
Journal of Phonetics 71 (2018) 1–15
Contents lists available at ScienceDirect

Journal of Phonetics

journal homepage: www.elsevier .com/locate /Phonet ics
Special Issue: Emerging Data Analysis in Phonetic Sciences, eds. Roettger, Winter & Baayen
Introducing Parselmouth: A Python interface to Praat
https://doi.org/10.1016/j.wocn.2018.07.001
0095-4470/� 2018 Elsevier Ltd. All rights reserved.

* Corresponding author at: Artificial Intelligence Lab Brussels, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Elsene, Belgium.

E-mail address: Yannick.Jadoul@ai.vub.ac.be (Y. Jadoul).
Yannick Jadoul a,b,*, Bill Thompson c,a, Bart de Boer a,c

aArtificial Intelligence Lab Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
bADReM Research Group, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
cLanguage and Cognition Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands

a r t i c l e i n f o
Article history:
Received 15 September 2017
Received in revised form 16 April 2018
Accepted 4 July 2018

Keywords:
Praat
Python
Data analysis
Acoustics
Phonetics
Software
a b s t r a c t

This paper introduces Parselmouth, an open-source Python library that facilitates access to core functionality of

Praat in Python, in an efficient and programmer-friendly way. We introduce and motivate the package, and present

simple usage examples. Specifically, we focus on applications in data visualisation, file manipulation, audio manip-

ulation, statistical analysis, and integration of Parselmouth into a Python-based experimental design for auto-

mated, in-the-loop manipulation of acoustic data. Parselmouth is available at https://github.com/YannickJadoul/

Parselmouth.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Data analysis in the phonetic sciences routinely relies upon
the functionality of Praat (Boersma, 2001; Boersma &
Weenink, 2018), an extensive software package which has
subserved the day-to-day activities of phoneticians for more
than two decades. This paper introduces Parselmouth, an
open-source Python library that exposes major functionality
of Praat into Python. Two principal advantages result from this
integration: (1) users of Praat may now benefit from the
expressive power of a large-scale language like Python, and
its expansive ecosystem of scientific and computational
libraries; and (2) users of Python may access the many tools
and utilities for sophisticated acoustic analysis that Praat pro-
vides. Parselmouth is currently available as version 0.3.0, for
use with Windows, macOS, and Linux-based operating sys-
tems, for Python versions 2 and 3. The package is under active
development by the first author of this article, and can be
downloaded from https://github.com/YannickJadoul/Parsel-
mouth. Basic speech analysis methods from Praat are already
available, while all other algorithmic functionality of Praat can
be called indirectly. We are hopeful that others in the commu-
nity of speech scientists and engineers will wish to contribute
to the development.

The remainder of this paper is organised as follows:
Sections 1.1, 1.2, and 1.3 respectively give detailed background
and motivation, compare Parselmouth to other software pack-
ages, and provide technical information about Parselmouth.
Sections 1.4, 1.5, and 1.6 then present more practical informa-
tion on the functionality of Parselmouth, how to install the
Python library, and where to find its online documentation
and further resources. Section 2 presents five usage exam-
ples, focusing on what we imagine to be some of the most
recurrent technical challenges speech scientists are likely to
face: idiosyncratic visualisation of acoustic data (Section 2.1);
reading, writing, and manipulating batches of acoustic files and
data frames (Section 2.2); manipulation of audio files along
complex acoustic dimensions (Section 2.3); statistical analysis
of the output of acoustic analyses (Section 2.4); and integra-
tion of automated acoustic analysis into experimental design
(Section 2.5). These examples are intended to be illustrative
of the principles behind the package, rather than exhaustive
demonstrations of Parselmouth’s potential use cases, which
we expect to grow indefinitely with the advance of Python
and the scientific creativity it facilitates. We summarise the
motivation and examples and present concluding remarks in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.wocn.2018.07.001&domain=pdf
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://doi.org/10.1016/j.wocn.2018.07.001
mailto:Yannick.Jadoul@ai.vub.ac.be
https://doi.org/10.1016/j.wocn.2018.07.001
http://www.sciencedirect.com/science/journal/00954470
http://www.elsevier.com/locate/Phonetics


2 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
Section 3, after which Section 3.1 closes the paper with a brief
discussion of the future of Parselmouth.

At this point we wish to stress that Parselmouth is built on
the vast Praat collection of source code: as such, we encour-
age twin citation of both Praat and Parselmouth whenever
Parselmouth is used for scientific research.
1.1. Motivation

The Python programming language is rapidly becoming the
lingua franca of scientific computing. Python is used and sup-
ported by an enormous community of scientists, researchers,
and engineers whose workflows are continuously improving
thanks to integration of diverse computational utilities in a sin-
gle programming language. For many, including us, Python is
the go-to toolbox for data manipulation and analysis. However,
for contemporary speech scientists, researchers, and engi-
neers, major portions of our day-to-day activities – specifically,
analysis of acoustic data using Praat functionality – remain dif-
ficult or time-consuming in Python; the necessary functionality
is often unavailable or dispersed over multiple unrelated and
sometimes incompatible libraries. We began developing
Parselmouth as a solution to this problem. Parselmouth is
not a replacement for Praat: it is an additional interface to
Praat, making Praat’s functionality available in Python. We
have three principal goals in mind: to allow experienced users
of Praat to more efficiently integrate acoustic analysis with sci-
entific tools available in Python but not in Praat; to provide
access to Praat’s functionality for users who are comfortable
with Python but unfamiliar with Praat; and to simplify or opti-
mise the workflow of any users who would simply rather work
in a single language.

Python is often used as glue language for scientific work-
flows, drawing together the “scientific stack” in a collection of
widely used, robust scientific libraries (e.g., NumPy, SciPy,
pandas, scikit-learn, matplotlib, etc.; see https://scipy.org/
about.html). As Python is designed as an extensible program-
ming language and framework, its use extends across many
domains, and even across other programming languages. Sci-
entists using Python have access to, for example: advanced
statistical modeling libraries and probabilistic programing
frameworks such as Statsmodels,1 PyMC3,2 Pyro,3 and
Edward;4 deep learning libraries like TensorFlow5 or PyTorch;6

Jupyter notebooks7 (formerly IPython); experimentation pack-
ages such as PsychoPy8 or Dallinger;9 the rpy210 module that
provides easy access to R functionality; and the official
‘MATLAB Engine API for Python’,11 which integrates MATLAB
into Python programs. More generally, just like Praat, Python
has functionality for writing universal data exchange formats –
built-in, such as comma-separated values (csv) or JavaScript
1 http://www.statsmodels.org/
2 http://docs.pymc.io/
3 http://pyro.ai/
4 http://edwardlib.org/
5 https://www.tensorflow.org/
6 http://pytorch.org/
7 http://jupyter.org/
8 http://www.psychopy.org/
9 http://docs.dallinger.io/en/v3.4.1/

10 https://rpy2.readthedocs.io/
11 https://mathworks.com/help/matlab/matlab-engine-for-python.html
Object Notation (JSON), or through external libraries, such as
HDF512 or SQL databases13,14 – which makes it possible and
convenient to use Parselmouth to combine the functionality of
Praat and these Python libraries with almost any other computa-
tional framework.

While choosing any particular language is to some extent
an arbitrary choice, Python is a popular and high-level, yet
fully-fledged programming language. Python not only accom-
modates quick scripting but also provides support for more
complex programming paradigms and performant implementa-
tions of algorithms. While the Praat scripting language is suit-
able for automating repeated workflows and calculations
within the context of Praat, we believe the use of Python and
Parselmouth can be advantageous in a broader range of appli-
cations. Python implements general programming principles,
including a full and generic type system with built-in types
(i.e., lists, tuples, sets, dictionaries, . . .) and custom classes.
As a result, Python is well-suited to be used in a more
programming-intensive context. In these cases, integrated
development environments with e.g. syntax highlighting, auto-
completion functionality, and debugging tools, can assist in the
development process.

Python is also an accessible language, useful for writing
simple scripts. Python is often taught to students at their first
encounter with programming, sometimes even before a spe-
cialisation in phonetics brings them into contact with Praat.
We believe that Parselmouth can be attractive to this group
of users that are already familiar with programming or Python,
but not with the Praat scripting language. Python is supported
by a large community of users who have written up many solu-
tions to specific programming problems and frequent Python
errors – see, for example, StackOverflow.15 Fewer people have
the necessary experience with Praat to answer questions and
solve problems concerning Praat scripts, and fewer resources
and tutorials exist to learn the Praat scripting language than to
learn Python.

Finally, the Python project and the available libraries are
modular. They are specialised in one area of functionality
(i.e., being a programming language, plotting graphs, handling
data tables, performing statistical analyses, etc.), yet are
designed to be used and combined in larger and more complex
projects. With Parselmouth, we aim to add the option of using
the highly advanced, specialised functionality from Praat in
combination with the already existing libraries in Python in this
same manner.
1.2. Relation to previous software

Parselmouth is not the first attempt to port Praat functional-
ity into Python. Other packages exist, together offering a range
of Praat functionality. However, the previous projects we are
aware of are generally restricted in important ways that Parsel-
mouth is not, technically speaking. We see the diversity of pre-
ceding projects as testament to a clear but unfulfilled demand
12 http://docs.h5py.org/
13 http://www.sqlalchemy.org/
14 https://pandas.pydata.org/pandas-docs/stable/io.html#io-sql
15 https://stackoverflow.com/questions/tagged/python

https://scipy.org/about.html
https://scipy.org/about.html
http://www.statsmodels.org/
http://docs.pymc.io/
http://pyro.ai/
http://edwardlib.org/
https://www.tensorflow.org/
http://pytorch.org/
http://jupyter.org/
http://www.psychopy.org/
http://docs.dallinger.io/en/v3.4.1/
https://rpy2.readthedocs.io/
https://mathworks.com/help/matlab/matlab-engine-for-python.html
http://docs.h5py.org/
http://www.sqlalchemy.org/
https://pandas.pydata.org/pandas-docs/stable/io.html#io-sql
https://stackoverflow.com/questions/tagged/python


Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 3
for sophisticated acoustic data analysis tools in Python. We
are aware of praat-py,16 praat-python-scripts,17 praatIO,18 and
textgrid.19

Generally speaking, we found two approaches in these pro-
jects. On the one hand, some projects reimplemented a selec-
tion of Praat’s functionality in Python code. A significant
drawback of this approach is that it does not guarantee the
same results as Praat, due to the potential for subtly distinct
implementations, and the possibility of introducing errors in
newly-written code. This approach requires a great deal of
effort for every extra bit functionality, and requires familiarity
with and insight into the phonetic algorithms that Praat has
already implemented, tested, and refined. Other existing pro-
jects instead provide a Python interface to Praat scripts and
its scripting language. This often has the disadvantage of com-
promised performance because of increased communication
between Python and a separate Praat program (cfr. Sec-
tion 1.3). Moreover, a Python user still needs to learn the Praat
scripting language, rather than being able to use a “pythonic” 20

Python library.
While all these projects fulfill the needs of the contexts in

which they were created, and might certainly be used and
combined by other users, none of these satisfactorily provides
efficient access to a broad range of Praat functionality in a pure
Python environment. Parselmouth combines the strengths of
these approaches to offer a fully pythonic Python library –
i.e. classes, functions, operators, etc. that look and function
just like other familiar libraries in Python. This is made possible
by a more comprehensive technical solution to the challenge of
linking Python and Praat’s code. Rather than re-implementing
the complex algorithms underpinning Praat, Parselmouth uti-
lises Praat’s own official C/C++ (open) source code behind
the scenes. This ensures that any analyses conducted using
Parselmouth are completely consistent with Praat, without
the user needing to know Praat’s scripting language. More-
over, by reaching directly into the source code of Praat, Parsel-
mouth’s access to Praat’s data structures and routines is fast
and efficient. Section 1.3 gives a very brief description of
how this works and why we believe our solution achieves a
desirable trade-off between the available approaches.

In addition, numerous scientific audio tools and libraries are
available to users of Python (see, e.g., https://github.com/far-
oit/awesome-python-scientific-audio): we hope that Parsel-
mouth can complement these tools, whilst also providing a
unified suite of tried-and-tested routines for analysis of speech
data, specifically in Praat.

We are also aware of libraries that allow access to Praat
functionality for the R language and MATLAB environment:
PraatR (Albin, 2014),21 and rPraat and mPraat (Bořil &
Skarnitzl, 2016).22 We see these packages as complementary
to Parselmouth: their availability caters to the needs of users
16 https://github.com/JoshData/praat-py
17 https://github.com/mmcauliffe/python-praat-scripts
18 https://github.com/timmahrt/praatIO
19 https://github.com/kylebgorman/textgrid
20 “To say that code is pythonic is to say that it uses Python idioms well, that it is natural or
shows fluency in the language, that it conforms with Python’s minimalist philosophy and
emphasis on readability.” – https://en.wikipedia.org/wiki/Python_(programming_language)
(accessed 14th of September, 2017).
21 http://www.aaronalbin.com/praatr/
22 http://fu.ff.cuni.cz/praat/
of these other languages, but does not provide a convenient
solution for the many Python users in the scientific community.
Our impression is that these packages are generally subject to
the same restrictions as the Python packages we reviewed
above: either they provide access to Praat functionality, but only
by calling Praat commands externally (PraatR), or they re-
implement a subset of Praat (mPraat & rPraat).

More generally, we are currently witnessing an exciting
expansion of digital tools for open and collaborative manipu-
lation, management, and analysis of speech data. One pro-
ject in this vein is the EMU Speech Database Management
System,23 which aims to harness digital tools to expand the
range of speech-data annotation and indexing capabilities cur-
rently available to speech scientists. We hope that Parsel-
mouth can be understood as a small contribution to this
general movement to increase the accessibility of speech-
analysis methods.
1.3. Technical details

The official Python C API24 makes it possible to use the com-
piled C/C++ routines from Praat directly in Python. In particular,
Parselmouth relies on the pybind11 library (Jakob, Rhinelander,
& Moldovan, 2017) for low level, efficient communication with
and access to Praat’s internal objects, memory, and code. This
makes Parselmouth fast and efficient by removing the need to
send large lists and grids as strings of numbers (which would
first have to be serialized, then parsed, etc.) between programs.
Because Praat is part of the Parselmouth library instead of using
an external version of the Praat program, we can provide imme-
diate access to the raw data calculated by Praat. Moreover,
NumPy (Walt, Colbert, & Varoquaux, 2011) allows us to directly
use data rather than making an entire copy. Consider calculating
a spectrogram for one second of audio, for instance, using
Praat’s default time step of 0.002 s and maximum frequency of
5000 Hz. This would result in roughly 500 time slices that all con-
sist of 160 frequency bins, or about 80000 floating point values
in total. When Praat calculates these values, they already exist
in a 2D array, stored in memory. Parselmouth together with
NumPy lets you use the existing values without copying, rather
than copying all of them into Python lists or making 80000 calls
into a running Praat instance to request the values. And in the
case that all of these numeric values would have to be converted
back and forth to string representations during inter-process
communication with the sendpraat tool or subprocess calls
to the Praat executable, the efficiency would even decrease
more dramatically.

As such, Parselmouth’s performance is notably fast. On the
one hand, when it comes to the execution of Praat’s function-
ality, we are using the exact same code, and Python scripts
that access computationally expensive Praat algorithms are
expected to take the same amount of time. On the other hand,
when it comes to the comparsion of Praat and Parselmouth
scripts that have a high rate of interaction between the Python
code and the Praat functionality, our tests and benchmarks
seem to indicate that the combination of Python and
23 http://ips-lmu.github.io/EMU.html
24 https://docs.python.org/3/c-api/index.html

https://github.com/faroit/awesome-python-scientific-audio
https://github.com/faroit/awesome-python-scientific-audio
https://github.com/JoshData/praat-py
https://github.com/mmcauliffe/python-praat-scripts
https://github.com/timmahrt/praatIO
https://github.com/kylebgorman/textgrid
https://en.wikipedia.org/wiki/Python_(programming_language)
http://www.aaronalbin.com/praatr/
http://fu.ff.cuni.cz/praat/
http://ips-lmu.github.io/EMU.html
https://docs.python.org/3/c-api/index.html


4 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
Parselmouth runs as fast or even faster than the equivalent
script runs in the Praat interpreter. Consequently, the neces-
sary conversions and communication between Python and
Praat do not seem to make Parselmouth less efficient than
using Praat scripts. A few pairs of equivalent Python and Praat
scripts can be found in the documentation and supplementary
material for a comparison in performance.

As is often the case in software development, the technical
solution is a trade-off between multiple, often conflicting goals
and considerations. One of the disadvantages of Parsel-
mouth’s solution is the fact that the C/C++ code results in
platform-dependent versions of the library (unlike a pure
Python library). However, given the existence of Python stan-
dards related to the compatibility of binary libraries,25,26,27

and the important advantage of reusing Praat’s existing code,
we consider this a suitable compromise. Moreover, many other
scientific Python libraries – such as Numpy, SciPy, and pandas
– have made a similar decision because of code reuse and per-
formance reasons.

Another trade-off in Parselmouth is the manual creation of a
completely new “pythonic” interface, rather than automatically
converting the Praat commands. While this means that the
actual development and maintenance of the project is more
labour-intensive, this allows us to create a Python-intuitive
library that integrates well with common Python idioms and
other libraries such as NumPy. Moverover, the complementary
praat.call and praat.run functions (cfr. Sections 2.3 and
2.4) do provide immediate access to the full scope of Praat
functionality, independently from the pythonic Parselmouth
interface. This choice is related to our decision of including a
specific version of Praat as part of the Parselmouth Python
package. This sacrifices the flexibility of picking a specific ver-
sion of Praat in favour of the possibility to access Praat’s inter-
nal values and structures. The latter makes Parselmouth more
efficient in use, easier to install, and allows us to fine-tune the
Python interface. Moreover, since multiple versions of Praat
are designed to be compatible, we consider this to be the
desired trade-off for Parselmouth.

1.4. What Praat functionality is already ported in Parselmouth?

Parselmouth currently supports 8 classes: Sound, Spec-
trum, Spectrogram, Intensity, Pitch, Formants,
Harmonicity, and MFCC (and conversion between these
objects). We are in the process of porting the TextGrid func-
tionality. In addition to this primary functionality, which has
been designed to look and feel like a native and efficient
Python library, Parselmouth also implements access to the
Praat commands and scripts. This way, a user can access
familiar Praat functionality that has not (yet) been explicitly
added to Parselmouth, as we demonstrate in Sections
2.3 and 2.4. We are also keen to learn from the research com-
munity the aspects of Praat that would be in high demand in a
further development of Parselmouth. We discuss future func-
tionality in Section 3.1.
25 https://www.python.org/dev/peps/pep-0491/
26 https://www.python.org/dev/peps/pep-0513/
27 https://www.python.org/dev/peps/pep-0571/
1.5. Installation

Parselmouth is available in the Python Package Index
(PyPI)28 under the name praat-parselmouth,29 and can
be installed via the default package manager pip using the fol-
lowing command:

pip install praat-parselmouth

Parselmouth’s source is hosted on GitHub at https://github.com/Yan-
nickJadoul/Parselmouth. Updates, examples, and troubleshooting
advice can also be found in this repository. The accompanying docu-
mentation (cfr. Section 1.6) provides up-to-date details on the installa-
tion and includes instructions on how to install Parselmouth in the
PsychoPy Builder interface.

We also intend to keep Parselmouth up to date with the
newest Praat updates: at the time of writing the current version,
0.3.0, is based on Praat 6.0.37 (the version of Praat released
on the 3rd of February, 2018).

1.6. Documentation

Automatically generated documentation, advanced installa-
tion instructions, and more usage examples are available at
https://parselmouth.readthedocs.io. We are constantly improv-
ing the documentation and usage examples, and we are hope-
ful that others in the community will wish to contribute to this
effort. To help out fellow scientists and Parselmouth users,
we highly appreciate feedback on the current state of Parsel-
mouth and the documentation, the identification of potential
problems, the completion of an example, or the addition of a
usage tutorial.

2. Usage examples

We provide five simple usage examples that focus on
integration of Parselmouth into common Python-based work-
flows. This focus reflects our assumption that the used Praat
functionality, which Parselmouth simply uses directly, is
already familiar to the user. Users who are not familiar with
Praat’s functionality can find excellent tutorial examples in
Praat’s documentation. The usage examples we provide
are intended to demonstrate the basic principles and effi-
ciencies of using Praat functionality in a Python workflow,
rather than to be examples of tasks that Praat could not
accomplish per se. We wish to explicitly acknowledge the
flexibility of Praat in this respect here. Parselmouth simply
provides an alternative means of interaction with Praat’s
algorithms, which we hope can be beneficial to some users.
The code in these examples is made available as part of the
Parselmouth repository at https://github.com/YannickJadoul/
Parselmouth and the documentation at https://parselmouth.
readthedocs.io, and in the supplementary materials for this
article. The supplementary material also contains an anno-
tated version of all examples that describes in detail what
the Python code is doing.
28 https://pypi.python.org/pypi
29 Do please note that while the Python module itself is called parselmouth, the PyPI
package to install with pip is praat-parselmouth, and not the unrelated parsel-

mouth package.

https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://parselmouth.readthedocs.io
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://parselmouth.readthedocs.io
https://parselmouth.readthedocs.io
https://www.python.org/dev/peps/pep-0491/
https://www.python.org/dev/peps/pep-0513/
https://www.python.org/dev/peps/pep-0571/
https://pypi.python.org/pypi


Fig. 1. Custom spectrogram and pitch contour resulting from the Python code in Listing 1.

Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 5
Rather than presenting a single case study in which we
demonstrate the use of Parselmouth, we choose to present
short and independent examples – with a limited amount of
code and minimal complexity – to demonstrate the variety of
applications, practically motivate the project, and hopefully
inspire the use of Parselmouth in concrete research. After all,
Praat itself is used to study a wide range of research questions
and can be used as a tool in different phases of that research,
and it seems inopportune to narrow down the use of Praat and
Parselmouth to a single example. Moreover, Python is a pro-
gramming language, a tool to write scripts and programs that
create new and modify custom-tailored workflows. Abstract
and short examples can give an idea of the range of situations
in which Parselmouth could be useful, leaving the broader con-
text up to the user to define. We are however hopeful that over
time, more complex and more concrete examples can be
added to the documentation, and that new research can
demonstrate the applicability of Parselmouth (e.g.,
Ravignani, 2018).

These examples are chosen to represent different parts of a
hypothetical phonetic experiment. First, acoustic stimuli need
to be created and played to participants (Sections 2.3 and
2.5). Afterwards, some post-processing of the collected data
is required (Section 2.2), and finally the results can be plotted
and subjected to statistical analyses (Sections 2.1 and 2.4,
respectively). While these different abstract examples need
to be seen in the context of a larger scientific workflow, to be
adapted to match one’s specific needs in a concrete project,
we present these examples out of order for educational pur-
poses: each of the examples is practically independent of the
previous ones but will build further upon the concepts intro-
duced before.
33
2.1. Data visualisation

Effective visualisation of acoustic data is an art form. Seam-
less generation of professional-looking and highly accurate
spectrograms has always been one of Praat’s major attrac-
tions. Parselmouth is not intending to replace or supersede
Praat’s visualisation routines, which are finely tailored for
human speech data: for quick and easy spectrograms for
instance, Praat remains the better option (in our view). How-
ever, Parselmouth allows the computation of a phonetic analy-
sis to be more easily separated from the choice of a framework
for visualisation and presentation. While most, if not all, com-
mon visualisation needs can be fulfilled with Praat’s Pic-
ture window,30 Parselmouth’s modularity allows a user to
access more exotic plot types and features of different Python
graphing packages, to combine the plots with custom statistical
insights and plots that might not be available in Praat, to have
the plots shown in a Jupyter notebook, or maybe just to use
existing experience in Python visualisation that the user does
not possess in Praat.

The example in Listing 1 shows two simple Python func-
tions that integrate Parselmouth and the Python visualisation
libraries matplotlib31 (Hunter, 2007) and seaborn32 in order to
30 http://www.fon.hum.uva.nl/praat/manual/Picture_window.html
31 https://matplotlib.org/
32 http://seaborn.pydata.org/
plot a colourful spectrogram and an overlaid pitch contour.
Notice how the calls to Praat functionality and information
through Parselmouth (e.g. sound.to_spectrogram(),
spectrogram.values, or pitch.ceiling) are integrated
within the Python logic, rather than isolated calls into Praat.
Though obtaining and plotting the values of a spectrogram in
Python is in itself not a difficult challenge with the help of existing
libraries (matplotlib, for example, includes a function specgram,
and SciPy’s signal module contains spectrogram), we are
using Praat’s tried and tested algorithm to calculate the spectro-
gram’s values. This means that the same set of familiar param-
eters from Praat can be used, and more importantly that this will
result in the exact same analysis you would get in Praat.33 Fig. 1
shows the resulting plot.

Apart from the actual visualisation example and the combi-
nation of Praat functionality with the matplotlib library, the main
thing to take away from Listing 1 is the mapping between Praat
and Parselmouth objects and functionality. After defining the
two auxiliary functions draw_spectrogram and draw_
pitch, we open an audio file as Sound object, just as one
would do in Praat. The main difference is that we store the
object in a variable snd rather than adding it to the global list
of objects in Praat. Afterwards, our invocation of snd.

to_pitch() corresponds to first selecting the Sound in
Praat’s objects list and then clicking To Pitch in the Praat user
interface (or writing the equivalent script). As we have designed
Parselmouth with this mapping in mind, this is also how other
objects and Praat commands are accessible through Praat:
Praat objects become standard Python objects in variables,
and Praat commands becomemethods of these objects. Notice
this principle being applied, for example, in spectrogram =

snd.to_spectrogram(maximum_frequency=8000.0) =

8000.0): snd is a Praat/Parselmouth Sound object, To

Spectrogram is called for this selected object, one parameter
Beware however that assuming manual control over the plotting does mean that you
need to watch out to not make mistakes that Praat’s standard plotting algorithms avoid and
abstract away from the user. For example, the exact timing of the spectrogram samples
with respect to the time range of the sound signal are automatically handled by Praat but
require in our example to respectively use xs() (or x1, nx, and dx) vs. xmin and xmax.

http://www.fon.hum.uva.nl/praat/manual/Picture_window.html
https://matplotlib.org/
http://seaborn.pydata.org/


Listing 1. Using Parselmouth to plot the custom spectrogram visalisation visualisation in Fig. 1 Usage of Parselmouth functionality is highlighted in red; a version with detailed
comments can be found in the supplementary material.

6 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
of this call is changed to a non-standard value (maxi-
mum_frequency=8000.0 = 8000.0), and the Spectro-

gram object Praat creates and would add to the global list of
objects is returned and stored in the variable spectrogram.
A user interested in e.g. the harmonics-to-noise ratio rather
than the fundamental frequency can now correctly infer that
the Parselmouth equivalent of To Harmonicity is the
Sound.to_harmonicity method.34

Listing 2 shows how this kind of plotting function can be
combined with the Python data manipulation library pandas
and the FacetGrid functionality of seaborn to compose a
structured array of spectrograms with overlaid pitch contours.
This example visualises a small dataset consisting of the num-
bers 1 to 5 being spoken in English by the first two authors.
The example assumes we have stored these audio files in a
directory named audio, and that each audio file has been
named in accordance with the convention {digit}_
{speaker-id}.wav. It also assumes a csv data frame whose
rows contain variables that uniquely identify a speaker-id/digit
combination that we wish to plot in the grid. The next example
34 For an overview of the available objects and methods, consult Python’s built-in help

function (e.g., help(parselmouth.Sound)) or the API reference section of the
documentation.
(see Section 2.2) goes into more detail on file system integra-
tion for structured data frames. The resulting array of spectro-
grams, with the number being spoken along the columns, and
a row for each speaker, is shown in Fig. 2.

In the example code in Listing 2, there is one more aspect
related to the usage of Parselmouth that deserves focus.
The function facet_util is repeatedly called by seaborn’s
FacetGrid visualisation of the audio files in a grid layout,
but in the implementation of facet_util this does not matter:
Parselmouth is used to access specific Praat functionality
when logically needed by the program. This means that there
is no need to do the analysis before the plotting, for example,
as one might do when using Praat and a Python script sepa-
rately. Again, this programming pattern can be applied in differ-
ent contexts from our simple example; the actual Praat
functionality accessed might be different from the pitch estima-
tion and spectrogram calculation done here. Next to the
demonstration ofmatplotlib or seaborn plotting, the idea to take
away from this example is that Parselmouth enables a user to
use Praat functionality at the location it is logically needed
within a Python script or program. Moreover, notice how, just
like in Praat, we can reuse existing code by calling previously
defined function (here, draw_spectrogram and draw_



Listing 2. Plotting a data set as custom spectrograms (seeFig. 2). Usage of Parselmouth functionality is highlighted in red; a version with detailed comments can be found in the
supplementary material.

Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 7
pitch from Listing 1). As a general principle, the Parselmouth
objects (here, sound, pitch, and the return value of sound.
to_spectrogram()) are ordinary Python objects and can be
stored in variables and passed to existing functions.
2.2. File manipulation

Python and its libraries provide rich structures and utilities
for storage and manipulation of structured datasets. When
combined with Parselmouth, these tools can facilitate painless
acoustic analysis of arbitrarily complex datasets. Consider the
following workflow: the phonetician performs an experiment
which results in multiple participants in multiple experimental
conditions, producing audio files from which the mean
harmonics-to-noise ratio needs to be extracted. A typical sce-
nario might result in audio files being stored on the phoneti-
cian’s computer in subdirectories of a directory named
results. These subdirectories reflect the different experi-
mental manipulations, and each audio file is named with a
unique participant identifier number. The experiment also
resulted in a large csv file whose rows provide information
on each participant, including variables that indicate the exper-
imental manipulation (condition) and the unique participant
identifier (pp_id). Table 1 shows a simplified example of this
structure.

In this example, we show how, in tandem with the data
manipulation library pandas35 (McKinney, 2010), Parselmouth
makes light work of the data analysis task: looping over a large
dataset, identifying an appropriate audio file in the user’s file
system, extracting the harmonics-to-noise-ratio of the audio at
a certain time as a single Python decimal number, and writing
this value back into the appropriate row of the results data frame.
The extract below in Listing 3 shows how this operation can
achieved in just a few lines of Python code using Parselmouth.
35 https://pandas.pydata.org/
Once again, this example serves as a general illustration of the
kind of batch processing one could do on a set of audio files in
order to, for example, extract a certain set of acoustic features
(e.g., Ravignani, 2018).

The way Parselmouth is used here is very similar to its
usage in Listings 1 and 2 in Section 2.1: an audio file gets
loaded as Sound object and subjected to an acoustic analysis.
However, rather than using all values calculated by Praat (to
visualise them), we here have Praat interpolate the value at
specific points in time. In this example, we chose to include
the times’ offsets at which the harmonics-to-noise ratio is
extracted in the comma-separated values file. Alternatively, a
common scenario would be where each audio file is accompa-
nied by a Praat TextGrid with annotations. Querying a
TextGrid file or object through Parselmouth is illustrated
and explained in the example in Section 2.4.

A related and common use case is manipulating or analys-
ing all files in a certain directory or whose name matches a cer-
tain pattern. Analogous to Praat’s Create Strings as file

list. . .,36 Python’s built-in glob.glob function37 allows one to
find and loop over these files in a single line (i.e., for file_
name in glob.glob("subdir/*.wav"):). While this is pos-
sible to do in Praat, we imagine the ease of combining this con-
struct with other examples and workflows to be attractive and
useful to Python and Parselmouth users.
2.3. Audio manipulation

In addition to the pythonic interface at the core of this pro-
ject, Parselmouth also provides access to Praat’s functionality
by means of calling the commands visible in the user interface,
as one would do in a Praat script. This offers two advantages:
(1) functionality not yet ported to the core interface can still be
36 http://www.fon.hum.uva.nl/praat/manual/Create_Strings_as_file_list___.html
37 https://docs.python.org/3/library/glob.html

https://pandas.pydata.org/
http://www.fon.hum.uva.nl/praat/manual/Create_Strings_as_file_list___.html
https://docs.python.org/3/library/glob.html


Fig. 2. Structured arrangement of custom spectrograms (cfr. Listing 2).

8 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15



Table 1
Example structure of a csv file with results to be analysed
by the code in Listing 3.

Condition � � � pp_id

0 � � � 1877
1 � � � 801
1 � � � 2456
0 � � � 3126

Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 9
accessed in this way; and (2) users who already have a strong
working knowledge of Praat menu commands and buttons can
call those methods by name if they choose. Listing 4 lays out
an example relating to the manipulation of the pitch track of
an existing audio recording. Manipulating the fundamental fre-
quency of an audio file is a complicated procedure, and unli-
kely to be readily available in Python-based tools, yet the
requirement for close control over the pitch of acoustic exper-
imental stimuli can be used for testing questions related to the
effect of sound manipulation on language acquisition and per-
ception (see e.g., Filippi, Gingras, & Fitch, 2014). In the exam-
ple set out in Listing 4, we access functionality related to
Praat’s Manipulation class and call a number of Praat
actions to increase the fundamental frequency of an audio
sample by one octave.
Listing 3. Example analysis on structured data (such as Table 1), using the combination of pa
analysis. Usage of Parselmouth functionality is highlighted in red; a version with detailed com

Listing 4. Code extract reading in an audio file and directly using Praat commands to increa
uses the parselmouth.praat.call function, since the Manipulation and PitchTier classes are curr
functionality is highlighted in red; a version with detailed comments can be found in the supp
The example in Listing 4 demonstrates two things: function-
ally, it shows how to access the Manipulation functionality
in Praat, but more importantly, it demonstrates how to use
Parselmouth’s call function. As argued above, changing
the pitch of an audio fragment is a non-trivial task that is easily
achievable in Praat, and integrating this into a larger Python
context might be a reason to use Parselmouth. However, with
this concrete example, we also want to demonstrate how to
use praat.call by showing the one-to-one mapping to the
Praat user interface and scripting language. The first (optional)
argument is a Parselmouth object or a list of objects; these are
the objects that would be selected in Praat when executing the
command. Next, the name of the Praat button or action is
passed as an argument to call, and after that the arguments
for the action are listed (i.e., the values one would type in the
Praat form or write in a Praat script). Parselmouth takes care
of converting the arguments to Praat types and returning the
result of the Praat action as a Python type or Parselmouth
object.

Also note how writing intensity=call(sound, "To

Intensity", 100.0, 0.0, False) and intensity= sound.

to_intensity(subtract_mean=False) are equivalent.
The former passes through the Praat command interface,
ndas and Parselmouth to manipulate the csv data frame and perform a custom acoustic
ments can be found in the supplementary material.

se the fundamental frequency of the audio fragment by one octave. Note how the code
ently not yet available as ordinary Python objects in Parselmouth. Usage of Parselmouth
lementary material.



10 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
while the latter is uses the pythonic Python interface Parsel-
mouth provides. The advantage of the latter approach is that
it only requires arguments that are different from Praat’s default
values to be specified, fits better with standard Python coding
styles and convention, and is internally slightly more efficient.
However, both approaches access the same underlying Praat
code, and as such praat.call can be used when preferred
or when the main Python interface is not present in the current
version of Parselmouth.

Lastly, while the example in Listing 4 is kept simple and
abstract and is thus probably not directly applicable in a speci-
fic use case, we want to suggest combining it with the princi-
ples outlined in the other examples. For instance, the
combination with the file manipulation example from Sec-
tion 2.2 would allow one to automate the pitch manipulation
for multiple files. Another possibility is integrating this code into
the interactive experiment, as we will demonstrate in
Section 2.5.
38 https://librivox.org/celebration-of-dialects-and-accents-vol-1/
39 http://www.statsmodels.org/
40 https://github.com/bambinos/bambi
41 http://docs.pymc.io/
42 http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.
html
2.4. Integration with statistical libraries & existing Praat scripts

Another advantage of the Parselmouth workflow is integra-
tion of acoustic and statistical analysis in one language and
software environment. Although statistical analysis is possible
in Praat too, the range of statistical analysis libraries available
to users of Python is vast, robust, and adapts reliably to incor-
porate new methods, because of the modular structure of the
Python environment: i.e., a user can install new libraries for
the necessary statistical analyses. This example demonstrates
a simple workflow integrating these two forms of analysis. We
also use this example to illustrate Parselmouth’s ability to exe-
cute Praat functionality by calling Praat scripts. While the pri-
mary purpose of Parselmouth is to provide a pythonic Python
API for Praat, we recognize that access to Praat functionality
through this interface is currently limited to a subset of all avail-
able Praat functionality. Parselmouth includes the ability to
invoke Praat functionality by calling Praat commands directly
(akin to the way previous libraries handled integration) as a
solution for this limitation, while the Parselmouth codebase
grows (cfr. Section 2.3). This flexibility also caters for another
potentially common use case: execution of already existing,
legacy Praat scripts.

The usefulness of running Praat scripts from Python
becomes clear in a scenario where one wants to reuse previ-
ously written Praat scripts that perform some sophisticated
acoustic analysis, to for example apply such a script to a
new dataset. When the user would also wish to run some
heavy-duty or uncommon statistics on the results using a spe-
cialized statistical library, and has learned how to do so in
Python, Parselmouth can be used to integrate the entire pro-
cess into one workflow. Rather than tediously re-writing the
existing Praat script in Python, Parselmouth allows the user
to run the Praat script from Python and to interface the input
and output of the script with the rest of the Python code. We
envisage this kind of scenario to be relatively common as a
substantial amount of research has already been done using
Praat and Praat scripts.

In this example, presented in Listings 5 and 6, we show how
Parselmouth can be used to execute a Praat script by De Jong
and Wempe (2009)for automatic extraction of syllable centers,
and to subsequently perform statistical analysis. In Listing 5,
we apply this existing Praat script to a corpus of audio record-
ings of Aesop’s fable The North Wind and the Sun in different
English dialects or accents, openly available from the LibriVox
project.38 The example then shows, in Listing 6, how to feed the
results of the acoustic analysis directly into a statistical analysis
of the syllable centre time series data. In this case, we use a
mixed-effects linear model from two different Python statistics
libraries, StatsModels39 and BAMBI40 (BAyesian Model-
Building Interface, based on PyMC341).

In this short example, we test the null hypothesis that read-
ers with a native accent read aloud the story equally fast as the
non-native readers. While the corpus used in the example is
arguably rather small, and the mixed-effects linear model being
fitted might not be the optimal statistical method, we merely
use this statistical question and approach as a simple demon-
stration of how one would combine a Praat analysis and
Python statistical analysis in a single workflow. Our motivation
to present such an example stems from a past project where
we have examined a similar corpus of recordings of The North
Wind and the Sun (International Phonetic Association, 1999)
with regard to syllable timing predictability (Jadoul,
Ravignani, Thompson, Filippi, & de Boer, 2016), using an
autoregressive integrated moving average (or ARIMA) model
for time series analysis.

In Listing 5 the first part of this process is demonstrated.
The extract_syllable_intervals function calls the
existing Praat script through praat.run_file. Just like the
call function, run and run_file take an optional Praat
object or list of objects as first argument to be selected when
at the start of the script’s run; in this case, we omit the argu-
ment since it is not necessary for our example. After the file
name of the script, we pass the further arguments to the script;
again, this is analogous to running the script in Praat, where
one would get a window with the parameters to the script
declared in a form-construct in the script.42 Parselmouth takes
care of converting the Python arguments to Praat and returns
the objects selected at the end of the script (similar to call,
cfr. Section 2.3).

After running the Praat script, we get a TextGrid object
and query it with praat.call – as we currently do not yet
have a Python interface to TextGrid in Parselmouth – to
get the estimated syllable centre timings. Note that we only
use Parselmouth for running the script and getting its results;
the rest of the example code uses standard Python code and
libraries to loop over all files of the corpus and store the results
in one shared pandas DataFrame. We refer to the supple-
mentary material for a version of the script with comments
and more details on this part of the code.

After getting the intervals between syllables for all audio
files in the corpus, we can run the desired statistical analysis
on the data, as illustrated in Listing 6. We fit two different imple-
mentations of mixed-effects linear models, one being a maxi-
mum likelihood estimation and the other following a Bayesian

https://librivox.org/celebration-of-dialects-and-accents-vol-1/
http://www.statsmodels.org/
https://github.com/bambinos/bambi
http://docs.pymc.io/
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html
http://www.fon.hum.uva.nl/praat/manual/Scripting_6_1__Arguments_to_the_script.html


Listing 5. Already existing Praat scripts can be run through the parselmouth.praat.run and parselmouth.praat.run_ file functions to interface with the use of Parselmouth objects and
standard Python variables. Usage of Parselmouth functionality is highlighted in red; a version with detailed comments can be found in the supplementary material.

Listing 6. Once the necessary data is extracted from the corpus (cfr. Listing 5), it can directly be analysed using specialised statistical libraries in Python. A version with detailed
comments can be found in the supplementary material.

Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 11
approach. Since we have extracted the syllable nuclei and
intervals inListing 5 already, Praat and Parselmouth are actu-
ally not involved in this second part of the example. Conse-
quently, it would be possible to write and run the first part of
the code as Praat script, write the data to file, and load that file
when running the statistical analysis. Rather than claiming our
approach using Parselmouth to be better or easier, we merely
want to demonstrate the possibility of a complete Python work-
flow, as motivated before (cfr. Section 1.1).
Once again, our complete example mainly aims to put for-
ward how a Parselmouth user could integrate already existing
Praat scripts into a new Python script or project (i.e., through
the call, run, and run_file functions in the praat sub-
module). Moreover, we think the versatile range of less-
common statistical methods available outside Praat are a good
illustration of why the integration of Praat and Python can be
useful. We could of course combine this example with visual-
ization capabilities similar to the ones laid out in the previous



12 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
examples (cfr. Section 2.1) to achieve a large portion of the
speech data analyst’s workflow in one language.

More generally, while few, if any, of the practices we have
laid out in these examples so far are technically impossible
to achieve using Praat alone (with the appropriate level of
expertise), Parselmouth improves efficiency, by facilitating
integration of the four major strands of speech data analysis:
reading and writing audio; acoustic analysis; statistical analy-
sis; and visualization. Furthermore, and maybe even more cru-
cially in our view, this kind of access to existing scripts with
Parselmouth can help to eventually expand the range of users
who are able to make use of Praat’s functionality.
2.5. Integration into experimental design

Contemporary experimental procedures increasingly
require sophisticated computational workflows. In the
speech-related sciences, it has traditionally been difficult to
build automated acoustic data analysis into experimental pro-
cedures because trial structure design and implementation is
typically not programmed in Praat (though we note that exper-
imental design is actually possible in Praat43), but in spe-
cialised experimental software packages that do not include
acoustic data manipulation and analysis tools. Parselmouth
can help solve this problem through integration with widely-
used Python-based experimental software such as PsychoPy
(Peirce, 2007, 2009). As a simple example of this capability, this
section shows how Parselmouth can be built into the trial loop of
a standard adaptive staircase design experiment that is part of
PsychoPy. Such an experimental design could for example be
used determine just-noticeable differences, or as pre-
experimental routine to test a participant’s hearing or adjust to
the level of background noise. Although we focus on this partic-
ular experimental procedure, we emphasise that this example is
part of a broader class of adaptive, algorithmic experimental
designs that are expected to become increasingly important in
experimental research (Suchow & Griffiths, 2016): Parselmouth,
providing the possibility of bringing both acoustic analysis and
synthesis into the experimental loop, helps put these kinds of
experiments within easier reach of speech scientists using
Python.

Although programming an interactive experiment is also
possible with the Praat scripting language, as interaction with
the participant is supported through the Praat demo window44

and anything else can be programmed from scratch, we see a
few advantages to using an experimental package like Psy-
choPy: firstly, PsychoPy is an established, widely-used software
package, developed around the central idea of running “neuro-
science, psychology and psychophysics experiments”.45 Sec-
ondly, PsychoPy already contains many built-in experimental
features and has a graphical user interface that allows for
quickly setting up an experiment without writing any code. And
finally, a researcher with more advanced needs can escape this
purely graphical interface and add custom components and
code to the experiment, while still taking advantage of the
43 E.g., http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html
44 http://www.fon.hum.uva.nl/praat/manual/Demo_window.html
45 http://www.psychopy.org/
functionality that is already available in PsychoPy and focusing
on this custom functionality.

An introduction to staircase experimental design (e.g.,
Kaernbach, 2001) and to the details of PsychoPy’s implemen-
tation of this class of experimental designs, can be found in a
PsychoPy tutorial on measuring just-noticeable-differences,
“Measuring a JND using a staircase procedure”.46 Generally
speaking, PsychoPy can be used in two different ways: it is pos-
sible to write a Python script that imports and uses the psy-

chopy module, or one can use the graphical Builder interface,
as shown in Fig. 3. In the first case, the user can just import
and use the parselmouth library alongside psychopy, but
also when using the graphical user interface, Praat’s algorithms
and potential can be accessed through Parselmouth. Crucially,
through the addition of Code components the PsychoPy Builder
allows blocks of Python code to be inserted into an experimental
design such that these code blocks are executed on initialisa-
tion, during, or on completion of one of the experiment’s routines
(cfr. Fig. 3). This is how arbitrary Praat functionality can be
inserted into the experimental procedure to generate and update
custom acoustic stimuli on the fly.

As an illustration of this principle and its simplicity, we have
implemented a staircase design experiment. It was engineered
to converge on the lowest signal-to-noise ratio at which partic-
ipants can correctly classify a Gaussian white-noise corrupted
speech segment in which the speaker says either ‘bet’ or ‘bat’,
loosely based on an experiment by de Boer (2012). Such a
design requires that at the start of each trial, white noise is
added to an audio stimulus, to a degree that is determined
by the participant’s response in the previous trial. Moreover,
the resulting stimulus must then be rescaled to have a constant
mean intensity. These computations can be handled easily
using Parselmouth, especially when one is already familiar
with how to do this in Praat. Listing 7 shows the code inserted
into the PsychoPy trial. The full PsychoPy builder project as
well as the generated code to run the experiment are provided
as supplementary material, together with the two associated
audio files. This example, like the ones before, can serve as
a starting point for building one’s own Python scripts and
experiments with Parselmouth.

While PsychoPy provides a convenient framework to set up
an experiment in Python, Parselmouth also allows for Praat
functionality to be accessed from a generic Python model or
experiment. For example, Rasilo and Räsänen (2017)
describe an online model of language acquisition where a
“learning virtual infant” interacts with a human caregiver in an
experiment. The model of the babbling infant combines differ-
ent aspects of learning, including an articulatory model, the
clustering and categorisation of the different babbled utter-
ances, and an algorithm to learn associations between these
utterances and the caregiver’s responses. Consequently, most
of the implementation of this computational model would be dif-
ficult in the Praat scripting language, as the model might ben-
efit from using computational libraries. However, the model
also involves the extraction of formant frequencies when con-
verting a speech utterance into an acoustic representation.
Since this is only a small aspect of the full model, this is most
probably not enough to encourage a researcher to switch to
46 http://www.psychopy.org/coder/tutorial2.html

http://www.fon.hum.uva.nl/praat/manual/ExperimentMFC.html
http://www.fon.hum.uva.nl/praat/manual/Demo_window.html
http://www.psychopy.org/
http://www.psychopy.org/coder/tutorial2.html


Fig. 3. A screenshot of the PsychoPy Builder showing how the built-in ‘staircase’ loopType and the custom Python code using Parselmouth (cfr. Listing 7) fit into the overall PsychoPy
experiment.

47 http://flask.pocoo.org/
48 https://www.djangoproject.com/
49 https://www.mturk.com/

Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 13
using Praat, while the model could benefit from using the
established Praat functionality for formant analysis. More gen-
erally, this is why we believe that also for a broader range of
computational models and interactive experiments, acoustic
feature extraction and articulatory speech synthesis could
potentially be done using the Praat features whereas the rest
of the framework can then be implemented independently, out-
side Praat. The use of Python as glue language and the flexi-
bility and modularity of the Python ecosystem (as described in
Section 1.1) would then allow Praat to be used in such a con-
text, through Parselmouth.

These five presented usage examples are meant so show
the variety of situations in which a researcher might elect to
use Parselmouth, but rather than demonstrating the functional-
ity per se, we wanted to show how Parselmouth can facilitate
the combination of the specialised functionality of Praat with
the wide range of available software packages and computa-
tional environments. After all, these simplified examples of less
than 50 lines of Python code are only scratching the surface of
the diversity of tasks phoneticians, linguists, and other scien-
tists face. With Parselmouth, we hope to have provided
researchers with a tool to enable an easier implementation of
more advanced scientific models and experiments. Just to
illustrate with a final hypothetical example, one could even
go as far as using a Python web server framework (for
instance, Flask47 or Django48) to provide a web service that
involves acoustic processing. Such a web service could then
be used in the context of a crowd-sourced experiment (where
users only run a simple JavaScript program locally), potentially
even in combination with Amazon Mechanical Turk49 which
today is sometimes used to recruit participants in large-scale
online experiments (see, for example, the Dallinger experiment
automation framework50).
3. Conclusion

We hope to have illustrated how Parselmouth can be useful
as a Python interface to Praat. Though our usage examples
focused on visualisation, data file manipulation, audio manipu-
lation, statistical libraries, and integration into a PsychoPy
50 https://github.com/Dallinger/Dallinger

http://flask.pocoo.org/
https://www.djangoproject.com/
https://www.mturk.com/
https://github.com/Dallinger/Dallinger


Listing 7. Code snippets accessing Parselmouth functionality inserted into a PsychoPy experiment through a Code Component, respectively in the Before Experiment, Begin Routine,
and End Routine section. Usage of Parselmouth functionality is highlighted in red; a version with detailed comments can be found in the supplementary material.

51 https://gitter.im/PraatParselmouth/Lobby

14 Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15
experiment, we envisage an unbounded range of practical
applications for the package (e.g., various machine learning
libraries and deep learning frameworks that are gaining popu-
larity, as mentioned in Section 1.1). The aim of Parselmouth is
to link Praat and Python; Parselmouth gives a Praat user
access to the wide variety of scientific and utility packages
available for Python, but also hands over control of Praat’s
functionality to a Python user in a way that naturally gener-
alises the user’s experience of programming in Python. We
hope that such a package can significantly broaden the user
base for Praat’s technology.

We wish to end by stressing again that Parselmouth relies
upon Praat, rather than replacing it: usage of Parselmouth
implies usage of Praat, with its expansive collection of code
and sophisticated algorithms.

3.1. Future directions & development

Parselmouth is under active development. We welcome
contribution from others in the community: the project requires
not just code, but user feedback, bug reports, feature requests,
usage examples, tutorials, and documentation. We believe
there is a strong demand for sophisticated phonetic data anal-
ysis tools in Python, and this demand can only be fulfilled
through community driven efforts. Anybody interested in con-
tributing or providing feedback or requests can email the first
author of this paper, or visit the dedicated Parselmouth chat
room established on Gitter.51
Acknowledgements

YJ would like to thank Robin Jadoul for repeatedly answering ques-
tions like “How would you prefer to write such-and-such in Python?”,
and for being my Virgil in the DLL Inferno, and to thank his co-
authors, Piera Filippi, and Andrea Ravignani for their lasting enthusi-
asm and encouragements during the development of Parselmouth
and for proof-reading the manuscript, as well as Katie Mudd, Marnix
Van Soom, and Marianne de Heer Kloots for their feedback, encour-
agement, and proliferation of Parselpropaganda.

Funding: This project was supported by a PhD Fellowship (Aspi-
rant) of the Research Foundation Flanders – Vlaanderen (FWO) to
YJ, and European Research Council grant 283435 ABACUS to BdB.
Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/
j.wocn.2018.07.001.

https://doi.org/10.1016/j.wocn.2018.07.001
https://doi.org/10.1016/j.wocn.2018.07.001
https://gitter.im/PraatParselmouth/Lobby


Y. Jadoul et al. / Journal of Phonetics 71 (2018) 1–15 15
References

Albin, A. L. (2014). PraatR: An architecture for controlling the phonetics software “Praat”
with the R programming language. The Journal of the Acoustical Society of America,
135, 2198–2199.

de Boer, B. (2012). Loss of air sacs improved hominin speech abilities. Journal of Human
Evolution, 62, 1–6.

Boersma, P. (2001). PRAAT, a system for doing phonetics by computer. Glot
International, 5, 341–345.

Boersma, P., & Weenink, D. (2018). Praat: Doing phonetics by computer [Computer
program]. Version 6.0.40, retrieved 11 May 2018 from http://www.praat.org/.

Bořil, T., & Skarnitzl, R. (2016). Tools rPraat and mPraat. In P. Sojka, A. Horák, I.
Kopeček, & K. Pala (Eds.), International conference on text, speech, and dialogue
(pp. 367–374). Springer International Publishing.

De Jong, N. H., & Wempe, T. (2009). Praat script to detect syllable nuclei and measure
speech rate automatically. Behavior Research Methods, 41, 385–390.

Filippi, P., Gingras, B., & Fitch, W. (2014). Pitch enhancement facilitates word learning
across visual contexts. Frontiers in Psychology, 5, 1468.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9, 90–95.

International Phonetic Association (1999). Handbook of the International Phonetic
Association: A guide to the use of the International Phonetic Alphabet. Cambridge
University Press.
Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer, B. (2016). Seeking
temporal predictability in speech: Comparing statistical approaches on 18 world
languages. Frontiers in Human Neuroscience, 10, 586.

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – Seamless operability
between C++11 and Python. https://github.com/pybind/pybind11.

Kaernbach, C. (2001). Adaptive threshold estimation with unforced-choice tasks.
Attention, Perception, & Psychophysics, 63, 1377–1388.

McKinney, W. (2010). Data structures for statistical computing in Python. Proceedings of
the 9th Python in science conference (Vol. 445). Austin, TX: SciPy.

Peirce, J. W. (2007). PsychoPy – psychophysics software in python. Journal of
Neuroscience Methods, 162, 8–13.

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in
Neuroinformatics, 2, 10.

Rasilo, H., & Räsänen, O. (2017). An online model for vowel imitation learning. Speech
Communication, 86, 1–23.

Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC Research
Notes, 11, 3.

Suchow, J. W., & Griffiths, T. L. (2016). Rethinking experiment design as algorithm
design. In CrowdML – NIPS ’16 workshop on crowdsourcing and machine learning.

Walt, S. V. d., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for
efficient numerical computation. Computing in Science & Engineering, 13, 22–30.

http://refhub.elsevier.com/S0095-4470(17)30138-9/h0005
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0005
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0005
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0010
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0010
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0015
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0015
http://www.praat.org/
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0025
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0025
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0025
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0030
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0030
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0035
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0035
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0040
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0040
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0045
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0045
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0045
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0050
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0050
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0050
https://github.com/pybind/pybind11
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0060
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0060
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0065
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0065
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0070
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0070
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0075
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0075
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0080
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0080
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0085
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0085
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0095
http://refhub.elsevier.com/S0095-4470(17)30138-9/h0095

	Introducing Parselmouth: A Python interface to Praat
	1 Introduction
	1.1 Motivation
	1.2 Relation to previous software
	1.3 Technical details
	1.4 What Praat functionality is already ported in Parselmouth?
	1.5 Installation
	1.6 Documentation

	2 Usage examples
	2.1 Data visualisation
	2.2 File manipulation
	2.3 Audio manipulation
	2.4 Integration with statistical libraries & existing Praat scripts
	2.5 Integration into experimental design

	3 Conclusion
	3.1 Future directions & development

	Acknowledgements
	Appendix A Supplementary data
	References


