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Reconstructing Rodinia by Fitting Neoproterozoic 
Continental Margins 

John H. Stewart 

U.S. Geological Survey, Menlo Park, CA 94025 

Abstract  
Reconstructions of Phanerozoic tectonic plates can be closely constrained by 

lithologic correlations across conjugate margins by paleontologic information, by 
correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor 
magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of 
some of these tools or the lack of their precision. To overcome some of these difficulties, 
this report focuses on a different method of reconstruction, namely the use of the shape of 
continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. 
Compared to the vast amount of information available for Phanerozoic systems, such a 
limited approach for Proterozoic rocks, may seem suspect. However, using the assembly 
of the southern continents (South America, Africa, India, Arabia, Antarctica, and 
Australia) as an example, a very tight fit of the continents is apparent and illustrates the 
power of the jigsaw puzzle method. 

This report focuses on Neoproterozoic rocks, which are shown on two new 
detailed geologic maps that constitute the backbone of the study. The report also 
describes the Neoproterozoic, but younger or older rocks are not discussed or not 
discussed in detail. 

The Neoproterozoic continents and continental margins are identified based on 
the distribution of continental-margin sedimentary and magmatic rocks that define the 
break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as 
critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map 
compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. 
This approach differs from the common approach of using fold belts to define structural 
features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, 
and many are significantly younger than the time frame considered here (1,200 to 850 Ma). 

Identifying Neoproterozoic continental margins, which are primarily extensional 
in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia 
and outlines the major continental masses that, prior to the breakup, formed the 
supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces 
together.  

Evidence for Neoproterozoic margins is fragmentary. The most apparent margins 
are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be 
outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-
floor rocks, or by the presence of continent-ward extending aulacogens.  

Most of the continental margins described here are Neoproterozoic, and some had 
an older history suggesting that they were major, long-lived lithospheric flaws. In 
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particular, the western margin of North America appears to have existed for at least 1,470 
Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The 
inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly 
evident along the eastern United States, where a similarity of Mesoproterozoic 
(Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is 
evident.  

The model of Rodinia presented here is based on both geologic and 
paleomagnetic information. Geologic evidence is based on the distribution and shape of 
Neoproterozoic continents and on assembling these continents so as to match the shape, 
history, and scale of adjoining margins. The proposed model places the Laurasian 
continents—Baltica, Greenland, and Laurentia—west of the South American continents 
(Amazonia, Rio de La Plata, and Saõ Francisco). This assembly is indicated by conjugate 
pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South 
America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the 
trend of the Grenville rocks. The boundary between South America and Africa is 
interpreted as the site of a Wilson cycle, in which Rodinia fragmented in the 
Neoproterozoic, forming an ocean that then closed in the late Neoproterozoic. Although 
many have proposed a similar model for East Gondwana, the interpretation presented 
here suggests that the East Gondwana continents were previously assembled at least as 
early as the Mesoproterozoic.  

The validity of the model is tested by drawing upon paleomagnetic data. 
Paleomagnetic poles from the continents of Amazonia, Baltica, Congo, Kalahari, Siberia, 
and possibly Australia (the main components of the model) are compatible with the 
reconstruction.  

Introduction 
Concepts concerning the existence of a major Mesoproterozoic supercontinent 

have been debated since the early 1980s. Some models show many relatively small plates 
dispersed over large parts of the globe (Cordani and others, 2003a; Lu and others, 2008b; 
Meert and Torsvik, 2003; Pesonen and others, 2003), whereas other models show a 
grouping of major continents into a loosely or tightly fitting assemblage forming a 
supercontinent (Bond and others, 1984; Condie, 1997, 2003; Dalziel, 1991, 1997; 
Hoffman, 1991; Li and others, 1995; Piper, 2000, 2004; Pisarevsky and others, 2003; 
Stewart and Glen, 2005; Waggoner, 1999). The name "Rodinia" was proposed by 
McMenamin and McMenamin (1990) to describe this supercontinent, and they suggested 
a specific grouping of continents in their proposal. Subsequently, the term "Rodinia" has 
been used by various authors for a wide range of different configurations. McMenamin 
and McMenamin (1990) define Rodinia as resulting from a "major, one-billion-year-old 
episode of continental collision and supercontinent formation," and the name is used in 
the same sense here. Such a definition is in agreement with the usage of many geologists, 
although such a widespread practice leads to conferring the same name on quite different 
configurations of the proposed supercontinent. 

The purpose of this report is to identify Neoproterozoic continents using the 
distribution of sedimentary rocks, as well as continental-margin magmatic rocks, to 
define the margins of Rodinia. This approach differs from the commonly used method of 
using fold belts and associated other sedimentary and igneous features to define the 
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important structural features of the Rodinian crustal fragments. Fold belts are difficult to 
date, and many are significantly younger than the Neoproterozoic time frame considered 
here. The distribution of sedimentary rocks is considered to be a more reliable indicator 
of major structural features, namely the structures that outline continents. This 
information is further used to propose a new Proterozoic reconstruction. 

Recognition and Classification of Neoproterozoic Continental 
Margins 
Active rifts to passive margins (miogeoclines) 

Rift margins were common during the Neoproterozoic, the supposed time of 
breakup of the Rodinian supercontinent. These margins initiate by extension and consist, 
in their lower part, of oceanward thinning crust, as well as grabens and associated mafic 
and siliceous igneous rocks. Once established, these margins are characteristically 
succeeded by miogeoclinal margins containing oceanward-thickening wedges of shallow-
water continental shelf rocks—a miogeocline. A typical Neoproterozoic miogeoclinal 
belt extends along the Neoproterozoic western margin of North America from 
northwestern Mexico (Stewart and others, 2002), across the western United States (Link 
and others, 1993; Stewart, 1970, 1991; Stewart and Suczek, 1977) and western Canada 
(Gabrielse and Campbell, 1992). Characteristically these continental shelf (miogeoclinal) 
rocks contain diamictite that are interpreted to be glaciogenic. Models of Neoproterozoic 
rift margins in western North America are presented by Stewart (1972, 1991), Ross 
(1991), and Ross and others (1995).  

Margins exhibiting multiple episodes of rifting or reactivation 
A continental margin is commonly considered to have been formed by a single 

rift event. It has become increasingly clear, however, that many margins have undergone 
multiple episodes of rifting. For example, rifting in western North America (see more 
details under "Laurentia," below) probably began about 1,470 Ma (Evans and others, 
2000) and formed a continental margin along which the Mesoproterozoic Belt and Purcell 
Supergroups were deposited (Burchfiel and others, 1992; Burke and Dewey, 1973). 
Another major rift occurred along most of the North American Cordillera at about 750 
Ma (Gabrielse and Campbell, 1992; Link and others, 1993; Stewart, 1972; Stewart, 1978; 
Stewart, 1991), and a somewhat older event (770 Ma to ~750 Ma) has been proposed in 
central and northern Utah (Dehler and others, 2005). Finally, a controversial rifting event 
in western North America, at about 600 to 650 Ma, is indicated by studies of thermally 
driven subsidence (Levy and Christie-Blick, 1991a; Link and others, 1993). 

The concept of multiple times of rifting along a given continental margin may 
seem unusual, because clear-cut examples of this type of reactivation of continental 
margins in modern-day or even Phanerozoic plate tectonics are not evident. At least some 
of the multiple rifting events may be related to Wilson cycles, in which rifting occurs, the 
continents drift apart, an ocean is formed, and the continents then drift back together and 
the ocean is consumed. In this case, magmatic-arc rocks would be expected on one, or 
perhaps both, rift margins. Such arc rocks occurring along the eastern margin of South 
America appear to be related to a Wilson cycle in which South America and Africa drift 
apart and are then reassembled (Zhao and others, 2002). 
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Another possible example lies along the eastern margin of Australia (as described 
and referenced later), where microcontinents appear to have been removed sequentially in 
the Mesoproterozoic and Cenozoic. The simplest explanation of these multiple-rift 
margins is that they formed at continental/oceanic interfaces—perhaps along the trend of 
a major tectonic flaw, where repeated rifting and (or) injection of igneous magmas were 
more likely to have occurred. 

Aulacogens 
Aulacogens are structural troughs extending into continents at a high angle to the 

trend of the continental margin (Burke, 1977; Burke and Dewey, 1973). They occur 
throughout the Proterozoic and Phanerozoic (Lobkovsky and others, 1996; Sengor and 
Natal'in, 2001; Shpunt, 1988) but may be more widespread in the Neoproterozoic than at 
other times. Most of these troughs are failed arms of three-armed rift systems, and thus in 
themselves indicate the existence of a continental margin formed by the other two arms 
of the aulacogen. The aulacogens are characterized by thick accumulations of 
sedimentary rocks and minor igneous rocks. Neoproterozoic aulacogens are recognized in 
North America, western and eastern Baltica, Siberia, India, Africa, South America, and 
Antarctica. All are described below, under descriptions of the individual continents. The 
abundance of extension-related aulacogens in the Neoproterozoic enhances the concept 
that the Neoproterozoic was a time of crustal fragmentation. 

Long-lived miogeoclinal margins (Mesoproterozoic continuing into 
Neoproterozoic) 

A miogeocline is defined as a structural feature consisting of a wedge-shaped 
continental margin deposit, similar to Cretaceous and younger deposits along the Atlantic 
margin of the United States (Dietz and Holden, 1967), that forms along rifted continental 
margins (the Cordilleran miogeocline). 

Most Neoproterozoic miogeoclinal margins appear to have begun forming 
roughly at 850 to 740 Ma, presumably as the result of the fragmentation of the Rodinian 
supercontinent. However, the Proterozoic continental margins in western and northern 
North America, in the Ural Mountains, in Siberia, and perhaps in China are of different 
origin. In these areas, deposition on continental margins appears to have begun in the 
Mesoproterozoic (as early as 1,470 Ma) and to have continued into the Neoproterozoic. 
Recognized unconformities, in these cases, do not appear to represent times of major 
orogenic events but merely interruptions in sedimentation due to relatively minor 
structural dislocations. The impression is that these margins existed for a long time and 
marked the boundary between continental and oceanic domains. Continents bounded by 
these long-lived margins may have moved independently, rather than as coherent parts of 
Rodinia.  

Rifted tectonic slivers, ribbon continents, and microcontinents 
Rifted tectonic slivers, "ribbon continents," and microcontinents are not easily 

recognized in the Neoproterozoic, although they are often inferred to explain multiple 
rifting events, for example in the Cordillera of western North America. In the 
southeastward Canadian Cordillera, Colpron and others (2002) suggest, in one of two 
hypotheses, that a major Neoproterozoic rift was followed about 170 m.y. later by a 
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second rift that completed the separation of a ribbon continent (microcontinent) from the 
older continental margin. 

The concept that slivers, ribbon continents, and microcontinents formed by rifting 
from a continental margin is best exemplified by Mesozoic and Cenozoic examples 
(Gaina and others, 1998; Gurnis and Mueller, 2003; Mueller and others, 2001). In 
particular, along the eastern margin of Australia, at least three microcontinental blocks 
rifted away from the continental margin in the Mesozoic and Cenozoic, their separations 
energized, in most interpretations, by subduction or by a mantle plume. An alternate 
interpretation is that repeated rifting occurred along an elongate zone of weakness at the 
boundary between continental and oceanic crust, perhaps enhanced by mantle upwelling. 

Outboard and accreted terranes 
Outboard and accreted terranes are widespread along Mesozoic and Cenozoic 

continental margins (Jones and others, 1983; Silberling and others, 1984) but appear to be 
sparsely distributed, with the exception, perhaps, of outboard terranes related to 
subduction along Neoproterozoic margins. Outboard terranes of known or possible 
Neoproterozoic age are recognized in the Cordillera de Mérida (Bella Vista Greenschist 
and associated granitoids) of northern South America (Case and others, 1990); in the 
Klamath Mountains of northern California, where they consist of ophiolites (Mankinen 
and others, 2002; Wallin and others, 1991; Wallin and others, 2000) and sediments with 
Ediacaran fossils (Lindsley-Griffin and others, 2003); and in Alaska, where they include 
sedimentary rocks of the Nixon Fork terrane (Patton and others, 1994), granitic rocks 
(Karl and Aleinikoff, 1990; Patrick and McClelland, 1995), and metamorphic 
assemblages that generally are poorly dated and in which the distribution of 
Neoproterozoic rocks is poorly constrained [the Alexander terrane of Early Cambrian and 
possibly Neoproterozoic-age rocks of the coastal Cordillera of Canada (Gehrels, 1990); 
the Ruby terrane of west-central Alaska (Patton and others, 1994); and the Seward terrane 
of northwest Alaska (Till and Dumoulin, 1994)]. The time of accretion of the 
Neoproterozoic terranes is probably mostly Paleozoic and Mesozoic, but not 
Neoproterozoic. Other outboard or accreted terranes appear to be widespread in central 
Asia (Khain and others, 1997). 

Collisional margins (sutures) 
Plate convergence in the Mesoproterozoic, presumably related to the subduction 

of oceanic crust, led to igneous activity and continental collision. This activity has 
produced belts of metamorphic and igneous rock such as Grenville and related rocks 
(~1,200 to 900 Ma) and the Pan-African orogeny of the late Neoproterozoic in the 
southern continents. Neoproterozoic collisional margins are difficult to recognize, 
probably because the Neoproterozoic is mostly a time of fragmentation rather than 
collision. Nevertheless, Wilson cycles resulting in the opening and closing of oceans 
imply collision during ocean closure. Such a Neoproterozoic Wilson cycle is apparent 
between Africa and South America (Zhao and others, 2002), and probably elsewhere in 
the southern continents during the Pan-African orogeny. 

Magmatic arcs 
Magmatic-arc rocks are distributed in the African-Nubian shield, in the East 

African orogenic belt, in a part of northwest Africa, in the eastern United States, perhaps 
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in Yucatan (Mexico), and in Europe (Plate 1). Many of these rocks lie near continental 
margins and probably formed there, whereas other rocks, particularly in Europe, occur as 
relatively small outcrops scattered over large regions. The magmatic-arc rocks probably 
formed in a variety of settings, from continental-margin volcanic terranes to outboard 
terranes formed by back-arc spreading. 

Inherited margins 
Some Neoproterozoic continental margins appear to be inherited from older 

margins. Mesoproterozoic Grenville-age rocks (1,200 to 900 Ma) formed by continental 
collision- and subduction-related processes along Mesoproterozoic continental margins. 
The Neoproterozoic margins mimic the location and trend of the Mesoproterozoic 
margins and, thus, appear to have been inherited from the location of these older margins 
(Plate 2). 

Some Neoproterozoic continental margins (eastern and northern North America, 
arctic Ural Mountains, Siberia, and perhaps China) were initiated in the Mesoproterozoic 
and had continuous or intermittent miogeoclinal-margin deposition extending into the 
Neoproterozoic. An even older inheritance is suggested by the work of Rogers (1996), 
who proposed the assembly of major Proterozoic continents on the basis of the "oldest 
laterally extensive supracrustal sequences that lie on igneous-metamorphic basement over 
an area of 10,000 square miles" and on the basis of isotopic data that indicate that the 
youngest juvenile crust (mantle-derived) was created shortly before the deposition of 
supracrustal rock. Rogers (1996) proposed that east Gondwana was assembled at about 
3,000 Ma, that a joined South America and Africa was assembled at about 2,000 Ma, that 
North America and Greenland were assembled from 2,500 Ma to 1,000 Ma, and that 
Europe and Asia were also assembled at 2,500 Ma. In particular, the configuration of the 
continent consisting of South America and Africa (joined at 2,000 Ma) implies 
continental margins similar, at least in places, to those described here, indicating an 
inheritance of the trends of Neoproterozoic continental-margin rocks from trends in older 
margins. 

Stripped and covered margins 
Many of the presumed continental margins described here are not characterized 

by sedimentary or igneous rocks (the defining features of many known Neoproterozoic 
margins). Most of these now-bereft margins were once the sites of deposition of 
Neoproterozoic sedimentary and igneous rocks, but these deposits have been stripped 
away at some time since their deposition, either by subaerial erosion, subduction erosion 
(Bourgois and others, 1996; Clift and Vannucchi, 2004; Sage and others, 2006; von 
Huene and Scholl, 1991), rifting, or extensional tectonic denudation or were covered by 
thrust nappes or by younger rocks. D.W. Scholl (oral commun., 2005) proposes that 
inward removal of crust by subduction erosion can take place at a rate of 2 to 3 km per 
million years. 

Wilson cycle  
J. Tuzo Wilson (1966) originally suggested that North America and Baltica were 

separated in the Paleozoic by the proto-North Atlantic Ocean. The continents then drifted 
together, closing the ocean, and finally the ocean reopened when the continents again 
drifted apart. Such a cycle of opening and closing of an ocean basin is referred to as a 
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Wilson cycle. The concept can be applied to a middle Neoproterozoic opening of the 
proto-North Atlantic Ocean (Dewey, 1974; Soper, 1994; Strachan and Holdsworth, 
2000a, b; Winchester, 1988) and its closure possibly in the late Neoproterozoic and again 
in the Paleozoic. A concept of a late Neoproterozoic closure is related to the presence of 
magmatic-arc rocks along the eastern margin of North America (which, in this 
interpretation, would represent areas of subduction and ocean closure). The general view, 
however, is that these magmatic-arc rocks are far traveled and not indigenous to North 
America and that ocean closure occurred in the mid-Paleozoic (Dewey, 1974). As 
indicated by Zhao and others (2002), an important Neoproterozoic Wilson cycle occurs 
between South America and west Africa. This case, and other Neoproterozoic Wilson 
cycles, will also be discussed later in this report. 

Middle and Upper Neoproterozoic Continents and Continental 
Margins 

Understanding the distribution of continental-margin deposits is a vital tool in 
outlining the shape of continents and in determining the tectonic history of these margins. 
The subject was approached by preparing two world maps (Plates 1, 2). One of these 
maps (Plate 1) shows the distribution and lithologic character of the middle and upper 
Neoproterozoic (ca. 870 to 540 Ma—note that this does not include rocks older than 
Middle Neoproterozoic or younger than Upper Proterozoic) deposits, and the other (Plate 
2) shows the location of continents, of continental margins of associated structures, and 
of Grenville-age (ca. 1,200 to 900 Ma) rocks considered to lie along Mesoproterozoic 
continental margins and to be the precursors of Neoproterozoic margins. These maps 
document Neoproterozoic features related to the breakup of Rodinia that are pertinent to 
any proposed Mesoproterozoic assembly.  

The middle and late Neoproterozoic time interval is important in Proterozoic 
history, because it represents the time of the breakup of the hypothetical supercontinent 
Rodinia. If the concept of Rodinia is correct, then understanding the distribution of 
continents and their margins is key to deciphering the pattern and history of breakup of 
the supercontinent. A continent-by-continent description of the Neoproterozoic 
continents and continental margins is presented here. 

Laurentia 
Laurentia is the largest Neoproterozoic continent and the easiest to outline. As 

recognized by Stewart (1976), discontinuous Neoproterozoic rocks circumscribe the 
continent. The most continuous of these deposits extend along the western margin of 
North America, from northern Mexico to central and eastern Alaska (Brabb and Churkin, 
1969; Christie-Blick and Levy, 1989; Link and others, 1993; Patton and others, 1994; 
Rainbird and others, 1996; Ross, 1991; Ross and others, 1995; Stewart, 1972; Stewart, 
1976; Stewart and others, 2002). The deposits consist mostly of shallow-water outward-
thickening miogeoclinal-margin deposits of carbonate rocks, shale, and siltstone. 
Glaciogenic deposits, including diamictite that is generally considered to consist of tillite, 
are associated with the continental shelf deposits and follow the same trend as the these 
deposits. Older parts of the Neoproterozoic succession are generally of about 740 to 780 
Ma age (Ross and others, 1995; Stewart, 1991) and the upper part grades into the Lower 
Cambrian. Although the 740 to 780 Ma rifting is important, the continental margin of 



 

 8 

western North America appears to have undergone multiple rifting events. Rifting began 
at about 1,470 Ma (Evans and others, 2000) and formed a presumed continental margin 
along which the Mesoproterozoic Belt and Purcell Supergroups were deposited. An 
aulacogen formed an extension of Belt and Purcell Supergroups into the continent 
(Burchfiel and others, 1992; Burke and Dewey, 1973). Another major rift occurred along 
most of the North American Cordillera at about 750 Ma (Gabrielse and Campbell, 1992; 
Link and others, 1993; Stewart, 1972, 1978, 1991), and a somewhat older event (770 Ma 
to ~750 Ma) has been proposed in central and northern Utah (Dehler and others, 2005). 
Finally, a possible rifting event at about 600 to 650 Ma may be indicated by thermally 
driven subsidence (Levy and Christie-Blick, 1991b; Link and others, 1993). However, the 
600 to 650 Ma rifting event has been proposed on the basis of subsidence models that 
have been challenged, because the time of proposed rifting corresponds in age to the 
well-defined passive-margin miogeocline deposits, which are presumably older than the 
age of rifting based on subsidence models. An alternative view presented here holds that 
the subsidence models indicate a time of rifting that may correspond to a time of eruption 
of scattered basalt flows in central Utah near the "Wasatch line," a zone of significant 
westward increase in the thickness of Neoproterozoic strata, perhaps related to rifting. 

The fragments of the circumscribed continental margin of Laurentia are also 
recognized on Ellesmere Island in the Canadian Arctic (Frisch and Trettin, 1991; Trettin, 
1991), in Greenland (Fairchild and Hambrey, 1995; Sonderholm and Jepsen, 1991; 
Sonderholm and Tirsgaard, 1993; Surlyk, 1991; Tirsgaard and Sonderholm, 1997; Watt 
and Thrane, 2001; Winchester, 1988), in Svalbard (Gee and Teben'kov, 2004), and in the 
foreland of the Caledonian orogen of Scotland (Dalziel and Soper, 2001; Duff and Smith, 
1992; Soper, 1994; Strachan and Holdsworth, 2000a, b). 

A long belt of Neoproterozoic-margin deposits extends along the eastern margin 
of North America from Newfoundland to the southern United States (Rankin and others, 
1989). These deposits are primarily shelf clastics composed of conglomerate, fine to 
coarse sandstone, siltstone, mudstone, and glaciogenic diamictite. The miogeoclinal 
margin developed by rifting that started at about 760 Ma in the southern Appalachia and 
has been proposed to be as young as 550 to 620 Ma in the northern Appalachia (Cawood 
and others, 2001 and references therein; Hibbard and others, 2005; Su and others, 1994). 
The disparate ages between these two regions may indicate multiple occasions of rifting 
along the eastern margin of North America, much like the western margin of North 
America, where several intervals of rifting are proposed, ranging from about 1,470 to 600 
Ma. Thomas (2006) has described the inheritance of continental margins in eastern North 
America through several Wilson cycles. These cycles consist of (1) the assembly of 
Rodinia as recorded in the Grenville orogeny, (2) the breakup of Rodinia, (3) the opening 
of the Iapetus Ocean, (4) the assembly of Pangaea as recorded in the Appalachian orogen, 
and (5) the breakup of Pangaea with the opening of the Iapetus Ocean.  

Outboard of the miogeoclinal-margin deposits in eastern North America are 
accreted terranes composed primarily of magmatic-arc rocks (see further discussion 
under Cadomian and Avalonian magmatic arcs, below), including ophiolites (Dennis and 
Shervais, 1996; Hibbard and others, 2005; Keppie and others, 1991; Murphy and others, 
1999; O'Brien and others, 1996; O'Driscoll and others, 2001) that generally range in age 
from 600 to 500 Ma. Some of these terranes may be exotic to North America, but others 
could have been produced by magmatic arcs outboard of the eastern North America 
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miogeoclinal margin. In either case, these rocks formed along, or were accreted to, an 
already existing continental margin. 

The southern margin of Laurentia is poorly defined but is considered to extend 
across the southern United States as a rift-transform fault system (Poole and others, 2005; 
Thomas, 1989, 1991, 2006). The Oklahoma aulacogen is a Precambrian and Lower 
Cambrian structure (Ham and others, 1964) that extends northwestward from the 
southern margin of Laurentia and probably represents a failed arm of a three-arm rift 
system. If so, the second arm extended to the southwest and the third arm to the east, a 
pattern compatible with a generally southward-rifting southern margin of Laurentia. The 
southern margin of Laurentia does not appear to extend south of latitude 28º in northern 
Mexico (Stewart, 1988). 

South America 
The Neoproterozoic margins of South America are difficult to define, because 

Neoproterozoic rocks are largely absent along much of the presumed margin. The 
problem is compounded by the presence in the southwestern part of Brazil of ocean-floor 
rocks within interior parts of the continent. These rocks generally have been considered 
to mark the boundary of major continental blocks that subdivide the continent into three 
major independent cratons (Weil and others, 1998). However, continental-margin rocks 
along parts of the South American continent and an inherited continental margin along 
the western side of South America suggest that the entire continent may have had some 
coherence in the Neoproterozoic. In this case, the boundaries between the Amazonia, Saõ 
Francisco, and Rio de La Plata blocks may be sites of relatively minor continental 
separation, perhaps involving Wilson cycles of opening and closing of ocean basins. 

Traversing the continental margin in a clockwise direction, starting in northern 
Brazil, Neoproterozoic rift to miogeoclinal-margin deposits are widespread in northern 
Brazil and consist, in the rift stage, of sandstone, conglomerate, and pelite and, in the 
miogeoclinal-margin stage, of a varied assemblage of sandstone and sandy pelitic debris 
flows and turbidity currents, iron formation, and diamictite associated with carbonate 
rocks (Pedrosa-Soares and others, 2001). Although difficult to date, these rocks may have 
formed after a rifting event at about 800 Ma (Pedrosa-Soares and others, 2001). 
Miogeoclinal-margin deposits may be older than 686 Ma (D'Agrella-Filho and others, 
2000; Evans, 2000; Kaufman and others, 1997) or as young as 670 to 600 Ma (Misi and 
Veizer, 1998). The miogeoclinal-margin deposits contain diamictite, which is 
characteristic of continental-margin deposits such as those that circumscribe Laurentia 
and are similar to continental-margin deposits along western Africa. 

South of northern Brazil, a continuous band of Neoproterozoic rocks extends 
southward along the eastern margin of South America (Babinski and others, 1996; da 
Silva and others, 2005; Gaucher and others, 2004; Heilbron and Machado, 2003; 
Pedrosa-Soares and others, 2001). The oldest of these rocks may have formed after rifting 
at about 875 Ma, but much of the belt is a magmatic arc that formed from 560 to 500 Ma. 
The belt also contains small outcrops of ultramafic and mafic rocks. The 875 Ma rocks, 
perhaps widespread, may have been overprinted by the 560 to 500 Ma magmatic rocks. 

The problematic rocks in the Tocantins Province (Pimentel and Fuck, 1992; 
Pimentel and others, 1999) in central Brazil contain diamictite-bearing sedimentary rocks 
that may be similar in age to those in northern Brazil (800 to 586 Ma) and in the Congo 
belt of western Africa (Tack and others, 2001; Trompette, 1994). The Province also 



 

 10 

contains 800 to 700 Ma syn-collisional granitoids, 900 to 630 Ma arc-related granitoids, 
and 590 to 480 Ma bimodal rocks (Pimentel and others, 1999). Ultramafic and mafic 
bodies associated with 590 to 485 Ma granites are also present. Pimentel and others 
(1999) indicate collisional and extensional events and the opening of a large ocean basin 
west of the Saõ Francisco block. An alternative idea is that the Tocantins Province (Plate 
2) is the site of a mantle plume or bolide impact, as suggested by the circular pattern of 
Neoproterozoic rocks or perhaps radiating trends of Neoproterozoic rocks (Plate 2) 
similar to star-shaped rifts, including the three-armed rifts of aulacogens described 
previously (Sengor and Natal'in, 2001). 

Further outcrops that may indicate the position of the continental margin are in 
Argentina, Chile, and Bolivia, where rocks are assigned to the Puncoviscana Formation, a 
poorly dated assemblage of fine and coarse turbidites and pelites (Keppie and Bahlburg, 
1999; Omarini and others, 1999). Trace fossils in the Puncoviscana Formation indicate a 
Cambrian and Neoproterozoic age (Acenolaza, 2004). 

The Puncoviscana Formation has commonly been considered to be a 
miogeoclinal-margin deposit along the western edge of the South American continent. 
However, Omarini and others (1999) and Keppie and Bahbug (1999) indicate that the 
formation may be a foreland basin deposit related to a coeval Cambrian magmatic arc, 
whereas Escayola and others (2007) consider the formation to be a back-arc deposit. 
Arguing against these proposals is the indication that the Puncoviscana Formation does 
not contain volcanic detritus (Keppie and Bahlburg, 1999), as would be expected in 
sediments near a magmatic arc. In addition, some rocks in the formation are considered 
as Neoproterozoic (Acenolaza, 2004), an age older than the dated Cambrian age of the 
magmatic-arc rocks. In any of these three proposals, the Puncoviscana Formation lies 
near the western margin of South America, either as continental-margin deposits or as 
foreland or back-arc basin deposits. 

North of the outcrops of the Puncoviscano Formation, only three localities of 
Neoproterozoic, or possibly Neoproterozoic, rocks are known in South America. These 
are (1) the diamictite-bearing sedimentary rocks in the Arequipa Massif of coastal Peru 
(Shackleton and others, 1979), which are dated as Neoproterozoic on the basis of C 
isotope studies (F.A. Corsetti, written comm., 2002), (2) greenschist and granitoids of 
Cambrian or possible Neoproterozoic age in the Cordillera of Mérida in northwestern 
Venezuela (Case and others, 1990), and (3) possible Neoproterozoic rocks in the 
subsurface in northern Venezuela (Feo-Codecido and others, 1984) that trend east-west 
and appear to lie along the northern margin of Neoproterozoic South America. 

These scattered outcrops perhaps outline the general trend of the continental 
margin in western and northern South America, but not with any certainty. A better idea 
for the location of the Neoproterozoic margin along the western margin of South America 
is the position of Mesoproterozoic metamorphic and igneous rocks that are generally 
related to Grenville-age rocks (1,200-900 Ma). These rocks form a fairly continuous belt 
following the western margin of South America from central Chile to northern Colombia 
(Ramos and Aleman, 2000). The Grenville-age rocks are generally considered to have 
formed by continental collision or, perhaps in part, by subduction-related processes. In 
either case, they appear to have formed along a continental margin. The Neoproterozoic 
margin may, therefore, have been inherited from the Grenville-age margin in the same 
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manner as Neoproterozoic rocks in the eastern United States and eastern Canada 
(Thomas, 2006). 

Africa 
Africa is generally divided into six Neoproterozoic blocks: West Africa, Trans-

Sahara, Congo, Kalahari, East African orogenic oelt, and East African craton (including 
Madagascar), all described below.  

The East African orogenic belt is the site of an important continental margin that 
developed at about 850 Ma during a time of extension and presumable continental 
separation (Husseini and Husseini, 1990; Kroener and Stern, 2005; Kroener and others, 
1987; Kusky and Matsah, 2003; Meert and Torsvik, 2003; Mosley, 1993; Muhongo and 
others, 2001; Pinna and others, 1993; Shackleton and others, 1979; Stern, 1994, 2002; 
Vail, 1985, 1987; Willis and others, 1988). Poorly dated sedimentary successions that 
may be miogeoclinal-margin deposits related to this margin are described in Sudan and 
Kenya (Kroener and others, 1987; Stern, 1994 and references therein). The margin marks 
the boundary between continental crust on the west and ocean-floor and magmatic-arc 
rocks to the east, which in turn are flanked by continental rocks farther to the east (Stern, 
2002). The ocean-floor and magmatic-arc rocks formed during rifting and subsequent 
closure of an ocean basin between about 750 and 500 Ma (Stern, 1994). 

Outcrops of juvenile rocks are widest in northeastern Africa and adjoining Saudi 
Arabia and Yemen, narrower to the south, and disappear in Tanzania and Zambia. 
However, the East African orogenic belt, which is presumably a boundary between 
continental blocks, extends south of the southern limit of juvenile rocks. Rocks of the 
East African orogenic belt are correlated with tectonic events in Antarctica (Jacobs and 
others, 1998; Jacobs and Thomas, 2004; Porada, 1985). 

The East African orogenic belt is bounded on the east by various continental 
blocks including basement rocks in Saudi Arabia, Yemen, easternmost Africa, and 
Madagascar (reconstructed to its probable original position relative to Africa). On the 
west, the belt is bounded by the Trans-Sahara craton, the Congo craton, and the Kalahari 
craton. These cratons likely originated from the breakup of a larger block and, therefore, 
must have been more or less in place relative to each other by about 870 Ma, the time of 
their fragmentation. They reassembled during the Pan-African orogeny at about 870 to 
550 Ma (Kroener and others, 1987). The Trans-Sahara craton is a poorly outlined block 
extending across northern Africa from the west side of the East African orogenic belt to 
the north of the Congo craton, to the east of northwestern Africa, and far to the south of 
fragmentary outcrops of magmatic-arc rocks in the northern Mediterranean region. The 
Trans-Sahara craton has also been called the Saharan metacraton by Abdelsalam and 
others (2002), who believe that the craton has been "remobilized during an orogenic 
event but is still recognizable dominantly through its rheological, geochronologic and 
isotopic characteristics." Most of the craton consists of medium- to high-grade gneisses, 
metasedimentary rocks, migmatites, and granulites that were produced by remobilization 
of pre-Neoproterozoic rocks. Low-grade metamorphic volcano-sedimentary rocks, also 
present, are intruded by granitoids ranging in age between 750 and 550 Ma. 

The eastern boundary of the Trans-Sahara craton, as mentioned above, is along 
the East African orogenic belt. The southern boundary is along the Qubanguide fold belt 
(Trompette, 1994; Unrug, 1996), to the south of which is the Congo craton, containing 
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along its northern margin large areas of Neoproterozoic sedimentary rocks, presumably 
continental margin rocks, locally containing diamictite. 

The Congo craton is characterized by a ring of discontinuous sedimentary rocks, 
many containing diamictite (Plate 2). This pattern is similar to the circumscribing 
continental-margin rocks containing diamictite-bearing glaciogenic sedimentary rocks in 
Laurentia. But, the boundaries of the Congo craton are complex (De Waele and others, 
2008). On the southeastern boundary is the Zambezi belt in Zambia, Mozambique, and 
Zimbabwe (Dirks and others, 1998; Goscombe and others, 2000; Hanson, 2003; Hanson 
and others, 1994; Johnson and Vail, 1965; Porada and Berhorst, 2000). The Zambezi belt 
is a major east-west-trending sedimentary and structural belt extending inland at a right 
angle to the north-south-trending Mozambique belt (part of the East African orogenic 
belt), which is presumed to track the eastern boundary of the continental margin in 
central Africa.  

The Zambezi belt is considered to be an aulacogen or rift (Olade, 1980) extending 
inland to the west from a north-south-trending continental margin along the trend of the 
Mozambique belt. If so, the 850 Ma age of the initial deposits in the aulacogen dates the 
time of breakup of a major tectonic block. Inland, the Zambezi belt joins the north-south-
trending Lufilian belt (Cailteux and others, 1994; Jackson and others, 2003; Porada and 
Berhorst, 2000; Unrug, 1983; Wendorff, 2005), which is characterized by thick 
sequences of sedimentary rocks containing evaporates deposited starting at about 880 Ma 
(Porada and Berhorst, 2000). The relationship of the Zambezi and Lufilian belts is not 
clear, but the two belts together with the Damara belt in west Africa appear to have 
originated as an intracontinental three-armed rift system related to the breakup of a major 
tectonic block. The intracraton rifting, however, is interpreted to be succeeded in the 
Zambezi belt by the opening of an ocean basin, so interpreted on the basis of the presence 
of eclogites (John and others, 2003; Vrana and others, 1975) in the western part of the 
Zambezi belt. John and others (2003), on the basis of geochemical studies, indicate that 
the eclogites are a mid-ocean-ridge type, and the ocean basin was over 1,000 km wide. 

West of the Zambezi belt, the Lufilian belt near the southern margin of the Congo 
craton is generally considered to join with the northeast-trending Damara belt in west 
Africa. The Damara belt (Germs, 1995; Hanson, 2003; Jung and others, 2001; Porada, 
1985; Trompette, 1994) is considered here to be an aulacogen extending inland from a 
north-south-trending continental margin. North of the Damara belt, the western margin of 
the Congo craton contains the Kaoko belt (Duerr and Dingeldey, 1996; Seth and others, 
1998; Trompette, 1994) and the west Congo belt (Tack and others, 2001; Trompette, 
1994). Both belts contain diamictite-bearing sedimentary rocks considered to be upper 
Neoproterozoic, in part about 760 to 750 Ma (Hoffman and others, 1998) and with 
minimum ages of 700 to 620 Ma (Evans, 2000). The west Congo belt contains older 
rocks (1,000-910 Ma) that are indicative of rifting. These rocks suggest two ages of 
rifting in the west Congo belt: one ranging in age from 1,000 to 910 Ma and one in the 
late Neoproterozoic, somewhat older than 760 to 750. The Otavi Platform contains 
diamictite-bearing sedimentary rocks and evidence of rifting from about 760 to 750 
(Hoffman and others, 1998) and probably an older event from 800 to 750 Ma (Hoffmann 
and others, 2004). 

The Kalahari craton, as mentioned above, is bounded on the north by aulacogens. 
The western boundary is characterized by diamictite-bearing sedimentary rocks of the 
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Gariep belt (Frimmel and Foelling, 2004; Frimmel and Frank, 1998; Frimmel and others, 
1996a; Frimmel and others, 1996b; Hanson, 2003; Jacobs and others, 2008). Frimmel and 
Fölling (2004) indicate that the minimum age of continental rifting in the Gariep belt is 
about 740 Ma (Cordani and others, 2003a, b). 

West Africa is a circular craton roughly outlined by discontinuous outcrops of 
diamictite-bearing sedimentary rocks and locally by mafic and ultramafic ocean-floor 
rocks. The diamictite-bearing sedimentary rocks are poorly dated, but many of the dates 
range from 700 and 600 Ma (Clauer and Deynoux, 1987; Evans, 2000). The sedimentary 
rocks appear to have been deposited along a continental margin that was produced by 
rifting at about 700 Ma or earlier (Hefferan and others, 2000; Villeneuve and others, 
1993). The younger Neoproterozoic history of the West Africa continental margin is 
complex and includes collisional events, development of magmatic arcs, and (along the 
east side of West Africa and adjacent areas) extensive terranes of high-grade gneiss and 
igneous complexes of the Pan-African orogeny (Attoh and others, 1997; Black and 
others, 1994; Black and Liegeois, 1993; Caby and others, 1989; Hefferan and others, 
2000; Inglis and others, 2005a; Leblanc and Moussine-Pouchkine, 1994; Liegeois and 
others, 1994; Samson and others, 2004; Trompette, 1994; Villeneuve and others, 1993; 
Villeneuve and Dallmeyer, 1987). 

Antarctica 
Neoproterozoic and Early Cambrian rocks in the Trans-Antarctic Mountains 

(Goodge, 2002; Goodge and others, 2002, 2004; Laird, 1991; Schmidt and others, 1965; 
Stump, 1982) are combined on Plate 1 because rocks of this age are difficult to separate. 
Definite Neoproterozoic rocks are recognized in the Beardmore Group of the central 
Trans-Antarctic Mountains (Goodge and others, 2004), but elsewhere recognition of 
Neoproterozoic rocks is questionable and most of the rocks shown on Plate 1 in the 
Trans-Antarctic Mountains may be Early Cambrian and even Middle Cambrian in age 
(Rowell and others, 2001). Nevertheless, the Neoproterozoic and Early Cambrian rocks 
form a tectonic package interpreted to be a 3,600-km-long, continental-margin deposit 
bordering East Antarctica. The presence of diamictite in the Beardmore Group (Goodge 
and others, 2004) and Nimrod Glacier area (Stump and others, 1988) is consistent with 
the characteristic presence of these deposits along continental margins elsewhere in the 
Neoproterozoic. Goodge and others (2004) indicate that the continental margin is formed 
by rifting but note that the age of this rifting is in doubt. Some geologists consider it to be 
about 750 Ma (Goodge and others, 2004 and references therein). A miogeoclinal margin 
is considered to have existed from 670 to 580 Ma and transitionally into younger rocks. A 
magmatic arc began to form by at least 515 Ma (Goodge and others, 2004). 
Neoproterozoic rocks situated mainly on the opposite side of Antarctica from the Trans-
Antarctic Mountains are high-grade metamorphic rocks and associated voluminous 
granitoids related to the Pan-African tectonothermal event (Boger and others, 2002; 
Carson and others, 1995; Fitzsimons, 2000b; Kamenev, 1993; Rajesh and others, 1996; 
Shiraishi and others, 1994; Stuewe and Sandiford, 1993). The Lambert Glacier-Prydz 
Bay structure (Mishra and others, 1999; Stagg, 1985), likely of Neoproterozoic age, is 
considered to be the failed rift arm of a triple junction (aulacogen). If so, the margin of 
Antarctica, at least in the vicinity of Lambert Glacier and Prydz Bay, was likely a rift 
margin related to the two active arms of this triple junction. Although much smaller, the 
Lützow-Holm Bay structure may be a second aulacogen. 



 

 14 

Australia 
Except for ophiolitic rocks in eastern Australia (Bruce and others, 2000), 

Neoproterozoic rocks in Australia lie west of the Tasman line that marks the eastern limit 
of Proterozoic rocks in central and northern Australia (Direen and Crawford, 2003; 
Preiss, 2000; Preiss and Forbes, 1981; Walter and Veevers, 1997). The line is interpreted 
as a Rodinian breakup boundary (Direen and Crawford, 2003).  

The Adelaide "geosyncline" (Plumb, 1985; Preiss, 1987, 2000; Preiss and others, 
1993; Preiss and Forbes, 1981; Veevers and others, 1997) in southern Australia contains, 
in its lower part, thick Neoproterozoic sedimentary rocks and mafic igneous rocks that 
are ascribed to initial rifting that led to the formation of a continental boundary. The 
sedimentary rocks in the Adelaide geosyncline thicken eastward along the Torrens Hinge 
Line (Powell and others, 1994), and the Adelaide rocks resemble miogeoclinal deposits 
found elsewhere in the world. No comparable miogeoclinal deposits are known north of 
the Adelaide area along the Tasman line; thus if the Tasman line is indeed a breakup 
boundary, miogeoclinal sediments along it either were destroyed or are covered by 
younger rocks. A further complication is the presence of the Curnamona craton east of 
the Adelaide belt. Either this craton is a microcontinental block marking the eastern 
depositional boundary of the Adelaide sedimentary basin, or it is an accreted 
microcontinent. Initial extension in the Adelaide basin leading to continental separation is 
dated at about 700 to 760 Ma (Powell and others, 1994), whereas extension and 
continental breakup in Tasmania are dated at 579 Ma (Meffre and others, 2004), 
indicating multiple times of rifting in Australia and Tasmania. 

In central Australia, there are several west-northwest intracontinental sedimentary 
basins (Walter and Veevers, 1997), including the Officer-Savory basin (as much as 8,000 
m of sediment), the Amadeus basin (as much as 5,500 m of sediment), the Ngalla basin 
(as much as 2,000 m of sediment), and the Georgina basin (as much as 6,000 m of 
sediment). These basins are considered here to be major structural features (aulacogens) 
extending inward at a high angle to the presumed Neoproterozoic continental margin 
along the Tasman line. In southern Australia, the Gairdner dyke swarm (Barovich and 
Foden, 2000; Park and others, 1995; Wingate and others, 1998; Zhao and others, 1994) 
and the Polda trough (Preiss, 2000; Preiss and others, 1993) has a north-northwest trend 
at a high angle to the presumed north-south trend of the Neoproterozoic margin and may 
be related to rifting similar to that which formed the deep structural troughs (aulacogens 
or intracontinental rifts) of central Australia. 

Except for eastern Australia, the position, or presumed position, of the 
Neoproterozoic margin is uncertain. In southern Australia and western Australia, 
Grenville-age rocks (Pinjerra and Albany-Fraser orogenic belts) fringe, or are near, the 
continental margin (Dawson and others, 2003; Fitzsimons, 2003; Myers and others, 
1996). These belts mark the site of a Grenville-age continental margin that probably was 
reestablished in Neoproterozoic time. 

India and related areas 
The Indian continental block as described here includes the present country of 

India, as well as Nepal, Bhutan, and parts of Pakistan and Afghanistan. In northern India, 
Bhutan, and Nepal, Neoproterozoic rocks are widely exposed in the Lesser Himalaya 
and, to a lesser extent, in the High Himalaya. These Neoproterozoic rocks extend for 
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about 2,500 km along the southern margin of the Himalaya and contain a thick, 
northward-thickening miogeoclinal accumulation of mostly clastic sedimentary rocks and 
metasedimentary rocks (Brookfield, 1993; Jiang and others, 2003; Paliwal, 1998; 
Srikantia and Sharma, 1972; Valdiya, 1995; Virdi, 1998). This accumulation marks the 
northern continental boundary of the Indian plate formed by rifting and the formation of a 
miogeocline. The miogeoclinal rocks in the western part of the Lesser Himalaya contain 
glaciogenic diamictite deposits (Hambrey and Harland, 1981; Virdi, 1998), in places 
associated with evaporites (Srikantia and Sharma, 1972; Virdi, 1998). Successions 
containing diamictite and associated evaporites also occur to the south and southwest of 
the west end of the Lesser Himalaya, in the western part of the Rajasthan of India, and in 
the Salt Range of Pakistan. Neoproterozoic strata in the High Himalaya may represent 
outboard strata in the miogeocline or deposition in a separate basin (Brookfield, 1993). 
The Pakistan Himalaya, as described by Brookfield (1993), shows distinct stratigraphic 
and structural differences from the Indian Himalaya (Brookfield, 1993), suggesting the 
possibility that the Pakistan Himalaya is an outboard block along the western boundary of 
the Indian block. But, the boundary between the Indian block and the Iran and Arabian 
Peninsula block is ill defined, as described below, leaving open the possibility that the 
Indian block and the Arabian block were connected. 

The main part of the Indian block is characterized by scattered basins of 
Neoproterozoic rocks and by Neoproterozoic rifts (aulacogens) extending inward from 
interpreted Neoproterozoic continental margins. The Eastern Ghats Belt of the eastern 
margin of southern India consists of high-grade metamorphic rocks of Grenville age 
(Paliwal, 1998; Rickers and others, 2001; Yoshida and others, 1996). This belt is 
considered to have formed along a continental margin, probably by continental collision. 
A Neoproterozoic margin is inferred to have developed along a preexisting Grenville 
margin. Such a margin is interpreted from the presence of two major northwest-trending 
intracontinental grabens (aulacogens) that extend inland at high angle to this inherited 
Neoproterozoic margin (Biswas, 2003; Chaudhuri and others, 2002; Krishna Brahman 
and Negi, 1973; Pandey and Agrawal, 1999; Raval and Veeraswamy, 2003). 
Neoproterozoic rocks are also present in intracontinental basins outside of these grabens 
and in other intracratonal rifts (Jiang and others, 2003) and have also been recognized in 
southern India (Krishna Brahman and Negi, 1973) and below the rocks of the Deccan 
Traps in western India (Krishna Brahman and Negi, 1973). 

The largest area of Neoproterozoic sedimentary rocks, including some parts dated 
as Paleoproterozoic and Mesoproterozoic, extends west-northwest in large, but scattered, 
outcrops across central India (Bose and others, 2001; Goodwin, 1991; Rasmussen and 
others, 2002; Ray and others, 2002; Valdiya, 1995). These intracratonal rocks, assigned 
to the Vindhyan Supergroup, consist mostly of sandstone, shale, limestone, and local 
diamictite (Hambrey and Harland, 1981) as thick as 4,259 m. A major basin lies along the 
eastern side of the main area of outcrop of the Vindhayan Supergroup. This basin is 
within a major east-northeast structural zone for which several names have been applied 
[Central Indian Tectonic zone (Chaudhuri and others, 2002); Son-Narmado-Tapti graben 
(Pandey and Agrawal, 1999); Satpura mobile belts (Raval and Veeraswamy, 2003)]. This 
structural zone, which extends southwest to the western side of India, is perhaps a rift 
zone or aulacogen along which rocks of the Vindhayan Supergroup were concentrated. 
Other areas of the Vindhayan Supergroup do not appear to be related to major rift 
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features, indicating that deposition of some Neoproterozoic rocks in India took place 
within a stable continent. 

The southernmost part of India and adjacent Sri Lanka contain Neoproterozoic 
high-grade metamorphic rocks and associated granitoids that, in places, have reworked 
older terranes (Bartlett and others, 1994; Miller and others, 1996; Yoshida and others, 
1996; Yoshida and Vitanage, 1993). These rocks resemble metamorphic and granitoid 
terranes formed elsewhere in the Pan-African tectonothermal event. 

Arabia and related areas 
The Arabian continent was a relatively stable block in the Neoproterozoic, 

although much of the area is now broken by faults and divided into separate blocks. In 
Iran, Neoproterozoic stratigraphic units can be traced from range to range, indicating a 
stratigraphic coherence across the now fragmented region (Berberian and King, 1981; 
Stoecklin, 1968). The Neoproterozoic rocks thicken in northern Iran, near the Caspian 
Sea, perhaps indicating that this margin is a miogeocline. Such a miogeocline trends east-
west and is aligned with the east-west trend of Neoproterozoic rocks in the Lesser 
Himalaya, indicating a speculative tie between Iran and India. Such a tie is supported by 
the east-west trend of sedimentary deposits and faults across northern Iran (Kopet Dagh 
Fault) and a similar trend in Afghanistan (Herat Fault). The Herat Fault is indicated by 
Wensink (1991) to mark the boundary of Asian rocks on the north and Gondwana rocks 
on the south, although little of the area considered contains Neoproterozoic, or possible 
Neoproterozoic, rocks. The north-south-trending Caman-Moqui fault of Pakistan 
(Wensink, 1991) may constitute the break between the Peninsular Arabia-Iran plate and 
the Indian plate, or (as suggested above) these plates were originally joined, or at least 
were close together. 

The idea that the Arabian Peninsula-India region is a somewhat coherent block is 
suggested by the presence of Neoproterozoic evaporite deposits across the region, 
including the Arabian Peninsula (Edgell, 1991; Husseini and Husseini, 1990; Mattes and 
others, 1990), Iran (Edgell, 1991; Mattes and others, 1990; Srikantia and Sharma, 1972), 
Pakistan (Virdi, 1998), and western India (Srikantia and Sharma, 1972; Virdi, 1998). 
These areas contain the most widespread Neoproterozoic evaporite deposits in the world. 
In detail, surface and subsurface outcrops show a definite continuation of evaporite 
deposits from the Arabian Peninsula into western Iran (Edgell, 1991). 

Sedimentary rocks including diamictite and evaporite deposits occur along the 
southeastern coast of the Arabian Peninsula in Oman (Brasier and others, 2000; Gass and 
others, 1990; Gorin and others, 1982; Leather and others, 2002; Mattes and others, 1990). 
The presence of diamictite suggests that these deposits in Oman represent a continental 
margin, perhaps the remnants of deposits that originally lay between Peninsular Arabia 
and India, but, as described above, an alternative idea is that Peninsular Arabia and India 
were joined together in the Neoproterozoic. 

South China 
In South China, outcrops of Neoproterozoic sedimentary rocks and lesser amounts 

of volcanic and volcanoclastic rocks occur in a roughly circular area outlined, in part, by 
small bodies of irregularly distributed mafic, ultramafic, and magmatic-arc rocks. 
Sedimentary rocks of the Sinian System are the dominant sedimentary rock types (Wang 
and others, 2003; Yang and others, 1986) and consist of mudstone, shale, muddy 
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siltstone, sandstone, conglomerate, carbonate rock, glacial diamictite, and volcanic-
volcanoclastic rocks, which are more abundant in the lower Sinian. The succession 
thickens to the southeast and is over 5,000 m thick locally. Shallow-water or alluvial 
deposits are dominant in the eastern areas of the succession, and shallow to moderately 
deep-water deposits are dominant in eastern outcrops. Deep sub-basins interrupt this 
pattern in places. Sinian System rocks are interpreted to lie in two grabens, the Nanhua in 
eastern South China, and the Kangdian in western South China. Rather than considering 
these to be grabens, the interpretation here is that the sedimentary and volcanic rocks in 
these two areas are largely continental-margin deposits: the Nanhua related to a margin 
along the southeast side of South China and the Kangdian to a margin along the west side 
of South China. Overall, the Sinian System, at least in the southeastern part of South 
China, appears to be an oceanward-thickening continental shelf deposit (miogeocline) 
similar to those described elsewhere in the world (West Africa, Ural Mountains, western 
and eastern North America, and Siberia). Wang and others (2003) consider the 
sedimentary sequence to consist of four sequence-sets, representing four phases of rifting: 
one at about 820 Ma after bimodal magmatism; the second at about 800 Ma; the third, a 
major rift phase, at about 780 to 750 Ma; and the fourth recording the rift-drift transition 
at about 750 to 690 Ma. Outboard of the central area of largely sedimentary rocks in 
China are relatively small outcrops of mafic-ultramafic rocks and granitoids generally 
about 820 Ma in age (Chen and others, 1991; Li, 1998, 1999; Li and others, 2001, 2003b; 
Ling and others, 2003; Meng and Zhang, 2000; Zhang and others, 2003; Zhou and others, 
2002). These rocks may be, in part, oceanic rocks formed during the breakup of the 
Rodinian supercontinent. Rocks along the Qinling belt (Zhou and others, 2002) in 
northern South China consist of volcanics and mafic intrusives that have been interpreted 
as being due to either continental collision, subduction, or rifting. Isotopic studies (Zhou 
and others, 2002) indicate that at least some of these rocks probably formed as a 
magmatic arc along a subduction zone, before rifting and widespread deposition of 
Neoproterozoic sedimentary rocks. Rocks in the Kangdian area have also been 
considered to be related to subduction, but rifting is suggested by the presence of bimodal 
igneous rocks (Li and others, 2001) that may be related to the breakup of the Rodinian 
supercontinent. Regardless of the origin of these rocks, all appear to have formed along a 
continental margin and are used to define the Neoproterozoic outline of the South China 
and North China continents.  

The circular area of Neoproterozoic sedimentary rocks and associated granitoids 
and mafic-ultramafic rocks in South China are interpreted to be the result of a mantle 
plume at about 825 Ma that was responsible for the initial breakup of the Rodinian 
supercontinent (Li and others, 1995, 2003a, b; Li, 1998, 1999). Alternatively, the breakup 
is not related specifically to a plume but rather to broader-scale tectonics during the 
apparent worldwide breakup of the Rodinian supercontinent from about 870 to 750 Ma. 

North China 
North China and South China are juxtaposed along the Qinling belt in central 

China. This belt, as described above under "South China," is characterized by mafic-
ultramafic, volcanic, and volcanoclastic rocks. The Qinling belt is clearly a major 
Neoproterozoic boundary, regardless of whether it is considered to have been formed by 
continental collision, subduction, or rifting. In the Neoproterozoic, the belt marks the 
northern boundary of South China, as well as the southern boundary of North China (Lu 
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and others, 2008b). In areas outside of the Qinling belt, the boundary of Neoproterozoic 
North China is not well defined. The eastern margin may lie outboard of a northeast-
trending group of outcrops on the eastern margin of North China that may extend into 
Korea (Lee and others, 1998; Rogers and Santosh, 2003), and the western margin may lie 
along an even less-well-defined group of outcrops of Neoproterozoic rocks (Plate 1). The 
northern boundary of North China lies south of the Central Asian Mobile Belt, described 
below. 

Tarim 
The Tarim block, of northeast China, is a relatively small block compared to such 

major continents as Siberia or Laurentia, and its Neoproterozoic outline is only vaguely 
defined on the basis of the sparse Neoproterozoic rocks that crudely circumscribe the 
block (Carroll and others, 2001; Lu and others, 2008a; Xu and others, 2005). Bimodal 
igneous rocks in the northern part of the Tarim block indicate a rifting event at 755 Ma. 
Phanerozoic tectonism may have significantly modified the shape of the block. 

Central Asian Mobile Belt 
The east-west-trending Central Asian Mobile Belt, also called the Central Asiatic 

fold belt or Asian fold belt (Yakubchuk, 2004; Zonenshain, 1973; Zonenshain and others, 
1990), consists of a complex assembly of moderate-sized plates, microcontinents, 
magmatic-arc systems, and ophiolitic rocks (Stern, R.J., written commun., 2006; 
Kovalenko and others, 2004; Li and others, 2003b; Safonova and others, 2004; 
Yakubchuk, 2004). Though the boundary of this belt is poorly defined, the belt is clearly 
tectonically significant. The belt has a complex distribution of continents and 
microcontinents, but the most distinctive characteristic of the belt is scattered ophiolitic 
rocks that are more widespread than in any other cratonal part of the Neoproterozoic 
world. As defined by most workers (Stern, R.J., written commun., 2006; Li and others, 
2003b), the Central Asian Mobile Belt includes (1) Kazakhstan on the west, (2) a broad 
region between the Tarim and North China blocks on the south, and the Siberia continent 
on the north, and, (3) east of there, a broad region of microcontinental blocks north of 
North China. Kazakhstan, which contains fewer ophiolitic rocks, may be more 
structurally coherent than most other parts of the Central Asian Mobile Belt. 

Kazakhstan, is along the western margin of the Central Asian Mobile Belt and is a 
structurally complex block composed of Precambrian-Paleozoic rocks assembled along 
sutures and associated with magmatic belts (Avdeyev, 1984). In the Neoproterozoic, 
however, it may have been structurally coherent, because Precambrian basement rocks 
have been proposed to extend across the region (Khain and others, 2003). Neoproterozoic 
sedimentary rocks, including diamictite, are abundant in a band along the southern 
margin of the Kazakhstan block (Plate 1) and may represent a continental margin. The 
abundance of Neoproterozoic sedimentary rocks along the east side of the Kazakhstan 
block also suggests a continental margin in that area. Cook and others (1994) indicate 
that during the late Proterozoic, Kazakhstan underwent rifting and separation into smaller 
continents and microcontinents. Avdeyev (1984) reported Neoproterozoic bimodal 
igneous rocks associated with rifts. 

The broad area of the Central Asian Mobile Belt east of Kazakhstan, between 
North China-Tarim on the south and Siberia to the north (mostly Russia and Mongolia) is 
characterized by multiple microcontinents, magmatic arcs, and abundant scattered 
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ophiolites (Buchan and others, 2002; Buslov and others, 2002; Khain and others, 2003; 
Khomentovsky and Gibsher, 1996; Kovalenko and others, 2004; Kuzmichev and others, 
2001; Li and others, 2003b; Mossakovsky and others, 1994; Pfaender and others, 2002; 
Windley and others, 2007; Yakubchuk, 2004; Yue and others, 2001). 

As mentioned above, the continuation of the Central Asian Mobile Belt to the east 
is not clearly defined. The microcontinental blocks north of the North China block and 
south of the Siberian block clearly appear to be part of the belt, but, east of there, either 
the relatively large Kingan-Bureya block (Zonenshain and others, 1990), also called the 
Songliano block (Zhang and others, 1984), is included in the belt (Li and others, 2003b) 
or the belt may continue along the northern margin of this block (Stern, R.J., written 
commun., 2006). 

Siberia 
Thick successions of miogeoclinal-margin, outward-thickening, miogeoclinal 

deposits of Mesoproterozoic and Neoproterozoic age are exposed on the margins of 
Siberia. These exposures are (1) in the Olenek uplift and Kharaulakh Mountains, in 
northeastern Siberia (Pelechaty, 1996, 1998; Pelechaty and others, 1996; Pisarevsky and 
Natapov, 2003), (2) in the Yodoma-Maya area of southeastern Siberia (Khomentovsky, 
1986; Khudoley and others, 2001; Pelechaty, 1996; Pisarevsky and Natapov, 2003; 
Pisarevsky and others, 2008; Rainbird and others, 1998), (3) in the Patom highland in 
southern Siberia (Pelechaty, 1998; Pisarevsky and Natapov, 2003), (4) in the Yenisey 
Ridge area, Turakhansk uplift, and Igarka uplifts in southwest Siberia (Pisarevsky and 
Natapov, 2003), and (5) in the Taymyr area in northwestern Siberia (Vernikovsky and 
others, 1998, 2004). These deposits are considered to have once circumscribed the 
Siberian continent (Chumakov and Semikhatov, 1981; Khomentovsky, 1986; Pelechaty 
and others, 1996; Pisarevsky and Natapov, 2003). Regional unconformities are 
recognized within these successions, but major orogenic events or magmatic arcs are not 
in evidence, except in the middle Neoproterozoic in southern, southwestern, and 
northwestern Siberia. The miogeoclinal-margin deposits of Siberia contain strata that are 
as old as 1,600 Ma and range upward in northeastern and southeastern Siberia into the 
latest Neoproterozoic, and even into the Cambrian. Such long-lived miogeoclinal-margin 
deposits are unusual but are similar to other such deposits in the Ural Mountains and 
possibly in China. Also, the western margin of Laurentia contains continental-margin 
deposits ranging in age from 1,400 Ma to latest Neoproterozoic; these deposits are not in 
a single miogeoclinal package but instead appear to have developed as a consequence of 
several rifting events on the same margin. 

The Siberian miogeoclinal-margin deposits are considered to have been initiated 
by continental rifting in the Mesoproterozoic, perhaps, as in the Patom highlands, at 
about 1,600 Ma (Pisarevsky and Natapov, 2003). A 543 to 530 Ma rifting event, followed 
by an onset of regional thermal subsidence, has been proposed in northeastern Siberia 
(Pelechaty, 1996) and appears to indicate a second time of rifting on the miogeoclinal 
margin. The long-lived miogeoclinal margins of Siberia suggest that Siberia was an 
independent continent during much of the Mesoproterozoic and Neoproterozoic and not 
connected to the Rodinia supercontinent (Pisarevsky and Natapov, 2003).  

Middle Neoproterozoic magmatic-arc rocks, granitic rocks, and associated mafic 
and ultramafic rocks occur in the Baikalia-Vitim highlands in southern Siberia, in the 
Yenisey Ridge in southwest Siberia (Vernikovsky and others, 2003, 2004; Volobuyev, 
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1994), and in the Taymyr area of northwest Siberia (Vernikovsky, 1995; Vernikovsky 
and Vernikovskaya, 2001; Vernikovsky and others, 1998). These rocks mark the end of 
the Mesoproterozoic and Neoproterozoic miogeoclinal margin in these areas, but in 
southeastern and northeastern Siberia the miogeoclinal margin persisted into latest 
Neoproterozoic and Cambrian time. Although outcrops are scattered, the magmatic-arc 
rocks and mafic and ultramafic rocks circumscribe the Siberian continent, as did the 
miogeoclinal-margin deposits (Khain and others, 1997). 

In the Baikal-Vitim area, Vernikovsky and others (2004) describe fragmented 
island-arc rocks (dated at about 900 to 812 Ma) and ophiolites thrust over Neoproterozoic 
strata. These rocks are described earlier in an area referred to as the Patom highlands. 

In the Yenisey Ridge area, Vernikosky and others (2003) have outlined a complex 
history of emplacement of granitic rocks from 880 to 860 Ma on a continent or 
microcontinent, perhaps outside of the Siberian craton. They have also described a 
collision of this continent or microcontinent with the Siberian continent and the 
emplacement of syn-collisional 760 to 720 Ma granitic rocks. Magmatic-arc rocks and 
associated ophiolites formed from 760 to 720 Ma and were thrust onto the Siberian 
continental margin. 

The Taymyr area (Vernikovsky, 1995; Vernikovsky and Vernikovskaya, 2001; 
Vernikovsky and others, 1998) is an accretionary belt composed of 900 to 850 Ma 
granite-gneiss terranes, ophiolite dated at 740 to 720 Ma, carbonate rocks, and other 
sedimentary rocks, all accreted to the Neoproterozoic margin of the Siberian continent. 

Kolyma 
The relatively small Kolyma block lies in the far northeast of Russia. It consists of 

Lower and Middle Proterozoic basement rocks partly encircled by Neoproterozoic 
sedimentary rocks, as well as Paleozoic, Mesozoic, and Cenozoic sedimentary and 
volcanic rocks (Abramovich and others, 1999; Natapov and others, 1978; Zonenshain and 
others, 1988). 

Baltica 
The Neoproterozoic continental margins of Baltica vary significantly in character 

from region to region. The eastern border of Baltica in the Ural Mountains is 
characterized by thick miogeoclinal successions of Mesoproterozoic and Neoproterozoic 
sedimentary rocks (Glasmacher and others, 2001; Ivanov and others, 1986; Maslov, 
2004; Nikishin and others, 1996; Puchkov, 1997; Willner and others, 2001). These strata 
form east-facing miogeoclinal-margin deposits extended along the length of the Ural 
Mountains (Maslov, 2004). In the southern Urals, these deposits are as old as 1,635 Ma 
and, although the succession is interrupted by unconformities, the margin appears to have 
been miogeoclinal from the Mesoproterozoic to the latest Neoproterozoic. The deposition 
of these long-lasting miogeoclinal deposits can plausibly be considered to have been 
initiated by rifting prior to 1,635 Ma. Northward, miogeoclinal deposits as old as 1,000 
Ma are recognized in the middle Ural Mountains and as old as 640 Ma in the northern 
Ural Mountains. Apparently, the initiation of deposition was younger to the north. 

Northward along the eastern margin of Baltica, the continental-margin deposits 
bifurcate into a western belt, the Taminian belt, and an eastern belt, which is a 
continuation of the subpolar and polar Urals. The bifurcation is unusual, but perhaps was 
produced by the juxtaposition and, in part, amalgamation of Baltica and Siberia. In this 
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speculation, the subpolar and polar Urals and Novaya Zemlya (Korago and others, 2004) 
continue through Arctic Novaya Zemlya (Korago and others, 2004) into northwestern 
Siberia (Gee and Teben'kov, 2004), forming the western boundary of Siberia. The Ural 
Mountains and the Taminian belt, in this reconstruction, are the northern and eastern 
boundary of Baltica. In this configuration the central part of the Ural Mountains would be 
a join between the two continents, and Novaya Zemlya may represent continental margin 
deposits detached from the margin of Siberia and then deformed.  

The northern and western margins of Baltica form orthogonal segments—an east-
west-trending segment (the Taminian margin on the east) and a north-south-trending 
segment (the Baltoscandian margin) on the west. The orthogonal shape of the northern 
and western margins of Baltica is considered (see the discussion in Siedlecka and others, 
2004) to be two arms of a triple junction, the third arm of which is in an oceanic domain. 

The Taminian belt consists of Neoproterozoic miogeoclinal-margin deposits that 
extend from the northern margin of Baltica in Russia northwestward in fragmentary 
outcrops to the Varanger Peninsula in Norway (Bogolepova and Gee, 2004; Gee and 
Teben'kov, 2004; Maslov, 2004; Roberts and Siedlecka, 2002; Roberts and others, 2004; 
Siedlecka and others, 1989, 2004). The Taminian margin is divided into two successions 
(Siedlecka and others, 2004): a lower one, as thick as 9,000 m, composed of submarine-
fan turbidites grading upward into deltaic, coastal, and fluvial deposits and an upper 
succession, as thick as 6,000 m, which consists of shallow marine and subordinate fluvial 
deposits. The Neoproterozoic rocks on the Taminian margin can in places be 
demonstrated to thicken outward from the craton (Hambrey and Harland, 1981; Siedlecka 
and others, 2004), suggesting that the margin is a north-facing miogeocline.  

The age of the strata in the Taminian belt is not well defined. Much of the belt is 
considered to be Late Riphean to Vendian (1,000 to 540 Ma) in age (Siedlecka and 
others, 2004), but, on the Varanger Peninsula and environs in northwestern Baltica, 
glaciogenetic deposits indicate ages mostly in the range from 650 to 630 Ma (Evans, 
2000; Siedlecka and others, 2004). The Taminian continental margin is considered to 
have formed by rifting, as is indicated by the thick, north-facing, miogeoclinal deposits 
(Siedlecka and others, 2004). The age of this rifting is not precisely known but is 
considered to be Middle Riphean (1,350 Ma to 1,000 Ma) or Upper Riphean (1,000 to 
650 Ma). Rifting around Baltica is poorly constrained, due to the uncertainty of available 
age dates. The Ural Mountains experienced rifting as old as 1,635 Ma, whereas (as is 
explicated below) the Baltoscandian margin was rifted about 700 to 500 Ma. How the 
Taminian belt fits with these disparate ages of rifting is unclear. In Russia, northeast of 
the Taminian belt in the subsurface of the Pehora Basin, is a large area of continental 
magmatic-arc rocks that have been dated at 618 to 551 Ma (Dovzhikova and others, 
2004; Pease and others, 2004). 

In Baltoscandia, Neoproterozoic rocks occur in complex nappe structures and 
consist of detrital and carbonate rocks, as well as distinctive diamictites interpreted as 
tills (Bockelie and Nystuen, 1985; Foyn, 1985; Hambrey and Harland, 1981; 
Kumpulainen and Nystuen, 1985; Roberts and Siedlecka, 2002; Siedlecka and others, 
2004; Stephens and Gee, 1985; Vidal and Moczydlowska, 1995; Winchester, 1988). 
Three types of basins formed during the progressive breakup of the western margin of 
Baltica that led to the formation of a miogeoclinal margin (Siedlecka and others, 2004). 
The most distinctive of these basins is the third type, which occurs in the more outboard 
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parts of the Baltoscandian margin. This type contains voluminous magmatic rocks, 
including mafic-dike swarms and ultramafic rocks. A minimum age on a dike at one 
locality is 608 Ma (Svenningsen, 2001), which is interpreted to mark the onset of seafloor 
spreading in the Iapetus Ocean. Elsewhere, these magmatic rocks have been dated in the 
general range of 700 to 530 Ma (Siedlecka and others, 2004). Paulsson and Andréasson 
(2002) indicate an age of 850 Ma for the attempted breakup of Rodinia in Scandinavia, 
whereas Greiling and others (1999) alternatively noted a transition from continental 
rifting to ocean-floor formation at about 600 Ma. 

Neoproterozoic rocks are well defined in areas of the North Atlantic region 
including Britain, Ireland, Scotland, Greenland, and Svalbard (Dalziel and Soper, 2001; 
Dewey and Shackleton, 1984; Fairchild and Hambrey, 1995; Hambrey and others, 1991; 
Harland, 1985; Harland and others, 1997; Kelling and others, 1985; McCay and others, 
2006; Soper, 1994; Strachan and Holdsworth, 2000a, b; Winchester, 1988). These rocks 
consist of thick accumulations (commonly 5 km to as much as 25 km thick) of 
predominantly shallow-water clastic rocks. The successions all contain diamictite 
interpreted to be glaciogenic. The rocks have been interpreted as rift-basin deposits, 
although the thickness and the presence of diamictite is suggestive of continental margin 
deposits. The successions may originally have been part of the continental margins of 
Laurentia or Baltica, both of which contain diamictite deposits. Subsequently, these 
deposits appear to have been fragmented and transported into their present positions. 

The east-southeast margin of Baltica is the Trans-European Suture Zone, which 
locally corresponds with the Tornquist line or Teisseyre-Tornquist line (Belka and others, 
2002; Bula and others, 1997; Dadlez, 2000; Krolikowski, 2006; Moczydlowska, 1997; 
Pharaoh and others, 1997; Poprawa and others, 1999; Savov and others, 2001; Strauss 
and others, 1997; Winchester and others, 2002). The suture zone is a lithospheric 
boundary between thick, older lithosphere on the northeast and thin, younger lithosphere 
on the southwest (Pharaoh and others, 1997). Neoproterozoic rocks to the northeast of the 
Trans-European Suture Zone are mainly platformal sedimentary rocks, whereas the 
Neoproterozoic rocks southwest of the suture zone are magmatic-arc rocks generally 
consisting of Cadomian and Avalonian terranes. Although the location of the southwest 
boundary of the Neoproterozoic Baltica margin is well defined on a regional scale, the 
history of the margin is not clear. Most of the Neoproterozoic continents described above 
are circumscribed by miogeoclinal-margin deposits, but such deposits are not apparent 
along the southwest margin of Baltica. Possible continental-margin deposits occur in the 
Lublin slope (Strauss and others, 1997; Vidal and Moczydlowska, 1995), where volcanic 
and sedimentary rocks of Neoproterozoic age are present. These rocks are relatively thin, 
however, and are present only in a relatively small part of the margin. Strata in the late 
Neoproterozoic and Early Paleozoic Baltic Basin thicken toward the suture zone and 
along the suture zone, but the strata do not extend beyond the margins of the basin 
(Garetskiy, 1982; Poprawa and others, 1999). High rates of subsidence in the Baltic Basin 
in Late Vendian to earliest Cambrian time (about 580 to 540 Ma) suggest extension and 
possible rifting (Poprawa and others, 1999). On a broader scale, Bogdanova and others 
(2003) have speculated that Baltica was surrounded by an ocean at about 700 Ma. The 
trend of the Trans-European Suture Zone is linear or slightly curved, leading to 
speculation and controversy about strike-slip movement (Dadlez, 2000). Many 
aulacogens, identified in the subsurface of Baltica (Vidal and Moczydlowska, 1995), and 
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associated sediments are poorly dated but considered to be 800 to 700 Ma in age 
(Lobkovsky and others, 1996; Shpunt, 1988; Vidal and Moczydlowska, 1995). 

Cadomian, Avalonian, and related magmatic rocks 
Magmatic-arc rocks, generally referred to as Cadomian or Avalonian, occur in 

scattered outcrops in a diffuse belt from Turkey on the east to the southeastern United 
States and Yucatan on the west (Plate 1) (Nance and Murphy, 1994; Strachan and 
Holdsworth, 2000a, b). What are now fragments in this belt have undergone closer 
packing in the Neoproterozoic (Murphy and others, 2002; Nance and Murphy, 1994; 
Nance and others, 2002) and appear to have wrapped around northern Africa and 
northern South America. In the Neoproterozoic, outcrops in the southeastern United 
States and Yucatan may have been a continuation of this belt and, if so, provide a 
longitudinal tie between Africa, South America, southwestern United States, and 
Yucatan. Alternately, the magmatic-arc rocks are far-traveled blocks that do not present a 
simple pattern.  

Scattered areas of polymetamorphosed and structurally complex rocks in Turkey 
are considered to be arc-related rocks (Neubauer, 2002; Sengoer and others, 1984; 
Ustaömer and others, 2005) dated in northwestern Turkey at 576 to 565 Ma and in 
western Turkey at 660 to 520 Ma. Arc-related rocks are present in scattered outcrops in 
Europe, including Saxo-Thuringia, Germany, where they are dated at 570 to 540 Ma 
(Linnemann and Romer, 2002), in the Teplá-Barrand of the Czech Republic, dated at 609 
to 522 Ma (Doerr and others, 2002), in the Helvetic and Penninic basement of the 
western Alps, dated at 546 to 500 Ma (Neubauer, 2002), in the Pennine basement of the 
eastern Alps, dated at 657 to 482 Ma (Neubauer, 2002), in the Austroalpine and 
Southalpine of the eastern Alps, dated at 609 to 477 Ma (Neubauer, 2002), in the 
southern Carpathians and Serbo-Macedonian massif, dated at 777 to 545 Ma (Neubauer, 
2002), in the Ossa-Morena zone of Iberia, dated at 620 to 480 Ma (Bandres and others, 
2002), in northwestern France, dated at 610 to 573 Ma (Inglis and others, 2005b), and in 
north Wales and southeastern Ireland, dated at 650 to 550 Ma (Strachan and Holdsworth, 
2000b). 

Methods of Meso-Neoproterozoic Reconstructions 
Different methods of reconstructing Rodinia have been proposed, most involving 

the fit of continents based on (1) matching structural belts (for example, Moores, 1991; 
Karlstrom and others, 1999; Hoffman, 1991), (2) similar lithologic-stratigraphic character 
of presumed conjugate blocks (Dalziel, 1999; Sears and Price, 2004), and (3) matches of 
Proterozoic belts (Karlstrom and others, 1999; Burrett and Berry, 2000). Other models 
use paleomagnetic information combined with lithologic correlation (Pisaresky and 
others, 2003; Li and others, 2008). The approach here is different, although it has a basis 
in many proposed assemblages based on the fit of continents. The model stresses the 
similarity in shape of conjugate margins, similarities that for many continents are 
remarkable. A large part of the hypothetical supercontinent of Rodinia fits together much 
like a giant jigsaw puzzle. 

Although the matches are not always tightly constrained, enough information is 
provided by the sparse fragments of Meso-Neoproterozoic rocks to evidence a proposed 
reconstruction. In places, Baltica and Siberia for example, the jigsaw approach is not 
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viable, apparently because the margins of these continents have been modified by erosion 
and tectonic deformation that preclude a close fit. In these areas of uncertain fit, other 
types of geologic information (stratigraphy, structure, geologic history, paleomagnetics) 
are used to define the correlation between continents.  

Jigsaw puzzle method 
The jigsaw puzzle method is a highly useful procedure in determining the relative 

positions of continents. If the continents fit together tightly, then the relative positions of 
the pieces is apparent. However the usefulness of the method is limited. It only 
determines the final assembly pattern of the pieces of the puzzle, namely what the jigsaw 
puzzle looks like when it is finally assembled. The method provides neither a means for 
determining the positions of the puzzle pieces when they are dispersed nor their 
movement in space and time. 

Southern continents assembly 
The Southern Continents (South America, Africa, India, Arabia, Australia, 

Antarctica) illustrate the method used here for assembly of continents. The six continents 
form a large part of the supercontinent of Rodinia, as well as the younger supercontinent 
of Gondwana. The reconstruction follows the model (LS) of Lawver and Scotese (1987) 
and the model (SH) of Smith and Harlam (1989). The LS and SH models show a 
remarkably tight fit of the six continents (fig. 1). The reconstruction is so tight that it 
is almost certainly a breakup pattern, rather than a convergent pattern. In a convergent 
pattern the shapes of the constituent margins would have been modified before or during 
assembly and would not allow a tight jigsaw-puzzle reconstruction. The breakup pattern 
is similar to reconstructing a broken dinner plate. The pieces fit tightly together because 
the pieces were initially together. A reconstruction of the broken dinner plate uses the 
jigsaw-puzzle method, whereby the pieces are reassembled using the shapes of 
continents. In these procedures, the jigsaw method produces an assemblage (the LS and 
SH models) that shows a breakup pattern. In the model considered here, the LS and SH 
models show an actual situation (the initial shape of the continent), whereas the jigsaw-
puzzle method is a human device used to determine the initial shape of the assembly of 
continents. The jigsaw puzzle does not show a concatenated series of events but only the 
reassembly of continents into their original form. The assembly is essentially a virtual 
reconstruction that is extremely useful in indicating what the original assembled 
continents looked like (the dinner plate) but does not provide information on the 
distribution of continents after breakup or information on the relative positions of 
continents after they disperse.  

Age of southern-continent assembly 
The age of assembly of the southern continents is critical in the interpretations 

presented here. A study by du Toit (1937) indicates a Paleozoic age based on matching 
the grain of Precambrian and Cambrian rocks. Both LS and SH indicate that the southern 
continents are part of Gondwana and, thus, imply that the reconstruction is Mesozoic in 
age. However the widespread distribution of Proterozoic rocks in the southern continents 
(Plate 2) indicates that the continents also include a history older than Mesozoic, as 
indicated by the presence of rocks of Proterozoic age (fig. 1). This older history raises 
the possibility that the reconstructions of LS and SH indicate a Proterozoic assembly in 
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addition to a Mesozoic assembly. Such a dual interpretation is possible because the age of 
assembly itself cannot be determined except by the ages of fragmentary circumscribing 
rocks. Considering these relations, the age of the assembly shown by LS and SH as used 
in this report is Proterozoic, although I realize that it also has a Mesozoic history, as 
implied by LS and SH. The dual age of the assembly of the rocks of the southern 
continents is possible, because both assemblies are constructed from the same continents, 
which, as described later, maintain remarkably similar shapes through time and could, 
thus, generate similar map patterns if reassembled at different times.  

Complexities 
Complexities in the jigsaw-puzzle reconstructions are evident in Plate 2, which 

shows that South America is broken into three tectonic sub-blocks (Amazonia, Saõ 
Francisco, and Rio de La Plata) and that Africa is broken into five tectonic sub-blocks 
(West Africa, Trans-Sahara, Congo, Kalahari, and east Africa). As evident on Plate 2, 
these sub-blocks in South America can be reassembled to form part of the major 
continents of South America and Africa (the continents as used in the LS-SH models). 
The sub-blocks indicate rifting of the assembly as used by LS-SH but not rifting severe 
enough to significantly change the outline of South America and Africa.  

Similar shape of southern-continent margins through time 
The six continents maintained remarkably consistent shapes throughout much of 

the Proterozoic and Phanerozoic. This relation is supported by the reconstructions of LS 
and SH (fig. 1) that use present-day outlines of continents to tightly reconstruct 
assemblies that are considered here to be Meso-Neoproterozoic or younger in age. In this 
proposal, the continents between the present and the Neoproterozoic had similar shapes. 
Such a relation would not be possible if these continents had undergone major 
deformation or erosion that altered the shape of the continents and, thus, precluded 
precise jigsaw-puzzle reconstructions. If the shape of continents remains similar through 
time, the jigsaw-puzzle reconstructions would always lead back to the LS-SH model. 
Thus, a jigsaw reconstruction using the six continents would look similar for any time 
frame from Mesoproterozoic to the present, because the shape of the continents remains 
similar in this time frame. This relation leads to the conclusion that major continents, 
such as those of the southern continents, once formed, are stable blocks that are difficult 
to modify, at least on a lithospheric scale.  

Neoproterozoic Reconstructions 
A wide variety of models have been proposed for the worldwide distribution of 

major tectonic plates during the Mesoproterozoic and Neoproterozoic. Most models show 
that Mesoproterozoic plates were joined to form a supercontinent (Bond and others, 
1984; Condie, 2003, 2004; Rogers and Santosh, 2003, 2004; Unrug, 1997). Most 
geologists refer to this supercontinent as Rodinia, which is thought to have assembled in 
the Mesoproterozoic and to have broken up in the Neoproterozoic. This breakup is 
indicated by the predominance of Neoproterozoic extensional margins (ca. 870 to 740 
Ma), described here and by Condie (2002). The extensional margins apparently require 
the fragmentation and drifting of continents away from a supercontinent. Other models 
propose a rather loose fit of the continents or even widely dispersed continental plates 
(Cordani and others, 2003a; Meert and Torsvik, 2003; Pesonen and others, 2003). Most 
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Mesoproterozoic and Neoproterozoic plate reconstructions use orogenic fold belts to 
guide the assembly of continents. That method differs from the one used here, which uses 
the distribution of sedimentary and igneous rocks to define margins. This approach 
appears to be appropriate, because the dating of orogenic belts is not always clear. In 
addition, much of the middle and late Proterozoic is a time of extension, and boundaries 
of continents are better defined by extension-related sedimentary rocks than by 
compressional orogenic belts. 

The shape and history of continents and continental margins is critical in the 
model proposed here. The continents are the major tectonic blocks of the Neoproterozoic, 
and their margins reveal histories of continental separation, multiple times of rifting, 
development of miogeoclinal margins, development of aulacogens, magmatic-arc 
terranes related to subduction, and continental sutures. Ideally, the margins of a continent 
are recognized by the presence of sedimentary and associated igneous rocks 
circumscribing the continent. Recognition of continental margins is enhanced, where 
found, by the presence of glaciogenic diamictite, which characteristically follows the 
trend of the continental margin, perhaps because it is more likely to be preserved there 
than in the center of a continent. The continental margins typically are miogeoclinal and 
preserve shallow-water miogeoclinal-margin sedimentary rocks that thicken away from 
the continent. These Neoproterozoic margins, or reactivated margins, are most evident 
surrounding Laurentia, in western Baltica, circumscribing Siberia, in China, in the 
Himalayan Mountains, in Iran, in East Africa, in eastern South America, and from sparse 
information in western South America (Plates 1, 2).  

Many presumed continental margins are not characterized by these 
circumscribing major outcrops of sedimentary or igneous rocks, which are a defining 
feature of many known Neoproterozoic margins. Most of these margins were probably 
the sites of deposition of Neoproterozoic sedimentary and igneous rocks, as described 
earlier (see "Stripped and Covered Margins" under "Recognition and Classification of 
Continental Margins"), but have been stripped away or buried at some time since their 
deposition by either subareal or subduction erosion.  

In the model presented here (in the general timeframe of 1,200 to 850 Ma), only 
major continents are presented. In particular, the relatively small Kolyma or Tarim blocks 
of Siberia and East Asia are not shown, nor are probable widespread microcontinents, 
ribbon continents, or accreted terranes. These are important localities but difficult to 
place in our assembly and to use in major plate-tectonic reconstructions. The smaller 
blocks nevertheless provide insight into what likely lay between some of the major 
blocks. 

Construction of the model presented here is based primarily on geologic 
information enhanced in places by the paleomagnetic information. Once constructed, the 
model was checked against the paleomagnetic data (described below) to determine if the 
geologic construction is compatible with paleomagnetic data. The proposed models are 
described and compared with other models. The model proposed here is shown in Figure 
2 and described in detail below. 

 
Reconstructing the southern continents region 

The southern Neoproterozoic continents form a widespread megablock composed 
of the following continents: South America (including Amazonia, Rio de la Plata, and 
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Saõ Francisco subcontinents), Africa (including West Africa, Trans-Sahara, Congo, 
Kalahari, and East Africa subcontinents), India, China, Australia, and Antarctica. This 
assemblage is similar to that of Mesozoic Gondwana (Lawver and Scotese, 1987; Smith 
and Hallam, 1970). South America and Africa are complex continents seemingly 
somewhat cohesive, but that contain intracontinental cratons showing partially defined 
boundaries that could represent rift zones and potential ocean sites. The cohesion of the 
South American continent is suggested, as described previously, by the presence of 
Grenville-age rocks (1,200 to 900 Ma) that follow the western margin of South America 
(Plate 2). These rocks coincide with subsequent Neoproterozoic and younger margins 
(Plate 2), although the Neoproterozoic rocks have been largely stripped away. Along the 
eastern side of South America, Neoproterozoic miogeoclinal-margin sedimentary 
deposits (about 700 to 650 Ma), magmatic-arc rocks (900 to 780 Ma), and Pan-African 
metamorphic/granitoid rocks (about 750 to 500 Ma) define a Neoproterozoic margin and 
indicate cohesion of at least a part of the continent. On the western side of Africa 
extending from northern Angola to the Cape of Good Hope, are miogeoclinal-margin 
deposits (about 700 to 650 Ma) and an inland-extending aulacogen (Damara belt). The 
miogeoclinal-margin deposits resemble similar deposits along the west coast of 
Laurentia, which are considered to have formed along a rift margin, and the African rocks 
seem to have formed in a similar tectonic setting. The shape of the Neoproterozoic 
continental margins along the eastern margin of South America and along the western 
margin of Africa are remarkably similar, strongly indicating that the Neoproterozoic 
continents were once joined. A Wilson cycle of opening and closing of an ocean is 
evident (Plate 3). 

The breakup of South America and Africa may have occurred before 700 to 635 
Ma, the most likely age of glaciogenic diamictite in post-rift miogeoclinal-margin 
deposits of the Saõ Francisco craton of northeastern South America. The continents 
presumably drifted apart, but drift was followed by or overlapped in age with the 
convergence of Africa and South America along a zone of magmatic-arc rocks in eastern 
South America. Associated orogenic events are dated at 790, 730 to 700, 640 to 620, and 
600 Ma (da Silva and others, 2005). The other southern continents (India, Antarctica, 
Australia) are assembled in a fashion similar to the Mesozoic reconstruction of Lawver 
and Scotese (1987) and Fitzsimons (2000b, 2003). This reconstruction, too, shows a close 
match in the shape of the continental margins, a match so regular that the pattern was 
most likely to have formed during plate breakup rather than by plate assembly, when 
margins would be expected to be more complex, owing to the juxtaposing of margins of 
at least somewhat different shapes. The model is also supported by the correlation of 
rocks from one continent to another (Fitzsimons, 2000b, 2003; Unrug, 1996), as indicated 
by the distribution of Precambrian basement rocks and the distribution of high-grade 
metamorphic rocks/granitoids of the Pan-African tectonothermal event. The grouping of 
these continents is consistent with the idea presented by Rogers (1996) that Australia, 
Antarctica, India, Madagascar, and southern Africa were all close together at about 3,000 
Ma (fig. 3), a judgment based on the age of extensive supercrustal sequences.  

The southern continents in the Meso-Neoproterozoic consist of various tectonic 
blocks. West Africa, which contains rocks of the Pan-African tectonothermal event, 
seems logically placed west of northern Africa. Arabia contains extensive magmatic-arc 
rocks in its southern part that are a continuation of the magmatic-arc rocks of the East 



 

 28 

African orogenic belt. Arabia’s position in the northern part of the southern-continents 
region seems justified. South China and North China appear to have been joined in the 
Neoproterozoic along the Quinling Belt and are placed along the east margin of the 
southern continents region. 

The region referred to here as the southern-continents region is considered to have 
been assembled into a tight-fitting block during the Meso-Neoproterozoic. This 
reconstruction is based largely on the distribution of Grenville-age rocks (1,200 to 900 
Ma), which suggests a link between Africa, India, Antarctica, and Australia (fig. 2). 
Unrug (1997), alternatively, has proposed that the southern continents were not 
assembled until the Neoproterozoic, largely because the Neoproterozoic rocks indicate 
collision and orogeny during the Pan-African orogen (Kroener and Stern, 2005). The 
reconstruction of the southern continents shown here is largely the same as that described 
by Unrug (1996, 1997) at 500 Ma, but his reconstruction at 1,000 to 700 Ma shows a 
quite different pattern, with blocks widely scattered around Laurentia. The interpretation 
presented here holds that southern Rodinia fragmented at 870 to 750 Ma and that it was 
reassembled at 500 Ma with, perhaps, a somewhat similar shape. The most important 
difference regarding the southern continents region during the Neoproterozoic and that of 
most others (among which those of Moores, 1991; Karlstrom and others, 1999; Burrett 
and Berry, 2000 figure prominently) is that certain blocks, particularly Antarctica, India, 
and Australia are part of southern Rodinia, whereas most others contraveningly place 
those blocks adjacent to the western United States. 

Continental margins shown in this report mostly occur in conjugate pairs. An 
exception, as shown in Figure 2, is Antarctica and Australia. These continents may have 
originally been joined as part of the southern continents assemblage that was flanked on 
the south by now largely fragmented continental fragments dated as 1,000 to 1,500 Ma by 
Sm-Nd model ages and Re-Os systematics ages in the Antarctica Peninsula, Thurston 
Island, Marie Byrd Land, and New Zealand (Handler and others, 2003). 

Reconstructing Laurasia  
The main tectonic blocks in Laurasia are North America, Greenland, Baltica, 

Kazakhstan, Siberia, and China. Many microcontinents and ophiolitic rocks are present in 
the East Asia orogenic belt (Plate 2). The Laurasia blocks are separated in western areas 
from the southern-continents region by the Avalonian-Cadomian belt of magmatic-arc 
rocks.  

In the Neoproterozoic, the current north Atlantic region is characterized by 
continent-fringing miogeoclinal-margin deposits, or detached deposits. These are evident 
in eastern North America (Bird and Dewey, 1970; Dewey, 1974; Dewey and Shackleton, 
1984; Rankin and others, 1989), in Greenland (Winchester, 1988), in Svalbard (Harland, 
1985; Harland and others, 1997; Soper, 1994), in Scandinavia (Bockelie and Nystuen, 
1985; Kumpulainen and Nystuen, 1985; Stephens and Gee, 1985; Vidal and 
Moczydlowska, 1995), and in Britain and Ireland (Bird and Dewey, 1970; Dewey, 1974; 
Dewey and Shackleton, 1984; Kelling and others, 1985; Strachan and Holdsworth, 
2000a, b). These sedimentary deposits range in age from about 740 to 580 Ma, a 
judgment based mainly on the identification of Sturtian (about 700 Ma), Marinoan (635 
Ma), and Gaskiers (580 Ma) glacial deposits (Evans, 2000; McCay and others, 2006) and 
associated isotopically dated igneous rocks that are considered to have formed along 
Neoproterozoic rift margins during the opening of the Iapetus ocean. These relations 
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suggest that Baltica and Laurentia were joined in pre-rift Mesoproterozoic time (Dewey, 
1974). This is compatible with the interpretation that Mesoproterozoic igneous and 
metamorphic rocks were joined across the north Atlantic region (Romer, 1996).  

A particularly important question is whether the Cadomian-Avalonian magmatic-
arc rocks formed outboard of the depositional belts of Neoproterozoic rocks or after the 
development of these fringing miogeoclinal-margin deposits. Most interpretations 
consider the Cadomian-Avalonian rocks to be far-traveled and older than the fringing 
miogeoclinal-margin deposits, mainly because isotopic dates on the magmatic-arc rocks 
are older than those on the continental-margin rocks and, thus, could not have originally 
formed outboard of the younger miogeoclinal-margin deposits. On the other hand, the 
initiation of rifting in the southeastern United States is considered to be about 760 to 740 
Ma (Cawood and others, 2001; Su and others, 1994) and, thus, is compatible with a 
magmatic arc outboard of an older fringing miogeoclinal margin. However, in the 
northeastern United States and western Canada, the igneous rocks interpreted to be 
related to rifting are about 500 to 600 Ma, an age close to, or older than, that indicated for 
the miogeoclinal-margin deposits. As described previously, continental margins 
commonly have a complex history involving several episodes of rifting. Thus the 
younger belt of igneous rocks in the northeastern United States and eastern Canada could 
reflect a reactivation of a margin that originally formed along a preexisting 760 to 700 
Ma rift (Cawood and others, 2001), in which case the 600 to 500 Ma magmatic-arc rocks 
could have formed outboard of the rift margin and, thus, represent the closing of the 
Iapetus Ocean in the Neoproterozoic or early Cambrian. 

The position of Siberia in Neoproterozoic Eurasia is debated. It has been 
considered to lie along the western margin of Laurentia (Sears and Price, 2000, 2003; 
Sears and others, 2004), along the northern margin of Baltica (Condie and Rosen, 1994), 
or along the eastern margin of Laurentia. As noted previously, Siberia may have been a 
separate block in the Neoproterozoic, perhaps rifted from neighbors in the 
Mesoproterozoic. 

An alternative idea, presented here and described in the discussion of Baltica 
above, is that the Baltica and Siberian margins touched in the Neoproterozoic, that the 
margin of eastern and northern Baltica was along the Ural Mountains, extending into the 
Taminian belt, and that the margin of Siberia followed the Ural Mountains and the 
Novaya Zemlya belt into northern Siberia. If these speculations are correct, Siberia lay 
east of Baltica in the Neoproterozoic. 

Relative positions of Laurasia and the southern continents region 
The conjecture that Eurasia and the southern-continents region were both 

somewhat coherent megablocks in the Neoproterozoic after fragmentation of Rodinia is 
critical to the model reconstruction proposed here that is partly based on a jigsaw-puzzle 
assembly of the Rodinia continental fragments. In this report, Eurasia and the southern 
continents  are joined in such a way that South America lies east of North America and 
the other continents are assembled as shown in Figure 2. Positioning Eurasia east of 
South America is based on the presence of Cambrian rocks in the Argentina precordillera, 
rocks that have faunal affinities to rocks in the southwestern United States (Astini, 1998; 
Keller, 1999). Although the Cambrian age of these rocks is outside of the Neoproterozoic 
time frame of this report, the uniqueness of this faunal tie appears to unite Argentina and 
the southwestern United States in the Cambrian and thus perhaps in the Neoproterozoic 
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as well. In addition, Grenville-age rocks along the eastern margin of North America may 
have been contiguous with Grenville-age rocks along the western side of South America. 

Composite Rodinian reconstruction 
The composite model of Mesoproterozoic Rodinia and its Neoproterozoic 

fragmentation, shown in Figure 2, is based on the discussion of the geologic features 
presented in Plates 1 and 2 for both the southern-continents region and Laurentia. Major 
continents are considered to have assembled during Grenville-age convergence, 
continental collision, and igneous activity into a tight fitting Grenville-age 
supercontinent. The supercontinent then fragmented in the Neoproterozoic along 
boundaries that became Neoproterozoic continental margins. Extension allowed the 
opening of ocean basins between the continents, and contraction in the late 
Neoproterozoic produced subduction zones marked by magmatic arcs. 

Comparisons with other models 
A variety of models has been proposed for the configuration of the supercontinent 

of Rodinia. Eleven of these are shown in Figures 4 to 13. These models were selected to 
show diversity, as well as the most commonly accepted types of models. Some models 
indicate that Rodinia was not a coherent assemblage of continents but rather that the 
continents were dispersed (Cordani and others, 2003a; Meert and Torsvik, 2003; Pesonen 
and others, 2003).  

This diversity of models illustrates the difficulties confronting the interpretation 
of Proterozoic geology and the scarcity of definitive tie points or other geologic 
information that can be used to assemble Rodinia. Paleomagnetic data are difficult to use 
because reliable data, or even only possibly reliable data, are scarce and difficult to use 
because of structural dislocations, uncertain age control, and remagnetization. 
Nevertheless, the paleomagnetic data (discussed here) do appear to be compatible with 
the general location of major continents in the proposed model for the 1,200 to 850 Ma 
time frame.  

The approach used here is to define Neoproterozoic continental margins, margins 
considered to reflect the breakup pattern of Rodinia, and to use these continental 
fragments to reconstruct Mesoproterozoic Rodinia in much the manner of a jigsaw 
puzzle. The following discussion compares the model used here with those published by 
others. 

The model proposed here (fig. 2) is similar to models proposed by Bond 
(1984) and Keppie (1992), which are shown here as Figures 4 and 5. The similarity of 
these models lies in their arranging the continents into a rather tight assemblage in which 
the relative positions of the continents are similar. In particular, South America is east of, 
and adjacent to, North America. The location of Siberia, however, varies. It has been 
placed north of the northern margin of North America (Condie and Rosen, 1994), along 
the east side of Baltica (Torsvik and others, 1996), or along the western margin of 
Laurentia (Sears and Price, 2000, 2003; Sears and others, 2004). 

Piper’s model (Piper, 2000), shown in Figure 6, shows some similarities to the 
model used here, in particular in the reconstruction of the southern continents. A major 
difference, however, is that in Piper’s model South America is located far from the 
eastern margin of North America. The models of Dalziel (1992, 2000), Waggoner (1999), 
and Hoffman (1991) are similar to those shown here as Figures 7, 8, and 13 in placing 
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South America east of the eastern margin of North America but differ significantly in 
placing Antarctica and Australia west of the western margin of North America. This is a 
common reconstruction, described in detail by Moores (1991), Burrett and Berry (2000), 
and Karlstrom and others (1999). But, as described previously, the location of Antarctica 
and Australia adjacent to and west of western North America is not used in our 
reconstruction. Antarctica and Australia fit well together in the construction of the 
southern continents (Australia, Antarctica, India, Africa). In addition, South America 
appears to join with Africa along the western side of the southern-continents region (Plate 
3). Thus Gondwana appears to be a unified block that is difficult to relocate into a 
position west of western North America. Rogers (1996) proposed that the continents of 
Australia, Antarctica, India, and Africa were close together by about 3,000 Ma, when 
continents first developed in these areas (fig. 3). This ancestry is difficult to reconcile 
with the idea that Antarctica and Australia, having assembled in the Southern 
Hemisphere, transported to a position off western North America and then presumably 
transported back to a position near the Gondwanan join of Australia, Antarctica, Africa, 
and India. The paleomagnetic reconstruction, although difficult to interpret, appears to 
indicate a Southern Hemisphere position for Australia, Antarctica, Africa, and India, in 
contrast to a Northern Hemisphere position, if these continents were adjacent to western 
North America. Finally, the reconstructions of Sears and Price (2000, 2003) and Sears 
and others (2004) place Siberia in a position along western North America, a position at 
odds with placing continents of southern Rodinia in this position. 

The model proposed by Waggoner (1999), shown here as Figure 8, is unique in 
using Ediacaran paleogeography as a guide to the assembly of the continents. In his 
reconstruction, South America lies east of the eastern margin of North America, a 
position consistent with other models (described above) that place Australia and 
Antarctica west of western North America. Biotas of the “Australia-Baltica-north 
Laurentia-Siberia cluster“ show correlation of biotas that imply that Antarctica and 
Australia lay west of western North America, a concept argued against previously. 
Perhaps Waggoner's model is correct, in which case my argument for a Gondwana origin 
of these biotas is not valid. Alternatively, the correlation of the biotas might not be 
entirely correct or other locations of continents might also be compatible with the 
distribution of the biotas. 

The reconstruction of Weil and others (1998), shown here as Figure 9, and the 
reconstruction of Dalziel and others (2000), shown here as Figure 7, are similar in the 
general distribution of many of the continents, including the position of South America 
east of North America and the position of East Antarctica and Australia west of western 
North America. 

The model of Pisarevsky and others (2003), shown here as Figure 10, is both 
similar to and dissimilar to several other models. It is similar to the model proposed here 
(fig. 2) in placing South America east of North America and in the relative positions 
of the Laurasian continents Laurentia, Greenland, and Baltica. The model differs in 
placing Antarctica well south of Laurentia and Australia also south of Laurentia but 
touching in one small area along southern North America. 

Unrug (1997) shows a model for the time frames 1,000 to 700 Ma and 700 to 500 
Ma. (figs. 11, 12). His older time frame, shown here as Figure 12, places South 
America east of Laurentia, as is the case in most models of Rodinia, and the southern 
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continents west of Laurentia, as is also common in other models but considered 
problematic here as discussed previously. The 700 to 500 Ma model of Unrug (fig. 12) 
is fairly similar to the model shown here with South America east of Laurentia, and India, 
Antarctica, and Australia east of Africa. But, the 700 to 500 Ma model accords with our 
interpretation roughly within the time frame for the breakup of Rodinia, not the time 
interval of assembly as implied by Unrug's model. 

Li and others (2008) present a major synthesis describing a well-constrained 
configuration of Rodinia based on detailed histories of tectonic blocks combined with 
paleomagnetic interpretations. Their well-documented interpretations are different in 
major ways from the model proposed here, because different methods have been used in 
the reconstructions. Li and others focus mainly on paleomagnetic location of continents 
combined with matching the geology of continents, whereas the reconstruct of Rodinia 
used here is mainly by matching continental margins using a jigsaw method of assembly.  

Paleomagnetic Studies 
The proposed model of Rodinia presented here (fig. 2) is based primarily on 

geologic evidence of the distribution and shape of Neoproterozoic continents and on the 
assembly of these continents in such a way as to match the shape and history of conjugate 
margins. Using paleomagnetic data, an attempt was made to test the validity of the 
model. However, such tests are difficult because Precambrian rocks can be affected by a 
number of different problems. Geochronologic studies, for example, of sedimentary 
sequences must often rely heavily on faunal constraints due to difficulties in directly 
dating sediments with radiometric methods, and metamorphic rocks typically rely on 
radioisotopic ages reset by an interval of metamorphism that may not necessarily 
coincide with that age of remanence. Aside from tenuous age control, two other factors 
limit the usefulness of existing Precambrian paleomagnetic data in testing 
paleoreconstructions: the absence of local structural control to establish paleohorizontal 
and to identify the boundaries of coherent cratonic blocks and uncertainties associated 
with the timing and stability of remanence.  

For these reasons, stringent standards for pole selection (Buchan and others, 2001; 
Buchan and Halls, 1990) has led to much more restricted, presumably more accurate, 
pole lists. In most studies, these criteria are based on a system described by Van der Voo 
(1990) that outlines seven factors by which the quality of poles is characterized. These 
can be grouped into three categories relating to magnetic remanence reliability, age 
reliability, and constraints on structure. Magnetic-remanence-reliability criteria assess 
different methods of remanence determination, tests for remanence stability, and tests 
controls on the timing of remanence. These require that a sufficient number of samples 
are used to ensure adequate statistical precision; reliable demagnetization and analysis 
techniques are applied; field tests are available to constrain the age of magnetization and 
to assure that the age coincides with the time of remanence acquisition (these include 
fold, conglomerate, and contact tests); reversals are present in the stratigraphy to assure 
enough time has elapsed to average secular variation of the field and to provide a 
reversal-test for establishing antipodality in order to preclude effects of unrecognized 
overprints; and poles show no resemblance to younger paleopoles, to rule-out 
remagnetization. Unfortunately, Precambrian results often do not incorporate many of 
these techniques due to a lack of sufficient exposed section, a lack of paleomagnetic data 
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with which to compare, and large uncertainties associated with the age of remanence. 
Consequently, methods that are routinely applied to reconstructions for younger times are 
difficult to apply to the Precambrian. 

A common practice in Phanerozoic reconstructions is to compare multiple poles 
that form well-defined Apparent Polar Wander Path (APWP) segments from two 
continents. Unlike individual paleomagnetic poles that yield only paleolatitude 
constraints, this method provides a unique reconstruction of the fit of fragments of a 
once-joined supercontinent. Due to the paucity of data and to uncertainties in the age and 
locations of existing poles for the Paleoproterozoic (Buchan and others, 2001; Meert, 
2001; Powell and others, 1993), few continents (Laurasia and Baltica) yield substantially 
long APWP segments to apply this technique to Rodina reconstructions. Indeed, it is not 
clear if existing lists are complete enough (or consist of sufficient high-quality data) that 
they might, on their own, yield unique reconstructions for this time period. Pisarevsky 
and others (2003), for example, indicate that existing data for Mesoproterozoic and 
Neoproterozoic rocks are insufficient to provide robust reconstructions, except for 
Laurentia and Baltica. As a result, many Proterozoic reconstructions that have made use 
of paleomagnetic data to assess geologic-based reconstructions have used those data, in a 
null sense, simply to exclude certain assemblies. 

It is likely, with the growing database of high-quality paleomagnetic poles, that 
paleomagnetic data will soon provide reliable, independent Neoproterozoic 
paleoassemblies. However, because there is no consensus as to which lists form the most 
complete and reliable compilations, we consider discerning between existing data lists to 
be beyond the scope of this report. As a result, the approach taken here differs from other 
approaches that rely on highly selected pole lists to fit continents into a 
paleomagnetically defined paleoreconstruction. Instead, four commonly cited pole lists 
are combined with the intent that a large dataset, spanning multiple compilations, may 
reveal broad trends and minimize the influence of outliers that can have a significant 
influence due to the general paucity of data for the Paleoproterozoic. 

The paleomagnetic poles of Meert and Torsvik (2003), Weil and others (1998), 
Pisarevsky and others (2003), and D'Agrella-Filho and others (1998) are grouped to yield 
the composite pole list used in testing the model (Table 1). These data are divided into 
three age ranges (1,200 to 850 Ma, 850 to 760 Ma, and 760 to 500 Ma) corresponding 
roughly to (1) the interpreted time of the assemblage of Rodinia, (2) the breakup of 
Rodinia, and (3) plate convergence as indicated by the widespread occurrence of 
magmatic arcs. Within these large time frames, relative movement of tectonic plates has 
doubtless taken place, accounting for at least some of the ambiguity of the results. 
Nevertheless, the data appear roughly compatible with our Neoproterozoic assembly for 
the older time frame (1,200 to 850 Ma). The two younger time frames are ambiguous, 
however, suggesting that they correspond with the time of breakup of the supercontinent 
and dispersal of its cratonic fragments. Throughout the discussion presented below, the 
reader should keep in mind the sparsity of paleomagnetic data for Southern Hemisphere 
continents (Table 1) and, in many cases, the uncertain quality of these data. 

Due to the lack of sufficiently long APWP paths for most Rodinia continents, a 
“shotgun approach” is used here that compares scattered paleopoles from one continent 
with scattered paleopoles from the reference path for roughly the same time period to 
qualitatively assess the feasibility of individual continental fits of the model. Because 
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Laurentia is the physically largest of the Rodinian continents and has also the largest 
number of Rodinia-age paleopoles, the Laurentian pole list has become the reference 
against which paleopoles from other cratons are compared. The continents and their 
paleomagnetic poles are, therefore, rotated into a present-day Laurentian reference frame. 
The Euler poles, and corresponding angles of rotation (about which continental blocks 
and their poles were rotated) used to construct our model are given in Table 2.  

Paleomagnetic data for each of the Rodinia continents (Amazonia, Antarctica, 
Australia, Baltica, Congo, Kalahari, Siberia) for the period 1,200-850 Ma (excluding 
possibly unreliable paleopoles for India and Saõ Francisco) are plotted against the APWP 
for Laurentia (consisting of 72 paleopoles, Table 1, Figure 15) for the same time frame. 
These continents constitute a majority of the primary tectonic blocks in Rodinia, but the 
number of paleopoles for each continent varies and is generally small, ranging from one 
(Amazonia) to 21 (Baltica) (Table 1). An assessment of the reconstruction of the 
Rodinian continents based on paleomagnetic data is inhibited by these limited sets of 
paleopoles and by the uncertain reliability of data.  Indeed, Meert and Torsvik (2003) 
note that the Neoproterozoic paleopoles for India are scattered and may not be usable in 
paleomagnetic reconstructions, as are the scattered paleopoles for Saõ Francisco. 
Furthermore, although existing data allow us to test the fit of most of the major Rodinian 
continents, many of the cratonic blocks that form our model (for example, Greenland, 
North China, South China, Siberia, Rio de la Plata, and west Africa for the timeframe 
1,200-850 Ma) remain untested paleomagnetically.  

Nevertheless, the available data do suggest that the Rodinia reconstruction 
proposed here is valid for many of the continents in the 1,200 Ma to 850 Ma time frame. 
The reconstruction for that interval shows that the Rodinia continents may be tightly 
packed and supports the general reconstruction presented here (fig. 2). An assessment 
of the 850 to 670 Ma and 670 to 500 Ma time frames, corresponding to times of 
continental breakup and presumed dispersal of Rodinian fragments, was not as successful 
as for the older time frame, partly due to the fact that most of the paleomagnetic data for 
the two younger time frames were not sufficient and (or) reliable enough to adequately 
constrain the locations of continental blocks. 

Summary 
This report identifies and describes middle and upper Neoproterozoic continents 

and continental margins with the purpose of obtaining a better understanding of 
Neoproterozoic geologic history, particularly the assembly and breakup of the Rodinian 
supercontinent. The margins include extensional rift margins, miogeoclinal margins, 
margins involving Wilson cycles of opening and closing of oceans, margins containing 
aulacogens (a failed arm of a three-armed rift), reactivated margins, active margins 
containing subduction-related magmatic rocks, and collisional margins related to plate 
sutures. These features are presented in two maps (Plates 1 and 2). 

Some margins, which appear to have formed by rifting as early as 1,600 Ma, had 
a long history, including those of Siberia and western North America, which resulted 
from rifting as old as 1,450 Ma. These margins are considered to be fundamental tectonic 
boundaries at the interface of oceanic and continental crust and to have remained 
miogeoclinal, except for extension, at least into the Cambrian.  
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Neoproterozoic extensional and contractional events are, for the most part, 
worldwide. Extension occurred within the time frame of about 870 to 740 Ma, whereas 
contractional events associated with subduction and magmatic arcs extend mainly from 
about 600 to 500 Ma.  

Aulacogens, failed arms of three-armed rift systems, are common in the 
Neoproterozoic. They consist of graben-like structures commonly containing great 
thicknesses of sedimentary rock and extend into continents at a high angle to the margin. 
The other two arms of a rift system are generally not exposed but imply the existence of a 
continental margin. Aulacogens occur in the western, southern, and northeastern United 
States, in the subsurface of Baltica, and in South America, Africa, India, Australia, and 
Antarctica. The abundance of aulacogens in the Neoproterozoic may be related to 
widespread extension during the breakup of the Rodinian supercontinent.  

As shown in Plate 2, major Neoproterozoic continents are defined most directly 
by the distribution of miogeoclinal sedimentary rocks, by the distribution of continent-
fringing magmatic-arc rocks, by the distribution of oceanic mafic and ultramafic rocks 
adjacent to continents, and by aulacogens. Glaciogenic diamictite, common in the 
fringing miogeoclinal sediments, is a further guide to the recognition of continental 
margins. 

As thus defined, the continents are used as a starting point in plate-tectonic 
reconstructions. The continents were assembled much like a jigsaw puzzle into a fairly 
tight-fitting assemblage. Possible conjugate continental pairs of margins are suggested by 
their similar histories. The reconstruction of southern Rodinia, similar to the 
Mesoproterozoic assembly described by many geologists (Fitzsimons, 2000b, 2003; 
Lawver and Scotese, 1987), allows a rather tight fit between Africa and South America. 
The reconstruction also places the west side of South America adjacent to the east side of 
Laurentia. Baltica is placed east of Laurentia, and east of Baltica are Arabia, India, and 
China. The reconstruction is similar to several previous reconstructions in showing South 
America east of Laurentia (Bond and others, 1984; Dalziel, 1992; Dalziel and others, 
2000; Pisarevsky and others, 2003; Unrug, 1997). Siberia has been placed in several 
different positions including adjacent to the western United States (Karlstrom and others, 
1999; Sears and Price, 2000, 2003; Sears and others, 2004); north of North America 
(Condie and Rosen, 1994); and finally, possibly east of Baltica, as described above under 
the discussion of Siberia.  

The reconstruction proposed here differs from other reconstructions, (for 
example, Li and others, 2008), most notably in that it places Australia and Antarctica in 
the present-day southern latitudes rather than near western North America as shown by 
Burrett and Berry (2000), Karlstrom and others (1999), and Weil and others (1998). The 
placement shown here of these continents in Rodinia is based on the assembly pattern of 
Neoproterozoic and Grenville-age rocks and the presence of 3,000 Ma rocks in the region 
of Australia, Antarctica, and Africa (Rogers, 1996), which suggests that these continents 
were assembled at this time.  

Paleomagnetic data in the time frame from 1,200 to 850 Ma, used to check the 
validity of the proposed model, show a rough compatibility with the proposed model, but 
the number of paleopoles is small and the paleopoles from any one continent are 
moderately scattered.  
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    Tight fitting assembly of the southern continents (South America, Africa, India, Arabia, 
  Antarctica, and Australia) based on Smith and Hallam, 1970 and Lawver and Scotesce, 
  1987. Assignments of ages of continental margins based on plate 2 of this report. The 
  assembly has been considered by Smith and Hallam and Lawver and Scotesce to be 
  Gondwana and thus Mesozoic in age in seeming contradiction to the proposed Meso-
  Neoproterozic age used here. As described in more detail under section entitled 
  “Unchanged pattern of southern continents through time” the assembly patterns of 
  the southern  continents are generally similar in Rodinia, Gondwana, and Pangea, and 
  thus a similarity in a Meso-Neoproterozoic assembly and a Mesozoic 
  assembly is possible.

Figure 1.
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  Paleomagnetic poles for Australia, Baltica, Congo, Laurentia Kalahari, South China, and Trans-Sahara 
  for the time period 850-670 Ma.
Figure 16.  
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Tables 
 



Continent slat slon Name Age plat plon A95 Reference Source1

Amazonia -10.8 -63.7 Nova Floresta 1,199.0 25.0 165.0 6.0 Tohver et al., 2002 MT
Antarctica -72.7 -2.5 Borgmassivet 1,000.0 -6.0 233.0 7.0 Hodgkinson, 1989; Moyes et al., 1995 DAF
Antarctica -77.9 -30.3 Coats Land Nunataks 1,112.0 22.9 80.3 6.8 Gose et al., 1997 DAF,MT
Antarctica -73.0 -10.0 Ritscherflya 1,130.0 -8.0 232.0 4\4 Jones et al., 1999 MT,P
Antarctica -71.6 -2.0 Ahlmannryggen 1,183.0 -9.0 240.0 6.0 Peters, 1989 DAF
Australia -31.1 139.0 Giles Creek Dolomite-lower 505.0 38.0 205.0 10.0 Klootwijk, 1980 MT
Australia -31.1 139.0 Lake Frome - A 505.0 31.0 207.0 10.0 Klootwijk, 1980 MT
Australia -31.1 139.0 Pertaoorta Group 505.0 33.0 192.0 7.0 Klootwijk, 1980 MT
Australia -31.7 139.0 Billy Creek Aroona-Wirrealpa - A 510.0 37.0 200.0 14.0 Klootwijk, 1980 MT
Australia -15.0 130.1 Antrim plateau volcanics 520.0 9.0 160.0 13.0 McElhinny and Luck, 1970 MT
Australia -31.0 138.9 Hawker Group A 520.0 21.0 165.0 11.0 Klootwijk, 1980 MT
Australia -23.6 134.5 Todd River 530.0 43.0 160.0 7.0 Kirschvink, 1978 MT
Australia -23.6 134.5 Upper Arumbera SS 550.0 46.0 157.0 4.0 Kirschvink, 1978 MT
Australia -23.6 134.5 Lower Arumbera/Pertataka Fm 570.0 44.0 162.0 10.0 Kirschvink, 1978 MT
Australia -31.4 139.2 Brachina Fm 580.0 33.0 148.0 16.0 McWilliams and McElhinny, 1980 MT
Australia -31.3 138.6 Elatina 600.0 40.0 182.0 6.0 Sohl et al., 1999 MT
Australia -31.3 138.6 Yalipena Fm 600.0 44.0 173.0 11.0 Sohl et al., 1999 MT
Australia -30.5 139.3 Angepena Fm 650.0 33.0 164.0 13.0 McWilliams and McElhinny, 1980 MT
Australia -23.8 115.7 Mundine dikes 755.0 45.0 135.0 4.0 Wingate and Giddings, 2000 MT,P
Australia -23.8 116.6 Bangemall Basin Sills 1,070.0 34.0 95.0 8.0 Wingate et al., 2002 MT,P
Baltica 56.0 10.9 Andarum limestone 500.0 52.0 111.0 7\10 Torsvik and Rehnstrom, 2001 MT
Baltica 68.9 19.5 Tornetrask Fm 535.0 56.0 116.0 12\15 Torsvik and Rehnstrom, 2001 MT
Baltica 59.1 9.1 Fen complex 583.0 56.0 150.0 7\10 Meert et al., 1998 MT

Baltica 58.4 6.2 Egersund dikes 616.0 48.0 20.0 14.0
Poorter, 1972; Torsvik et al., unpublished data 
(see Meert and Torsvik, 2003) MT,P

Baltica 70.5 30.0 Mean pole 750.0 -28.0 17.0 8.0 Meert and Torsvik, 2003 MT
Baltica 55.5 6.7 Hunnedalen dikes 848.0 41.0 42.0 11\12 Walderrhaug et al., 1999 MT,P
Baltica 59 16.0 East of Protogine Zone 850.0 0.0 242.0 - Pesonen et al., 1989 W
Baltica 59 13.0 West of Protogine Zone 850.0 4.0 241.0 10.0 Pesonen et al., 1989 W
Baltica 59 13.0 West of Protogine Zone 850.0 -25.0 231.0 7.0 Pesonen et al., 1989 W

Baltica 56.6 -17.0 Pyätteryd Amphibolite 939.0 -43.0 217.0 11.0
Pisarevsky and Bylund, 1998; Wang et al., 
1996; Wang and Lindh, 1996 P

Baltica 59 16.0 East of Protogine Zone 950.0 -42.0 210.0 - Pesonen et al., 1989 W
Baltica 59 13.0 West of Protogine Zone 950.0 -45.0 217.0 5.0 Pesonen et al., 1989 W
Baltica 59 15.0 Within Protogine Zone 950.0 -44.0 211.0 11.0 Pesonen et al., 1989 W

Baltica 57.1 -17.1 Gällared Amphibolite 956.0 -46.0 214.0 19.0
Pisarevsky and Bylund, 1998; Möller and 
Södderland, 1997 P

Baltica 56.5 -17.2 Känna Gneiss 963.0 -50.0 225.0 17.0
Pisarevsky and Bylund, 1998; Wang et al., 
1996; Wang and Lindh, 1996 P

Baltica 61.0 16.0 Falun dolerite 966.0 6.0 58.0 6.0 Patchett and Bylund, 1977 MT
Baltica 57.7 15.0 Nilstorp dolerite 984.0 -9.0 59.0 10.0 Patchett and Bylund, 1977 MT

Baltica 57.1 -18.1 Gällared Granite Gneiss 985.0 -44.0 224.0 6.0
Pisarevsky and Bylund, 1998; Möller and 
Södderland, 1997 P

Table 1. Neoproterozoic paleomagnetic poles used in Figures 14–17. Poles are compiled from pole lists given by Meert and Torsvik (2003), Weil and others (1998), Pisarevsky and 
others (2003), and D'Agrella-Filho and others (1998). Table lists (from left to right): continent, site latitude (slat), site longitude (slon), pole name (name), mean age of pole in Ma based 
on range given in reference age), pole latitude (plat), pole longitude (plon), alpha 95 or dp/dm for pole given in reference (A95), reference, pole-list source (DAF= D’Agrella-Filho and 
others, 1998; MT= Meert and Torsvik, 2003; P=Pisarevsky and others, 2003; Weil and others, 1998). Note that Saõ Francisco and India data were not used for reasons discussed in 
text.



Continent slat slon Name Age plat plon A95 Reference Source1

Baltica 59.3 17.0 Arby dolerite 995.0 7.0 47.0 7.0 Patchett and Bylund, 1977 MT
Baltica 69.4 28.6 Laanila dyke swarm, Finland 1,020.0 -4.0 218.0 6.0 Pesonen et al., 1989 W
Baltica 69.4 28.6 Laanila Dolerite 1,045.0 -2.0 212.0 15.0 Mertanen et al., 1996 P
Baltica 58.8 12.1 Bamble intrusions (mean) 1,070.0 -3.0 37.0 15.0 Meert and Torsvik, 2003 MT
Congo -15.3 35.2 Ntonya Ring structure (PA) 522.0 28.0 355.0 2.0 Briden et al., 1993 MT
Congo -4.6 30.1 Gagwe lavas 795.0 -25.0 273.0 10.0 Meert et al., 1995 MT,P,W
Congo -23.3 31.4 Bukoban intrusives, Tanzania 806.0 11.0 101.0 19.0 Piper, 1972 W
Congo -18.0 15.0 Nosib group 869.0 28.0 323.0 15.0 Van der Voo and Meert, 1991 DAF
Congo -3.5 30.0 Nyabikere massif 935.0 43.0 137.0 14.0 Meert et al., 1994a,b MT,W
Congo -40.6 34.7 Kisi lavas 964.0 -0.1 158.0 11.0 Onstott et al., 1986 DAF
Congo -15.0 30.0 Chaela group 1,080.0 23.0 329.0 36.7 Renne et al., 1990; Jones et al., 1992 DAF
Congo -4.0 30.0 Host-Kibaran intrusives 1,236.0 -17.0 113.0 7.0 Meert et al., 1994a,b MT

East Africa 0.5 37.1 Sinyai dolerite (PA) 547.0 -28.0 319.0 5.0 Meert and Van der Voo, 1996 MT
India 25.5 78.0 Bhander-Rewa (IND) 750.0 -47.0 33.0 6\6 McElhinny et al., 1978 MT

India -4.4 55.4 Mahe Dikes (SEY) 750.0 80.0 79.0 9.9\14.9
Torsvik et al., 2001b; Hargraves and Duncan, 
1990 MT,P

India -4.4 55.4 Mahe granites (SEY) 755.0 77.0 23.0 1.7\2.6 Torsvik et al., 2001b; Suwa et al., 1994 MT
India 26.0 72.7 Malani rhylites (IND) 761.0 75.0 71.0 10.0 Torsvik et al., 2001a MT,P
India 12.6 77.5 Harohalli dikes (IND) 821.0 27.0 79.0 9.0 Radhakrishna and Hoseph, 1996 MT,P
India 15.1 77.3 Lattavaram Kimberlite (IND) 1,090.0 -45.0 238.0 11.0 Miller and Hargraves, 1994 MT
India 24.0 79.5 Majhgawan Kimberlite (IND) 1,116.0 39.0 217.0 31.0 Miller and Hargraves, 1994 MT
India 24.6 83.1 Kaimure series (IND) 1,200.0 82.0 286.0 6.0 Sahasrabudhe and Mishra, 1966 MT
Iran 17.2 54.5 Mirbat sandstone (ANS) 550.0 -32.0 134.0 7.0 Kempf et al., 2000 MT

Kalahari -9.1 33.9 Mbozi complex (CC) 755.0 46.0 325.0 9.0 Meert et al., 1995 MT,P
Kalahari Port Edward Charnockite 985.0 5.0 148.0 9.0 Onstott et al., 1986 W
Kalahari -29.0 20.0 Central Namaqua metamorphics 1,015.0 8.0 330.0 10\10 Onstott et al., 1986 DAF,MT,P,W
Kalahari 17.9 -29.4 O'Okiep intrusives 1,030.0 -15.0 155.0 15.0 Piper, 1975 W
Kalahari -28.5 21.7 Kalkpunt fm 1,065.0 57.0 3.0 7.0 Onstott et al., 1986; Briden et al., 1979 MT,P,DAF,W
Kalahari -10.6 11.6 Umkondo lavas 1,080.0 -63.0 196.0 15.0 McElhinny, 1966 W
Kalahari -10.6 11.6 Umkondo combined 1,081.0 -64.0 208.0 8.0 McElhinny, 1966 W
Kalahari -10.6 11.6 Umkondo dolerites 1,082.0 -65.0 223.0 6.0 McElhinny and Opdyke, 1964 DAF,W
Kalahari -20.5 27.5 Post-Waterberg diabase 1,091.0 65.0 51.0 8.0 Jones and McElhinny, 1966 DAF,MT,W
Kalahari -24.0 31.5 Timbavati gabbro 1,097.0 63.0 47.0 3.0 Renne et al., 1990 DAF
Kalahari -10.6 11.6 Umkondo Igneous Province 1,105.0 66.0 37.0 3\3 Hargraves et al., 1994; Powell et al., 2001 DAF,MT,P
Kalahari -28.5 21.6 Ezelsfontein formation 1,154.0 55.0 77.0 17.0 Renne et al., 1990 DAF
Kalahari -25.7 28.5 Premier kimberlites 1,165.0 41.0 55.0 7.0 Powell et al., 2001 MT

Madigascar -18.8 48.7 Carion granite 509.0 -7.0 1.0 13\17 Meert et al, 2001 MT
Madigascar -18.0 47.0 Stratoid granite remag 521.0 -7.0 353.0 14.0 Meert et al., 2003 MT

Mexico 17.1 -97.0 Oaxaca Anorthosite 950.0 47.0 267.0 23.0 Ballard et al., 1989 P
North America 48.5 -58.5 Steel Mountain anorthosite 451.0 22.5 138.0 8\14 Murthy and Rao, 1975 W
North America 36.4 -112.5 Tapeats sandstone 508.0 -5.0 338.0 3.0 Elston and Bressler, 1977 MT
North America 38.4 -78.0 Catoctin basalts 564.0 42.0 297.0 9.0 Meert et al., 1994a,b MT
North America 50.7 -66.6 Sept-Lles complex B 564.0 44.0 315.0 5.0 Tanczyk et al., 1987 MT
North America 46.0 -80.1 Calendar complex 575.0 46.0 301.0 6\6 Symons and Chiasson, 1991 MT
North America 53.6 -53.5 Long Range dikes (a) 615.0 11.0 344.0 18.0 Murthy et al., 1992 MT
North America 53.6 -53.5 Long Range dikes (b) 615.0 69.0 350.0 15.0 Murthy et al., 1992 MT
North America 68.3 -121.6 Brook Inlier sills 723.0 2.0 345.0 16.0 Park, 1981a,b MT
North America 72.4 -83.0 Franklin dikes 723.0 -9.0 332.0 5.0 Chrisite and Fahrig, 1983 MT,P
North America 72.0 -112.0 Natkusiak Formation 732.0 6.0 159.0 6.0 Palmer et al., 1983; Heaman et al., 1992 P
North America 68.2 -121.5 Little dal (a+b) 778.0 9.0 320.0 11.0 Park, 1981a,b MT



Continent slat slon Name Age plat plon A95 Reference Source1

North America 63.5 -232.5 Top Little Dal 778.0 -24.0 339.0 11.0 Morris and Aitken, 1982 MT
North America 64.0 -128.0 Tsezotene fm 778.0 -12.0 326.0 8.0 Park and Aitken, 1986 DAF,MT,P
North America 64.0 -128.0 Tsezotene sills 778.0 2.0 138.0 5.0 Park, 1981a,b P
North America 43.7 -110.8 Wyoming Dykes 783.0 13.0 131.0 4.0 Harlan et al., 1997 P
North America 44.8 -77.8 Thanet gabbro (B) 800.0 20.0 159.0 8\11 Buchan, 1978 DAF,W
North America 72.7 -80.0 Borden dikes 819.0 -26.7 153.3 8.6 Christie and Fahrig, 1983 DAF,W
North America 45.4 -79.9 Haliburton intrusions (C) 820.0 -3.0 167.0 6.6 Buchan and Dunlop, 1976 DAF,W
North America 64.5 -128.0 Katherine group 855.0 -9.0 330.0 4\8 Powell et al, 1993; Park and Aitken, 1996b DAF
North America 48.5 -58.5 Indian Head anorthosite 885.0 -9.5 158.5 15\20 Murthy and Rao, 1975 DAF,W
North America 47.5 -30.3 St. Urbain anorthosite 890.0 -2.0 154.0 7.0 Robertson and Roy, 1979 DAF,W
North America 45.6 -75.6 Gatineau Hills metamorphics 900.0 -32.0 155.0 5.0 Irving et al., 1972 MT
North America 45.4 -79.9 Haliburton intrusions (B) 900.0 24.5 172.3 15.7 Buchan and Dunlop, 1976 DAF,W
North America 44.1 -76.1 Frontenac Axis dikes 910.0 -12.0 162.0 7.0 Park and Irving, 1972 DAF,W
North America 45.5 -77.8 Umfraville gabbro 911.0 -11.0 166.0 8.2 Symons, 1978 W
North America 45.5 -77.8 Umfraville gabbro 911.0 -7.5 160.0 9.0 Palmer et al., 1979 W
North America 47.9 -79.7 Granodiorites reset 960.0 -37.0 150.0 8.0 Hyodo et al., 1986 MT,W
North America 46.1 -80.7 French River anorthosite 975.0 -26.0 135.0 10.0 Stupavsky and Symons, 1982 DAF,W
North America 47.9 -79.7 Nippissing diabase remag 975.0 -27.0 141.0 8.0 Hyodo et al., 1986 MT,W
North America 45.4 -79.9 Haliburton intrusions (A) 980.0 -36.0 142.5 6.3 Buchan and Dunlop, 1976 W
North America 46.0 -78.0 Haliburton intrusives 980.0 -36.0 143.0 6.0 Hyodo and Dunlop, 1993 DAF,MT,P
North America 47.1 79.1 Archean Greenschist reset 990.0 -5.0 152.0 11.0 Hyodo et al., 1986 W

North America 45.5 -79.9 Whitestone diorite 995.0 22.0 326.0 8\10
Hyodo and Dunlop, 1993; Dalmeyer and 
Sutter, 1980 DAF

North America 45.5 -79.9 Whitestone massive anorthosite (Y) 995.0 -5.0 168.0 6\10 Ueno et al., 1975 W
North America 45.5 -79.9 Whitestone quartz diorite (Z) 995.0 -22.0 146.0 8\10 Ueno et al., 1975 W
North America 46.1 -80.7 French River anorthosite 1,000.0 13.0 154.0 2.0 Stupavsky and Symons, 1982 DAF,W
North America 45.3 -20.2 Grenville thermochron Zone A 1,000.0 1.0 159.0 6.0 McWilliams and Dunlop, 1978 W
North America 46.0 -74.5 Morin anorthosite (S) 1,000.0 0.0 164.0 10.0 Irving et al., 1974 DAF,W
North America 46.2 -78.2 Mattawa Tonalitic gneiss Mto 1,009.0 -2.0 140.0 5\5.6 Hyodo and Dunlop, 1993 W
North America 46.2 -78.2 Mattawa Tonalitic gneiss Mt1 1,009.0 -21.0 127.0 5\5.6 Hyodo and Dunlop, 1993 W
North America 46.8 -70.7 Chequamegon Sandstone 1,020.0 -12.0 178.0 5.0 McCabe and Van der Voo, 1983 P
North America 46.5 -91.0 Eileen sandstones 1,020.0 20.0 156.0 10.0 Watts, 1981 MT,W
North America 46.7 -92.3 K1 Fond du Lac sandstones 1,020.0 16.0 160.0 4.0 Watts, 1981 MT,W
North America 46.6 -91.8 Middle River sandstones 1,020.0 25.0 148.0 9.0 Watts, 1981 MT,W
North America 51.0 -63.0 Allard Lake anorthosite 1,025.0 -39.0 140.0 18.0 Hargraves and Bert, 1967 DAF,W
North America 48.4 -82.7 Shenango Complex normal 1,045.0 -45.0 6.0 9\14 Costanzo-Alvarez et al., 1993 DAF
North America 48.4 -82.7 Shenango Complex reverse 1,045.0 -34.0 11.0 11\17 Costanzo-Alvarez et al., 1993 DAF
North America 48.7 -86.5 Clay-Howells carbonotite 1,075.0 27.0 179.0 7.0 Lewchuk and Symons, 1990b DAF,MT,W
North America 47.8 -85.9 Michipicoten Island volcanics 1,075.0 25.0 175.0 8.0 Palmer and Davis, 1987 DAF,W
North America 29.7 -110.5 Arizona diabases 1,085.0 -23.0 359.0 7.8 Harlan, 1993 DAF
North America 47.8 -85.9 Mamainse Point intrusive unit 1,085.0 24.0 166.0 31.0 Palmer and Davis, 1987 W
North America 47.2 -88.5 Copper Harbor 1,087.0 -22.0 1.0 6.5 Diehl and Haig, 1994 DAF
North America 46.5 -90.0 Freda sandstone 1,087.0 1.0 180.0 1.0 Henry et al., 1977 DAF,MT,P,W
North America 47.0 -89.5 Jacobsville sandstone mean 1,087.0 -9.0 183.0 3.0 Roy and Robertson, 1978 DAF,MT,P,W
North America 47.4 -87.7 Lakeshore traps 1,087.0 22.0 181.0 7.0 Diehl and Haig, 1994 MT,P
North America 46.5 -90.0 Nonesuch shale 1,087.0 10.0 177.0 3.0 Henry et al., 1977 DAF,MT,P,W
North America 49.9 -86.2 Chipman Lake carbonotites 1,090.0 38.0 186.0 8.0 Symons, 1992 DAF,W
North America 47.8 -85.9 Mamainse Point 1 1,090.0 -39.0 357.0 4\6 Costanzo-Alvarez et al., 1993 DAF
North America 47.8 -85.9 Mamainse Point 2 1,090.0 -31.0 8.0 6\10 Costanzo-Alvarez et al., 1993 DAF
North America 47.8 -85.9 Mamainse Point 3 1,090.0 -37.0 23.0 15\20 Costanzo-Alvarez et al., 1993 DAF



Continent slat slon Name Age plat plon A95 Reference Source1

North America 47.8 -85.9 Mamainse Point 4 1,090.0 -61.0 39.0 13\14 Costanzo-Alvarez et al., 1993 DAF
North America 47.8 -85.9 Mamainse Point volcanics 1,090.0 38.0 188.0 1.0 Palmer and Davis, 1987 W
North America 47.4 -87.7 Portage Lake lavas 1,095.0 27.0 181.0 3.0 Halls and Pesonen, 1982 DAF,MT,P,W
North America 46.3 -90.1 Powder Mill reverse 1,095.0 39.0 218.0 5.0 Palmer and Halls, 1986 MT

North America 47.8 -90.0 Upper North Shore Volcanics 1,097.0 32.0 184.0 5.0
Halls and Pesonen, 1982; Halls and Green, 
1997 P

North America 47.8 -90.0 North Shore volcanics (N) 1,098.0 -32.0 8.0 Roy, 1983 DAF
North America 47.8 -90.0 North Shore volcanics (R) 1,098.0 -47.0 20.0 Roy, 1983 DAF
North America 48.6 -88.0 Upper Osler volcanics 1,098.0 34.0 178.0 10.0 Halls, 1974 W
North America 47.2 -88.5 Copper Harbor lavas 1,100.0 35.0 176.0 3.0 Halls and Palmer, 1981 MT,W
North America 52.9 -60.0 Mealy Mountain anorthosite (A) 1,100.0 -22.9 173.4 5.0 Park and Emslie, 1983 DAF,W
North America 47.0 -89.4 mean Logan dikes 1,100.0 35.0 181.0 10.0 Halls and Pesonen, 1982 MT,P,W
North America 48.4 -88.6 Thunder Bay (N) 1,100.0 -35.0 354.0 4\7 Costanzo-Alvarez et al., 1993 DAF
North America 48.4 -88.6 Thunder Bay (R) 1,100.0 -48.0 32.0 7\8 Costanzo-Alvarez et al., 1993 DAF
North America 47.4 -87.7 Keewanawan dikes 1,102.0 44.0 197.0 11\11 Green et al., 1987 MT
North America 45.3 -77.7 Cordova gabbro (A) 1,103.0 -10.5 151.0 5.5 Dunlop and Sterling, 1985 W
North America 45.3 -77.7 Cordova gabbro (B) 1,103.0 24.0 165.0 9.5 Dunlop and Sterling, 1985 W
North America 47.7 -83.1 Lackener Lake Complex 1,105.0 -54.0 23.0 7\8 Costanzo-Alvarez et al., 1993 DAF
North America 48.0 -83.1 Nemegosenda NM1 1,107.0 -43.0 2.0 15\24 Costanzo-Alvarez et al., 1993 DAF
North America 48.0 -83.1 Nemegosenda NM2 1,107.0 -52.0 5.0 13\18 Costanzo-Alvarez et al., 1993 DAF
North America 48.0 -60.6 Firesand River 1,107.5 -27.0 3.0 6\13 Costanzo-Alvarez et al., 1993 DAF
North America 48.8 -86.5 Coldwell complex 1,108.0 49.0 200.0 16.5 Lewchuk and Symons, 1990a MT
North America 48.8 -86.5 Coldwell complex 1 1,108.0 -54.0 37.0 5\6 Costanzo-Alvarez et al., 1993 DAF
North America 48.8 -86.5 Coldwell complex 2 1,108.0 -49.0 15.0 7\9 Costanzo-Alvarez et al., 1993 DAF
North America 48.8 -86.5 Coldwell complex 3 1,108.0 -44.0 9.0 5\7 Costanzo-Alvarez et al., 1993 DAF
North America 49.0 -88.1 mean Logan sills 1,109.0 49.0 220.0 3.0 Halls and Pesonen, 1982 DAF,MT,W
North America 44.8 -77.6 Tudor gabbro Tu1 1,110.0 17.0 137.0 8.4 Palmer and Carmichael, 1973 W
North America 44.8 -77.6 Tudor gabbro Tu2 1,110.0 12.0 133.0 4.8 Dunlop et al., 1985 W
North America 47.0 -83.3 Seabrook Lake carbonotite 1,113.0 46.0 180.0 11.0 Symons, 1992 DAF,MT,W
North America 46.0 -74.5 Morin anorthosite (P) 1,124.0 -42.0 139.0 5.3 Irving et al., 1974 DAF,W
North America 48.9 -79.5 Abitibi dikes 1,141.0 44.0 211.0 15\12 Ernst and Buchan, 1993 MT,P
North America 44.8 -77.8 Thanet gabbro (A) 1,202.0 -30.0 165.0 3.6\6.8 Buchan, 1978 W

North America 44.8 -77.8 Thanet gabbro (A1) 1,202.0 28.0 338.0 3.6\3.8
Buchan et al. 1983, Dalmeyer and Sutter, 
1980 DAF

North America 44.8 -77.8 Thanet gabbro (A2) 1,202.0 32.0 352.0 5.5\9.2
Buchan et al. 1983, Dalmeyer and Sutter, 
1980 DAF

North America 48.5 -71.7 Lac St. Jean anorthosite (Normal) 1,451.0 -8.0 167.0 4.6\7.3 Buchan et al., 1983 W
North America 52.9 -60.0 Mealy Mountain anorthosite (E) 1,550.0 -38.0 178.0 9.0 Fahrig et al., 1974 DAF,W
North America 52.9 -60.0 Mealy Mountain anorthosite (NW) 1,550.0 8.5 181.0 12.0 Fahrig et al., 1974 DAF,W
North America 52.9 -60.0 Mealy Mountain anorthosite (B) ? -34.2 147.9 11.0 Park and Emslie, 1983 DAF,W
North America 47.9 -89.6 Grand Portage dikes none -48.0 20.0 8\10 Costanzo-Alvarez et al., 1993 DAF
North America Grenville dikes none 3.0 331.0 Buchan et al., 1983 DAF
North America 45.4 -79.9 Grenville Front anorthosite none 8.0 161.0 6.3 Palmer and Carmichael, 1973 DAF,W
North America 48.5 -71.7 Lac St. Jean anorthosite (Reverse) none -19.0 147.0 8.5\105 Buchan et al., 1983 W
North America 44.5 -78.3 Magnetawan metasediments none -24.0 130.0 4.0 McWilliams and Dunlop, 1975 DAF,W
North America 48.0 -83.1 Nemegosenda NM3 none -49.0 14.0 21\29 Costanzo-Alvarez et al., 1993 DAF
North America 45.2 -76.1 Ottowa basic intrusions none -32.0 155.0 8.0 Irving et al., 1972 DAF,W
North America 48.1 -82.9 Shawmere western sites none -53.0 9.0 15\20 Costanzo-Alvarez et al., 1993 DAF
North America 45.5 -79.9 Whitestone anorthosite, oxide segregation (W) none -16.0 156.0 8\11 Ueno et al., 1975 W
North America 45.0 -78.2 Wilberforce pyroxenite none -14.5 148.0 6.0 Palmer and Carmichael, 1973 W
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North America 48.6 -88.0 Lower Osler volcanics -49.0 23.0 12\14 Costanzo-Alvarez et al., 1993 DAF
North America 46.4 -87.4 Marquette dikes -48.0 33.0 5\6 Costanzo-Alvarez et al., 1993 DAF
Sao Francisco -19.6 -45.4 Mean Sao Francisco Pole (SFC) 520.0 19.0 330.0 13.0 D'Agrella-Filho et al., 2000 MT
Sao Francisco -13.0 -38.5 Salvador dikes, normal 1,003.0 9.0 121.0 15.0 D'Agrella-Filho and Pacca et al., 1994 DAF
Sao Francisco -15.4 -39.0 Ilheus dikes (SFC) 1,012.0 30.0 100.0 3.0 D'Agrella-Filho et al., 1990 W
Sao Francisco -13.0 -38.5 Salvador dikes, reverse 1,021.0 18.0 228.0 13.0 D'Agrella-Filho and Pacca et al., 1994 DAF
Sao Francisco -15.2 -39.7 Itaju do Colonia 1,050.0 8.0 111.0 6.0 D'Agrella-Filho et al., 1990 W
Sao Francisco -15.2 -39.0 Olivenca dikes - N (SFC) 1,050.0 16.0 107.0 5.0 D'Agrella-Filho et al., 1990 W
Sao Francisco -15.2 -39.0 Olivenca dikes - R (SFC) 1,078.0 -10.0 100.0 6.0 D'Agrella-Filho et al., 1990 W

Siberia 67.5 105.0 Moyero River Seds 490.0 -37.0 139.0 6.0 Gallet and Pavlov, 1996 MT
Siberia 71.0 122.5 Yuryakh Fm 500.0 -36.0 140.0 5.0 Pisarevsky et al., 1998 MT
Siberia 68.0 88.6 Kulumbe River 503.0 -42.0 136.0 2\3 Pavlov and Gallet, 2001 MT
Siberia 71.0 122.5 Ekreket Fm 510.0 -45.0 159.0 7.0 Pisarevsky et al., 1998 MT
Siberia 59.0 135.0 Inican 538.0 -46.0 162.0 4.0 Osipova, 1986 MT
Siberia 71.0 122.5 Kessyusa 545.0 -38.0 165.0 13.0 Pisarevsky et al., 1998 MT
Siberia 47.0 90.6 Tsagan-Olom 565.0 23.0 203.0 11\22 Kravchinsky et al., 2001 MT
Siberia 54.0 108.0 Cisbaikalia 615.0 -3.0 168.0 9.0 Pisarevsky et al., 2000 MT
Siberia 78.1 110.0 Minya Fm 615.0 34.0 217.0 9\15 Kravchinsky et al., 2001 MT
Siberia 52.1 103.8 Shaman Fm 615.0 32.0 251.0 7\14 Kravchinsky et al., 2001 MT
Siberia 58.9 136.0 Sette-Daban Sills/Kandyk Fm 974.0 -4.0 177.0 2.0 Pavlov et al., 1992 MT
Siberia 66.0 88.0 Turukhansk sediments 987.0 -15.0 256.0 8.0 Gallet et al., 2000 P
Siberia 68.0 89.0 Uchur-Maya (Malgin) sediments 1,070.0 -25.0 231.0 3.0 Gallet et al., 2000 P,MT

South China 30.2 119.7 Hetang Fm 511.0 -3.0 16.0 17.0 Lin et al., 1985 MT
South China 30.8 111.2 Tianheban Fm 511.0 -7.0 10.0 23.0 Lin et al., 1985 MT
South China 24.4 102.3 Meishucun Fm 525.0 9.0 31.0 10.0 Lin et al., 1985 MT
South China 22.5 105.0 Nantuo Fm 740.0 0.0 331.0 5.0 Rui and Piper, 1997 MT
South China 30.5 111.1 Liantuo 748.0 -4.0 341.0 13.0 Evans et al., 2000 P
Trans-Sarara 26.2 33.5 Dokhan volcanics (ANS) 593.0 -43.0 36.0 10.0 Davies et al.,  1980; Naim et al., 1987 MT
Trans-Sarara 19.0 37.0 Suakin gabbros (CC) 841.0 25.0 134.0 8.0 Reischmann et al., 1992 MT



Continent elat elon rot
Amazonia 3 334 -92
Antarctica -23 199 110
Australia -11 7 -121
Baltica -84 180 48
Congo  –16.2 166 145
East Africa  –16.2 166 145
Greenland 68 -118 -14
India 2 359 174
Iran -11 178 178
Kalahari  –16.2 166 145
Khazakstan  –59 191 140
Madagascar  –23.7 180 127
Northwest Africa  –16.2 166 145
Rio Plata. 3 334 -92
Sao Francisco 3 334 -92
Siberia -65 204 155
South China -44 162 -174
Trans-Sahara  –16.2 166 145

Table 2. List of Euler poles and angles of rotation (with respect to Laurentia) for continents shown 
in the Rodinia reconstruction proposed here for the time frame 1,200-850 Ma (fig. 14). Table 
lists: continent, Euler pole latitude (elat), Euler pole longitude (elon), and rotation about the Euler 
pole (rot). Rotations are given as clockwise (negative) or counterclockwise (positive). Shaded 
continents are ones for which no paleomagnetic data exists (in the compilation used here). Light 
shading indicates continents (East Africa, Northwest Africa, Trans-Sahara) which were rotated 
with Congo.
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