Generalized image combinations in dual KVP digital radiography

Med Phys. 1981 Sep-Oct;8(5):659-67. doi: 10.1118/1.595025.

Abstract

Dual energy basis decomposition techniques apply to single projection radiographic imaging. The high and low energy images are non-linearly transformed to generate two energy-independent images characterizing the integrated Compton/photoelectric attenuation components. Characteristic linear combinations of these two basis images identify unknown materials, cancel known materials, and generate synthesized monoenergetic images. The problems of intervening materials and material displacement are solved in general for a wide class of clinical imaging tasks. The basis projection angle identifies one from a family of energy selective imaging tasks, and such performance measures as the contrast enhancement factor (CEF) and signal to noise ratio (SNR) are expressed as functions of this angle. Algorithms for the decomposition of high and low energy measurements are compared and experimental images are included.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Computers*
  • Models, Structural
  • Models, Theoretical
  • Radiography / instrumentation
  • Radiography / methods*
  • Radiography, Thoracic / methods