Small molecule disruption of quorum sensing cross-regulation in pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes

J Am Chem Soc. 2015 Feb 4;137(4):1510-9. doi: 10.1021/ja5110798. Epub 2015 Jan 22.

Abstract

The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits-Las, Rhl, and Pqs-to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyl-Butyrolactones / chemistry*
  • Acyl-Butyrolactones / pharmacology*
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology*
  • Glycolipids / metabolism
  • Humans
  • Pseudomonas Infections / drug therapy
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / physiology
  • Pyocyanine / metabolism
  • Quorum Sensing / drug effects*
  • Signal Transduction / drug effects
  • Virulence Factors / metabolism

Substances

  • Acyl-Butyrolactones
  • Anti-Bacterial Agents
  • Glycolipids
  • Virulence Factors
  • rhamnolipid
  • Pyocyanine