o(1)) .

Note that both of these probabilities are bounded away from 0 for deg ≥ 2.
Conditioning on 𝑁 lets us assume that the shared neighborhood of 𝑢 and 𝑣
contains at least two vertices and that it is at least as big as each of the exclusive
neighborhoods.
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A large shared neighborhood yields high decisiveness. The last step is
to actually bound the remaining probability Pr[𝐷 | 𝑅 ∩ 𝐵 ∩ 𝑁 ]. Note that, once
we know the number of vertices in the shared and exclusive neighborhoods,
the decisiveness no longer depends on 𝑅 or 𝐵, i.e., we can bound Pr[𝐷 | 𝑁 ]
instead. For this, let 𝐷1 and 𝐷2 be the events that 𝐷 (𝑢 ∩ 𝑣) > 𝐷 (𝑢 \ 𝑣) and
𝐷 (𝑢 ∩ 𝑣) > 𝐷 (𝑣 \ 𝑢), respectively. Note that 𝐷 is their intersection. Moreover,
due to Lemma 6.5, we have Pr[𝐷 | 𝑁 ] ≥ Pr[𝐷1 | 𝑁 ] · Pr[𝐷2 | 𝑁 ]. To bound
Pr[𝐷1 | 𝑁 ] = Pr[𝐷2 | 𝑁 ], we use Theorem 6.11. Note that the 𝑏 and 𝑎 in Theo-
rem 6.11 correspond to 𝑁 (𝑢 ∩ 𝑣) and 𝑁 (𝑢 \ 𝑣) + 1 (the +1 coming from the fact
that 𝑁 (𝑢 \ 𝑣) does not count the vertex 𝑣). Moreover, conditioning on 𝑁 implies
that 𝑎 ≤ 𝑏 and 𝑏 > 1. Thus, Theorem 6.11 implies Pr[𝐷1 | 𝑁 ] ≥ 3

16 .

Conclusion. The above arguments give us that the fraction of monochrome
edges is

1
2 + Pr[𝐷]

2
≥ 1

2 + 1
2 · Pr[𝑅]
²
≥( 4

5 )2
· Pr[𝐵]
²
1−o(1)

·
(
Pr[𝑁1 | 𝑅 ∩ 𝐵]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥ 1

2−
1√

2𝜋 ⌊deg/2⌋

)2 · Pr[𝑁3 | 𝑅 ∩ 𝐵]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1−e−deg/2

(
1+ deg

2

) ·
(
Pr[𝐷1 | 𝑁 ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥ 3
16

)2
,

where we omitted the o(1) terms for Pr[𝑁1 | 𝑅 ∩ 𝐵] and Pr[𝑁3 | 𝑅 ∩ 𝐵], as they
are already covered by the 1 − o(1) coming from Pr[𝐵]. This yields the bound
stated in Theorem 6.6:

1
2 + 9

800 ·
©­­«
1
2 − 1√︃

2𝜋 ⌊deg/2⌋

ª®®¬
2

·
(
1 − e−deg/2

(
1 + deg

2

))
· (1 − o(1)) .

6.4 Monochrome Edges in Erdős–Rényi Graphs

In the following, we are interested in the probability that an edge {𝑢, 𝑣} is
monochrome after the FSP on Erdős–Rényi graphs. In contrast to geometric
random graphs, we prove an upper bound. To this end, we show that it is likely
that the common neighborhood is empty, and therefore 𝑢 and 𝑣 choose their
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types to be the predominant type in their exclusive neighborhood, which is
orange and blue with probability 1

2 , each.

▶ Theorem 6.17. Let 𝐺 ∼ G(𝑛, 𝑝) be an Erdős–Rényi graph with expected
average degree deg = o

(√
𝑛
)
. The expected fraction of monochrome edges after

the FSP is at most 1
2 + o(1). ◀

Proof. Given an edge {𝑢, 𝑣}, let𝑀 be the event that {𝑢, 𝑣} is monochrome. We
first split 𝑀 into disjoint sets concerning the size of the common neighborhood
and apply the law of total probability and get Pr[𝑀] =

Pr[𝑀 | 𝑁 (𝑢 ∩ 𝑣) = 0 ] · Pr[𝑁 (𝑢 ∩ 𝑣) = 0]+
Pr[𝑀 | 𝑁 (𝑢 ∩ 𝑣) > 0 ] · Pr[𝑁 (𝑢 ∩ 𝑣) > 0]

≤ Pr[𝑀 | 𝑁 (𝑢 ∩ 𝑣) = 0 ] · 1 + 1 · Pr[𝑁 (𝑢 ∩ 𝑣) > 0] .

Webound each of the summands separately. For estimating Pr[𝑀 | 𝑁 (𝑢 ∩ 𝑣) = 0 ],
we note that the types of 𝑢 and 𝑣 are determined by the predominant type in
disjoint vertex sets. By definition of the FSP this implies that the probability of a
monochrome edge is equal to 1

2 .
We are left with bounding Pr[𝑁 (𝑢 ∩ 𝑣) > 0]. Let 𝑛′ = 𝑛 − 2 be the number of

the remaining vertices. Note that 𝑁 (𝑢 ∩ 𝑣) ∼ Bin
(
𝑛′, 𝑝2

)
. Thus, by Bernoulli’s

inequality we get

Pr[𝑁 (𝑢 ∩ 𝑣) > 0] = 1 − Pr[𝑁 (𝑢 ∩ 𝑣) = 0] = 1 −
(
1 − 𝑝2

)𝑛′
≤ 𝑛′𝑝2.

Noting that 𝑛′𝑝2 = o(1) holds due to our assumption on deg, concludes the
proof. ■

6.5 Empirical Comparison for More Iterations

Our theoretical analyses in the previous sections focused on the segregation
strength after the first iteration. In this section, we complement these results
with empirical results for multiple iterations. That is, agents make their decision
whether to change their color several times, based on the state after the previous
iteration.
In Section 6.5.1, we analyze how much the fraction of monochrome edges

changes in each iteration. On the one hand, for random geometric graphs, we
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observe that the fraction of monochrome edges converges to a value larger
than 1/2, with the first iteration contributing considerably to this change. On
the other hand, for Erdős–Rényi graphs, the fraction of monochrome edges first
stays close to 1/2 before reaching 1, depending on the average degree and the
number of iterations.

The behavior of Erdős–Rényi graphs reaching fully monochrome edge sets
leads to the question of how evenly the two colors are distributed among the
agents, which we consider in Section 6.5.2. We find that the average degree
of Erdős–Rényi graphs plays an important role in whether the two colors are
roughly equally distributed or whether one color takes over the entire graph. In
contrast, for random geometric graphs, the two colors are equally distributed
over multiple iterations. This shows that random geometric graphs evince a
more stable behavior while Erdős–Rényi graphs show a more degenerated one.

Last, based on the observations of the behavior of Erdős–Rényi graphs, we
investigate in Section 6.5.3 if and at which average degree the FSP on random
geometric graphs results in a single color taking over all agents. We find that
this is the case for some average degree in Θ

(√
𝑛
)
, suggesting that our regime

for the average degree of o
(√
𝑛
)
in Theorem 6.6 is close to tight.

In the following, we explain our experimental setup and then go into detail
about the observations mentioned above.

Experimental Setup We consider random geometric and Erdős–Rényi graphs.
Recall that we use for the random geometric graphs a two-dimensional toroidal
Euclidean space as the ground space. We note that we ran our experiments,
in addition to what we present here, also on the (non-toroidal) unit square as
ground space but could not notice any qualitative difference in our observations.
For the Erdős–Rényi graphs, we used the𝐺 (𝑛, 𝑝) model. We consider graph sizes
from 5 000 up to 25 000 vertices, expected average degrees between 2 and 32 as
well as 0.5

√
𝑛 and 3.5

√
𝑛, respectively. Moreover, we consider up to 200 iterations

and run our experiments 1 000 times to measure the fraction of monochrome
edges, the fraction of vertices changing their color, and the fraction of vertices
belonging to the minority. For reproducibility purposes, our code is publicly
available on GitHub [Blä+21].
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Figure 6.4: The fraction of monochrome edges for the first six iterations of the FSP
on a random geometric graph with 500 vertices and average degree 16 on the torus.
The top part of the figure depicts the state of the FSP after each iteration. The blue and
orange edges are monochrome edges between two adjacent blue and orange agents,
respectively, while a gray edge depicts an edge between an orange and blue agent. Please
refer to Section 6.5.1 for more details.

6.5.1 Changes to the Colors of Agents

We are interested in how often agents change their color. To this end, we look
at only the number of monochrome edges as well as the number of agents that
change color.

Changes to the Fraction of Monochrome Edges

Figure 6.4 shows exemplarily the first six iterations of the FSP for a random geo-
metric graph. As seen in Figure 6.5, we observe that in random geometric graphs,
the fraction of monochrome edges increases with every iteration. However,
while in the first iterations the fraction of monochrome edges is strongly rising,
in particular, the strongest increase happens in the first iteration, it stabilizes
quickly, and, from then on, only small changes are visible. Hence, this shows
that the first iteration plays a large role since we see a clear difference in the
fraction of monochrome edges which is not the case after 30 iterations, where
only very small changes can be observed. Moreover, note that Figure 6.5 shows
only a very low variance so the overall behavior does not depend on the specific
graph.

Turning to Erdős–Rényi graphs in the first iterations the process acts expect-
edly: approximately half of the edges are monochrome, cf. Figure 6.5. However,
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Figure 6.5: The fraction of monochrome edges over the first 30 iterations of the FSP
on Erdős–Rényi graphs and random geometric graphs with 25 000 vertices for different
average degrees. Each point denotes the mean of 1 000 runs. The lines around each
point depict the standard deviation. In general, the segregation strength increases with
the number of iterations. Please refer to Section 6.5.1 for more details.

there is a turning point from which the number of monochrome edges increases
until (almost) all edges are monochrome. This is a surprising behavior since
the FSP behaves differently in the subsequent iterations compared to the first
ones. In Section 6.5.2, we see that this is due to one color taking over the entire
graph. The turning point where the graph becomes monocolored depends on
the specific graph, which leads to a high variance in the plot. Furthermore, the
plot suggests that the turning point appears earlier for higher average degrees.

Number of Agents Changing Color

For random geometric graphs, Figure 6.6 shows that for small average degrees,
a substantial fraction of the agents keeps on changing their color although
Figure 6.5 indicates convergence in the number of monochrome edges. For
higher average degrees only a very small number of agents changes their color
after 30 iterations, which suggests almost stable states. Thus, while the number of
monochrome edges seems to always converge, the convergence of the FSP itself
concerning the colors of the agents is more dependent on the average degree. In
particular, this shows that a big part of the graph is stable while there are areas
in which the agents switch between strongly segregated configurations. We note
that such oscillating behavior has been observed before in the literature. This
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Figure 6.6: The fraction of vertices changing their color over the first 30 iterations of
the FSP on Erdős–Rényi graphs and random geometric graphs with 25 000 vertices for
different average degrees. Each point denotes the mean of 1 000 runs. The lines around
each point depict the standard deviation. In general, except for very small average
degrees, the process reaches a stable state. Please refer to Section 6.5.1 for more details.

happens heavily in regular structures commonly used for modeling residential
areas, like grid graphs, regular graphs, paths, cycles, and trees. In contrast,
random geometric graphs exhibit irregularities, which leads to stronger local
minima concerning the number of monochrome edges and, hence, to a more
stable behavior. This effect is not as strong for low expected average degrees
as it is for large ones. We believe this to be an indicator of the benefit of using
random geometric graphs instead of completely random structures as underlying
topology.

6.5.2 The Size of the Minority

We consider the number of agents of the color that has fewer agents (the minor-
ity), shedding light on whether the FSP results in a graph that consists of agents
of only a single color.
In Figure 6.7, we see that for random geometric graphs, the fraction of the

minority is very close to 1/2 and stays there over many iterations. Thus, both
colors contribute roughly equally to the number of monochrome edges. However,
for Erdős–Rényi graphs, the behavior is quite different. While the fraction of
the minority stays close to 1/2 for low average degrees (at least for the first 30
iterations), it goes to 0 for higher average degrees, and it does so more quickly the

185



Chapter 6 The Impact of Geometry in the Flip Schelling Process
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Figure 6.7: The fraction of vertices belonging to the minority over the first 30 iterations
of the FSP on Erdős–Rényi graphs and random geometric graphs with 25 000 vertices for
different average degrees. Each point is based on 1 000 runs. The lines around each point
depict the standard deviation. In general, Erdős–Rényi graphs end up single-colored
while random geometric graphs stay bi-colored. Please refer to Section 6.5.2 for more
details.

higher the average degree. Note that we see in Figure 6.7 that also for low average
degrees the fraction of the minority starts to move away from 1/2 towards 0.
The high variance indicates that the graph structure has some impact on when
this change takes place, but all agents eventually have the same color for higher
average degrees. Hence, although the probability of each color remains 1/2
for each vertex, there are dependencies and the FSP has a reinforcing effect on
an already slight imbalance. This also explains the increase of the fraction of
monochrome edges, as discussed in Section 6.5.1, and the convergence of agents
changing color, as discussed in Section 6.5.1.

6.5.3 Degeneracies in Random Geometric Graphs for Higher
Average Degrees

The behavior of the Erdős–Rényi graphs discussed in Section 6.5.2 raises the
question for random geometric graphs if and, if so, at which average degree the
FSP ends in a graph where all agents have the same color.
Figure 6.8 depicts the fractions of FSPs that resulted in all agents having

the same color after 200 iterations concerning the average degree, for multiple
graph sizes. We see that increasing the average degree leads to a drastically
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Figure 6.8: The probability that one color takes completely over after 200 iterations in
the FSP on a random geometric graph depending on the average degree for different
numbers of vertices 𝑛. For each value of 𝑛, the average degrees range from 0.5

√
𝑛 to

3.5
√
𝑛 in steps of 0.3

√
𝑛. Each point is based on 1 000 runs. In general, the higher the

expected average degree the more likely the FSP ends up in a single-colored graph.
Please refer to Section 6.5.3 for more details.

increased probability of the FSP converging to a single color of agents, although
its probability seems to be a constant bounded away from 1. For all graph sizes
considered, the transition from a probability of almost 0 to a positive probability
happens for average degrees of Θ

(√
𝑛
)
. This is in line with our main theoretical

result, Theorem 6.6, which states that the FSP on random geometric graphs, after
the first iteration, has a fraction of monochrome edges that is higher than 1/2
by a constant as long as the average degree is in o

(√
𝑛
)
, suggesting that the

behavior of the FSP is rather different for higher average degrees. Hence, both
our theoretical result as well as our empirical studies indicate that something
changes decisively for average degrees of Θ

(√
𝑛
)
. This calls for a theoretical

investigation of this threshold behavior. Moreover, we suspect that there is
another threshold where the probability of becoming monochrome switches
from a constant bounded away from 1 to 1.
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6.6 Conclusion and Open Problems

We introduced the Flip Schelling Process (FSP), a version of Schelling’s segre-
gation model where agents choose their type based on the majority in their
neighborhood. We analyzed it theoretically for a single iteration and empirically
for multiple iterations. This leaves the theoretical analysis of multiple iterations
open. Note that our empirical analysis shows that one should expect oscillating
behavior in the FSP for low average degrees, cf. Figure 6.6. Thus, beyond study-
ing the number of monochrome edges in an equilibrium, one additionally has to
understand this oscillating behavior, e.g., by showing that there is an average
degree beyond which the FSP reaches a stable state.
In this chapter, we assumed that agents choose their type based on their

neighborhood, regardless of their own type. However, a natural behavior of the
agents is that the type of the considered agent itself affects the agent’s choice.
Preliminary experiments show that the behavior of the FSP is different if we do
not break ties fairly, i.e., if exactly half of the agents in the neighborhood have
a different type, they choose each type with probability 1

2 , but agents are lazy
and keep their type instead. This tie-breaking rule increases the likelihood that
agents have monochrome edges since each agent influences their neighbors with
their own type, which they keep, instead of choosing a random type for the next
iteration. This introduces an imbalance of colors concerning an agent’s own
type in case of a draw in the neighborhood. Hence, we observe higher fractions
of monochrome edges after the FSP in both, random geometric and Erdős–Rényi
graphs. The smaller the average degree, the greater the impact of this effect
seems to be, as this increases the likelihood of ties in a neighborhood.
Last, our results are based on the assumption that the type of each agent

is chosen independently and uniformly at random. Hence, roughly half of the
agents are orange and the other half is blue. It remains open to investigate a more
general model where agents are orange with an arbitrary probability 𝑝𝑜 and blue
with probability 𝑝𝑏 = 1 − 𝑝𝑜 . Since we saw in our empirical results that the FSP
has a reinforcing effect on even slight imbalances, we conjecture that for Erdős–
Rényi graphs, already in the first iterations, the number of monochrome edges
increases until one color takes over completely. For random geometric graphs,
we conjecture that if the average degree is low enough and if 𝑝𝑜 is constant, the
fraction of orange vertices remains roughly around its initial value.
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Although Schelling introduced his model in the 1970s, and is now a landmark
model to investigate residential segregation, the fact that agents strategically
change their positions has not been taken into account so far. Hence, we proposed
different variants of a game-theoretic version of Schelling’s segregation model
and conducted a thorough analysis of core game-theoretic questions.
Regarding the convergence to and existence of equilibria, we have observed

that the swap version behaves radically different compared to the jump version,
which converges to an equilibrium much less often. Furthermore, contrasting
behavior is also found within the different variants considered. A factor not to be
neglected is the underlying graph topology, modeling the residential area, where
we can show, among other things, the existence and convergence for regular
graphs when agents are oriented towards integration, i.e., 𝜏 ≤ 1

2 and 𝛬 ≤ 1
2 ,

respectively. In general, it remains open whether the existence of equilibria
is guaranteed if the minimum degree of the underlying graph is equal to 2.
Moreover, we do not know whether there is a specific property that guarantees
the existence of equilibria in general. Since our study has largely focused on the
swap variant, a detailed analysis focusing on the jump variant is still open.
As a second aspect, we have examined the quality of equilibria. Here, we

could also show for the swap version that the underlying graph’s structure has
a strong influence. In general, for 𝜏 = 1 the Price of Anarchy concerning social
welfare can be unbounded, but we were able to show a constant bound for grids,
which are a popular topology for modeling, for instance, American cities. Also
for the quality of equilibria with respect to the Degree of Integration, we proved
tight bounds. In particular, we obtained tight bounds for the Price of Stability
for the single-peaked version. Again, our focus was on the swap variants, so
the exact influence of the topology on the stable feasible strategy profiles of the
jump game remains open.
Investigating the Price of Anarchy and Price of Stability with respect to the

Degree of Integration is a first step towards studying the segregation strength
of equilibria. However, Weinberg and Steinmetz [WS02] propose five dimen-
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sions of segregation, which they identified as evenness, exposure, clustering,
concentration, and centralization. While the Degree of Integration covers the
dimension exposure, an examination of equilibria in general concerning the
other dimensions or further segregation measures remains completely open.
As a third point, we studied the computational hardness, in particular, the

influence of the underlying graph, and provided hardness results for computing
social optimal strategy profiles as well as swap equilibria concerning the Degree
of Integration as well as concerning the number of content agents. This is a first
step towards the core question in this scope, the hardness of finding integrated
equilibria and the least segregated equilibria, respectively. That is, to prove
(or disprove) that finding integrated equilibria is NP-hard for many variants of
Schelling Games. So far, not much is known about the hardness of computing
equilibria. Most of the equilibria look quite segregated. However, for example,
for two types of agents, the checkerboard pattern on a toroidal grid with Moore
neighborhood, i.e., the 8 neighborhood, with 𝜏 ≤ 1

2 , is a stable feasible strategy
profile. Hence, in the cases where we know that stable integrated feasible strategy
profiles exist, the question of whether these states are reachable via improving
response dynamics is of interest.

As the last point, we focused on segregation itself and showed that geometry
has a significant influence on segregation strength. In particular, a community
structure seems to be of importance. Here, it would be interesting to precisely
map the border, i.e., how pronounced the cluster structure must be. Another
interesting direction is to prove results on the obtained segregation strength
when starting from a given initial feasible strategy profile with certain dynamics.
Ideally, one wants to show that starting with a uniform random initial feasible
strategy profile, the segregation strength of all reachable equilibria is (much)
higher. Furthermore, our investigated utility functions model different variants
where agents either actively strive for segregation, passively accept segregation,
or actively strive for integration, respectively. The visual impression of the
equilibria we saw in simulations suggests that the utility function of the agents
naturally has an impact on the segregation strength. A detailed analysis would
in any case be of great interest.
As a further conceptual contribution, we took into account that agents are

locally bound to their current place of residence or value different places of
residence differently. This is an interesting direction that should be expanded.
Besides several open questions, for instance, whether local equilibria always
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exist, many other variants are also conceivable, for example, a local variant with
a radius, i.e., agents can still change their strategy only locally, but they are not
limited to their adjacent vertices only. Another direction is to consider agents
who have an ordering over the vertices.

We had to leave some possible directions in this thesis unnoted and would
like to mention a few in the following.
The first direction is to combine Schelling Games with Hedonic Diversity

Games [BE20; BEI19], that is, to add a second incentive, besides similar neigh-
borhoods, such as a diverse workplace. In contrast to impose direct diversity
constraints [Ben+18], this might as well promote diversity in the neighborhood
of agents without a significant welfare loss.
So far, Schelling’s model has been studied mainly with uni-dimensional

agents. A realistic generalization is to extend the model so that agents are
multi-dimensional. In reality, people have multiple attributes such as age, profes-
sion, ethnicity, or income which all together contribute to the evaluation by other
agents. Liu et al. [Liu+19] raised the question of whether multi-dimensionality
can boost stability or reduce segregation in society. It would be interesting to
answer these questions also from a theoretical point of view.

Another natural generalization is that all agents have a type value somewhere
between 0 and 1. The utility of an agent depends on the values in its neighbor-
hood, e.g., on the difference to the average value of the neighborhood, or the
maximum difference to its own value. That is, agents have continuous attributes.
This takes into account the fact that, in addition to being segregated because of
race, agents are also segregated because of non-categorical attributes such as
income. Economists have shown that homeowners strongly prefer living in a
neighborhood with a very similar income to their own [LT12]. Kanellopoulos et
al. [KKV22] already consider an ordering of the types and introduced a general-
ized Schelling model where agents are in principle more tolerant towards agents
of types that are closer to their own according to the ordering. This can be seen
as a special case.
As the last point, we would like to mention the subject of Schelling mech-

anisms. The goal is to study mechanism design variants of Schelling games.
Agents submit preferences concerning their desired type ratio in their neigh-
borhood and their desired favorite location in the graph to the mechanism. The
mechanism then computes a feasible strategy profile with favorable properties,
e.g. low segregation, that (approximately) respects the preferences.
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