

University of Birmingham

On Efficient and Secure Compression Functions for
Arithmetization-Oriented Hashing
Andreeva, Elena; Bhattacharyya, Rishiraj; Roy, Arnab; Trevisani, Stefano

DOI:
10.1109/CSF61375.2024.00032

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Andreeva, E, Bhattacharyya, R, Roy, A & Trevisani, S 2024, On Efficient and Secure Compression Functions for
Arithmetization-Oriented Hashing. in 2024 IEEE 37th Computer Security Foundations Symposium (CSF). IEEE
Computer Security Foundations Symposium, IEEE, pp. 558-573, 37th IEEE Computer Security Foundations
Symposium, Enschede, Netherlands, 8/07/24. https://doi.org/10.1109/CSF61375.2024.00032

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. Oct. 2024

https://doi.org/10.1109/CSF61375.2024.00032
https://doi.org/10.1109/CSF61375.2024.00032
https://birmingham.elsevierpure.com/en/publications/14a1440d-8aed-4128-87a4-2e9ba95408fc

On Efficient and Secure Compression Functions for
Arithmetization-Oriented Hashing

Elena Andreeva
Research Unit of Security and Privacy

TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria

elena.andreeva@tuwien.ac.at

Rishiraj Bhattacharyya
School of Computer Science
University of Birmingham

Edgbaston, B15 2TT Birmingham, United Kingdom
r.bhattacharyya@bham.ac.uk

Arnab Roy
Security and Privacy Lab
University of Innsbruck

Technikerstraße 21A, 6020 Innsbruck, Austria
arnab.roy@uibk.ac.at

Stefano Trevisani
Research Unit of Security and Privacy

TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria

stefano.trevisani@tuwien.ac.at

Abstract—ZK-SNARKs, a fundamental component of privacy-
oriented payment systems, identity protocols, or anonymous vot-
ing systems, are advanced cryptographic protocols for verifiable
computation: modern SNARKs allow to encode the invariants of
a program, expressed as an arithmetic circuit, in an appropriate
constraint language from which short, zero-knowledge proofs for
correct computations can be constructed.

One of the most important computations that is run through
SNARK systems is the verification of Merkle tree (MT) opening
proofs, which relies on the evaluation of a fixed-input-length (FIL)
cryptographic compression function over binary MTs. As clas-
sical, bit-oriented hash functions like SHA-2 are not compactly
representable in SNARK frameworks, Arithmetization-Oriented
(AO) cryptographic designs have emerged as an alternative,
efficient solution.

Today, the majority of AO compression functions are built
from permutation-based hashing modes, such as Sponge. While
this approach allows cost savings, compared to blockcipher-based
modes, as it does not require key-scheduling, AO blockcipher
schedulers are often cheap to compute. Furthermore, classical bit-
oriented cryptography has long studied how to construct provably
secure compression functions from blockciphers, following the
Preneel-Govaerts-Vandewalle (PGV) framework. The potential
efficiency gains together with the strong provable security founda-
tions in the classic setting, motivate the study of AO blockcipher-
based compression functions.

In this work, we propose AO PGV-LC and PGV-ELC, two
AO blockcipher-based FIL compression modes inspired by and
extending the classical PGV approach, offering flexible input and
output sizes and coming with provable security guarantees in the
AO setting. We prove the collision and preimage resistance in the
ideal cipher model, and give bounds for collision and opening
resistance over MTs of arbitrary arity.

We compare experimentally the AO PGV-ELC mode over the
HADES blockcipher with its popular and widely adopted Sponge
instantiation, POSEIDON, and its improved variant POSEIDON2.
Our resulting constructions are up to 3× faster than POSEIDON
and 2× faster than POSEIDON2 in native x86 execution, and up
to 50% faster in the Groth16 SNARK framework.

Finally, we study the benefits of using MTs of arity wider
than two, proposing a new strategy to obtain a compact R1CS
constraint system in such case. In fact, by combining an efficient
parametrization of the HADES blockcipher over the PGV-ELC

mode, together with an optimal choice of the MT arity, we
measured an improvement of up to 9× in native MT construction
time, and up to 2.5× in proof generation time, compared to
POSEIDON over binary MTs.

Index Terms—Hash function, Block cipher, Arithmetization-
Oriented, Merkle tree, Zero-Knowledge, SNARK

I. INTRODUCTION

Zero-Knowledge Frameworks and Hash Functions.: Zero-
Knowledge Proof (ZKP) systems [1], [2] are advanced cryp-
tographic protocols which allow a prover to convince a
verifier about the solvability of some problem instance, yet
without having to reveal the solution. Nowadays, general-
purpose, zero-knowledge Succinct Non-interactive ARgument
of Knowledge (ZK-SNARK) systems [3]–[8], allow the prover
to build short proofs for the computational integrity of some
bounded algorithm, which can be efficiently checked by any
number of verifiers in a non-interactive way. This process
involves an arithmetization step, where the invariants of the
algorithm are encoded in a set of algebraic constraints [7], [9],
[10]. ZK-SNARKs are extensively used for privacy-preserving
payment systems [11]–[13], anonymous distributed storage
systems [14], authenticated machine learning and image pro-
cessing [15], [16], anonymous voting [17], to name a few [18].

Cryptographic hash functions are fundamental building
blocks for SNARKs and their security and efficiency. Hash
functions compress either fixed-input-lengths (FIL, a.k.a. com-
pression functions) or variable-input-lengths (VIL) and where
necessary we make this distinction. In SNARK systems hash
functions are used for a variety of tasks ranging from data
integrity checks, commitment schemes to setting up non-
interactive proofs with the Fiat-Shamir transform [19]. More
specifically, two of the most prominent use cases of hash
functions in ZK-SNARKs are:

• Efficient and secure zero-knowledge set membership
proofs based on the Merkle Tree (MT) hash accumulator,

1

a fundamental part of privacy-preserving blockchains like
Zcash and Filecoin [11], [14]. In this setting, users
U1, . . . ,Um insert their values v1, . . . ,vn (e.g. unspent
transaction in Zcash) in the MT accumulator T . The MT
root value is published. To claim ownership of vj , the
user must prove knowledge of the value. The ZK proof
is a proof of computation for the opening proof (Def.10)
for the MT. The latter is a sequence of preimages of
FIL compression functions for values along the MT path
that are combined to obtain the MT root. In these proof
systems, the size of the hash function arithmetic circuits,
i.e. its multiplicative complexity over a prime field Fp, is
the dominant cost metric, rather than its plain or “native”
performance.

• In recursive SNARK frameworks, such as FRACTAL [20]
or Halo Infinite [21], the entire computation can be
viewed as consecutive applications of a chain of functions
f1, . . . , fm on some state x0, where each fi leads to an
intermediate result xi, and a proof of correctness must be
handed to the next prover (who computes fi+1). Hence,
the prover Pi observes of its own computation fi(xi−1)
and a proof of correctness from the previous prover. The
verifier Vi checks the correctness of fi−1 from the corre-
sponding proof πi−1. In proof systems where the (inner)
commitment for πi−1 consists in an MT opening, the
verifier Vi executes again the FIL compression function
underlying the MT. The efficiency of such applications
critically depends on the minimization of both the hash
function circuits size and native running time.

In both settings, standard or classical choices of hash
functions (e.g. SHA-2 or SHA-3 [22]) are the bottleneck of
the computation since their arithmetization requires a huge
number of algebraic constraints, slowing down significantly
the proof generation process. The efficiency of SNARK sys-
tems depend on the size, and particularly on the multiplicative
complexity, of the arithmetic circuit of the hash function and
that over a large prime field Fp. Hence, to optimize perfor-
mance in the SNARK setting, a hash function design should
optimize both its arithmetic circuit size and its multiplicative
complexity. Additionally, when the hash function is used in
the Merkle tree, it accepts FIL inputs, meaning that taking
into account excessive design requirements (e.g. padding or
iterating for VIL hash functions) incurs further complexity.

Arithmetization-Oriented Hash Functions.: Driven by the
efficiency requirements of modern ZK proof systems, a num-
ber of so-called Arithmetization-Oriented (AO) hash and com-
pression functions were proposed in the literature. The AO
hash function main features can be summarized as follows:

• They are defined over large prime fields Fp, where usually
p ≈ 2256, and Fp is the scalar fields of some elliptic curve
(Table VII).

• They are constructed in a modular way, by applying a
permutation-based mode of operation to either a keyless
permutation [23]–[25] or a fixed-key blockcipher [26]–
[31] (realizing also a permutation). The underlying per-

mutation is parameterized by the size of the input (∈ Fn
p),

while the hash function is parameterized by the size of
the output (∈ Fl

p, with l < n).
• They aim at reducing the arithmetization cost over ZK-

SNARK frameworks. Hash functions that are devised
for arbitrary choices of field and proof system include
MiMChash [26], GMiMCHash [32], Rescue Prime [27],
POSEIDON [28], POSEIDON2 [30], Anemoi [24], GRIF-
FIN [25], and Arion [31], [33]. Hash functions that are
devised for only specific proof systems and choices of
p include Reinforced Concrete [23], Tip5 [34],
and Monolith [35]: these designs aim at improving the
native performance by using lookup tables, but require a
SNARK system which supports lookup constraints [20],
[36].

Implementation Considerations.: In the landscape of ZK-
SNARK systems, different constraint languages are used in
order to represent the invariants of arithmetic circuits. One
of the most popular arithmetization techniques are R1CS
constraint systems, where the computation is constrained via
a system of bilinear equations of the kind ax × by = cz.
The size of the constraint system, and hence the cost of
arithmetization, mainly depends on the multiplicative complex-
ity, i.e. the number of multiplication gates, of the arithmetic
circuit [5]. R1CS arithmetization is adopted by all imple-
mentations of the famous Groth16 [6] SNARK framework,
such as libsnark [37], bellman [38], arkworks [39],
and Circom [40], [41], among others. Given that one of
the most important applications of AO hash functions are
the computation of Merkle tree commitments and openings,
the focus should not only be on the cost of the underlying
FIL compression function. Though the binary Merkle tree
is undoubtedly a very widely adopted structure, it might
not necessarily be used in an optimal way in this setting.
To the best of our knowledge, the direction that has been
largely unexplored is establishing the trade-offs and potential
improvements in both native and SNARK performance by
combining a larger and possibly more expensive FIL hash
function with a MT tree of wider arity and hence lower height
(for the same number of leaves).

Modular hash function design.: The modular approach is
paramount in cryptography. It allows for: 1. Provable security
arguments up to the soundness of the building blocks; 2.
Reduces complexity by shifting the focus of the analysis
to the usually simpler and smaller scale building blocks; 3.
Allows for off-the-shelf replacements of the building blocks.
We outline the most common modular design strategy used
thus far for FIL compression functions for ZK proof systems.
To compress inputs from Fr

p to Fl
p, for some l < r, a secure

permutation π : Fn
p → Fn

p in a Sponge mode [42] is called in
the so-called absorb step, where the permutation size is n > r.
Then, vectors of field elements are compressed via:

Sponge(x) = Trl
(
π
(
x ∥ 0n−r

))
Here ∥ denotes vector concatenation, Trl the vector truncation
up to the lth component, and 0n−r the zero vector over Fn−r

p .

2

A number of AO hash functions [26]–[28], [31], [32] rely
on the Sponge mode of hashing to achieve fixed-input-length
(FIL) compression. Although the Sponge mode [42] is well-
defined for inputs over any arbitrary group, its formal random-
oracle indifferentiability [43] proof was only carried out for the
special case of F2 [44]. This fact leaves a gap in the formal
security argument of AO hash functions relying on the Sponge
mode for inputs over Fp.
Two alternative FIL compression modes, Trunc and Jive,
were proposed respectively in [25] and [24]: in both cases,
the permutation size is n = r, and vectors are compressed
through:

Trunc(x) = Trl(y) Jive(x) =
∑n

i=1
yi

where y = π(x) + x. Compared to the Sponge mode, both
Trunc and Jive require a smaller permutation, improving effi-
ciency. Although the underlying instantiations were proposed
as a keyless permutation for both Trunc and Jive modes,
in [25], the security of both modes was linked to the Davies-
Meyer construction [45], by viewing the (keyless) permutation
π(x) as a fixed-key blockcipher Ev(x). And no formal
security proof was provided. However, the Davies-Meyer proof
argument [46], [47] does not apply to permutations and applies
only for the boolean field F2.
Although all major AO hash functions employ internally a
permutation, these permutations happen to be most commonly
obtained from a readily designed AO blockcipher E : Fκ

p ×
Fn
p → Fl

p. The key of the blockcipher is set to a fixed constant
to get a permutation. This is for example the case in one of
the most popular AO hash functions, POSEIDON, and its newer
version POSEIDON2: the former has been deployed in many
real-world systems, including Filecoin [14], Loopring [48],
Zcash [49], and it has been proposed to be added in the
Ethereum VM [50]. Both constructions are based on the
HADES cipher [51] by fixing the key in the cipher and applying
the Sponge mode. While in classical bit-oriented cryptography
key-scheduling for the blockcipher is often an expensive
operation (e.g. in AES [52], [53]), for AO blockciphers like
MiMC, GMiMC and HADES, the key scheduling algorithm is
an affine function whose computational cost is cheap both in
native execution and in the SNARK circuit.

AO cryptography and design goals.: The field of AO-based
cryptography is less than a decade old and still in its nais-
sance. At present, novel designs approaches for AO hashing
are emerging, typically coming with contemporary evidence
of lack of cryptanalytic flaws, and efficiency benchmarks.
Cryptanalysis techniques for such constructions are constantly
evolving [54]–[56], often exposing important weaknesses in
the design approaches [57]–[60].
A cryptographic design however stands the test of time upon
evidence of sound, simple and verifiable security arguments
(cryptanalysis and proofs of security), significant efficiency
advantages and flexible design features. A flexibility design
feature of AO hashing is for example the ability to handle
different hash function input and output sizes, or internal

building block sizes, a feature currently not present in existing
permutation-based designs.

The most popular classical approach to designing a prov-
ably secure FIL compression function over binary inputs is
the Preneel-Govaerts-Vandewalle (PGV) framework [61]. Its
compositional simplicity has established it a foundational
design approach for a number of classical hash functions,
including RIPEMD-160 and SHA-2 [22], [62]. PGV designs
have been provably investigated by Black et al. [47] in the
ideal cipher model. In PGV, the inputs are compressed via a
secure blockcipher E : Fn

2 × Fn
2 → Fn

2 as follows:

PGV(x ∥ y) = Ea(b) + c

where a, b, c ∈ {x,y,x+ y,v}, for some constant value v
(for example, if a = y, and b = c = x, one obtains the
previously mentioned Davies-Meyer mode). While the PGV
framework has been integral to a number of classical hash
function design, its security does not apply in the AO setting
over large prime fields Fp.

Taking in consideration the largely unexplored area of AO
blockcipher modular compositionality towards FIL compres-
sion function designs and their performance, in this work we
aim to answer the following main questions:

1) Can we design provably secure and simple AO and
FIL compression functions for ZK proof systems over
arbitrary prime fields Fp based on AO blockciphers?

2) Can such FIL compression functions have flexibility with
respect to input, output and internal primitive sizes?

3) Do these blockcipher-based functions, both theoretically
and experimentally, offer significant improvements with
respect to comparable existing (for the same AO block-
cipher with a fixed key) permutation-based designs?

4) Is it possible to exploit the relation between the cost of
the FIL compression function over its state size and of
the Merkle tree opening proof over its arity to further
optimize the performance?

Our Contributions

In this work we make the following contributions:

1) AO SYNTAX AND SECURITY DEFINITIONS. Towards
sound security analysis, in Section II, we adapt the
classical syntax for blockcipher and permutation-based
VIL/FIL hash functions to the AO setting over arbitrary
prime fields Fp. Additionally, we tailor the formal
security definitions of collision and preimage resistance
for VIL/FIL hash functions to the AO context, and
similarly capture the notion of opening resistance notion
over Merkle trees of arbitrary arity over Fp.

2) NEW AO FIL COMPRESSION FUNCTIONS STRATEGIES.
In Section III, we propose the AO blockcipher-based AO
FIL compression function strategy PGV-LC. PGV-LC is
flexible as it is defined to work on inputs of dimension
κ′ = κ and n′ = n, a blockcipher E : Fκ

p × Fn
p → Fn

p ,
and an n× l post-processing matrix R, where l is some

3

desired (flexible) output size, the compression is carried
out as (also see Figure 1):

PGV-LC(x ∥ y) = R · (Ex(y) + y)

The PGV-LC mode generalizes to the AO setting the
compression functions in the PGV framework, and also
encompasses the Trunc and Jive modes, if interpreted as
in [25], by giving a fully linear-algebraic characterization.
From PGV-LC, we derive the next FIL compression func-
tion instantiation strategy PGV-ELC. PGV-ELC offers
further flexibility by allowing the input dimensions to
be smaller than the blockcipher dimensions by applying
additional pre-processing matrices P , K, and F (see
Figure 2).

3) SECURITY PROOFS FOR PGV-LC AND PGV-ELC. In
Section IV, we prove the security of PGV-LC and
PGV-ELC in the ideal cipher model. We show that there
are natural classes of the linear transformations involved
in the compression for which both modes are collision
resistant up to (q2+q)/(pl−q) queries to the underlying
blockcipher, and preimage resistant up to q/(pl − q)
queries.
For the target ZK proof systems applications, we come
with a proof that reduces the collision and opening
proof forgery resistance of t-ary AO Merkle trees to the
collision and preimage resistance of the underlying com-
pression function. Our proofs are generic in nature and
enable secure instantiations with sound AO blockciphers,
namely, they allow the bulk of cryptanalysis to be shifted
to the underlying blockcipher.

4) OPTIMIZATIONS AND EXPERIMENTS. In Section V, we
consider the widely adopted hash function POSEI-
DON [14], [28], [48], [50], and its newer variant, PO-
SEIDON2 [30], which are both based on a fixed-key
instantiation of the HADES [51] blockcipher. We compare
(Sponge) POSEIDON and POSEIDON2-Trunc with similar
PGV-ELC instantiations of HADES, which we call PO-
SEIDON-DM and POSEIDON2-DM, respectively.
First, we present an optimized way to synthesize R1CS
constraint systems for arbitrary arity MT opening proofs,
which, when applied to POSEIDON-DM, already offers
a 5–15% improvement in the number of constraints
compared to alternative techniques (Table II).
In R1CS-based ZK-SNARK systems, POSEIDON-DM
and POSEIDON2-DM require up to 50% less R1CS
constraints than POSEIDON and POSEIDON2 (Table III);
additionally, by exploiting our optimized Merkle tree
constraint system, optimal arity choices for POSEIDON
and POSEIDON2-DM are ≈ 2.5× faster than POSEIDON
and POSEIDON2 over binary trees in the Groth16 [6]
framework (Table IV and fig. 3).
For native computations, POSEIDON-DM is up to 3×
faster than POSEIDON, while POSEIDON2-DM is up to
2× faster than POSEIDON2. For the optimal arity choice,
when constructing Merkle trees, POSEIDON2-DM is 2.5×
faster than POSEIDON2 over binary trees, and almost 9×

faster than POSEIDON over binary trees, which is the most
popular instance used in real-world applications (Table V
and fig. 4). When parallelizing the MT construction, we
noticed that all compression functions scale similarly,
with the size of the underlying prime field being the most
relevant bound (Figure 6).

II. PRELIMINARIES

A. Notations and Definitions

Arithmetization-Oriented cryptography is concerned with
the design of cryptographic algorithms that manipulate el-
ements of finite algebraic structures (e.g. fields and vector
spaces), rather than strings of bits.

Given a set S of cardinality |S|, let S∗ =
⋃

i∈N Si denote
the Kleene’s closure of S, and let Sω denote the set of
infinite-length tuples made from elements of S. Given a prime
number p, let Fp the finite prime field of order |Fp| = p
and characteristic char(Fp) = p, with canonical addition
and multiplication modulo p. We will consider p to be odd,
and typically ‘large’ (say, p > 264). We denote with Fn

p the
standard n-dimensional vector space of column vectors over
Fp, with standard addition and scalar product. Similarly, Fn×m

p

is the standard (n×m)-dimensional matrix space over Fp.
Scalars are denoted with lowercase letters a, b, c, . . ., vectors
with bold lowercase letters a, b, c, . . ., and matrices with bold
uppercase letters A,B,C, We denote with In×m the
pseudo-identity matrix whose entries in the main diagonal have
value 1 while all other entries have value 0. The transpose
of a vector a (respectively a matrix A) is denoted with a⊺

(respectively A⊺).
Most of the following definitions are well-known in classical

symmetric cryptography over F2n . We lift them over Fp to
facilitate the discussion on AO modes.

Definition 1 (AO blockcipher). Given some κ, n ∈ N, and a
prime field Fp, a κ-n-elements AO blockcipher over Fp is a
function:

E(k,x) : Fκ
p × Fn

p → Fn
p

which is a permutation on x for every possible choice of
k. An AO blockcipher family {Ek} is the collection of all
permutations Ek(x) obtained by partial application of k, and{
E−1

k

}
is the collection of all their inverses.

When κ is left unspecified, we implicitly assume κ = n.
Following a standard abuse of notation, we will often write E
to mean {Ek} and E−1 to mean

{
E−1

k

}
.

Definition 2 (AO compression function). Given some m,n ∈
N, with m > n, and a prime field Fp, an m-n-elements AO
compression function over Fp is any function with signature:

C(x) : Fm
p → Fn

p

For ease of discussion, we may describe an ml-n-
elements compression function in terms of multiple arguments
x1, . . . ,xm ∈ Fl

p rather than in terms of one single argument

4

x ∈ Fml
p , and we equivalently write m:n to denote m-n-

elements compression. Compression functions are also known
as Fixed-Input-Length (FIL) hash functions.

Definition 3 (AO hash function). Given some n ∈ N, and a
prime field Fp, an n-elements AO hash function over Fp is
any function with signature:

H(M) : (Fp)
∗ → Fn

p

Variable-Input-Length (VIL) n-elements hash functions are
generally built on top of some m-n FIL compression function
together with an l-elements padding function of the kind:

Pad(M) : (Fp)
∗ →

(
Fl
p

)∗
where l is an appropriate multiple of m which depends on the
structure of the hash function itself. It is extremely important
to use well-behaved padding functions, even more so in AO
cryptography where there does not exist a bijective mapping
between elements of Fp and bit-strings of a certain length
(except when p = 2); however, as this work is mostly
concerned with FIL compression, we assume that such a
padding function is available.

B. AO Modes of Operation

Directly devising secure cryptographic algorithms is not an
easy task; the standard approach is to directly design relatively
simple primitives, such as (unkeyed) permutations or blockci-
phers, and then compose them in a black-box manner through
a mode of operation to obtain more advanced functionalities.

A famous family of modes to build secure compres-
sion and hash functions from blockciphers are the PGV
modes [61]. The PGV modes are tightly related to the Merkle-
Damgård (MD) mode of hashing [63], in that they generalize
well-known modes like Davies-Meyer [45], Matyas-Meyer-
Oseas [64], or Miyaguchi-Preneel [65], [66], and are hence
defined with respect to MD inputs: a message block, a chaining
variable and an initialization value (IV). While classical PGV
modes are defined over bit-strings, it is easy to adapt their
definition to the AO context: we will refer to these modes
explicitly as AO PGV-MD modes.

Definition 4 (AO PGV-MD modes). Given an n-elements
blockcipher E over some prime field Fp, an initialization value
v ∈ Fn

p , a chaining value hi−1 such that h0 = v, the AO
PGV-MD modes of E are all the compression functions of
the kind:

hi = CE,v(hi−1,xi) = Ea(b) + c

where a, b, c ∈ {xi,hi−1,v,xi + hi−1}.

A more recent approach to build secure FIL/VIL hash
functions is the Sponge mode [42]. Rather than using a
blockcipher as the underlying primitive, the Sponge mode
operates over an unkeyed permutation.

Definition 5 (AO Sponge mode). Given an n-elements per-
mutation π over some prime field Fp, a rate r < n, and

a padding function Pad: (Fp)
∗ →

(
Fr
p

)∗
, let the Sponge

iteration function with rate r of π be:

si(M) :
(
Fr
p

)∗ → Fn
p =


0 i = 0

π(si−1(M) +mi) 1 ≤ i ≤ |M |
π(si−1(M)) i > |M |

where the vectors mi ∈ Fr
p are implicitly naturally embedded

in Fn
p . Then, the Sponge mode of π with rate r is the function:

S̃π(M) :
(
Fr
p

)∗ → (
Fr
p

)ω
= s|M |(M) ∥ s|M |+1(M) ∥ . . .

and the Sponge mode of π with rate r and padding function
Pad is the function:

SPad,π(M) : (Fp)
∗ →

(
Fr
p

)ω
= S̃π(Pad(M))

The quantity c = n − r is called the capacity of the
Sponge. A Sponge construction is an extendable output func-
tion (XOF) [67]: we can truncate its output to obtain a hash
function, and fix the input length to obtain a compression
function.

An alternative to sequential modes like MD and Sponge is
Merkle tree (MT) hashing [68], [69], a way of compressing
message blocks in a parallel fashion. Differently from both
Sponge and MD, the MT hashing uses a FIL compression
function as the underlying primitive.

Definition 6 (AO Merkle tree mode). Given some l, t ∈ N, a
tl-l-elements compression function C over some prime field
Fp, and a message M ∈

(
Fl
p

)∗
such that ∃h ∈ N : |M | = th,

let the Merkle tree over C and M be the t-ary tree TC,M

of height h, containing n = |TC,M | = th+1−1
t−1 nodes

ν0, . . . ,νn−1 ∈ Fl
p ordered in a top-down left-to-right manner,

and rooted in ν0, such that ∀i < n:

νi =

{
C(νti+1, . . . ,νti+t) 0 ≤ i < n− th

mi+1−(n−th) n− th ≤ i < n

Given a function Pad: (Fp)
∗ →

(
Fl
p

)∗
such that |Pad(M)| =

th for some h ≥ 1, the Merkle tree mode of C with padding
function Pad is the hash function:

HC,Pad(M) : (Fp)
∗ → Fl

p = ν0

Merkle trees are widely used in many applications, such
as version control systems [70], P2P networks [71], [72], and
database systems [73], [74]. In particular, they play a crucial
role in blockchains [75], [76] to create proofs of membership.

The most common approach to instantiate the Merkle tree’s
underlying compression function is with a Sponge-mode per-
mutation. Recently, new FIL permutation-based compression
modes have been proposed to replace the Sponge in this
scenario [24], [25], [30]. In particular, we are interested in
the Trunc mode used by POSEIDON2.

Definition 7 (Trunc mode). Given an n-elements permutation
π over some prime field Fp, and some l < n, the Truncl mode
of π is the compression function:

C(x) : Fn
p → Fl

p = I l×n · π(x)

5

Algorithm 1 The q-queries ideal blockcipher oracle: for every
choice of k ∈ Fκ

p , Ek is a random permutation over Fn
p with

inverse E−1
k . After being queried q times, the oracle ‘shuts-

down’.
function EE,q(k, m, b)

static i← 0
if i ≥ q then return ⊥
i← i+ 1
if b = 0 then return Ek(m)
return E−1

k (m)

C. Security Notions

In order to study the cryptographic constructions of interest,
we must first formalize the relevant security notions that we
target. We denote with x

$← S the experiment of sampling x
independently and uniformly at random from some finite set
S; additionally, we let Block(p, κ, n) be the set of all κ-n-
elements blockciphers over Fp.
Remark 1. Our results will be given for the ideal AO block-
cipher model, where we assume that the blockcipher used by
blockcipher-based modes is instantiated by E

$←Block(p, κ, n).
The adversary is an information theoretical (computationally
unbounded) randomized algorithm A with query access to
the oracle EE,q , denoted AEE,q , which answers to at most q
queries to before ‘shutting down‘. A description of the oracle’s
behaviour is given in Algorithm 1. When E and q are clear
from the context, we may omit them from the subscript.

Definition 8 (COMP-COL advantage). Given an m-n-elements
blockcipher-based compression function CE over some prime
field Fp, the collision advantage of an adversary A with q
queries against CE , denoted AdvCOMP-COL

CE
(A, q), is equal to:

Pr
[
(y,y′)

$←AEE,q () : y ̸= y′ ∧ CE(y) = CE(y
′)
]

Definition 9 (COMP-PRE advantage). Given an m-n-elements
blockcipher-based compression function CE over some prime
field Fp, the preimage advantage of an adversary A with q
queries against CE , denoted AdvCOMP-PRE

CE
(A, q), is equal to:

Pr
[
y

$← Fn
p ,x

$←AEE,q (y) : CE(x) = y
]

Similar collision and preimage advantage functions
AdvHASH-COL and AdvHASH-PRE can be defined for hash func-
tions. A more comprehensive treatment of advantage functions
and the security properties of hash functions can be found
in [77].

Now suppose that we are given a hash function H together
with some digest h = H(M), for some unknown message
M , and we wish to check whether a given message M ′ =
M . We can do so by comparing H(M ′) with h: if the range
of H is large enough, and H is both collision and preimage
resistant, the check should succeed for some message M ′ ̸=
M only with negligible probability, even if a potential forger
has knowledge of both H and M . More generally, we can
have so-called opening proof systems, where one party, called

the proof generator G, is given a message M together with
an index i, and has to synthesize what essentially is a proof
of membership π for mi. Then, a second party, the proof
verifier V , given only π and the hash of the original message,
has to establish whether mi did actually belong to M . More
formally:

Definition 10 (Opening proof system). Given an n-element
hash function H over some prime field Fp, an opening proof
system over H is a pair of algorithms (G,V)H such that, for
any message M ∈ (Fp)

∗, it holds that:

∀i ≤ |M | : V(G(M, i), H(M)) = ⊤

In order to guarantee statistical soundness of an opening
proof system, it must be hard for an attacker to forge an invalid
proof, i.e. a proof of membership for some message block
m̃ /∈M that can fool the verifier:

Definition 11 (OPENING advantage). Given an opening proof
system (G,V) over some n-element blockcipher-based AO
hash function HE with underlying field Fp, and given M

$←
(Fp)

∗, the opening proof advantage of an adversary A with
q queries against (G,V), denoted AdvOPENING

(G,V) (A, q), is equal
to:

Pr
[
π̃

$←AEE,q (M) : ∀i : π̃ ̸= G(M, i) ∧ V(π̃, HE(M)) = ⊤
]

Given some advantage function Adv(A, q), we let Adv(q)
be the maximum advantage achievable by any adversary A:
Adv(q) = maxA{Adv(A, q)}.

III. TWO NEW MODES OF COMPRESSION

Using the PGV modes design as a starting point, we extract
the underlying FIL compression function, detaching it from the
MD paradigm. In order to have more flexibility on the output
size, we introduce an additional linear combination at the end
of the construction, obtaining the AO PGV-LC compression
mode:

Definition 12 (AO PGV-LC mode). Given a κ-n-elements
blockcipher E over some prime field Fp, an output size l ≤ n,
and a right invertible reduction matrix R ∈ Fl×n

p , the AO
PGV-LC mode of E is the compression function:

CE,R(x,y) : Fκ
p × Fn

p → Fl
p = R(Ex(y) + y)

The right-invertibility property of the matrix R, as we will
see in Section IV, is required in order to have a secure
compression. Note that when l = n and R = In×n, then
our construction collapses precisely in the compression mode
underlying the Davies-Meyer and the Matyas-Meyer-Oseas
iterated compression functions. A visual representation of the
new mode is given in Figure 1.

Based on the proposed mode, we devise an additional
extended mode which allows for even more flexibility, by also
including linear combinations of the input parameters; we call
this mode AO PGV-ELC, and formally define it as follows:

Definition 13 (AO PGV-ELC mode). Given a κ-n-elements
blockcipher E over some prime field Fp, the input sizes κ′ ≤ κ

6

Ey

x

...

. . .

...

...

R

..
.

h

Fig. 1: Pictorial representation of the AO PGV-LC mode as
by Definition 12.

EP

K

y

F

...

...

R

..
.

h

...

...

...

. . .

. . .

x

Fig. 2: Pictorial representation of the AO PGV-ELC mode as
by Definition 13.

and n′ ≤ n, the output size l ≤ n′, a left invertible key matrix
K ∈ Fκ×κ′

p , a left invertible plaintext matrix P ∈ Fn×n′

p ,
a right invertible feedback matrix F ∈ Fl×n′

p , and a right
invertible reduction matrix R ∈ Fl×n

p , the AO PGV-ELC mode
of E is the compression function:

CE,V (x,y) : Fκ′

p × Fn′

p → Fl
p = RE(Kx)(Py) + Fy

where V = (K,P ,F ,R).

Again, the invertibility properties of the various matrices
are required to guarantee the security of this construction, as
we will show in Section IV. A pictorial representation of the
AO PGV-ELC mode is given in Figure 2.

IV. SECURITY PROOFS

In [47], it was shown that among the 64 bit-oriented
PGV-MD iterated compression modes, each denoted with
C(ι)(x, y), the first twelve of them, called Group-1 modes
and shown in Table I, are collision and preimage resistant both
when used for MD hashing and when used for 2-1 compression
by replacing the role of the chaining value with a second
message block.

In the design phase of the AO PGV-LC and the PGV-ELC
mode, we followed the patterns that emerge from the structure
of the classical Group-1 construction: first, notice how the 12
modes are pairwise symmetric, and only modes 1 and 5 are
minimal w.r.t. the number of extra additions required. As we
will see, an argument similar to the one given in [47] is enough
to guarantee the security of the PGV-LC mode.

TABLE I: The AO equivalent of the 12 Group-1 PGV com-
pression modes of [47]. Note that modes 5–8 are completely
symmetric to modes 1–4. Similarly, mode 9 is symmetric to
mode 10, and mode 11 is symmetric to mode 12.

ι C(ι)(x,y)

1 Ex(y) + y
2 Ex(x+ y) + x+ y
3 Ex(y) + x+ y
4 Ex(x+ y) + y
5 Ey(x) + x
6 Ey(x+ y) + x+ y

ι C(ι)(x,y)

7 Ey(x) + x+ y
8 Ey(x+ y) + x
9 Ex+y(y) + y
10 Ex+y(x) + x
11 Ex+y(y) + x
12 Ex+y(x) + y

A. Security of AO PGV-LC mode

Theorem 1 (COMP-COL resistance of AO PGV-LC mode).
Given the κ-n-elements ideal AO blockcipher E over some
prime field Fp, some l < n, a number of queries q < pl, a
right invertible matrix R ∈ Fl×n

p , and the (κ+ n)-l-elements
AO PGV-LC compression function CE,R, it holds that:

AdvCOMP-COL
CE,R

(q) ≤ q2 + q

pl − q

Proof. Let Eq be the oracle implementing E and responding
to at most q queries, as depicted in Algorithm 1. Let AEq

be any adversary with oracle access to Eq . Let Col be the
event that AEq finds x,x′ ∈ Fκ

p and y,y′ ∈ Fn
p such that

(x,y) ̸= (x′,y′) and h = h′, with h = CE,R(x,y) and h′ =
CE,R(x′,y′). Clearly, Pr[Col] = AdvCOMP-COL

CE,R
(A). Without

loss of generality, we can make the following assumptions:
1) A makes exactly q queries to Eq .
2) A keeps track of the query list Q = (Qi)i∈{1,...,q}, where

in each Qi = (xi,yi, ci, bi), xi ∈ Fκ
p is the queried key,

bi ∈ {0, 1} is the queried selection bit, and if bi = 0, then
yi ∈ Fn

p is the queried plaintext, while ci ∈ Fn
p is the

returned ciphertext; otherwise, ci is the queried ciphertext
and yi the returned plaintext.

3) If A finds a collision, there are Qi, Qj ∈ Q such that
hi = R(ci + yi) = hj = R(cj + yj).

Since R is right invertible, it induces a partition of Fn
p into pl

equivalence classes [v]R, one for each v ∈ Fl
p. We will now

drop R from the subscript for ease of presentation. Clearly,
|[v]| = pn−l. Given any u,w ∈ Fn

p , and any v ∈ Fl
p, if

u+w ∈ [v] we say that u is w-v-linking (via R). Note that
then it is also true that w is u-v-linking. Let Lw,v be the set
of all w-v-linking values of u: since u and w come from the
same vector space, and that addition is a permutation over one
its arguments, we have that |Lw,v| = pn−l.

Given any queries Qi, Qj ∈ Q, let Linki,j be the event that
yi is ci-hj-linking Observe that Linki,j = Linkj,i. Then:

Pr[Col] = Pr[∃i < j ≤ q : Linki,j] = Pr[Link0,1 ∨ · · · ∨ Linkq−1,q]

Let’s consider each combination of b and b′:
• bi = bj = 0: xi and xj are freely chosen among at least
pκ−q possible values, while yi and yj are freely chosen
among at least pn− q possible values. ci and cj are then
random values from sets of cardinality at least pn − q.

7

Then, independently of how yi and yj were chosen, hi

and hj are also random. There are at most pn−l values
of yi which are ci-hj-linking, hence:

Pr[Col] ≤
q∑

j=1

j∑
i=1

pn−l

pn − q
≤

q∑
j=1

j∑
i=1

1

pl − q
≤ q2 + q

pl − q

• bi = bj = 1: xi, xj , ci and cj are all freely chosen
by A, with ci and cj coming from sets of size at
least pn − q. This time, yi and yj are random, and the
same reasoning as before applies: once again, Pr[Col] ≤(
q2 + q

)
/
(
pl − q

)
.

• bi = 0 = 1 − bj : in this case, xi, xj , yi and
cj are freely chosen by A. ci and yj are random,
independently of which among hi and hj was found
earlier, the probability that yi is ci-hj linking is at most
Pr[Col] ≤

(
q2 + q

)
/
(
pl − q

)
.

• bj = 0 = 1− bi: similar as before.
Since all the probabilities given above depend only on the
number of queries made by A, and not on its behaviour, the
claim follows.

Theorem 2 (COMP-PRE resistance of AO PGV-LC mode).
Given the κ-n-elements ideal AO blockcipher E over some
prime field Fp, some l < n, a number of queries q < pl,
a right-invertible matrix R, and the (κ+ n)-l-elements AO
PGV-LC compression function CE,R, it holds that:

AdvCOMP-PRE
CE,R

(q) ≤ q

pl − q

Proof. We start from the setup that we developed in the
proof of Theorem 1. Given some random h ∈ Fl

p, let Pre
be the event that AEq finds some (x,y) ∈ Fκ

p × Fn
p such

that CE,R(x,y) = h. Clearly, Pr[Pre] = AdvCOMP-PRE
CE,R

(A).
Now let Linki be the event that yi is ci-h-linking, then
Pr[Pre] = Pr[∃i ≤ q : Linki]. We have two cases to consider:

• bi = 0: xi and yi are chosen arbitrarily, and ci is a
random element from a set of size at least pn − q, and
there are at most pn−l values of yi that are ci-h-linking.
Hence, Pr[Pre] ≤

∑q
i=1

1
pl−q

≤ q
pl−q

.
• bi = 1: xi and ci are chosen arbitrarily, and yi is

random, as before we can then conclude that Pr[Pre] ≤
q/
(
pl − q

)
.

Since the probability of finding a preimage does not depend
on the behaviour of A, the claim follows.

B. Security of AO PGV-ELC mode

The main difference between the AO PGV-LC and PGV-
ELC modes is that the latter allows for input sizes to the
compression function which do not necessarily match the
plaintext or key sizes of the underlying blockcipher. Intuitively,
this additional flexibility should not impact the security, but
one must be careful when considering that the input entropy
pool is reduced, as now part of the plaintext/ciphertext and
key space might be left unused.

Theorem 3 (COMP-COL resistance of AO PGV-ELC mode).
Given the κ-n-elements ideal AO blockcipher E over some
prime field Fp, the (κ′ + n′)-l-elements AO PGV-ELC com-
pression function CE,V , where κ′, n′ and V = (K,P ,F ,R)
are as in Definition 13, and a number of queries q < pl, it
holds that:

AdvCOMP-COL
CE,V

(q) ≤ q2 + q

pl − q

Sketch. The proof builds on the setup used in Theorem 1,
generalizing some concepts to account for the extended setting.
See Appendix A for the full proof.

Now that we have proven collision resistance of our con-
struction, we turn to preimage resistance:

Theorem 4 (COMP-PRE resistance of AO PGV-ELC mode).
Given the κ-n-elements ideal AO blockcipher E over some
prime field Fp, some l < n, a number of queries q < pl, and
the (κ′ + n′)-l-elements AO PGV-ELC compression function
CE,V , where κ′, n′ and V = (K,P ,F ,R) are as in
Definition 13, it holds that:

AdvCOMP-PRE
CE,V

(q) ≤ q

pl − q

Sketch. The proof is similar to the case of Theorem 2, exploit-
ing the additional insights detailed in the proof of Theorem 3.
See Appendix A for the full proof.

C. Security of AO t-ary Merkle Tree

We can now turn to consider collision resistance for the
Merkle tree hashing: the classical result over bit-strings gen-
eralizes trivially to AO constructions.

Theorem 5 (HASH-COL resistance of AO Merkle tree). Given
a tn-n elements compression function family C over a prime
field Fp, and a number of queries q < pn, it holds that:

AdvHASH-COL
HC

(q) ≤ AdvCOMP-COL
C (q) +AdvCOMP-PRE

C (q)

where HC is the Merkle tree mode of hashing family over C.

Sketch. The proof generalizes the standard ideas used in the
well-known case of binary Merkle trees over bit-oriented
compression functions. See Appendix A for the full proof.

The last thing we need to prove, which again is a relatively
straightforward adaptation of a classical result, is opening
resistance of the AO Merkle tree. In this setting, we are
given a t-ary Merkle tree TC,M over some tn-n elements

compression function C and some message M ∈
(
Fn
p

)th
(i.e.

we assume M to fit exactly in the tree). Only C and the
root of the node, ν0 = H(M), are known to the verifier V .
Let t′ = t − 1; in order to check membership of some leaf
νi in TC,M , the generator G sends to V the opening proof
π = (i,x0,x1, . . . ,xht′), where we expect x0 to be νi and
x1, . . . ,xht′ to be the nodes in the co-path from νi to ν0.
Then, V takes the base-t digit expansion (dh−1, . . . , d0) of
the index i and collects consecutive elements of the co-path

8

in groups of t′ units: each digit will fix the position of the
chaining value cj , so that c0 = 0 and ∀j < h:

cj+1 = C
(
xt′j+1, . . . ,xt′j+dj−1, cj ,xt′j+dj

, . . . ,xt′j+t′
)

Finally, V compares ch with ν0: if they are equal, it accepts,
otherwise it rejects.

Theorem 6 (OPENING resistance of AO Merkle tree). Given a
tn-n elements compression function family C over some prime
field Fp, and a number of queries q < pn, it holds that:

AdvOPENING
HC

(q) ≤ AdvCOMP-COL
C (2q)

where HC is the Merkle tree mode of hashing family over C.

Proof. Consider the t-ary Merkle tree TC,M over a message

M ∈
(
Fn
p

)th
, and let t′ = t−1. Now, let C be the oracle imple-

menting C, and let A be an adversary making q queries to C
that can forge a proof π̃ = (i, x̃0, x̃1, . . . , x̃ht′) with advantage
AdvOPENING

HC
(A). We will now build an adversary B which

finds a collision in C(ι) as follows: first, B runs π = G(M, i)
and π̃ = A(M, i). Then, it computes the correct chaining
values c0 through ch, and the forged chaining values c̃0
through c̃h: by completeness of (G,V), we have that ch = ν0.
Now B compares ch with c̃h: if the two of them are different, it
halts rejecting as A did not actually find a collision. Otherwise,
it computes the base-t digit expansion (dh−1, . . . , d0) of i
and starts matching, for j ∈ {h− 1, . . . , 0}, cj with c̃j and
xjt′+1, . . . ,xjt′+t′ with x̃jt′+1, . . . , x̃jt′+t′ : if the match is
only partial, then the two vectors:

mj =
(
xt′j+1 . . . xt′j+dj−1 cj xt′j+dj

. . . xt′j+t′
)⊺

m̃j =
(
x̃t′j+1 . . . x̃t′j+dj−1 c̃j x̃t′j+dj

. . . x̃t′j+t′
)⊺

form a collision, since cj+1 = C(mj) = c̃j+1 = C(m̃j),
hence B will return the pair (m, m̃), and it will halt accepting.
Finally, if all the matches up to j = 0 are exact, then it must
be the case that π = π̃, therefore the forged proof is actually
a valid proof, so B will halt rejecting. We can then conclude
that B finds a valid collision for C whenever A finds a valid
opening proof forgery for HC : assuming w.l.o.g. that A had
to perform at least the h oracle queries required to compute
the root of the tree (i.e. h < q), and that B needs to call G in
order to compute π, the claim follows.

V. IMPLEMENTATIONS AND EXPERIMENTS

In order to assess the efficiency of the PGV-ELC mode,
among the many available arithmetization-oriented construc-
tions, we decided to select the HADES-MiMC design [51]:
firstly, it is a blockcipher design, so it can be instantiated over
the PGV-ELC mode; secondly, it has undergone (and resisted
to) a good amount of cryptanalysis; thirdly, the Sponge hash
function derived from HADES-MiMC, i.e. POSEIDON [28], is
quite popular in the industry, and it is deployed in several
real-world systems [14], [37], where even small improvements
requiring relatively minor changes can be meaningful; finally,
it is well-defined for any arbitrary block size, allowing us a

good level of flexibility for our experiments (however, see
Remark 2).

An optimized version of POSEIDON, dubbed POSEIDON2,
was recently proposed [30]: the two main differences with
POSEIDON are the usage of an efficiently computable MDS
matrix for the linear layer, and support of the Trunc com-
pression mode. In our experiments, we will compare both the
Sponge-based POSEIDON and the Trunc-based POSEIDON2
with the corresponding PGV-ELC instantiation of HADES-
MiMC.

Definition 14 (POSEIDON-DM). Let E : Fn
p × Fn

p → Fn
p be

the HADES-MiMC blockcipher as defined in [51], with the
scheduling function and the linear layer both instantiated by
the n× n Hilbert matrix. Additionally, given some l,m < n,
let K = P = In×m, F = I l×m, and R = I l×n. Then,
POSEIDON-DM is the compression function:

C(x,y) : Fm
p × Fm

p → Fl
p = R · EKy(Px) + Fy

Definition 15 (POSEIDON2-DM). POSEIDON2-DM is the
compression function POSEIDON-DM, where the full-rounds
and partial-rounds linear layers are instantiated respectively
by the matrices ME and MI described in [30], and the key
scheduling function is instantiated by the matrices:

MK,2 =

[
1 2
2 1

]
MK,4 =


2 3 1 1
1 2 3 1
3 1 2 1
1 1 1 2


when n = 2 or n = 4, and by the matrix ME in all other
cases.

The matrices MK,2 and MK,4 that we use for the key
scheduling in POSEIDON2-DM are both Maximum Distance
Separable (MDS) [78], [79] matrices resistant to subspace
trails attacks as defined in [80], and are hence suitable to be
used for scheduling.

Remark 2. When the block size is of just one element,
the SPN structure of the HADES-MiMC design disappears,
degenerating into the MiMC construction [26]. For this reason,
in our experiments the 2:1 compression function is instantiated
over the 2-elements HADES-MiMC cipher, so that the matrices
K and P are rectangular. Furthermore, n:m compression
functions are not restricted to be used over n-ary Merkle trees:
indeed, over relatively smaller prime fields, in order to achieve
a target security level for collision resistance, say 128-bits,
one might have to use a 4:2 (p ≈ 2128) or an 8:4 (p ≈ 264)
compression function within a binary tree: in these two cases
respectively, for either FIL Sponge, Trunc or PGV-ELC, the
complexity is basically equivalent to performing 4:1 or 8:1
compression.

Experimental Setup.: All of our benchmarks were run on
a system with an Intel® Core™ i9–13900KF @6.0GHz CPU
equipped with 32 GB of DDR5–5200 RAM, running a Clear
Linux OS 40630 instance. We wish to point out that the
tested CPU is equipped with 8 ‘performance’ cores, with

9

hyper-threading, plus 16 ‘efficiency’ cores: this results in an
unsteady behaviour when running parallel experiments due
to the different types of threads. Experiments in the native
settings were run with our own C++ implementation of the
various primitives and Merkle trees, using either the NTL1

library, the libff2 library, or our own custom library (dubbed
libarith) as backends for the finite field arithmetic. For
the ZK-SNARK comparisons, we implemented the arithmetic
circuits of the target primitives in the libsnark3 library,
which is based on the Groth16 [6] ZK-SNARK framework,
and uses R1CS arithmetization. All code was compiled with
the Intel® oneAPI DPC++ Compiler 2024.0.2 with compiler
flags -std=c++17 -O2 -march=native for serial code,
and all previous flags plus the -qopenmp flag for parallel
code. As our main objective is to compare the Sponge and
Trunc modes with our new modes, in order to obtain more
meaningful results we ran our experiments over three different
prime fields: respectively the scalar fields of the elliptic curves
BLS12-381 [81], [82], BN-254 [83], [84], and Edwards-
180 [85], as reported in Table VII (in appendix A).

A. Optimized R1CS for t-ary Merkle Tree

R1CS systems constrain the computation by means of a
system of bilinear equations of the kind (Ax)⊙ (Bx) = Cx,
where ⊙ denotes the Hadamard (i.e. element-wise) product. It
is well known how to build a R1CS system for binary Merkle
trees4; however, the only public implementation that we found
which also offers wider arities [86] only offers hardcoded
circuits for arity t ∈ {2, 4, 8}. While writing our own R1CS
for an arbitrary t, we found that a small change in the classical
opening proof protocol (described in Section IV-C) allows for
a more compact R1CS system.

For a binary tree, given the opening proof π =
(i,x0,x1, . . . ,xh), where all vectors are over Fn

p , the prover
itself will compute the chaining values (c0, . . . , ch): in order
to guarantee that the order of the inputs is preserved and that
the output values are correct, we introduce fresh variables
y0, . . . ,yh−1, and use the binary expansion (dh−1, . . . , d0)
of i as selector bits. We then enforce, for 0 ≤ j < h:

dj · (1− dj) = 0

dj · (cj − xj+1) = cj − yj

cj+1 = C(yj , cj + xj+1 − yj)

This system requires h(1 + n+RC) constraints, where RC is
the number of constraints required to instantiate C.

One possible way to generalize to any arity t ≥ 2, similar to
the one used in [86], is to consider the authentication path π =
(i,x0,x0,1, . . . ,xh−1,t′), where t′ = t− 1, together with the
base-t expansion (dh−1, . . . , d0) of the index i. Now, cj+1 =
C(yj,1, . . . ,yj,t) where, depending on dj , yj,1 could be either
cj or xj,1, yj,t could be either cj or xj,t−1, and any other

1https://libntl.org
2https://github.com/scipr-lab/libff
3https://github.com/scipr-lab/libsnark
4See for example: https://github.com/arkworks-rs/r1cs-tutorial.

TABLE II: Number of R1CS constraints in the baseline and
optimized MT circuits over POSEIDON-DM, for trees with 224

leaves, each containing n field elements.

MT Arity

n 4 8 16

Baseline

1 3000 2552 2754
2 3696 3520 4182
4 5124 5408 7056
8 7908 9208 12768

Optimized

1 2916 2392 2484
2 3540 3248 3732
4 4824 4912 6246
8 7320 8264 11238

Improvement

1 2.88% 6.69% 10.9%
2 4.41% 8.37% 12.1%
4 6.22% 10.1% 13.0%
8 8.03% 11.4% 13.6%

yj,k could be either cj , xj,k−1 or xj,k. Let b = ⌈log2(t)⌉, and
consider the binary expansion (dj,b, . . . , dj,1) of dj : we can
compute all possible combinations of these binary values and
store them in the selector variables sj,1, . . . , sj,t: if we do it in
a tree-like fashion, we need 2b+1− 4 = 2t− 4 multiplications
to do so. Hence, we can set up a constraint system equivalent
to the following, for 0 ≤ j < h:



∀1 ≤ k ≤ b : dj,k · (1− dj,k) = 0∏b
k=1 (1− dj,k) = sj,1

. . .∏b
k=1 dj,k = sj,t

∀k : (sj,k · cj) + (sj,k−1 · xjt′+k−1) + (s̃j,k · xjt′+k) = yj,k

cj+1 = C(yj,1, . . . ,yj,t)

Where s̃i,j is a shorthand for (1− si,j). This constraint sys-
tem requires a total of h(b+ 2t− 4 + n(4 + 3(t− 2)) +RC)
constraints.

Now, consider the modified opening proof where the prover
sends, together with all the others, also the node that the
verifier is able to compute by itself. With this slight modifi-
cation, we can then introduce as before the selector variables
s0,1, . . . , sh−1,t, and enforce, for each 0 ≤ j < h:

∀1 ≤ k ≤ t : sj,k · (1− sj,k) = 0

1 ·
∑t

k=1 sj,k = 1

∀1 ≤ k ≤ t : sj,k · (cj − xj,k) = cj − yj,k

cj+1 = C(yj,1, . . . ,yj,t)

The optimized constraint system then requires
h(t+ 1 + tn+RC) constraints. The relative improvement
we can get by using the optimized circuit is therefore:

⌈log2(t)⌉+ 2t− 4 + n(4 + 3(t− 2)) +RC

t+ 1 + tn+RC

which is independent of the tree height, and results in higher
improvements the smaller the compression primitive constraint
system is. In Table II, we show the concrete improvement over

10

https://libntl.org
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libsnark
https://github.com/arkworks-rs/r1cs-tutorial

TABLE III: Number of R1CS constraints required to represent
the target compression functions.

Compression Rate

Primitive 2:1 4:1 8:1

POSEIDON 237 288 384
POSEIDON-DM 213 213 261

POSEIDON2-Trunc 213 264 360
POSEIDON2-DM 213 213 261

Constraint Reduction

POSEIDON-DM −11% −35% −47%
POSEIDON2-DM 0% −24% −38%

TABLE IV: Time to generate a Merkle tree opening proof in
the Groth16 framework (libsnark, |M | = 230).

MT Arity

Primitive Field 2 4 8

POSEIDON
BLS-381 1.35 s 0.846 s 0.761 s
BN-254 0.837 s 0.525 s 0.470 s
Ed-180 0.440 s 0.281 s 0.253 s

POSEIDON-DM
BLS-381 1.24 s 0.671 s 0.538 s
BN-254 0.767 s 0.413 s 0.333 s
Ed-180 0.398 s 0.215 s 0.178 s

POSEIDON2
BLS-381 1.29 s 0.807 s 0.756 s
BN-254 0.779 s 0.488 s 0.453 s
Ed-180 0.403 s 0.257 s 0.240 s

POSEIDON2-DM
BLS-381 1.30 s 0.692 s 0.554 s
BN-254 0.779 s 0.413 s 0.333 s
Ed-180 0.403 s 0.216 s 0.177 s

Average speed-up

POSEIDON-DM +10% +28% +42%
POSEIDON2-DM 0% +18% +36%

Merkle Trees of different arities and node sizes when C is
instantiated by either POSEIDON-DM or POSEIDON2-DM.

B. ZK-SNARK Performance

The main bottleneck of ZK-SNARK frameworks usually
lies in the time needed to generate the proof, hence we target
proof generation time as our efficiency metric. In turn, the
complexity of building a proof varies on the framework: for
R1CS-based ZK-SNARK systems, it primarily depends on
the multiplicate complexity (i.e. number of equations) in the
constraint system itself, and secondarily on its sparsity: a
lower number of constraints is normally directly related to
an improvement in the resulting proof generation time.

Since the only difference between the POSEIDON and PO-
SEIDON2 constructions is the affine layer, they both require an
equal number of R1CS constraints for the same state size, and
the same holds for POSEIDON-DM and POSEIDON2-DM, as
can be seen in Table III. However, as the Trunc mode allows
POSEIDON2 to save one state element compared to Sponge,
similarly the PGV-ELC mode allows us to halve the number
of state elements, resulting in a significant reduction of R1CS
constraints.

In Table IV and Figure 3 we see how the theoretical numbers
reflect also in the empirical experiments: as expected, there

is but negligible difference between POSEIDON-DM and PO-
SEIDON2-DM. More interestingly, we can see how increasing
the arity improves proof generation time across the board:
for example, generating a SNARK for an opening proof over
octonary trees with either POSEIDON-DM or POSEIDON2-
DM is about 2.5× faster than with either POSEIDON and
POSEIDON2 over binary trees.

C. Native Performance

TABLE V: Time to compute a single primitive call. Note that
2:1 compression is a special case, see Remark 2.

NTL

Compression rate

Primitive Field 2:1∗ 4:1 8:1

POSEIDON
BLS-381 47.4 µs 112 µs 337 µs
BN-254 48.2 µs 114 µs 344 µs
Ed-180 39.9 µs 95.9 µs 299 µs

POSEIDON-DM
BLS-381 40.4 µs 40.8 µs 133 µs
BN-254 41.5 µs 41.5 µs 135 µs
Ed-180 35.4 µs 35.1 µs 118 µs

POSEIDON2-Trunc
BLS-381 13.5 µs 26.6 µs 46.5 µs
BN-254 13.5 µs 26.4 µs 45.3 µs
Ed-180 11.5 µs 30.6 µs 43.3 µs

POSEIDON2-DM
BLS-381 15.0 µs 15.0 µs 28.2 µs
BN-254 15.5 µs 15.3 µs 28.3 µs
Ed-180 13.3 µs 13.1 µs 26.0 µs

libff

POSEIDON
BLS-381 18.0 µs 47.2 µs 157 µs
BN-254 18.1 µs 45.0 µs 142 µs
Ed-180 17.0 µs 41.8 µs 122 µs

POSEIDON-DM
BLS-381 14.9 µs 15.7 µs 59.4 µs
BN-254 15.2 µs 15.6 µs 56.2 µs
Ed-180 14.4 µs 14.2 µs 49.0 µs

POSEIDON2-Trunc
BLS-381 5.44 µs 13.9 µs 23.8 µs
BN-254 5.47 µs 13.9 µs 23.6 µs
Ed-180 5.35 µs 12.7 µs 21.8 µs

POSEIDON2-DM
BLS-381 6.39 µs 6.44 µs 15.4 µs
BN-254 6.44 µs 6.56 µs 15.6 µs
Ed-180 6.51 µs 6.51 µs 15.1 µs

libarith

POSEIDON
BLS-381 11.6 µs 26.3 µs 74.1 µs
BN-254 11.8 µs 26.4 µs 76.2 µs
Ed-180 8.48 µs 19.2 µs 55.1 µs

POSEIDON-DM
BLS-381 9.89 µs 10.0 µs 32.7 µs
BN-254 10.4 µs 10.4 µs 33.0 µs
Ed-180 7.46 µs 7.55 µs 24.7 µs

POSEIDON2-Trunc
BLS-381 3.30 µs 7.32 µs 12.6 µs
BN-254 3.24 µs 7.11 µs 12.1 µs
Ed-180 2.51 µs 5.48 µs 8.97 µs

POSEIDON2-DM
BLS-381 3.51 µs 3.50 µs 7.88 µs
BN-254 3.47 µs 3.48 µs 7.75 µs
Ed-180 2.67 µs 2.69 µs 5.85 µs

Average speed-up

NTL
POSEIDON-DM 1.17×∗ 2.80× 2.51×
POSEIDON2-DM 0.86×∗ 1.82× 1.56×

libff
POSEIDON-DM 1.17×∗ 2.87× 2.57×
POSEIDON2-DM 0.85×∗ 2.20× 1.57×

libarith
POSEIDON-DM 1.15×∗ 2.27× 2.27×
POSEIDON2-DM 0.94×∗ 2.06× 1.57×

When comparing native execution times of different modes
of operation, one has to be mindful of several ‘implementation
details’: in order to try and alleviate implementation-specific
differences as much as possible, in addition to using different
prime fields, we also tested different arithmetic backends, and
their comparison for basic arithmetic is given in Appendix A.

11

Then, in Table V we can see the performance of a single
execution of the target primitives: observe how, due to the
need of input-expansion to exploit the benefits of the partial-
SPN structure, there is basically no difference between the
2:1 and the 4:1 variants of POSEIDON-DM, and similarly for
POSEIDON2-DM. As a result, in the case of 2:1 compression,
POSEIDON-DM is about 15% faster than (Sponge-based) PO-
SEIDON5, while POSEIDON2-DM is between 5–15% slower
than POSEIDON2-Trunc. On the other hand, for all other cases,
using PGV-ELC brings great efficiency improvements, with
POSEIDON-DM being up to three times faster than Sponge
POSEIDON, and POSEIDON2-DM being up to two times faster
than POSEIDON2-Trunc.

In Figure 4 we compared the behaviour of the target
primitives when embedded inside a Merkle tree to build it
given an input message. The single results follow the trend
expected from Table V, but once again we want to highlight
the huge improvements that can be obtained by using trees
with wide arity: interestingly, the best choice of arity for
native computations does not necessarily match the one for
ZK-SNARK generation; for example, for all target primitives
but POSEIDON2-Trunc, quaternary trees perform better than
octonary ones, and for POSEIDON octonary trees are actually
the slowest. In particular, quaternary POSEIDON2-DM is ap-
proximately 2.5× faster than binary POSEIDON2, and almost
9× faster than binary POSEIDON.

Finally, in Appendix A we report the behaviour of the
target functions with respect to CPU parallelization: in short,
as one would expect, slower primitives benefit more from
parallelization as they are more computationally intensive,
while being only marginally different in memory intensity.

ACKNOWLEDGMENTS

Stefano Trevisani was supported in full and Elena Andreeva
was supported in part by the Austrian Science Fund (FWF)
SpyCoDe grant with number 10.55776/F8507-N.

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM Journal on Computing, vol. 18, no. 1,
pp. 186–208, 1989. [Online]. Available: https://doi.org/10.1137/0218012

[2] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing
but their validity or all languages in np have zero-knowledge proof
systems,” J. ACM, vol. 38, no. 3, pp. 690–728, jul 1991. [Online].
Available: https://doi.org/10.1145/116825.116852

[3] J. Groth, “Short non-interactive zero-knowledge proofs,” in Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security,
ser. Lecture Notes in Computer Science, vol. 6477. Springer,
2010, pp. 341–358. [Online]. Available: https://www.iacr.org/archive/
asiacrypt2010/6477343/6477343.pdf

[4] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” Cryptology ePrint Archive, Paper
2013/279, 2013, https://eprint.iacr.org/2013/279. [Online]. Available:
https://eprint.iacr.org/2013/279

5We could have obtained a much higher speed-up by using the efficient
key-scheduling matrix of POSEIDON2-DM also in POSEIDON-DM: however,
we considered that such comparison would not have been fair, as matrix
optimization is the whole point of POSEIDON2 in the first place.

[5] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” Cryptology
ePrint Archive, Paper 2013/879, 2013, https://eprint.iacr.org/2013/879.
[Online]. Available: https://eprint.iacr.org/2013/879

[6] J. Groth, “On the size of pairing-based non-interactive arguments,”
Cryptology ePrint Archive, Paper 2016/260, 2016, https://eprint.iacr.
org/2016/260. [Online]. Available: https://eprint.iacr.org/2016/260

[7] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of
knowledge,” Cryptology ePrint Archive, Paper 2019/953, 2019,
https://eprint.iacr.org/2019/953. [Online]. Available: https://eprint.iacr.
org/2019/953

[8] S. Setty, “Spartan: Efficient and general-purpose zksnarks without
trusted setup,” Cryptology ePrint Archive, Paper 2019/550, 2019,
https://eprint.iacr.org/2019/550. [Online]. Available: https://eprint.iacr.
org/2019/550

[9] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic
span programs and succinct nizks without pcps,” Cryptology
ePrint Archive, Paper 2012/215, 2012, https://eprint.iacr.org/2012/215.
[Online]. Available: https://eprint.iacr.org/2012/215

[10] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, Paper 2018/046, 2018, https://eprint.iacr.org/2018/046.
[Online]. Available: https://eprint.iacr.org/2018/046

[11] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp.
459–474.

[12] N. van Saberhagen, “Cryptonote v 2.0,” 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2711472

[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
Cryptology ePrint Archive, Paper 2017/1066, 2017, https://eprint.iacr.
org/2017/1066. [Online]. Available: https://eprint.iacr.org/2017/1066

[14] Y. Psaras and D. Dias, “The interplanetary file system and the filecoin
network,” in 2020 50th Annual IEEE-IFIP International Conference
on Dependable Systems and Networks-Supplemental Volume (DSN-S),
2020, pp. 80–80.

[15] T. Liu, X. Xie, and Y. Zhang, “zkcnn: Zero knowledge proofs
for convolutional neural network predictions and accuracy,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 2968–2985. [Online].
Available: https://doi.org/10.1145/3460120.3485379

[16] A. Naveh and E. Tromer, “Photoproof: Cryptographic image authen-
tication for any set of permissible transformations,” in 2016 IEEE
Symposium on Security and Privacy (SP), 2016, pp. 255–271.

[17] J. Groth, “Non-interactive zero-knowledge arguments for voting,” in
Applied Cryptography and Network Security, J. Ioannidis, A. Keromytis,
and M. Yung, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 467–482.

[18] T. Ventali, “Awesome zero knowledge: A curated list of awesome zk
resources, libraries, tools and more,” GitHub Repository, 2024, https:
//github.com/ventali/awesome-zk. [Online]. Available: https://github.
com/ventali/awesome-zk

[19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zksnarks with universal and updatable srs,” in Advances
in Cryptology – EUROCRYPT 2020, A. Canteaut and Y. Ishai, Eds.
Cham: Springer International Publishing, 2020, pp. 738–768.

[20] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and
transparent recursive proofs from holography,” Cryptology ePrint
Archive, Paper 2019/1076, 2019, https://eprint.iacr.org/2019/1076.
[Online]. Available: https://eprint.iacr.org/2019/1076

[21] D. Boneh, J. Drake, B. Fisch, and A. Gabizon, “Halo infinite:
Proof-carrying data from additive polynomial commitments,”
in Advances in Cryptology - CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part I. Berlin,
Heidelberg: Springer-Verlag, 2021, pp. 649–680. [Online]. Available:
https://doi.org/10.1007/978-3-030-84242-0 23

[22] Q. H. Dang, Secure Hash Standard. National Institute of Standards
and Technology, Jul 2015. [Online]. Available: http://dx.doi.org/10.
6028/NIST.FIPS.180-4

12

https://doi.org/10.1137/0218012
https://doi.org/10.1145/116825.116852
https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf
https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://api.semanticscholar.org/CorpusID:2711472
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://doi.org/10.1145/3460120.3485379
https://github.com/ventali/awesome-zk
https://github.com/ventali/awesome-zk
https://github.com/ventali/awesome-zk
https://github.com/ventali/awesome-zk
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1076
https://doi.org/10.1007/978-3-030-84242-0_23
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4

0 0.5 1 1.5 2 2.5

·105

0

200

400

600

800

Message length [Fp elements]

Ti
m

e
[m

s]

POSEIDON (2:1) POSEIDON-DM (2:1)
POSEIDON (4:1) POSEIDON-DM (4:1)
POSEIDON (8:1) POSEIDON-DM (8:1)

0 0.5 1 1.5 2 2.5

·105

0

200

400

600

800

Message length [Fp elements]

Ti
m

e
[m

s]

POSEIDON2-Trunc (2:1) POSEIDON2-DM (2:1)
POSEIDON2-Trunc (4:1) POSEIDON2-DM (4:1)
POSEIDON2-Trunc (8:1) POSEIDON2-DM (8:1)

Fig. 3: Time to generate a Merkle tree opening proof over the BLS-381 field with the target primitives and arities (libsnark).

0 0.5 1 1.5 2 2.5

·105

0

2,000

4,000

6,000

Message length [Fp elements]

Ti
m

e
[m

s]

POSEIDON (2:1)
POSEIDON (4:1)
POSEIDON (8:1)

POSEIDON-DM (2:1)
POSEIDON-DM (4:1)
POSEIDON-DM (8:1)

0 0.5 1 1.5 2 2.5

·105

0

500

1,000

1,500

2,000

Message length [Fp elements]

Ti
m

e
[m

s]

POSEIDON2-Trunc (2:1)
POSEIDON2-Trunc (4:1)
POSEIDON2-Trunc (8:1)
POSEIDON2-DM (2:1)
POSEIDON2-DM (4:1)
POSEIDON2-DM (8:1)

Fig. 4: Time to build a Merkle tree of different arities over the BLS-381 field with the target primitives (libff).

[23] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,
M. Schofnegger, and R. Walch, “Reinforced concrete: A fast
hash function for verifiable computation,” Cryptology ePrint Archive,
Paper 2021/1038, 2021, https://eprint.iacr.org/2021/1038. [Online].
Available: https://eprint.iacr.org/2021/1038

[24] C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov,
and D. Willems, “New design techniques for efficient arithmetization-
oriented hash functions: Anemoi permutations and jive compression
mode,” Cryptology ePrint Archive, Paper 2022/840, 2022, https://eprint.
iacr.org/2022/840. [Online]. Available: https://eprint.iacr.org/2022/840

[25] L. Grassi, Y. Hao, C. Rechberger, M. Schofnegger, R. Walch,
and Q. Wang, “Horst meets fluid-spn: Griffin for zero-knowledge
applications,” Cryptology ePrint Archive, Paper 2022/403, 2022,
https://eprint.iacr.org/2022/403. [Online]. Available: https://eprint.iacr.
org/2022/403

[26] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc:
Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity,” in Advances in Cryptology – ASIACRYPT 2016,
J. H. Cheon and T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 191–219.

[27] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec,
“Design of symmetric-key primitives for advanced cryptographic
protocols,” Cryptology ePrint Archive, Paper 2019/426, 2019, https:
//eprint.iacr.org/2019/426. [Online]. Available: https://eprint.iacr.org/
2019/426

[28] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,”
Cryptology ePrint Archive, Paper 2019/458, 2019, https://eprint.iacr.
org/2019/458. [Online]. Available: https://eprint.iacr.org/2019/458

[29] A. Szepieniec, “On the use of the legendre symbol in symmetric
cipher design,” Cryptology ePrint Archive, Paper 2021/984, 2021,
https://eprint.iacr.org/2021/984. [Online]. Available: https://eprint.iacr.
org/2021/984

[30] L. Grassi, D. Khovratovich, and M. Schofnegger, “Poseidon2: A faster
version of the poseidon hash function,” Cryptology ePrint Archive, Paper
2023/323, 2023, https://eprint.iacr.org/2023/323. [Online]. Available:
https://eprint.iacr.org/2023/323

[31] A. Roy, M. J. Steiner, and S. Trevisani, “Arion: Arithmetization-
oriented permutation and hashing from generalized triangular dynamical
systems,” 2023.

[32] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger,
D. Rotaru, A. Roy, and M. Schofnegger, “Feistel structures for mpc, and
more,” in Computer Security – ESORICS 2019, K. Sako, S. Schneider,
and P. Y. A. Ryan, Eds. Cham: Springer International Publishing, 2019,
pp. 151–171.

[33] A. Roy and M. Steiner, “Generalized triangular dynamical system:
An algebraic system for constructing cryptographic permutations
over finite fields,” 2022, https://arxiv.org/abs/2204.01802. [Online].
Available: https://arxiv.org/abs/2204.01802

[34] A. Szepieniec, A. Lemmens, J. F. Sauer, B. Threadbare, and Al-
Kindi, “The tip5 hash function for recursive starks,” Cryptology
ePrint Archive, Paper 2023/107, 2023, https://eprint.iacr.org/2023/107.
[Online]. Available: https://eprint.iacr.org/2023/107

[35] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger,
M. Schofnegger, and R. Walch, “Hash functions monolith for
zk applications: May the speed of sha-3 be with you,” Cryptology
ePrint Archive, Paper 2023/1025, 2023, https://eprint.iacr.org/2023/1025.
[Online]. Available: https://eprint.iacr.org/2023/1025

[36] A. Gabizon and Z. J. Williamson, “plookup: A simplified polynomial
protocol for lookup tables,” Cryptology ePrint Archive, Paper
2020/315, 2020, https://eprint.iacr.org/2020/315. [Online]. Available:
https://eprint.iacr.org/2020/315

[37] E. Ben-Sasson, A. Chiesa, D. Genkin, S. Kfir, E. Tromer, M. Virza,
H. Wu, M. Backes, M. Barbosa, A. Chernyakhovsky, D. Fiore, J. Groth,
J. A. Kroll, S. MITSUNARI, A. Popovs, R. Reischuk, and T. TERUYA,
“libsnark: a c++ library for zksnark proofs,” https://github.com/scipr-lab/

13

https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2021/984
https://eprint.iacr.org/2021/984
https://eprint.iacr.org/2021/984
https://eprint.iacr.org/2023/323
https://eprint.iacr.org/2023/323
https://arxiv.org/abs/2204.01802
https://arxiv.org/abs/2204.01802
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://github.com/scipr-lab/libsnark

libsnark, 2012, SCIPR Lab.
[38] S. Bowe and J. Grigg, “bellman: zk-snark library,” https://github.com/

zkcrypto/bellman, 2015, zero-knowledge Cryptography in Rust.
[39] A. contributors, “arkworks zksnark ecosystem,” 2022, https:

//arkworks.rs. [Online]. Available: https://arkworks.rs
[40] J. L. Muñoz-Tapia, M. Belles, M. Isabel, A. Rubio, and J. Baylina,

“CIRCOM: A Robust and Scalable Language for Building Complex
Zero-Knowledge Circuits,” TechRxiv, 3 2022. [Online]. Available:
https://techrxiv.figshare.com/articles/preprint/CIRCOM A Robust and
Scalable Language for Building Complex Zero-Knowledge Circuits/
19374986

[41] Iden3, “Circom circuit compiler,” GitHub Repository, ‘circom’, 2022,
https://github.com/iden3/circom. [Online]. Available: https://github.com/
iden3/circom

[42] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge
functions,” in ECRYPT hash workshop, vol. 2007, 2007.

[43] U. Maurer, R. Renner, and C. Holenstein, “Indifferentiability,
impossibility results on reductions, and applications to the random
oracle methodology,” Cryptology ePrint Archive, Paper 2003/161, 2003,
https://eprint.iacr.org/2003/161. [Online]. Available: https://eprint.iacr.
org/2003/161

[44] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the
indifferentiability of the sponge construction,” in Advances in Cryptology
– EUROCRYPT 2008, N. Smart, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 181–197.

[45] R. S. Winternitz, “Producing a one-way hash function from des,” in
Advances in Cryptology: Proceedings of Crypto 83, D. Chaum, Ed.
Boston, MA: Springer US, 1984, pp. 203–207. [Online]. Available:
https://doi.org/10.1007/978-1-4684-4730-9{ }17

[46] ——, “A secure one-way hash function built from des,” in 1984 IEEE
Symposium on Security and Privacy, 1984, pp. 88–88.

[47] J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis of the
block-cipher-based hash-function constructions from pgv,” Cryptology
ePrint Archive, Paper 2002/066, 2002, https://eprint.iacr.org/2002/066.
[Online]. Available: https://eprint.iacr.org/2002/066

[48] D. Wang, “Loopring,” https://loopring.org/, 2020, loopring Project Ltd.
[49] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol

specification,” ZCash Improvement Proposals Website, Sep 2022,
https://zips.z.cash. [Online]. Available: https://zips.z.cash

[50] A. Bakhta, E. B. Sasson, A. Levy, and D. L. Gurevich, “Eip-5988:
Add poseidon hash function precompile,” https://eips.ethereum.org/
EIPS/eip-5988, 2022, https://eips.ethereum.org/EIPS/eip-5988.

[51] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and
M. Schofnegger, “On a generalization of substitution-permutation
networks: The hades design strategy,” Cryptology ePrint Archive, Paper
2019/1107, 2019, https://eprint.iacr.org/2019/1107. [Online]. Available:
https://eprint.iacr.org/2019/1107

[52] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[53] S. Gueron, “Intel advanced encryption standard (aes) new instructions

set,” 2012.
[54] T. Jakobsen and L. R. Knudsen, “The interpolation attack on block ci-

phers,” in Fast Software Encryption, E. Biham, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 28–40.

[55] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault, “Sub-cubic change
of ordering for gröbner basis: A probabilistic approach,” in Proceedings
of the 39th International Symposium on Symbolic and Algebraic
Computation, ser. ISSAC ’14. New York, NY, USA: Association
for Computing Machinery, 2014, pp. 170–177. [Online]. Available:
https://doi.org/10.1145/2608628.2608669

[56] J. Hoeven and R. Larrieu, “Fast gröbner basis computation and
polynomial reduction for generic bivariate ideals,” Applicable Algebra
in Engineering, Communication and Computing, vol. 30, no. 6,
pp. 509–539, Dec 2019. [Online]. Available: https://doi.org/10.1007/
s00200-019-00389-9

[57] X. Bonnetain, “Collisions on feistel-mimc and univariate gmimc,”
Cryptology ePrint Archive, Paper 2019/951, 2019, https://eprint.iacr.
org/2019/951. [Online]. Available: https://eprint.iacr.org/2019/951

[58] A. Roy, E. Andreeva, and J. F. Sauer, “Interpolation cryptanalysis
of unbalanced feistel networks with low degree round functions,”
Cryptology ePrint Archive, Paper 2021/367, 2021, https://eprint.iacr.
org/2021/367. [Online]. Available: https://eprint.iacr.org/2021/367

[59] A. Bariant, C. Bouvier, G. Leurent, and L. Perrin, “Practical Algebraic
Attacks against some Arithmetization-oriented Hash Functions,” Inria,

Research Report, Jan. 2022. [Online]. Available: https://hal.science/
hal-03518757

[60] T. Ashur, T. Buschman, and M. Mahzoun, “Algebraic cryptanalysis
of hades design strategy: Application to poseidon and poseidon2,”
Cryptology ePrint Archive, Paper 2023/537, 2023, https://eprint.iacr.
org/2023/537. [Online]. Available: https://eprint.iacr.org/2023/537

[61] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based
on block ciphers: A synthetic approach,” in Advances in Cryptology -
CRYPTO ’93, 13th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 22-26, 1993, Proceedings, ser. Lecture
Notes in Computer Science, vol. 773. Springer, 1993, pp. 368–378.

[62] H. Dobbertin, A. Bosselaers, and B. Preneel, “Ripemd-160: A strength-
ened version of ripemd,” in Fast Software Encryption, D. Gollmann, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 71–82.

[63] R. C. Merkle, “One way hash functions and des,” in Advances in
Cryptology — CRYPTO’ 89 Proceedings, G. Brassard, Ed. New York,
NY: Springer New York, 1990, pp. 428–446.

[64] S. M. Matyas, “Generating strong one-way functions with cryptographic
algorithm,” IBM Technical Disclosure Bulletin, vol. 27, pp. 5658–5659,
1985.

[65] S. Miyaguchi, K. Ohta, and M. Iwata, “128-bit hash function (n-hash),”
NTT review, 1990.

[66] B. Preneel, “Analysis and design of cryptographic hash functions,” Ph.D.
dissertation, Katholieke Universiteit te Leuven Leuven, 1993.

[67] M. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-
output functions,” 2015-08-04 2015.

[68] R. C. Merkle, “Method of providing digital signatures,” jan 1982.
[Online]. Available: https://patents.google.com/patent/US4309569A/en

[69] ——, “A digital signature based on a conventional encryption function,”
in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

[70] J. C. Hamano, “Git–a stupid content tracker,” Proceedings of the Ottawa
Linux Symposium 2006, vol. 1, pp. 385–394, 2006.

[71] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6. Berkeley, CA, USA, 2003,
pp. 68–72.

[72] A. Bakker, “Merkle hash torrent extension,” 2009, http://bittorrent.org/
beps/bep 0030.html. [Online]. Available: http://bittorrent.org/beps/bep
0030.html

[73] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
apr 2010. [Online]. Available: https://doi.org/10.1145/1773912.1773922

[74] S. Sivasubramanian, “Amazon dynamodb: A seamlessly scalable non-
relational database service,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’12.
New York, NY, USA: Association for Computing Machinery, 2012, pp.
729–730. [Online]. Available: https://doi.org/10.1145/2213836.2213945

[75] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryp-
tography Mailing list at https://metzdowd.com, 03 2009.

[76] D. Vujičić, D. Jagodić, and S. Randić, “Blockchain technology, bitcoin,
and ethereum: A brief overview,” in 2018 17th International Symposium
INFOTEH-JAHORINA (INFOTEH), 2018, pp. 1–6.

[77] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance,” in Fast Software
Encryption, B. Roy and W. Meier, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 371–388.

[78] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, “The
cipher shark,” in Fast Software Encryption, D. Gollmann, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 99–111.

[79] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting
codes. Elsevier, 1977, vol. 16, pp. 294–306.

[80] L. Grassi, C. Rechberger, and M. Schofnegger, “Proving resistance
against infinitely long subspace trails: How to choose the linear layer,”
IACR Transactions on Symmetric Cryptology, vol. 2021, no. 2, pp.
314–352, Jun. 2021. [Online]. Available: https://tosc.iacr.org/index.php/
ToSC/article/view/8913

[81] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves
with prescribed embedding degrees,” Cryptology ePrint Archive, Paper
2002/088, 2002, https://eprint.iacr.org/2002/088. [Online]. Available:
https://eprint.iacr.org/2002/088

[82] B. Edgington, “Bls12-381 for the rest of us,” https://hackmd.
io/@benjaminion/bls12-381#Resources-and-further-reading, Jun 2023.

14

https://github.com/scipr-lab/libsnark
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://arkworks.rs
https://arkworks.rs
https://arkworks.rs
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://techrxiv.figshare.com/articles/preprint/CIRCOM_A_Robust_and_Scalable_Language_for_Building_Complex_Zero-Knowledge_Circuits/19374986
https://github.com/iden3/circom
https://github.com/iden3/circom
https://github.com/iden3/circom
https://eprint.iacr.org/2003/161
https://eprint.iacr.org/2003/161
https://eprint.iacr.org/2003/161
https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2002/066
https://loopring.org/
https://zips.z.cash
https://zips.z.cash
https://eips.ethereum.org/EIPS/eip-5988
https://eips.ethereum.org/EIPS/eip-5988
https://eips.ethereum.org/EIPS/eip-5988
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1007/s00200-019-00389-9
https://doi.org/10.1007/s00200-019-00389-9
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367
https://hal.science/hal-03518757
https://hal.science/hal-03518757
https://eprint.iacr.org/2023/537
https://eprint.iacr.org/2023/537
https://eprint.iacr.org/2023/537
https://patents.google.com/patent/US4309569A/en
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/2213836.2213945
https://tosc.iacr.org/index.php/ToSC/article/view/8913
https://tosc.iacr.org/index.php/ToSC/article/view/8913
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading

[Online]. Available: https://hackmd.io/@benjaminion/bls12-381#
Resources-and-further-reading

[83] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” Cryptology ePrint Archive, Paper 2005/133, 2005,
https://eprint.iacr.org/2005/133. [Online]. Available: https://eprint.iacr.
org/2005/133

[84] J. Wang, “Bn254 for the rest of us,” https://hackmd.io/@jpw/bn254,
Aug 2022. [Online]. Available: https://hackmd.io/@jpw/bn254

[85] H. M. Edwards, “A normal form for elliptic curves,”
Bulletin of the American Mathematical Society, vol. 44,
pp. 393–422, 2007, https://www.ams.org/journals/bull/2007-44-03/
S0273-0979-07-01153-6/. [Online]. Available: https://www.ams.org/
journals/bull/2007-44-03/S0273-0979-07-01153-6/

[86] M. Schofnegger and R. Walch, “Hash functions for zero-knowledge
applications zoo,” https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo,
August 2021, IAIK, Graz University of Technology.

APPENDIX
COMP-COL RESISTANCE OF AO PGV-ELC MODE

Proof. We build on the arguments made in the proof of
Theorem 1, with the following adjustments:

1) The two colliding inputs (x,y) and (x′,y′) are now over
Fκ′

p × Fn′

p rather than Fκ
p × Fn

p .
2) The queries in Q are now of the kind Qi =

(ki,mi, ci, bi), where ki ∈ Fκ
p and mi ∈ Fn

p .
3) If A finds a collision, there are Qi, Qj ∈ Q such that

hi = hj and:

ki = Kxi

mi = Pyi

zi = Fyi

ti = Rci

hi = ti + zi



kj = Kxj

mj = Pyj

zj = Fyj

tj = Rcj

hj = tj + zj

4) We extend the notion of linking: given v ∈ Fl
p, w ∈ Fn

p

and u ∈ Fn′

p , we now have two kinds of equivalence
classes over Fl

p, the ones of the kind [v]R with cardinality
pn−l, and the ones of the kind [v]F with cardinality pn

′−l.
We now say that u is w-v-linking (via F and R) if
Rw + Fu = v.

When either of the first two equations in Item 3 are satisfied,
we say respectively that ki and mi are meaningful. Addi-
tionally, ci is meaningful if both ki and mi are meaningful,
and if all three of them are meaningful then the query Qi is
meaningful, and we call this event Meani. Since K is a left
invertible matrix, it is a bijection between Fκ′

p and Fκ
p , hence

there are exactly pκ
′

meaningful keys. Analogously, there are
pn

′
meaningful plaintexts mi for every choice of ki. Note

that A is free to make ‘meaningless’ queries and exploit them
however it likes; nevertheless, at least the two colliding queries
must be meaningful. We can conclude that:

Pr[Col] = Pr[∃i, j ≤ q : (i < j) ∧Meani ∧Meanj ∧ Linki,j]

where Linki,j is again the event that yi is ci-hj-linking via
R and F . We have four cases to consider:

• bi = bj = 0: the adversary chooses xi, xj and yi,
yj among at least pκ

′ − q and pn
′ − q possible values

respectively, ensuring that Qi and Qj are meaningful.
This choice univocally entails the values of ki, kj , mi,

mj , zi and zj . From the right-invertibility of F , there
are exactly pn−l values of either yi and yj which map
to any specific value of zi and zj . Since i < j, the
value of hi is known to A when collecting the query Qj .
However, cj is a random value from a set of cardinality
at least pn−q: note that although there are at least ‘only’
pn

′ − q meaningful values left, there is no way to know
which these are without having already queried them,
so the sample space is effectively the whole Fn

p . Since
R is right-invertible, the probability that cj ∈ [tj] is at
most pn−l

pn−q ≤
1

pl−q
, since l ≤ n. This probability is then

precisely the probability of yj being cj-hi-linking, hence:

Pr[Col] ≤ 1 · 1 ·
q∑

j=1

j∑
i=1

pn−l

pn − q
≤ q2 + q

pl − q

• bi = bj = 1: the adversary chooses xi and xj , which
entails the values of ki and kj , and also chooses ci and
cj , which are meaningful each with probability at most
pn

′
/(pn − q). If this is the case, then both yi and yj are

random values from sets of size at least pn
′−q. Since i <

j, we can assume hi to be known by A: the probability
that yj ∈ [zj] is at most pn′−l

pn′−q
≤ 1

pl−q
since l ≤ n′,

and this is again the probability of it being cj-hi-linking.
Therefore:

Pr[Col] ≤ pn
′

pn − q
· pn

′

pn − q
·

q∑
j=1

j∑
i=1

pn
′−l

pn′ − q
≤ q2 + q

pl − q

• (bi = 0) ∧ (bj = 1): Same as the previous case, but this
time Qi is always meaningful.

• (bi = 1) ∧ (bj = 0): Same as the first case, but this time
Qi is meaningful at most with probability pn

′
/(pn − q).

Since the probability of A finding a collision is independent
of its behaviour, the claim is hence proven.

APPENDIX
COMP-PRE RESISTANCE OF AO PGV-ELC MODE

Proof. The probability of finding a preimage is given by:

Pr[Pre] = Pr[∃i ≤ q : Meani ∧ Linki]

where Linki is the event that yi is ci-hj-linking.
• bi = 0: the adversary chooses xi and yi so that Qi is

meaningful. ci is then a random element from a set of
size at least pn − q, and the probability that yi is ci-
h-linking is at most pn−l

pn−q ≤
1

pl−q
, hence: Pr[Pre] ≤

1 ·
∑q

i=1
pn−l

pn−q ≤
q

pl−q
.

• bi = 1: xi and ci are chosen arbitrarily, and there is a
pn

′
/(pn − q) probability that Qi is meaningful. Even if

this is the case, yi is a random value from a set of size
pn

′ − q, and the probability of it being ci-h-linking is at
most pn′−l

pn′−q
≤ 1

pl−q
, therefore:

Pr[Pre] ≤ pn
′

pn − q
·

q∑
i=1

pn
′−l

pn′ − q
≤ q

pl − q

15

https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://hackmd.io/@benjaminion/bls12-381#Resources-and-further-reading
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://hackmd.io/@jpw/bn254
https://hackmd.io/@jpw/bn254
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo

APPENDIX
HASH-COL RESISTANCE OF AO MERKLE TREE

Proof. Suppose that we have an adversary A with access to
C, the oracle implementing a random instance of C. After
making q queries to C, interleaved with arbitrary computations,
A outputs two messages M,M ′ ∈

(
Fn
p

)∗
, with M ̸= M ′,

such that HC(M) = HC(M
′). Let the collision advantage

of A against HC be AdvHASH-COL
HC

(A). For any such A,
we can build a new adversary B, which achieves the same
advantage against C directly, using the same number of
queries as A. B works as follows: first, it runs A as a
sub-routine, obtaining the two messages M and M ′. Then,
it builds the Merkle trees T over M and T ′ over M ′.
We can assume w.l.o.g. that the communication tape of A
already contains a record of all the queries to C that were
necessary to build the two trees. If ν0 ̸= ν′

0, then A did
not actually find a collision, so B halts rejecting. Otherwise,
B starts matching tuples of the kind (νi,νti+1, . . . ,νti+t)
from T with tuples of the kind

(
ν′
i,ν

′
ti+1, . . . ,ν

′
ti+t

)
from

T ′. If, at any point in the matching process, it happens that
νi = ν′

i but, for any j ≤ t, νti+j ̸= ν′
ti+j , then B outputs(

νti+1, . . . ,νti+t,ν
′
ti+1, . . . ,ν

′
ti+t

)
, which is a collision for

C, and it halts accepting. If the search ends without finding
any match, and |M | = |M |′, it must be the case that M = M ′,
which is not a valid collision, so B halts rejecting. Finally, if all
children of νi match the children of ν′

i, assuming w.l.o.g. that
|M | < |M |′, then, for each leaf node νi ∈ T , it must be the
case that ν′

i = νi = mi. But since ν′
i = C

(
ν′
ti+1, . . . ,ν

′
ti+t

)
,

this means that
(
ν′
ti+1, . . . ,ν

′
ti+t

)
is actually a preimage for

mi. Let Col be the event of B finding a collision for C and
Pre be the event of it finding a preimage instead. From our
previous analysis, we have that:

AdvHASH-COL
HC

(A, q) = Pr[Col ∨ Pre] ≤
AdvCOMP-COL

C (B, q) +AdvCOMP-PRE
C (B, q)

Since this result does not depend on the behaviour of A, the
claim follows.

APPENDIX
BACKENDS PERFORMANCE COMPARISON

TABLE VI: Time to compute common field operations for
target libraries over target fields.

Library Field x+y x+=y x+=x x*y x*=y x*=x

NTL
BLS-381 50.9 ns 33.2 ns 11.2 ns 152 ns 62.8 ns 45.3 ns
BN-254 50.8 ns 33.1 ns 11.5 ns 153 ns 59.9 ns 45.2 ns
Ed-180 78.07 ns 28.5 ns 11.3 ns 75.7 ns 38.6 ns 33.2 ns

libff
BLS-381 8.12 ns 7.12 ns 7.28 ns 22.4 ns 21.6 ns 21.8 ns
BN-254 8.35 ns 7.46 ns 7.38 ns 19.4 ns 17.7 ns 17.8 ns
Ed-180 7.93 ns 7.05 ns 7.22 ns 14.0 ns 13.9 ns 13.6 ns

libarith
BLS-381 3.48 ns 2.78 ns 1.80 ns 18.3 ns 18.5 ns 17.8 ns
BN-254 3.73 ns 2.96 ns 1.76 ns 19.9 ns 20.3 ns 19.7 ns
Ed-180 2.66 ns 2.19 ns 3.87 ns 12.1 ns 11.5 ns 10.9 ns

In Table VI, we report the time necessary to perform
common arithmetic operations over the target backends. In
particular, we noticed that NTL greatly benefits from in-place
operations, due to its use of dynamic allocation, while for

libff this is less of a concern, as it uses automatic (stack)
storage, and for libarith the cost is relevant only for
addition.

APPENDIX
ECS AND ORDER OF PRIME FIELDS FOR EXPERIMENTS

Here we give the different elliptic curves and prime fields
used for our experiments.

TABLE VII: Order of the prime fields used in the experiments.

Curve p log2(p)

BLS12-381 73eda753 . . . 00000001 254.86
BN-254 30644e72 . . . f0000001 253.60
Ed-180 10357f27 . . . 80000001 180.02

APPENDIX
PARALLELIZED IMPLEMENTATION AND EFFICIENCY

COMPARISON

Here we provide a visualization of the results of our
parallelized implementations.

0 5 10 15 20 25 30
27

28

29

210

211

212

213

214

Threads

Ti
m

e
[m

s]

POSEIDON

POSEIDON-DM
POSEIDON2-Trunc
POSEIDON2-DM

Fig. 5: Multithread scaling of target primitives when building
an arity-4 tree (libff, BLS-381, |M | = 220).

BLS-381 BN-254 Ed-180

8×

9×

10×

Sp
ee

du
p

ov
er

ba
se

lin
e

POSEIDON

POSEIDON-DM
POSEIDON2-Trunc
POSEIDON2-DM

Fig. 6: 16-threads speed-up over serial construction of an arity-
4 Merkle tree (libff, BLS-381, |M | = 220).

16

	Introduction
	Preliminaries
	Notations and Definitions
	AO Modes of Operation
	Security Notions

	Two new modes of compression
	Security Proofs
	Security of AO PGV-LC mode
	Security of AO PGV-ELC mode
	Security of AO t-ary Merkle Tree

	Implementations and Experiments
	Optimized R1CS for t-ary Merkle Tree
	ZK-SNARK Performance
	Native Performance

	References
	Appendix: comp-col resistance of AO PGV-ELC mode
	Appendix: comp-pre resistance of AO PGV-ELC mode
	Appendix: hash-col resistance of AO Merkle tree
	Appendix: Backends performance comparison
	Appendix: ECs and Order of Prime Fields for Experiments
	Appendix: Parallelized Implementation and Efficiency Comparison

